Sample records for estimating falling snow

  1. Global Precipitation Measurement (GPM) Core Observatory Falling Snow Estimates

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, G.; Kulie, M.; Milani, L.; Munchak, S. J.; Wood, N.; Levizzani, V.

    2017-12-01

    Retrievals of falling snow from space represent an important data set for understanding and linking the Earth's atmospheric, hydrological, and energy cycles. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. This work focuses on comparing the first stable falling snow retrieval products (released May 2017) for the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO), which was launched February 2014, and carries both an active dual frequency (Ku- and Ka-band) precipitation radar (DPR) and a passive microwave radiometer (GPM Microwave Imager-GMI). Five separate GPM-CO falling snow retrieval algorithm products are analyzed including those from DPR Matched (Ka+Ku) Scan, DPR Normal Scan (Ku), DPR High Sensitivity Scan (Ka), combined DPR+GMI, and GMI. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new, the different on-orbit instruments don't capture all snow rates equally, and retrieval algorithms differ. Thus a detailed comparison among the GPM-CO products elucidates advantages and disadvantages of the retrievals. GPM and CloudSat global snowfall evaluation exercises are natural investigative pathways to explore, but caution must be undertaken when analyzing these datasets for comparative purposes. This work includes outlining the challenges associated with comparing GPM-CO to CloudSat satellite snow estimates due to the different sampling, algorithms, and instrument capabilities. We will highlight some factors and assumptions that can be altered or statistically normalized and applied in an effort to make comparisons between GPM and CloudSat global satellite falling snow products as equitable as possible.

  2. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Jackson, Gail

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. In order to collect information on the complete global precipitation cycle and to understand the energy budget in terms of precipitation, uniform global estimates of both liquid and frozen precipitation must be collected. Active observations of falling snow are somewhat easier to estimate since the radar will detect the precipitation particles and one only needs to know surface temperature to determine if it is liquid rain or snow. The challenges of estimating falling snow from passive spaceborne observations still exist though progress is being made. While these challenges are still being addressed, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Important information to assess falling snow retrievals includes knowing thresholds of detection for active and passive sensors, various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (2.5 km) cloud tops having an ice water content (Iwe) at the surface of 0.25 g m-3 and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The analysis relies on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Results are presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz (Skofronick-Jackson, et al. submitted to IEEE TGRS, April 2012). The notable results show: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with 0.05 g m-3 detected at the surface, or an 0.5-1 mm hr-l melted snow rate (equivalent to 0.5-2 cm hr-l solid fluffy snowflake rate).

  3. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.; Munchak, S. Joseph

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The challenges of estimating falling snow from space still exist though progress is being made. These challenges include weak falling snow signatures with respect to background (surface, water vapor) signatures for passive sensors over land surfaces, unknowns about the spherical and non-spherical shapes of the snowflakes, their particle size distributions (PSDs) and how the assumptions about the unknowns impact observed brightness temperatures or radar reflectivities, differences in near surface snowfall and total column snow amounts, and limited ground truth to validate against. While these challenges remain, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (approx 2.5 km) cloud tops having an ice water content (IWC) at the surface of 0.25 g / cubic m and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Sensitivity analyses were performed to better ascertain the relationships between multifrequency microwave and millimeter-wave sensor observations and the falling snow/underlying field of view. In addition, thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types were studied. Results will be presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz.

  4. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  5. Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail M.; Johnson, Benjamin T.; Munchak, S. Joseph

    2013-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earths surface in order to fully capture the global atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms for current and future missions includes determining the thresholds of detection for various active and passive sensor channel configurations and falling snow events over land surfaces and lakes. In this paper, cloud resolving model simulations of lake effect and synoptic snow events were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W-band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR)Ku- and Ka-bands, and the GPM Microwave Imager. Eleven different nonspherical snowflake shapes were used in the analysis. Notable results include the following: 1) The W-band radar has detection thresholds more than an order of magnitude lower than the future GPM radars; 2) the cloud structure macrophysics influences the thresholds of detection for passive channels (e.g., snow events with larger ice water paths and thicker clouds are easier to detect); 3) the snowflake microphysics (mainly shape and density)plays a large role in the detection threshold for active and passive instruments; 4) with reasonable assumptions, the passive 166-GHz channel has detection threshold values comparable to those of the GPM DPR Ku- and Ka-band radars with approximately 0.05 g *m(exp -3) detected at the surface, or an approximately 0.5-1.0-mm * h(exp -1) melted snow rate. This paper provides information on the light snowfall events missed by the sensors and not captured in global estimates.

  6. Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae

    NASA Astrophysics Data System (ADS)

    Kohshima, Shiro; Takeuchi, Nozomu; Uetake, Jun; Shiraiwa, Takayuki; Uemura, Ryu; Yoshida, Naohiro; Matoba, Sumito; Godoi, Maria Angelica

    2007-10-01

    Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59'05″S, 73°31'12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes ( 18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na +, K +, Mg 2+, Ca 2+, Cl -, SO 42-) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a - 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a - 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a - 1 from fall 1998 to fall 1999 and 8.6 m a - 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.

  7. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

    NASA Astrophysics Data System (ADS)

    Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.

    2017-07-01

    Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100-200 % for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASC measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18 % difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36 % for the individual events. Use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122 % for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. More accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.

  8. GPM Pre-Launch Algorithm Development for Physically-Based Falling Snow Retrievals

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Tokay, Ali; Kramer, Anne W.; Hudak, David

    2008-01-01

    In this work we compare and correlate the long time series (Nov.-March) neasurements of precipitation rate from the Parsivels and 2DVD to the passive (89, 150, 183+/-1, +/-3, +/-7 GHz) observations of NOAA's AMSU-B radiometer. There are approximately 5-8 AMSU-B overpass views of the CARE site a day. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. Scatterplots between the Parsivel snowfall rates and AMSU-B brightness temperatures (TBs) did not show an exploitable relationship for retrievals. We further compared and contrasted brightness temperatures to other surface measurements such as temperature and relative humidity with equally unsatisfying results. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that the cloud icc scattering signal in the AMSU-B data call be detected by computing clear air TBs based on CARE radiosonde data and a rough estimate of surface emissivity. That is the differences in computed TI3 and AMSU-B TB for precipitating and nonprecipitating cases are unique such that the precipitating versus lon-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data and allow for three surface types: no snow on the ground, less than 5 cm snow on the ground, and greater than 5 cm on the ground (as given by ground station data). Forest fraction and measured emissivities were combined to calculate the surface emissivities. The above work and future work to incorporate knowledge about falling snow retrievals into the framework of the expected GPM Bayesian retrievals will be described during this presentation.

  9. New Developments for Physically-based Falling Snow Retrievals over Land in Preparation for GPM

    NASA Technical Reports Server (NTRS)

    Jackson, Gail S.; Tokay, Ali; Kramer, Anne W.; Hudak, David

    2008-01-01

    The NASA Global Precipitation Measurement mission (GPM) concept centers on deploying a Core spacecraft carrying a dual-frequency precipitation radar and a microwave radiometric imager with channels from 10 to 183 GHz to serve as a precipitation physics observatory and a calibration reference to unify a constellation of dedicated and operational passive microwave sensors. Because of the extended orbit of the Core (plus or minus 65 deg) and the enhanced dual frequency radar and high frequency radiometer, GPM will be able to sense falling snow precipitation and light rain over land. Accordingly, GPM has partnered with the Canadian CloudSat/CALIPSO Validation Project (C3VP) to obtain observations to provide one of several important ground-based validation data sets around which the falling snow models and retrieval algorithms can be further developed and tested. In this work we compare and correlate the long time series (Nov.'06 - March '07) measurements of precipitation rate from parsivels to the passive (89, 150, 183 plus or minus 1, plus or minus 3, plus or minus 7 GHz) observations of NOAA's AMSU-B radiometer. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that by computing brightness temperatures based on CARE radiosonde data and a rough estimate of surface emissivity show that the cloud ice scattering signal in the AMSU-B data is detected. That is the differences in computed TB and AMSU-B TB for precipitating and non-precipitating cases are unique such that the precipitating and non-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data. Forest fraction, snow cover, and measured emissivities were combined to calculate the surface emissivities.

  10. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

    DOE PAGES

    Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.

    2017-07-20

    Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100–200% for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASCmore » measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18% difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36% for the individual events. The use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122% for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. Furthermore, accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.« less

  11. A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Steven J.; Wood, Norman B.; L'Ecuyer, Tristan S.

    Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100–200% for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASCmore » measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a -18% difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36% for the individual events. The use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from -64 to +122% for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. Furthermore, accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.« less

  12. Multifactor estimation of ecological risks using numerical simulation

    NASA Astrophysics Data System (ADS)

    Voskoboynikova, G.; Shalamov, K.; Khairetdinov, M.; Kovalevsky, V.

    2017-10-01

    In this paper, the problem of interaction of acoustic waves falling at a given angle on a snow layer on the ground and seismic waves arising both in this layer and in the ground is considered. A system of differential equations with boundary conditions describing the propagation of incident and reflected acoustic waves in the air refracted and reflected from the boundary of seismic waves in elastic media (snow and ground) is constructed and solved for a three-layer air-snow layer-ground model. The coefficients of reflection and refraction are calculated in the case of an acoustic wave falling onto both the ground and snow on the ground. The ratio of the energy of the refracted waves to the energy of the falling acoustic wave is obtained. It is noted that snow has a strong influence on the energy transfer into the ground, which can decrease by more than an order of magnitude. The numerical results obtained are consistent with the results of field experiments with a vibrational source performed by the Siberian Branch of the Russian Academy of Sciences.

  13. Antarctic Sea Ice Thickness and Snow-to-Ice Conversion from Atmospheric Reanalysis and Passive Microwave Snow Depth

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Maksym, Ted

    2007-01-01

    Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.

  14. Use of 2d-video Disdrometer to Derive Mean Density-size and Ze-SR Relations: Four Snow Cases from the Light Precipitation Validation Experiment

    NASA Technical Reports Server (NTRS)

    Huang, Gwo-Jong; Bringi, V. N.; Moisseev, Dmitri; Petersen, Walter A.; Bliven, Francis L.; Hudak, David

    2014-01-01

    The application of the 2D-video disdrometer to measure fall speed and snow size distribution and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power law is described. Inversion of the methodology proposed by Böhm provides the pathway to use measured fall speed, area ratio and '3D' size measurement to estimate the mass of each particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with supporting data from other instruments such as Precipitation Occurrence Sensor System (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C9 band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are in good agreement with a network of seven snow gauges and outperform the accumulations derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The normalized bias between radar-derived and gauge accumulation is reduced from 96% when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. The normalized standard error is also reduced significantly from 66% to 31%. For two of the days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed significant differences in spatial variability. Liquid water path estimates from radiometric data also showed significant differences between the two cases. Examination of SVI particle images at the measurement site corroborated these differences in terms of unrimed versus rimed snow particles. The findings reported herein support the application of Böhm's methodology for deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer.

  15. Reconciling CloudSat and GPM Estimates of Falling Snow

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Jackson, Gail Skofronick; Kulie, Mark; Wood, Norm; Miliani, Lisa

    2017-01-01

    Satellite-based estimates of falling snow have been provided by CloudSat (launched in 2006) and the Global Precipitation Measurement (GPM) core satellite (launched in 2014). The CloudSat estimates are derived from W-band radar measurements whereas the GPM estimates are derived from its scanning Ku- and Ka-band Dual-Frequency Precipitation Radar (DPR) and 13-channel microwave imager (GMI). Each platform has advantages and disadvantages: CloudSat has higher resolution (approximately 1.5 km) and much better sensitivity (-28 dBZ), but poorer sampling (nadir-only and daytime-only since 2011) and the reflectivity-snowfall (Z-S) relationship is poorly constrained with single-frequency measurements. Meanwhile, DPR suffers from relatively poor resolution (5 km) and sensitivity (approximately 13 dBZ), but has cross-track scanning capability to cover a 245-km swath. Additionally, where Ku and Ka measurements are available, the conversion of reflectivity to snowfall rate is better-constrained than with a single frequency.

  16. Estimation of snow in extratropical cyclones from multiple frequency airborne radar observations. An Expectation-Maximization approach

    NASA Astrophysics Data System (ADS)

    Grecu, M.; Tian, L.; Heymsfield, G. M.

    2017-12-01

    A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar observations as well as with independent rainfall estimates below the freezing level may be derived using the EM methodology formulated in the study.

  17. Monitoring All Weather Precipitation Using PIP and MRR

    NASA Astrophysics Data System (ADS)

    Bliven, Francis; Petersen, Walter; Kulie, Mark; Pettersen, Claire; Wolff, David; Dutter, Michael

    2015-04-01

    The objective of this study is to demonstrate the science benefit of monitoring all weather precipitation for the Global Precipitation Measurement (GPM) Mission Ground Validation Program using a combination of two instruments: the Precipitation Imaging Package (PIP) and a Microwave Rain Radar-II (MRR). The PIP is a new ground based precipitation imaging instrument that uses a high speed camera and advanced processing software to image individual hydrometeors, measure hydrometeor size distributions, track individual hydrometeors and compute fall velocities. PIP hydrometeor data are also processed using algorithms to compute precipitation rates in one-minute time increments, and to discriminate liquid, mixed and frozen (e.g., snow) precipitation. The MRR, a vertically-pointing 24 GHz radar, is well documented in the literature and monitors hydrometeor vertical profile characteristics such as Doppler fall-speed spectra, radar reflectivity, size distribution and precipitation rate. Of interest to GPM direct and physical ground validation are collections of robust, satellite overpass-coincident, long-duration datasets consisting of observations of the aforementioned hydrometeor characteristics for falling snow and mixes of falling-snow and rain, as there are relatively few instruments that provide continuous observations of coincident hydrometeor image, size, and fall velocity in cold regions due to harsh environmental conditions. During extended periods of 2013 and 2014, concurrent PIP and MRR data sets were obtained at the National Weather Service station in Marquette, Michigan (2014), and at the NASA Wallops Flight Facility in Wallops Island, Virginia (2013,14). Herein we present examples of those data sets for a variety of weather conditions (rain, snow, frontal passages, lake effect snow events etc.). The results demonstrate 1) that the PIP and MRR are well-suited to long term operation in cold regions; 2) PIP and MRR data products are useful for characterizing a wide variety of precipitation types and conditions; 3) systematic variability in bulk snow characteristics such as fall speed and size distributions can be observed between event types, but also within individual event types (e.g., within a given synoptic or lake effect storm). The observed behavior suggests that added information on environmental or cloud parameters may be necessary to further define snowfall types/regimes or to estimate snow water equivalent rates using satellite or ground-based active or passive remote sensing tools.

  18. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer at 0 C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0" to 0.5"C. As air temperatures increa sed above 0.5 C, the relative proportions of rain versus snow particl es shift dramatically and raindrops become dominant. The value of 0.5 C for the sharp transition in volume fraction from snow to rain is sl ightly lower than the range from 1 .l to 1.7 C often used in hydrolog ical models.

  19. Face Value: Towards Robust Estimates of Snow Leopard Densities.

    PubMed

    Alexander, Justine S; Gopalaswamy, Arjun M; Shi, Kun; Riordan, Philip

    2015-01-01

    When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality.

  20. Face Value: Towards Robust Estimates of Snow Leopard Densities

    PubMed Central

    2015-01-01

    When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality. PMID:26322682

  1. Application of LANDSAT imagery for snow mapping in Norway

    NASA Technical Reports Server (NTRS)

    Odegaard, H. (Principal Investigator); Ostrem, G.

    1977-01-01

    The author has identified the following significant results. It was shown that if the snow cover extent was determined from all four LANDSAT bands, there were significant differences in results. The MSS 4 gave the largest snow cover, but only slightly more than MSS 5, whereas MSS 6 and 7 gave the smallest snow area. A study was made to show that there was a relationship between the last date of snow fall and the area covered with snow, as determined from different bands. Imagery obtained shortly after a snow fall showed no significant difference in the snow-covered area when the four bans were compared, whereas, pronounced differences in the snow-covered area were found in images taken after a long period without precipitation.

  2. How Does Snow Persistence Relate to Annual Streamflow in Mountain Watersheds of the Western U.S. With Wet Maritime and Dry Continental Climates?

    NASA Astrophysics Data System (ADS)

    Hammond, John C.; Saavedra, Freddy A.; Kampf, Stephanie K.

    2018-04-01

    With climate warming, many regions are experiencing changes in snow accumulation and persistence. These changes are known to affect streamflow volume, but the magnitude of the effect varies between regions. This research evaluates whether variables derived from remotely sensed snow cover can be used to estimate annual streamflow at the small watershed scale across the western U.S., a region with a wide range of climate types. We compared snow cover variables derived from MODIS, snow persistence (SP), and snow season (SS), to more commonly utilized metrics, snow fraction (fraction of precipitation falling as snow, SF), and peak snow water equivalent (SWE). Each variable represents different information about snow, and this comparison assesses similarities and differences between the snow metrics. Next, we evaluated how two snow variables, SP and SWE, related to annual streamflow (Q) for 119 USGS reference watersheds and examined whether these relationships varied for wet/warm (precipitation surplus) and dry/cold (precipitation deficit) watersheds. Results showed high correlations between all snow variables, but the slopes of these relationships differed between climates, with wet/warm watersheds displaying lower SF and higher SWE for the same SP. In dry/cold watersheds, both SP and SNODAS SWE correlated with Q spatially across all watersheds and over time within individual watersheds. We conclude that SP can be used to map spatial patterns of annual streamflow generation in dry/cold parts of the region. Applying this approach to the Upper Colorado River Basin demonstrates that 50% of streamflow comes from areas >3,000 masl. If the relationship between SP and Q is similar in other dry/cold regions, this approach could be used to estimate annual streamflow in ungauged basins.

  3. Snow deposition and melt under different vegetative covers in central New York

    Treesearch

    A. R. Eschner; D. R. Satterlund

    1963-01-01

    Two-thirds of the annual runoff from watersheds in the Allegheny Plateau of central New York comes from the snow-or snow and rain that falls in December through April. Although the amounts of precipitation in this period are fairly uniform from year to year, the proportion that falls as snow varies; so does the amount that accumulates on the ground, and its duration...

  4. Radiative transfer in falling snow: A two-stream approximation

    NASA Astrophysics Data System (ADS)

    Koh, Gary

    1989-04-01

    Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream approximation to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The approximate solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.

  5. Ensemble Mean Density and its Connection to Other Microphysical Properties of Falling Snow as Observed in Southern Finland

    NASA Technical Reports Server (NTRS)

    Tiira, Jussi; Moisseev, Dmitri N.; Lerber, Annakaisa von; Ori, Davide; Tokay, Ali; Bliven, Larry F.; Petersen, Walter

    2016-01-01

    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. A relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies, but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass- dimensional relations of snow are retrieved. For snow rates more than 0.2mm/h, a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.

  6. Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiira, Jussi; Moisseev, Dmitri N.; von Lerber, Annakaisa

    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. Here, a relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies,more » but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass–dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h -1, a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.« less

  7. Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland

    DOE PAGES

    Tiira, Jussi; Moisseev, Dmitri N.; von Lerber, Annakaisa; ...

    2016-09-28

    In this study measurements collected during winters 2013/2014 and 2014/2015 at the University of Helsinki measurement station in Hyytiala are used to investigate connections between ensemble mean snow density, particle fall velocity and parameters of the particle size distribution (PSD). The density of snow is derived from measurements of particle fall velocity and PSD, provided by a particle video imager, and weighing gauge measurements of precipitation rate. Validity of the retrieved density values is checked against snow depth measurements. Here, a relation retrieved for the ensemble mean snow density and median volume diameter is in general agreement with previous studies,more » but it is observed to vary significantly from one winter to the other. From these observations, characteristic mass–dimensional relations of snow are retrieved. For snow rates more than 0.2 mm h -1, a correlation between the intercept parameter of normalized gamma PSD and median volume diameter was observed.« less

  8. Risk of Fall-Related Injury due to Adverse Weather Events, Philadelphia, Pennsylvania, 2006-2011.

    PubMed

    Gevitz, Kathryn; Madera, Robbie; Newbern, Claire; Lojo, José; Johnson, Caroline C

    Following a surge in fall-related visits to local hospital emergency departments (EDs) after a severe ice storm, the Philadelphia Department of Public Health examined the association between inclement winter weather events and fall-related ED visits during a 5-year period. Using a standardized set of keywords, we identified fall-related injuries in ED chief complaint logs submitted as part of Philadelphia Department of Public Health's syndromic surveillance from December 2006 through March 2011. We compared days when falls exceeded the winter fall threshold (ie, "high-fall days") with control days within the same winter season. We then conducted matched case-control analysis to identify weather and patient characteristics related to increased fall-related ED visits. Fifteen high-fall days occurred during winter months in the 5-year period. In multivariable analysis, 18- to 64-year-olds were twice as likely to receive ED care for fall-related injuries on high-fall days than on control days. The crude odds of ED visits occurring from 7:00 am to 10:59 am were 70% higher on high-fall days vs control days. Snow was a predictor of a high-fall day: the adjusted odds of snow before a high-fall day as compared with snow before a control day was 13.4. The association between the number of fall-related ED visits and weather-related fall injuries, age, and timing suggests that many events occurred en route to work in the morning. Promoting work closures or delaying openings after severe winter weather would allow time for better snow or ice removal, and including "fall risk" in winter weather advisories might effectively warn morning commuters. Both strategies could help reduce the number of weather-related fall injuries.

  9. Seasonal Progression of the Deposition of Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Kondo, Y.; Goto-Azuma, K.; Tsukagawa, Y.; Fukuda, K.; Koike, M.; Ohata, S.; Moteki, N.; Mori, T.; Oshima, N.; Førland, E. J.; Irwin, M.; Gallet, J.-C.; Pedersen, C. A.

    2018-01-01

    Deposition of black carbon (BC) aerosol in the Arctic lowers snow albedo, thus contributing to warming in the region. However, the processes and impacts associated with BC deposition are poorly understood because of the scarcity and uncertainties of measurements of BC in snow with adequate spatiotemporal resolution. We sampled snowpack at two sites (11 m and 300 m above sea level) at Ny-Ålesund, Spitsbergen, in April 2013. We also collected falling snow near the surface with a windsock from September 2012 to April 2013. The size distribution of BC in snowpack and falling snow was measured using a single-particle soot photometer combined with a characterized nebulizer. The BC size distributions did not show significant variations with depth in the snowpack, suggesting stable size distributions in falling snow. The BC number and mass concentrations (CNBC and CMBC) at the two sites agreed to within 19% and 10%, respectively, despite the sites' different snow water equivalent (SWE) loadings. This indicates the small influence of the amount of SWE (or precipitation) on these quantities. Average CNBC and CMBC in snowpack and falling snow at nearly the same locations agreed to within 5% and 16%, after small corrections for artifacts associated with the sampling of the falling snow. This comparison shows that the dry deposition was a small contributor to the total BC deposition. CMBC were highest (2.4 ± 3.0 μg L-1) in December-February and lowest (1.2 ± 1.2 μg L-1) in September-November.

  10. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Naz, Bibi S.; Bowling, Laura C.

    2015-02-01

    The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.

  11. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  12. Effects of neck bands on survival of greater snow geese

    USGS Publications Warehouse

    Menu, S.; Hestbeck, J.B.; Gauthier, G.; Reed, A.

    2000-01-01

    Neck bands are a widely used marker in goose research. However, few studies have investigated a possible negative effect of this marker on survival. We tested the effect of neck bands on the survival of adult female greater snow geese (Chen caerulescens atlantica) by marking birds with either a neck band and a metal leg band or a leg band only on Bylot Island (Nunavut, formerly included in the Northwest Territories, Canada) from 1990 to 1996. Annual survival was estimated using leg-band recoveries in fall and winter and using neck-band sightings in spring and fall. Recapture rates were estimated using summer recaptures. Using recovery data, the selected model yielded a survival similar for the neck-banded and leg-banded only birds (S = 0.845 ?? 0.070 vs. S = 0.811 ?? 0.107). The hypothesis of equality of survival between the 2 groups was easily accepted under most constraints imposed on survival or recovery rates. However, failure to account for a different direct recovery rate for neck-banded birds would lead us to incorrectly conclude a possible negative effect of neck bands on survival. Using sighting data, mean annual survival of neck-banded birds was independently estimated at 0.833 ?? 0.057, a value very similar to that estimated with band-recovery analysis. Raw recapture rates during summer were significantly lower for neck-banded birds compared to those marked with leg bands only (4.6% vs. 12.1%), but in this analysis, survival, site fidelity, reproductive status, and recapture rates were confounded. We conclude that neck bands did not affect survival of greater snow geese, but could possibly affect other demographic traits such as breeding propensity and emigration.

  13. A long-term Northern Hemisphere snow cover extent product (JASMES) deriving from satellite-borne optical sensors using consistent objective criteria

    NASA Astrophysics Data System (ADS)

    Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Niwano, M.; Enomoto, H.

    2017-12-01

    A long-term Northern Hemisphere (NH) snow cover extent (SCE) product (JASMES SCE) was developed from the application of a consistent objective snow cover mapping algorithm to satellite-borne optical sensors (NOAA/AVHRR and NASA's optical sensor MODIS) from 1982 to the present. We estimated NH SCE from weekly composited snow cover maps and evaluated the accuracies of snow cover detection using in-situ snow data. As benchmark SCE product, we also evaluated the accuracy of SCE maps from the National Oceanic and Atmospheric Administration Climate Data Record (NOAA-CDR) product. The evaluation showed that JASMES SCE has more temporally stable accuracies. Seasonally averaged SCE derived from JASMES exhibited negative slopes in all seasons which is opposite to those of NOAA-CDR SCE in the fall and winter seasons. The spatial pattern of annual snow cover duration (SCD) trends exhibited noticeable asymmetric pattern between continents with the largest negative trends seen over western Eurasia. The NH SCE product will be connected to the data of the Japanese Earth Observing satellite named "Global Change Observation Mission for Climate (GCOM-C)" to be launched in late 2017.

  14. Snow shovel-related injuries and medical emergencies treated in US EDs, 1990 to 2006.

    PubMed

    Watson, Daniel S; Shields, Brenda J; Smith, Gary A

    2011-01-01

    Injuries and medical emergencies associated with snow shovel use are common in the United States. This is a retrospective analysis of data from the National Electronic Injury Surveillance System. This study analyzes the epidemiologic features of snow shovel-related injuries and medical emergencies treated in US emergency departments (EDs) from 1990 to 2006. An estimated 195 100 individuals (95% confidence interval, 140 400-249 800) were treated in US EDs for snow shovel-related incidents during the 17-year study period, averaging 11 500 individuals annually (SD, 5300). The average annual rate of snow shovel-related injuries and medical emergencies was 4.15 per 100 000 population. Approximately two thirds (67.5%) of these incidents occurred among males. Children younger than 18 years comprised 15.3% of the cases, whereas older adults (55 years and older) accounted for 21.8%. The most common diagnosis was soft tissue injury (54.7%). Injuries to the lower back accounted for 34.3% of the cases. The most common mechanism of injury/nature of medical emergency was acute musculoskeletal exertion (53.9%) followed by slips and falls (20.0%) and being struck by a snow shovel (15.0%). Cardiac-related ED visits accounted for 6.7% of the cases, including all of the 1647 deaths in the study. Patients required hospitalization in 5.8% of the cases. Most snow shovel-related incidents (95.6%) occurred in and around the home. This is the first study to comprehensively examine snow shovel-related injuries and medical emergencies in the United States using a nationally representative sample. There are an estimated 11 500 snow shovel-related injuries and medical emergencies treated annually in US EDs. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Yeah!!! A Snow Day!

    ERIC Educational Resources Information Center

    Cone, Theresa Purcell; Cone, Stephen L.

    2006-01-01

    As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…

  16. A comparison of methods used to obtain age ratios of snow and Canada geese

    USGS Publications Warehouse

    Higgins, K.F.; Linder, R.L.; Springer, P.F.

    1969-01-01

    The validity of group counts, cannon-net catches, and hunter-bag checks for estimating productivity of lesser snow geese (Anser caerulescens caerulescens) and small Canada geese (Branta canadensis hutchinsii-parvipes complex) was studied at Sand Lake National Wildlife Refuge during the falls of 1965 and 1966. Age ratios of snow geese obtained from net-trapped samples were significantly higher (P < 0.01) than from group counts at the same site. Immature snow geese were shot in a significantly greater (P < 0.01) proportion than they existed in the population as determined by group counts. Cannon-net catches and hunter-bag checks of snow and Canada geese yielded age ratios which were biased because of behavioral characteristics of the geese. Immatures of both species were less wary of trap equipment and immature snow geese were more vulnerable to the gun than adults. It was believed that age ratios from group counts of snow geese were more representative of the population than those from net catches and hunter-bag checks. Sex ratios of net-trapped geese showed a preponderance of males for adult Canada and adult and immature snow geese, whereas females were predominant in the immature segment of Canada geese. Hunter selectivity of blue- or white-phase snow geese was not observed at Sand Lake Refuge. Differential vulnerability to hunting between snow and Canada geese resulted from differences m feeding-flight behavior.

  17. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang

    2016-10-01

    By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.

  18. Preliminary microphysical characterization of precipitation at ground over Antarctica coast

    NASA Astrophysics Data System (ADS)

    Roberto, Nicoletta; Adirosi, Elisa; Montopoli, Mario; Baldini, Luca; Dietrich, Stefano; Porcù, Federico

    2017-04-01

    The primary mass input of the Antarctic ice sheet is snow precipitation which is one of the most direct climatic indicators. Climatic model simulations of precipitations over Antarctica is an important task to assess the variation of ice sheet over long temporal scale. The main source of precipitation information in Antarctica regions derive from satellite observations. However, satellite measurements and products need to be calibrated and validated with observations from ground sensors. In spite of their key role, precipitation measurements at ground are scarce and not appropriate to provide the specific characteristic of precipitation particles that influence the scattering and absorption properties of ice particles. Recently, different stations in Antarctica (Princess Elizabeth, McMurdo, Mario Zucchelli) are equipping observatories for cloud and precipitation observations. The setup of the observatory at the Italian Station, Mario Zucchelli (MZ) plans to integrate the current instrumentation for weather measurements with other instruments specific for precipitation observations, in particular, a 24-GHz vertical pointing radar and a laser disdrometer Parsivel. The synergetic use of the set of instruments allows for characterizing precipitation and studying properties of Antarctic precipitation such as dimension, shapes, fall behavior, density of particles, particles size distribution, particles terminal velocity, reflectivity factor and including some information on their vertical extent. Last November, the OTT Parsivel disdrometer was installed on the roof of a logistic container (at 6 m of height) of the MZ station (Latitude 74° 41' 42" S; Longitude 164° 07' 23E") in the Terranova Bay. The disdrometer measures size and fall velocity of particles, passing through a laser matrix from which the Particle Size Distribution (PSD) is obtained. In addition, some products such as reflectivity factor, snow rate and snow accumulation can be inferred by properly processing PSD spectra. Software provided by disdrometer manufacturer assumes spherical shape to compute the size and the fall velocity of the particle. In the case of solid precipitation, this assumption can be unrealistic. However, averaging over a long time the influence of irregular shape of the particles can be reduced. Despite this limit, the Parsivel disdrometer has been used in several study to measure falling snow. In this work, some preliminary measurements from OTT Parsivel at MSZ are presented. In particular, the PSD collected during summer season 2016-2017 are analyzed in order to infer microphysical characteristics of snows in Antarctica. A specific methodology to estimate the reflectivity factor and the snow rate from snow size spectra collected by Parsivel is investigated. Microphysical properties of Antarctica precipitating clouds, in particular PSD, are compared to measurements collected by disdrometer during snow events in other regions, such as the data collected during the GPM Cold-season Precipitation Experiment (GCPEx) in Ontario, Canada.

  19. Simulating the Snow Water Equivalent and its changing pattern over Nepal

    NASA Astrophysics Data System (ADS)

    Niroula, S.; Joseph, J.; Ghosh, S.

    2016-12-01

    Snow fall in the Himalayan region is one of the primary sources of fresh water, which accounts around 10% of total precipitation of Nepal. Snow water is an intricate variable in terms of its global and regional estimates whose complexity is favored by spatial variability linked with rugged topography. The study is primarily focused on simulation of Snow Water Equivalent (SWE) by the use of a macroscale hydrologic model, Variable Infiltration Capacity (VIC). As whole Nepal including its Himalayas lies under the catchment of Ganga River in India, contributing at least 40% of annual discharge of Ganges, this model was run in the entire watershed that covers part of Tibet and Bangladesh as well. Meteorological inputs for 29 years (1979-2007) are drawn from ERA-INTERIM and APHRODITE dataset for horizontal resolution of 0.25 degrees. The analysis was performed to study temporal variability of SWE in the Himalayan region of Nepal. The model was calibrated by observed stream flows of the tributaries of the Gandaki River in Nepal which ultimately feeds river Ganga. Further, the simulated SWE is used to estimate stream flow in this river basin. Since Nepal has a greater snow cover accumulation in monsoon season than in winter at high altitudes, seasonality fluctuations in SWE affecting the stream flows are known. The model provided fair estimates of SWE and stream flow as per statistical analysis. Stream flows are known to be sensitive to the changes in snow water that can bring a negative impact on power generation in a country which has huge hydroelectric potential. In addition, our results on simulated SWE in second largest snow-fed catchment of the country will be helpful for reservoir management, flood forecasting and other water resource management issues. Keywords: Hydrology, Snow Water Equivalent, Variable Infiltration Capacity, Gandaki River Basin, Stream Flow

  20. The probable importance of snow and sediment shielding on cosmogenic ages of north-central Colorado Pinedale and pre-Pinedale moraines

    USGS Publications Warehouse

    Benson, L.; Madole, R.; Phillips, W.; Landis, G.; Thomas, T.; Kubik, P.

    2004-01-01

    Eight uncorrected 36Cl ages for Pinedale boulders in north-central Colorado fall in the range 16.5 to 20.9 kyr. 10Be age determinations on four of five boulders are in close agreement (???6% difference) with 36Cl determinations. Hypothetical corrections for snow shielding increased the 36Cl ages of Pinedale boulder surfaces by an average of ???12%. Most ages for pre-Pinedale (Bull Lake) boulders fall within marine-isotope stage (MIS) 5, a time when continental and Sierran ice accumulations were small or nonexistent. Under the assumption that these boulders were deposited on moraines that formed before the end of MIS 6 (???140 kyr BP), calculations indicated that rock-surface erosion rates would have had to range from 5.9 to 10.7 mm kyr-1 to produce the observed 36Cl values. When compared to rates that have been documented for the past 20 kyr, these erosion rates are extremely high. Snow shielding accounts for 0-48% of the additional years needed to shift pre-Pinedale dates to MIS 6. This suggests that some combination of snow shielding, sediment shielding, or 36Cl leakage has greatly decreased the apparent ages of most pre-Pinedale boulders. Inability to account for the effects of these processes seriously hinders the use of cosmogenic ages of pre-Pinedale boulders as estimators of the timing of alpine glaciation.

  1. Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic

    NASA Astrophysics Data System (ADS)

    Svensson, Jonas; Ström, Johan; Kivekäs, Niku; Dkhar, Nathaniel B.; Tayal, Shresth; Sharma, Ved P.; Jutila, Arttu; Backman, John; Virkkula, Aki; Ruppel, Meri; Hyvärinen, Antti; Kontu, Anna; Hannula, Henna-Reetta; Leppäranta, Matti; Hooda, Rakesh K.; Korhola, Atte; Asmi, Eija; Lihavainen, Heikki

    2018-03-01

    Light-absorbing impurities (LAIs) deposited in snow have the potential to substantially affect the snow radiation budget, with subsequent implications for snow melt. To more accurately quantify the snow albedo, the contribution from different LAIs needs to be assessed. Here we estimate the main LAI components, elemental carbon (EC) (as a proxy for black carbon) and mineral dust in snow from the Indian Himalayas and paired the results with snow samples from Arctic Finland. The impurities are collected onto quartz filters and are analyzed thermal-optically for EC, as well as with an additional optical measurement to estimate the light-absorption of dust separately on the filters. Laboratory tests were conducted using substrates containing soot and mineral particles, especially prepared to test the experimental setup. Analyzed ambient snow samples show EC concentrations that are in the same range as presented by previous research, for each respective region. In terms of the mass absorption cross section (MAC) our ambient EC surprisingly had about half of the MAC value compared to our laboratory standard EC (chimney soot), suggesting a less light absorptive EC in the snow, which has consequences for the snow albedo reduction caused by EC. In the Himalayan samples, larger contributions by dust (in the range of 50 % or greater for the light absorption caused by the LAI) highlighted the importance of dust acting as a light absorber in the snow. Moreover, EC concentrations in the Indian samples, acquired from a 120 cm deep snow pit (possibly covering the last five years of snow fall), suggest an increase in both EC and dust deposition. This work emphasizes the complexity in determining the snow albedo, showing that LAI concentrations alone might not be sufficient, but additional transient effects on the light-absorbing properties of the EC need to be considered and studied in the snow. Equally as imperative is the confirmation of the spatial and temporal representativeness of these data by comparing data from several and deeper pits explored at the same time.

  2. Retrieval of Snow Properties for Ku- and Ka-band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro/macro-physical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) duringthe winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  3. Retrieval of Snow Properties for Ku- and Ka-Band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro-macrophysical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow-scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) during the winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  4. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert

    2016-01-01

    In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

  5. How much runoff originates as snow in the western United States and what its future changes tell us?

    NASA Astrophysics Data System (ADS)

    Li, D.; Wrzesien, M.; Durand, M. T.; Adam, J. C.; Lettenmaier, D. P.

    2017-12-01

    Snow is a vital hydrologic cycle component in the western United States. The seasonal phase of snowmelt bridges between winter-dominant precipitation and summer-dominant human and ecosystem water demand. Current estimates of the fraction of total annual runoff generated by snowmelt (f_Q,snow) are not based on defensible, systematic analyses. Here, based on hydrological model simulations, we describe a new algorithm that explicitly quantifies the contribution of snow to runoff in the Western U.S. Specifically, the algorithm tracks the fate of the snowmelt runoff in the modeled hydrological fluxes in the soil, surface water, and the atmosphere, and accounts for the exchanges among the three. The hydrological fluxes are simulated by the Variable Infiltration Capacity (VIC) model using an ensemble of ten general circulation model (GCM) outputs trained by ground observations. We conducted the tracking to the VIC modeling ensemble and reported the mean of the ten tracking results. We computed the historical f_Q,snow with the modeling estimates from 1960 to 2005, and predicted the future f_Q,snow using the modeling estimates from 2006 to 2100 in the RCP4.5 and RCP8.5 scenarios. Our tracking results show that from 1960 to 2005, slightly over one-half of the total runoff in the western United States originated as snowmelt, despite only 37% of the region's total precipitation falling as snow; snowfall is more efficient than rainfall in runoff generation. Snow's importance varies physiographically: snowmelt from the mountains is responsible for over 70% of the total runoff in the West. Snowmelt-derived runoff currently makes up about 2/3 of the inflow to the region's major reservoirs; for Lake Mead and Lake Powell, which are the two largest reservoirs of the nation, snow contributes over 70% of their storage. The contribution of snowmelt to the total runoff will decrease in a warmer climate, by about 1/3 over the West by 2100. Snow will melt earlier and the snowmelt-induced peak flow will shift earlier by 1.5 to up to 4 weeks. Thus, in the context of predicted reductions and earlier shifts of the snow-induced runoff, and the fact that the region's major reservoirs were designed for the historical snow climatology, we argue that substantial impacts on water supply may occur especially in the summer season when water demand peaks.

  6. Comparisons of Modeled and Observed Reflectivities and Fall Speeds for Snowfall of Varied Riming Degree During Winter Storms on Long Island, New York

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Colle, Brian A.; Yuter, Sandra E.; Stark, David

    2016-01-01

    Derived radar reflectivity and fall speed for four Weather Research and Forecasting model bulk microphysical parameterizations (BMPs) run at 1.33 km grid spacing are compared with ground-based, vertically-pointing Ku-band radar, scanning S- band radar, and in situ measurements at Stony Brook, NY. Simulations were partitioned into periods of observed riming degree as determined manually using a stereo microscope and camera during nine winter storms. Simulations were examined to determine whether the selected BMPs captured the effects of varying riming intensities, provided a reasonable match to the vertical structure of radar reflectivity or fall speed, and whether they produced reasonable surface fall speed distributions. Schemes assuming non spherical mass-diameter relationships yielded reflectivity distributions closer to observed values. All four schemes examined in this study provided a better match to the observed, vertical structure of reflectivity during moderate riming than light riming periods. The comparison of observed and simulated snow fall speeds had mixed results. One BMP produced episodes of excessive cloud water at times, resulting in fall speeds that were too large. However, most schemes had frequent periods of little or no cloud water during moderate riming periods and thus underpredicted the snow fall speeds at lower levels. Short, 1-4 hour periods with relatively steady snow conditions were used to compare BMP and observed size and fall speed distributions. These limited data suggest the examined BMPs underpredict fall speeds of cold-type snow habits and underrepresent aggregates larger than 4 mm diameter.

  7. Forecasting Western U.S. Snowpack

    NASA Astrophysics Data System (ADS)

    Kapnick, S. B.; Yang, X.; Vecchi, G. A.; Delworth, T. L.; Gudgel, R.; Malyshev, S.; Milly, C.; Shevliakova, E.; Underwood, S.; Margulis, S. A.

    2017-12-01

    Cold season mountain snow accumulation in the western United States plays a critical role in regional hydroclimate and water supply. While climate projections provide estimates of future snowpack loss by the end of the century and weather forecasts provide predictions of weather conditions and hazards out to two weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), particularly beyond 6 months. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate our dynamical system's feasibility of seasonal snowpack predictions and quantify the limits of predictive skill more than 2 seasons in advance for snowpack—snow that accumulates on the ground in the mountains. Our ability to predict snowpack is reliant on both temperature and precipitation prediction skill modulating both the amount of frozen precipitation that falls and how much snow accumulates and stays on the ground throughout the season. We will quantify prediction skill and outline areas necessary for the future advancement of seasonal hydroclimate prediction.

  8. Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011-2014 Drought From GPS, GRACE, and InSAR

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Fu, Y.; Landerer, F. W.; Farr, T.; Watkins, M. M.; Famiglietti, J. S.

    2014-12-01

    Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons. GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m). The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento-San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to 3 mm/yr.

  9. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less

  10. How much runoff originates as snow in the western United States, and how will that change in the future?

    NASA Astrophysics Data System (ADS)

    Li, Dongyue; Wrzesien, Melissa L.; Durand, Michael; Adam, Jennifer; Lettenmaier, Dennis P.

    2017-06-01

    In the western United States, the seasonal phase of snow storage bridges between winter-dominant precipitation and summer-dominant water demand. The critical role of snow in water supply has been frequently quantified using the ratio of snowmelt-derived runoff to total runoff. However, current estimates of the fraction of annual runoff generated by snowmelt are not based on systematic analyses. Here based on hydrological model simulations and a new snowmelt tracking algorithm, we show that 53% of the total runoff in the western United States originates as snowmelt, despite only 37% of the precipitation falling as snow. In mountainous areas, snowmelt is responsible for 70% of the total runoff. By 2100, the contribution of snowmelt to runoff will decrease by one third for the western U.S. in the Intergovernmental Panel on Climate Change Representative Concentration Pathway 8.5 scenario. Snowmelt-derived runoff currently makes up two thirds of the inflow to the region's major reservoirs. We argue that substantial impacts on water supply are likely in a warmer climate.

  11. The disposition of snow caught by conifer crowns

    Treesearch

    Donald R. Satterlund; Harold F. Haupt

    1970-01-01

    Snow interception studies during the warm winters of 1966-1967 and 1967-1968 in northern Idaho revealed that Douglas fir and western white pine saplings caught about one third of the snow that fell in 22 storms. More than 80% of the snow initially caught in the crowns ultimately reached the ground being washed off by subsequent rain, falling by direct mass release, or...

  12. Vulnerability of nontarget goose species to hunting with electronic snow goose calls

    USGS Publications Warehouse

    Caswell, J.H.; Afton, A.D.; Caswell, F.D.

    2003-01-01

    Since 1999, use of electronic calls has been legal for hunting lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) during special seasons or times of day when other waterfowl species could not be hunted in prairie Canada. Prior to expanding the use of electronic calls for hunting snow geese during fall hunting seasons, effects of these calls on nontarget goose species must be examined. Accordingly, we examined the vulnerability of Canada (Branta canadensis) and white-fronted geese (Anser albifrons) (dark geese) to electronic snow goose calls and 3 goose decoy sets (dark, mixed, and white) during the 1999 fall hunting seasons in Manitoba and Saskatchewan. Canada geese were 2.3 times more likely to fly within gun range (P<0.001) and the mean number killed/hour/hunter was 2.5 times greater (P=0.043) during control periods when hunters were silent or used traditional calling methods (i.e., hand-held and voice calls) than when hunters used electronic snow goose calls. Flock response and kill rate for Canada geese declined as proportions of white decoys increased in decoy sets (P<0.001). White-fronted geese were 1.8 times more likely to fly within gun range (P=0.050) and the mean number killed/hour/hunter was 5.0 times greater (P=0.022) during control periods than during periods when electronic snow goose calls were used. Flock response for white-fronted geese also declined as the proportion of white decoys increased in decoy sets (P<0.001). The legalization of electronic snow goose calls during fall hunting seasons in prairie Canada should not result in increased harvest of nontarget dark geese.

  13. Spatial properties of snow cover in the Upper Merced River Basin: implications for a distributed snow measurement network

    NASA Astrophysics Data System (ADS)

    Bouffon, T.; Rice, R.; Bales, R.

    2006-12-01

    The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.

  14. Evaluating the temporal variability of concentrations of POPs in a glacier-fed stream food chain using a combined modeling approach.

    PubMed

    Morselli, Melissa; Semplice, Matteo; Villa, Sara; Di Guardo, Antonio

    2014-09-15

    Falling snow acts as an efficient scavenger of contaminants from the atmosphere and, accumulating on the ground surface, behaves as a temporary storage reservoir; during snow aging and metamorphosis, contaminants may concentrate and be subject to pulsed release during intense snow melt events. In high-mountain areas, firn and ice play a similar role. The consequent concentration peaks in surface waters can pose a risk to high-altitude ecosystems, since snow and ice melt often coincide with periods of intense biological activity. In such situations, the role of dynamic models can be crucial when assessing environmental behavior of contaminants and their accumulation patterns in aquatic organisms. In the present work, a dynamic fate modeling approach was combined to a hydrological module capable of estimating water discharge and snow/ice melt contributions on an hourly basis, starting from hourly air temperatures. The model was applied to the case study of the Frodolfo glacier-fed stream (Italian Alps), for which concentrations of a number of persistent organic pollutants (POPs), such as polychlorinated biphenyl (PCBs) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) in stream water and four macroinvertebrate groups were available. Considering the uncertainties in input data, results showed a satisfying agreement for both water and organism concentrations. This study showed the model adequacy for the estimation of pollutant concentrations in surface waters and bioaccumulation in aquatic organisms, as well as its possible role in assessing the consequences of climate change on the cycle of POPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  16. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  17. Interception processes during snowstorms

    Treesearch

    David H. Miller

    1964-01-01

    Four processes are identified as determining the initial interception of falling snow by forest during storms: delivery of snow particles from the airstream to the forest; true throughfall of particles to the forest floor; impaction and adhesion of particles to foliage and branches; and cohesion of particles into masses of snow. Delivery and impaction processes seem...

  18. The impact of snow on orthopaedic trauma referrals.

    PubMed

    Weston-Simons, John; Jack, Christopher M; Doctor, Cyrus; Brogan, Kit; Reed, Daniel; Ricketts, David

    2012-07-01

    Adverse weather has been shown to increase orthopaedic referrals and place strain on services. This retrospective study undertaken at a teaching hospital concerned referrals between April 2009 and April 2010 comparing days when snow fell to days when it did not. Referrals increased significantly on snow days (to 74.9 per day) in comparison to normal weather days (33.5 per day). During snow days there were significant increases in the number of distal radius and ankle fractures referred but not of fractured necks of femur. Complications during the snow fall period were related to procedures performed outside of the trauma unit with further difficulties related to a lack of operating equipment and implant availability. As a result of our study, we recommend that during periods of heavy snow fall orthopaedic and trauma units should place senior orthopaedic trainees in Accident and Emergency to review patients as a triage service, organise trauma lists related to surgeon specific expertise and avoid sending trauma patients outside the unit for operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Snow distribution and heat flow in the taiga

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, M.

    1992-05-01

    The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increasemore » can be a significant percentage of the total winter energy exchange.« less

  20. How much of stream and groundwater comes from snow? A stable isotope perspective in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Beria, H.; Schaefli, B.; Ceperley, N. C.; Michelon, A.; Larsen, J.

    2017-12-01

    Precipitation which once fell as snow is predicted to fall more often as liquid rain now that climate is, and continues, warming. Within snow dominated areas, preferential winter groundwater recharge has been observed, however a shorter winter season and smaller snow fraction results in earlier snowmelt and thinner snowpacks. This has the potential to change the supply of snow water sources to both streams and groundwater, which has important implications for flow regimes and water resources. Stable isotopes of water (2H and 18O) allow us to discriminate rain vs snow signatures within water flowing in the stream or the subsurface. Using one year of isotope data collected in a Swiss Alpine catchment (Vallon de Nant, Vaud), we developed novel forward Bayesian mixing models, based on statistical and empirical likelihoods, to quantify source contributions and uncertainty estimates. To account for the spatial heterogeneity in precipitation isotopes, we parameterized the model accounting for elevation effects on isotopes, calculated using the network of GNIP stations in Switzerland. Instead of sampling meltwater, we sampled snowpack throughout the season and across a steep elevation gradient (1241m to 2455m) to infer the snowmelt transformation factor. Due to continuous mixing within the snowpack, the snowmelt water shows much lower variability in its isotopic range which is reflected in the snow transformation factor. Snowmelt yield to groundwater recharge per unit amount of precipitation was found to be greater than rainfall in Vallon de Nant, suggesting strongly preferential winter recharge. Seasonal dynamics of stream responses to rain-on-snow events, fog deposition, snowmelt and summer rain were also explored. Innovative monitoring and sampling with tools such as stable isotopes and forward Bayesian mixing models are key to improved comprehension of global recharge mechanisms.

  1. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Hudak, David; Petersen, Walter; Nesbitt, Stephen W.; Chandrasekar, V.; Durden, Stephen; Gleicher, Kirstin J.; Huang, Gwo-Jong; Joe, Paul; Kollias, Pavlos; hide

    2014-01-01

    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed.

  2. Clear-Sky Narrowband Albedo Variations Derived from VIRS and MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Arduini, Robert F.; Minnis, Patrick

    2004-01-01

    A critical parameter for detecting clouds and aerosols and for retrieving their microphysical properties is the clear-sky radiance. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the visible (VIS; 0.63 m) and near-infrared (NIR; 1.6 or 2.13 m) channels available on same satellites as the CERES scanners. Another channel often used for cloud and aerosol, and vegetation cover retrievals is the vegetation (VEG; 0.86- m) channel that has been available on the Advanced Very High Resolution Radiometer (AVHRR) for many years. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. Snow albedo is typically estimated without considering the underlying surface type. The albedo for a surface blanketed by snow, however, should vary with surface type because the vegetation often emerges from the snow to varying degrees depending on the vertical dimensions of the vegetation. For example, a snowcovered prairie will probably be brighter than a snowcovered forest because the snow typically falls off the trees exposing the darker surfaces while the snow on a grassland at the same temperatures will likely be continuous and, therefore, more reflective. Accounting for the vegetation-induced differences should improve the capabilities for distinguishing snow and clouds over different surface types and facilitate improvements in the accuracy of radiative transfer calculations between the snow-covered surface and the atmosphere, eventually leading to improvements in models of the energy budgets over land. This paper presents a more complete analysis of the CERES spectral clear-sky reflectances to determine the variations in clear-sky top-of-atmosphere (TOA) albedos for both snow-free and snow-covered surfaces for four spectral channels using data from Terra and Aqua.. The results should be valuable for improved cloud retrievals and for modeling radiation fields.

  3. Ground Validation Assessments of GPM Core Observatory Science Requirements

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail

    2017-04-01

    NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements associated with retrievals of rain rate and required +/- 0.5 millimeter error bounds for mass-weighted mean drop diameter. Version-04 (V4) GMI GPROF radiometer-based rain rate products exhibit reasonable agreement with GV, but do not completely meet mission science requirements over the continental U.S. for lighter rain rates (e.g., 1 mm/hr) due to excessive random error ( 75%). Importantly, substantial corrections were made to the V4 GPROF algorithm and preliminary analysis of Version 5 (V5) rain products indicates more robust performance relative to GV. For the frozen phase and a modest GPM requirement to "demonstrate detection of snowfall", DPR products do successfully identify snowfall within the sensitivity and beam sampling limits of the DPR instrument ( 12 dBZ lower limit; lowest clutter-free bins). Similarly, the GPROF algorithm successfully "detects" falling snow and delineates it from liquid precipitation. However, the GV approach to computing falling-snow "detection" statistics is intrinsically tied to GPROF Bayesian algorithm-based thresholds of precipitation "detection" and model analysis temperature, and is not sufficiently tied to SWER. Hence we will also discuss ongoing work to establish the lower threshold SWER for "detection" using combined GV radar, gauge and disdrometer-based case studies.

  4. Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire

    NASA Astrophysics Data System (ADS)

    Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.

    2017-12-01

    Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.

  5. Service in the snow. Maintaining care in rural California.

    PubMed

    Elliott, P

    1993-08-01

    The amount of snow that falls in the Sierras is proof that all is not sunshine in rural northeastern California. Isolation and road closures were just two of the challenges that one home care agency was able to surmount with careful planning.

  6. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew

    2016-01-01

    This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

  7. Physical and Optical Properties of Falling Snow

    DTIC Science & Technology

    1989-07-01

    ments with those measured with a transmissometer .................................. 19 24. HSS forward-scatter meter used for measuring extinction in...snowfall conditions, the different ge- ometries of the transmission systems and discrep- | 2• a 2 n(a) da ancies in the snow precipitation rate measure ...J0 ments. Bet = Ms. (27) Table 3. Relationships between measured fn(a) mn(a) da extinction coefficient and snow precipita- ion rate . 091 This

  8. A methodological framework to assess PMP and PMF in snow-dominated watersheds under changing climate conditions - A case study of three watersheds in Québec (Canada)

    NASA Astrophysics Data System (ADS)

    Rouhani, Hassan; Leconte, Robert

    2018-06-01

    Climate change will affect precipitation and flood regimes. It is anticipated that the Probable Maximum Precipitation (PMP) and Probable Maximum Flood (PMF) will be modified in a changing climate. This paper aims to quantify and analyze climate change influences on PMP and PMF in three watersheds with different climatic conditions across the province of Québec, Canada. Output data from the Canadian Regional Climate Model (CRCM) was used to estimate PMP and Probable Maximum Snow Accumulation (PMSA) in future climate projections, which was then used to force the SWAT hydrological model to estimate PMF. PMP and PMF values were estimated for two time horizons each spanning 30 years: 1961-1990 (recent past) and 2041-2070 (future). PMP and PMF were separately analyzed for two seasons: summer-fall and spring. Results show that PMF in the watershed located in southern Québec would remain unchanged in the future horizon, but the trend for the watersheds located in the northeastern and northern areas of the province is an increase of up to 11%.

  9. Climate Change Impacts on Runoff Generation for the Design of Sustainable Stormwater Infrastructure

    DOT National Transportation Integrated Search

    2011-06-01

    Climate change over the Pacific Northwest is expected to alter the hydrological cycle, such as an increase in winter flooding potential due to more precipitation falling as snow and more frequent rain on snow events. Existing infrastructure for storm...

  10. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  11. Validation and application of MODIS-derived clean snow albedo and dust radiative forcing

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.

    2012-12-01

    Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.

  12. The Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations

    NASA Technical Reports Server (NTRS)

    Powel, Dylan C.; Markus, Thorsten; Stoessel, Achim

    2003-01-01

    The spatial and temporal distribution of snow on sea ice is an important factor for sea ice and climate models. First, it acts as an efficient insulator between the ocean and the atmosphere, and second, snow is a source of fresh water for altering the already weak Southern Ocean stratification. For the Antarctic, where the ice thickness is relatively thin, snow can impact the ice thickness in two ways: a) As mentioned above snow on sea ice reduces the ocean-atmosphere heat flux and thus reduces freezing at the base of the ice flows; b) a heavy snow load can suppress the ice below sea level which causes flooding and, with subsequent freezing, a thickening of the sea ice (snow-to-ice conversion). In this paper, we compare different snow fall paramterizations (incl. the incorporation of satellite-derived snow depth) and study the effect on the sea ice using a sea ice model.

  13. An Evaluation of Arctic Ocean Precipitation from Reanalyses for use in Snow Accumulation and Melt Models over Sea Ice

    NASA Astrophysics Data System (ADS)

    Barrett, A. P.; Stroeve, J.; Liston, G. E.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Retrievals of sea ice thickness from satellite- and air-borne sensors require knowledge of snow depth and density. Early retrievals used climatologies of snow depth and density - "The Warren Climatology" - based on observations from 31 Soviet drifting stations between 1957 and 1991. This climatology was the best available Arctic-wide data set at the time. However, it does not account for year-to-year variations in spatial and temporal patterns of snow depth, nor does it account for changes in snow depth over longer time periods. Recent efforts to retrieve ice thickness have used output from global and regional atmospheric reanalyses directly or as input to snow accumulation, density evolution, and melt models to estimate snow depth. While such efforts represent the state-of-the-art in terms of Arctic-wide snow depth fields, there can be large differences between precipitation (and other variables) from reanalyses. Knowledge about these differences and about biases in precipitation magnitude are important for getting the best-possible retrievals of ice thickness. Here, we evaluate fields of total precipitation and snow fall from the NASA MERRA and MERRA2, NOAA CFSR and CFSR version 2, ECMWF ERA-Interim, and Arctic System (ASR) reanalyses with a view to understanding differences in the magnitude, and temporal and spatial patterns of precipitation. Where possible we use observations to understand biases in the reanalysis output. Time series of annual total precipitation for the central Arctic correlate well with all reanalyses showing similar year-to-year variability. Time series for MERRA, MERRA2 and CFSR show no evidence of long-term trends. By contrast ERA-Interim appears to be wetter in the most recent decade. The ASR records only spans 2000 to 2012 but is similar to ERA-Interim. CFSR and MERRA2 are wetter than the other five reanalyses, especially over the eastern Arctic and North Atlantic.

  14. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  15. Element composition of insoluble fraction of aerosols in snow in the vicinity of oil chemistry refinery (Pavlodar City, Kazakhstan) and petrochemical plant (Tomsk City, Russia)

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Filimonenko, Ekaterina A.; Yazikov, Egor G.; Shakhova, Tatyana S.; Parygina, Irina A.

    2015-11-01

    Tomsk petrochemical plant (Russia) and Pavlodar oil chemistry refinery (Kazakhstan) are the sources of air contamination in Tomsk and Pavlodar respectively. Therefore, it is very important to study the level of air contamination with particulate matter as well as ultimate composition of these particles. Disposable solid particles fall out to the snow cover, so snow is an accumulator of the particles. The article deals with the study results of dust load and concentrations of Br, Sb, La, Ce, Sm and Nd in insoluble fraction of aerosols in snow in the vicinity of Pavlodar oil chemistry refinery and Tomsk petrochemical plant. The instrumental neutron activation analysis was used for the ultimate composition detection. Results were shown that the dust load in the vicinity of Tomsk petrochemical plant is higher than in Pavlodar. We have detected high concentrations of La, Br and Sm in insoluble fraction of aerosols in snow in the vicinity of Pavlodar refinery and high concentrations of Sb and Ce in Tomsk. Moreover, we have detected high Br concentration in insoluble fraction of aerosols in snow of the vicinity of both plants. Gas burning on the flares of these enterprises is likely a potential source of Br. La to light lanthanoids ratio have shown La is of anthropogenic origin. In addition, enrichment factor estimation reflects an anthropogenic origin of La, Sm, Br, Ce and Sb as well. These elements might be emitted from different production facilities of the plants.

  16. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  17. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    NASA Astrophysics Data System (ADS)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  18. How Much Water is in That Snowpack? Improving Basin-wide Snow Water Equivalent Estimates from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.

    2014-12-01

    In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.

  19. Estimation of global snow cover using passive microwave data

    NASA Astrophysics Data System (ADS)

    Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.

    2003-04-01

    This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR-E data, improvements to snow depth and water equivalent estimates are expected since AMSR-E will have twice the spatial resolution of the SSM/I and will be able to characterize better the subnivean snow environment from an expanded range of microwave frequencies.

  20. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    NASA Astrophysics Data System (ADS)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.

  1. Mesoscale variability of the Upper Colorado River snowpack

    USGS Publications Warehouse

    Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.

    1996-01-01

    In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.

  2. Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, B.; Elder, K.; Baron, Jill S.

    1998-01-01

    Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff.  In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado.  Geostatistics and classical statistics were used to estimate SWE distribution across the watershed.  Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances.  Snow densities were spatially modeled through regression analysis.  Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE.  The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths.  Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.

  3. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  4. Estimating snow depth of alpine snowpack via airborne multifrequency passive microwave radiance observations: Colorado, USA

    NASA Astrophysics Data System (ADS)

    Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.

    2017-12-01

    This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.

  5. Snowmelt in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2016-12-01

    Snow accumulation and melting are important hydrological processes in the Tibetan Plateau (TP). Qualification of snow dynamics is helpful for water resources management. In this study, a case study of snow and runoff modeling in a glaciated catchment in south Tibet was firstly conducted and showed that MODIS snow cover data can be successfully used for snow model calibration. Following the method, snow accumulation and melting in the TP was simulated using a distributed degree-day model through zonal calibration. The simulation results showed that the spatial pattern of snowmelt is basically in accordance with that of precipitation with discrepancy mainly introduced by elevation and temperature lapse. During 1979-2010, average annual precipitation and snowmelt in the TP was 394 and 80 mm/yr, respectively, indicating that about 1/5 of the precipitation in the TP supplied the rivers, lakes, and groundwater etc in the form of snowmelt. Seasonal snowmelt accounted for 35%, 37%, 26%, and 2% of the annual gross in spring, summer, fall, and winter, respectively, with net accumulation of snow in fall and winter added to the snowmelt in the following spring and summer. The overall changing trends of annual precipitation and snowmelt in the TP were 4.1 and 0.4 mm/yr, respectively, with the most intensive snowmelt increase of about 3.0 mm/yr in the upstream of Tarim river basin (UTA) but decrease of about -1.4 mm/yr in the upstream of Mekong river basin (UME) due to the interacting impacts of temperature and precipitation. Significant increasing trend of snowmelt in spring shown in the UTA may benefit the local water use for irrigation etc.

  6. Estimation of snow emissivity via assimilation of multi-frequency passive microwave data into an ensemble-based data assimilation system

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Bateni, S. M.; Auligne, T.; Navari, M.

    2017-12-01

    Snow emissivity is a key parameter for the estimation of snow surface temperature, which is needed as an initial value in climate models and determination of the outgoing long-wave radiation. Moreover, snow emissivity is required for retrieval of atmospheric parameters (e.g., temperature and humidity profiles) from satellite measurements and satellite data assimilations in numerical weather prediction systems. Microwave emission models and remote sensing data cannot accurately estimate snow emissivity due to limitations attributed to each of them. Existing microwave emission models introduce significant uncertainties in their snow emissivity estimates. This is mainly due to shortcomings of the dense media theory for snow medium at high frequencies, and erroneous forcing variables. The well-known limitations of passive microwave data such as coarse spatial resolution, saturation in deep snowpack, and signal loss in wet snow are the major drawbacks of passive microwave retrieval algorithms for estimation of snow emissivity. A full exploitation of the information contained in the remote sensing data can be achieved by merging them with snow emission models within a data assimilation framework. Such an optimal merging can overcome the specific limitations of models and remote sensing data. An Ensemble Batch Smoother (EnBS) data assimilation framework was developed in this study to combine the synthetically generated passive microwave brightness temperatures at 1.4-, 18.7-, 36.5-, and 89-GHz frequencies with the MEMLS microwave emission model to reduce the uncertainty of the snow emissivity estimates. We have used the EnBS algorithm in the context of observing system simulation experiment (or synthetic experiment) at the local scale observation site (LSOS) of the NASA CLPX field campaign. Our findings showed that the developed methodology significantly improves the estimates of the snow emissivity. The simultaneous assimilation of passive microwave brightness temperatures at all frequencies (i.e., 1.4-, 18.7-, 36.5-, and 89-GHz) reduce the root-mean-square-error (RMSE) of snow emissivity at 1.4-, 18.7-, 36.5-, and 89-GHz (H-pol.) by 80%, 42%, 52%, 40%, respectively compared to the corresponding snow emissivity estimates from the open-loop model.

  7. ICESat: Ice, Cloud and Land Elevation Satellite

    NASA Technical Reports Server (NTRS)

    Zwally, Jay; Shuman, Christopher

    2002-01-01

    Ice exists in the natural environment in many forms. The Earth dynamic ice features shows that at high elevations and/or high latitudes,snow that falls to the ground can gradually build up tu form thick consolidated ice masses called glaciers. Glaciers flow downhill under the force of gravity and can extend into areas that are too warm to support year-round snow cover. The snow line, called the equilibrium line on a glacier or ice sheet, separates the ice areas that melt on the surface and become show free in summer (net ablation zone) from the ice area that remain snow covered during the entire year (net accumulation zone). Snow near the surface of a glacier that is gradually being compressed into solid ice is called firm.

  8. The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.

    2017-12-01

    Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.

  9. Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements

    USGS Publications Warehouse

    Guo, J.; Tsang, L.; Josberger, E.G.; Wood, A.W.; Hwang, J.-N.; Lettenmaier, D.P.

    2003-01-01

    This paper presents an algorithm that estimates the spatial distribution and temporal evolution of snow water equivalent and snow depth based on passive remote sensing measurements. It combines the inversion of passive microwave remote sensing measurements via dense media radiative transfer modeling results with snow accumulation and melt model predictions to yield improved estimates of snow depth and snow water equivalent, at a pixel resolution of 5 arc-min. In the inversion, snow grain size evolution is constrained based on pattern matching by using the local snow temperature history. This algorithm is applied to produce spatial snow maps of Upper Rio Grande River basin in Colorado. The simulation results are compared with that of the snow accumulation and melt model and a linear regression method. The quantitative comparison with the ground truth measurements from four Snowpack Telemetry (SNOTEL) sites in the basin shows that this algorithm is able to improve the estimation of snow parameters.

  10. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    NASA Technical Reports Server (NTRS)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  11. Recent Warming and Cooling in the Antarctic Peninsula Region has Rapid and Large Effects on Lichen Vegetation.

    PubMed

    Sancho, Leopoldo G; Pintado, Ana; Navarro, Francisco; Ramos, Miguel; De Pablo, Miguel Angel; Blanquer, Jose Manuel; Raggio, Jose; Valladares, Fernando; Green, Thomas George Allan

    2017-07-24

    The Antarctic Peninsula has had a globally large increase in mean annual temperature from the 1951 to 1998 followed by a decline that still continues. The challenge is now to unveil whether these recent, complex and somewhat unexpected climatic changes are biologically relevant. We were able to do this by determining the growth of six lichen species on recently deglaciated surfaces over the last 24 years. Between 1991 and 2002, when mean summer temperature (MST) rose by 0.42 °C, five of the six species responded with increased growth. MST declined by 0.58 °C between 2002 and 2015 with most species showing a fall in growth rate and two of which showed a collapse with the loss of large individuals due to a combination of increased snow fall and longer snow cover duration. Increased precipitation can, counter-intuitively, have major negative effects when it falls as snow at cooler temperatures. The recent Antarctic cooling is having easily detectable and deleterious impacts on slow growing and highly stress-tolerant crustose lichens, which are comparable in extent and dynamics, and reverses the gains observed over the previous decades of exceptional warming.

  12. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  13. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2002-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.

  14. Cold Season Ground Validation Activities in support of GPM

    NASA Astrophysics Data System (ADS)

    Hudak, D. R.; Petersen, W. A.

    2012-12-01

    A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is well situated within both mid-latitude synoptic and lake-effect snowfall regimes. The instrumentation suite at CARE included active remote sensing observations as follows: W, Ku, and X-band vertically pointing radars, a Ku and Ka-band dual polarization full scanning radar, and nearby C-band dual polarization, scanning radar. The passive remote sensing suite includes a triple channel profiling microwave radiometer (10, 21, 36 GHz), and a dual channel polarization radiometer (89 and 150 GHz). In-situ measurements at CARE include a 2D video disdrometer, the Precipitation Video Imager, digital photography and a number of other technologies that estimate instantaneous precipitation rate. GCPEX collected ground-based data on 22 distinct precipitation events, 2 rain, 3 mixed and 17 snow. For 16 of these events, there were also aircraft observations. In addition, there were two clear air flights. The presentation will provide an overview of the data collection. It will also summarize the ground-based event precipitation estimates from various sensors as compared to a manual double fence reference to assess measurement uncertainties. Examples will be presented from radar and aircraft in-situ data highlighting the variability of snowfall characteristics relative to the synoptic context. Plans for ongoing validation studies with the WMO Solid Precipitation Intercomparison Experiment beginning in 2013 will be described.

  15. In Situ Microphysical and Scattering Properties of Falling Snow in GPM-GCPEx

    NASA Astrophysics Data System (ADS)

    Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.; Poellot, M.; Chandrasekar, C. V.; Hudak, D. R.

    2013-12-01

    The Global Precipitation Measurement Cold-season Precipitation Experiment (GPM-GCPEx) field campaign was conducted near Egbert, Ontario, Canada in January-February 2012 to study the physical characteristics and microwave radiative properties of the column of hydrometeors in cold season precipitation events. Extensive in situ aircraft profiling was conducted with the University of North Dakota (UND) Citation aircraft within the volume of several remote sensing instruments within a wide variety of precipitation events, from snow to freezing drizzle. Several of the primary goals of GCPEx include improving our understanding of the microphysical characteristics of falling snow and how those characteristics relate to the multi-wavelength radiative characteristics In this study, particle size distribution parameters, effective particle densities, and habit distributions are determined using in-situ cloud measurements obtained on the UND citation using the High Volume Precipitation Spectrometer, the Cloud Particle Imager, and the Cloud Imaging Probe. These quantities are matched compared to multi-frequency radar measurements from the Environment Canada King City C-Band and NASA D3R Ku-Ka Band dual polarization radars. These analysis composites provide the basis for direct evaluation of particle size distributions and observed multi-wavelength and multi-polarization radar observations, including radar reflectivity, differential reflectivity, and dual wavelength ratio) in falling snow at weather radar and GPM radar frequencies. Theoretical predictions from Mie, Rayleigh-Gans, and more complex snowflake aggregate scattering model predictions using observed particle size distributions are compared with observed radar scattering characteristics along the Citation flight track.

  16. Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods

    DOE PAGES

    Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...

    2017-04-03

    This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less

  17. Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste

    This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less

  18. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    USGS Publications Warehouse

    Major, Jon J.; Newhall, Christopher G.

    1989-01-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  19. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    NASA Astrophysics Data System (ADS)

    Major, Jon J.; Newhall, Christopher G.

    1989-10-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  20. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  1. Estimating snow load in California for three recurrence intervals

    Treesearch

    David L. Azuma

    1985-01-01

    A key to designing facilities in snowbound areas is knowing what the expected snow load levels are for given recurrence intervals. In California, information about snow load is available only for the Lake Tahoe Basin. About 280 snow courses in the State were analyzed, and snow load estimated and related to elevation on a river basin and statewide level. The tabulated...

  2. Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps

    NASA Astrophysics Data System (ADS)

    Marty, Christoph; Meister, Roland

    2012-12-01

    Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540 m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.

  3. A Prototype MODI- SSM/I Snow Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Barton, Jonathan S.; Hall, Dorothy K.

    1999-01-01

    Data in the wavelength range 0.545 - 1.652 microns from the Moderate Resolution Imaging Spectroradiometer (MODIS), to be launched aboard the Earth Observing System (EOS) Terra in the fall of 1999, will be used to map daily global snow cover at 500m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western United States. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.

  4. Validation of snow line estimations using MODIS images for the Elqui River basin, Chile

    NASA Astrophysics Data System (ADS)

    Vasquez, Nicolas; Lagos, Miguel; Vargas, Ximena

    2015-04-01

    Precipitation events in North-Central Chile are very important because the region has a Mediterranean climate, with a humid period, and an extensive dry one. Separation between solid and liquid precipitation (snow line) in each event is important information that allow to estimate 1) the available snow covered area for snow-melt forecasting, during the dry season (the only resource of water in this period) and 2) the area affected by rain for flood modelling and infrastructure design. In this work, snow line was estimated with a meteorological approach, considering precipitation, temperature, relative humidity and dew point information at a daily scale from 2004 to 2010 and hourly from 2010 to 2013. In both periods, different meteorological stations are considered due to the implementation of new stations in the study area, covering from 1000 to 3000 (m.a.s.l) approximately, with snow and rain meteorological stations. The methodology exposed in this research is based in vertical variation of dew point and temperature due to more stability variations compared to vertical relative humidity behavior. The results calculated from meteorological data are compared with MODIS images, considering three criteria: (1) the median altitude of the minimum specific fractional snow covered area (FSCA), (2) the mean elevation of pixels with a FSCA<10% and (3) the snow line estimation via snow covered area and hypsometric curve. Historically in Chile, snow line has been studied considering few specific precipitation and temperature observations, or estimations of zero isotherms from upper air soundings. A comparison between these estimations and the results validated through MOD10A1/MYD10A1 products was made in order to identify tendencies and/or variations of the snow line at an annually scale.

  5. Facilitating the exploitation of ERTS-1 imagery utilizing snow enhancement techniques

    NASA Technical Reports Server (NTRS)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. Snow cover in combination with low angle solar illumination has been found to provide increased tonal contrast of surface feature and is useful in the detection of bedrock fractures. Identical fracture systems were not as readily detectable in the fall due to the lack of a contrasting surface medium (snow) and a relatively high sun angle. Low angle solar illumination emphasizes topographic expressions not as apparent on imagery acquired with a higher sun angle. A strong correlation exists between the major fracture-lineament directions interpreted from multi-sensor imagery (including snow-free and snow cover ERTS) and the strike of bedrock joints recorded in the field indicating the structural origin of interpreted fracture-lineaments. A fracture-annotated ERTS-1 photo base map (1:250,000 scale) is being prepared for western Massachusetts. The map will document the utilization of ERTS-1 imagery for geological analysis in comparative snow-free and snow-covered terrain.

  6. Fall-related injuries among Canadian seniors, 2005–2013: an analysis of the Canadian Community Health Survey

    PubMed Central

    Do, M. T.; Chang, V. C.; Kuran, N.; Thompson, W.

    2015-01-01

    Abstract Introduction: We describe the epidemiology and trends of fall-related injuries among Canadian seniors aged 65 years and older by sex and age, as well as the circumstances and consequences of their injuries. Methods: We analyzed nationally representative data from the 2005, 2009/2010 and 2013 samples of the Canadian Community Health Survey to calculate the number and rates of fall-related injuries for each survey year. Where possible, we combined data from two or more samples to estimate the proportion of fall-related injuries by type of injury, part of body injured, type of activity and type of treatment. Results: The rate of fall-related injuries among seniors increased from 49.4 to 58.8 per 1000 population between 2005 and 2013, during which the number of fall-related injuries increased by 54% overall. Women had consistently higher rates than men across all survey years, while rates increased with advancing age. The upward trend in fall-related injury rates was more prominent among women and younger age groups. The most common type of injury was broken or fractured bones (37%), and the shoulder or upper arm (16%) was the most commonly injured body part. Many fall-related injuries occurred while walking on a surface other than snow or ice (45%). Over 70% of seniors seeking treatment for their injuries visited a hospital emergency department. Conclusion: Given the increase in both the number and rates of fall-related injuries over time, there is a need to continue monitoring trends and injury patterns associated with falls. PMID:26378768

  7. Fall-related injuries among Canadian seniors, 2005-2013: an analysis of the Canadian Community Health Survey.

    PubMed

    Do, M T; Chang, V C; Kuran, N; Thompson, W

    2015-09-01

    We describe the epidemiology and trends of fall-related injuries among Canadian seniors aged 65 years and older by sex and age, as well as the circumstances and consequences of their injuries. We analyzed nationally representative data from the 2005, 2009/2010 and 2013 samples of the Canadian Community Health Survey to calculate the number and rates of fall-related injuries for each survey year. Where possible, we combined data from two or more samples to estimate the proportion of fall-related injuries by type of injury, part of body injured, type of activity and type of treatment. The rate of fall-related injuries among seniors increased from 49.4 to 58.8 per 1000 population between 2005 and 2013, during which the number of fall-related injuries increased by 54% overall. Women had consistently higher rates than men across all survey years, while rates increased with advancing age. The upward trend in fall-related injury rates was more prominent among women and younger age groups. The most common type of injury was broken or fractured bones (37%), and the shoulder or upper arm (16%) was the most commonly injured body part. Many fall-related injuries occurred while walking on a surface other than snow or ice (45%). Over 70% of seniors seeking treatment for their injuries visited a hospital emergency department. Given the increase in both the number and rates of fall-related injuries over time, there is a need to continue monitoring trends and injury patterns associated with falls.

  8. Simulations of snow distribution and hydrology in a mountain basin

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.

    1999-01-01

    We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.

  9. [Measurement and estimation methods and research progress of snow evaporation in forests].

    PubMed

    Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing

    2013-12-01

    Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.

  10. Mass balance of the Antarctic ice sheet.

    PubMed

    Wingham, D J; Shepherd, A; Muir, A; Marshall, G J

    2006-07-15

    The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.

  11. Radiological Impact of Tritium from Gaseous Effluent Releases at Cook Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Young, Joshua Allan

    The purpose of this study was to investigate the washout of tritiated water by snow and rain from gaseous effluent releases at Donald C. Cook Nuclear Power Plant. Primary concepts studied were determination of washout coefficients for rainfall and snowfall; correlations between rainfall and snow fall tritium concentrations with tritium concentrations in the spent fuel pool, reactor cooling systems, and tritium release rates; and calculations of received doses from the process of recapture. The dose calculations are under the assumption of a maximally exposed individual to get the most conservative estimate of the effect that washout of tritiated water has on individuals around the plant site. This study is in addition to previous work that has been conducted at Cook Nuclear Power Plant for several years. The calculated washout coefficients were typically within the range of 1x10-7s -1 to 1x10-5s-1. A strong correlation between tritium concentration within the spent fuel pool and the tritium release rates was determined.

  12. New estimates of changes in snow cover over Russia in recent decades

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N.; Razuvaev, V.; Groisman, P. Y.

    2017-12-01

    Snow covers plays critical roles in the energy and water balance of the Earth through its unique physical properties (high reflectivity and low thermal conductivity) and water storage. The main objective of this research is to monitoring snow cover change in Russia. The estimates of changes of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) are described. Apart from the description of long-term averages of snow characteristics, the estimates of their change that are averaged over quasi-homogeneous climatic regions are derived and regional differences in the change of snow characteristics are studied. We used in our study daily snow observations for 820 Russian meteorological station from 1966 to 2017. All of these meteorological stations are of unprotected type. The water equivalent is analyzed from snow course survey data at 958 meteorological stations from 1966 to 2017. The time series are prepared by RIHMI-WDC. Regional analysis of snow cover data was carried out using quasi-homogeneous climatic regions. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, 1981-2010). Anomalies were arithmetically averaged first within 1°N x 2°E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions. This approach provides a more uniform spatial field for averaging. By using a denser network of meteorological stations, bringing into consideration snow course data and, we managed to specify changes in all observed major snow characteristics and to obtain estimates generalized for quasi-homogeneous climatic regions. The detected changes in the dates of the establishment and disappearance of the snow cover.

  13. A novel linear physical model for remote sensing of snow wetness and snow density using the visible and infrared bands

    NASA Astrophysics Data System (ADS)

    Varade, D. M.; Dikshit, O.

    2017-12-01

    Modeling and forecasting of snowmelt runoff are significant for understanding the hydrological processes in the cryosphere which requires timely information regarding snow physical properties such as liquid water content and density of snow in the topmost layer of the snowpack. Both the seasonal runoffs and avalanche forecasting are vastly dependent on the inherent physical characteristics of the snowpack which are conventionally measured by field surveys in difficult terrains at larger impending costs and manpower. With advances in remote sensing technology and the increase in the availability of satellite data, the frequency and extent of these surveys could see a declining trend in future. In this study, we present a novel approach for estimating snow wetness and snow density using visible and infrared bands that are available with most multi-spectral sensors. We define a trapezoidal feature space based on the spectral reflectance in the near infrared band and the Normalized Differenced Snow Index (NDSI), referred to as NIR-NDSI space, where dry snow and wet snow are observed in the left diagonal upper and lower right corners, respectively. The corresponding pixels are extracted by approximating the dry and wet edges which are used to develop a linear physical model to estimate snow wetness. Snow density is then estimated using the modeled snow wetness. Although the proposed approach has used Sentinel-2 data, it can be extended to incorporate data from other multi-spectral sensors. The estimated values for snow wetness and snow density show a high correlation with respect to in-situ measurements. The proposed model opens a new avenue for remote sensing of snow physical properties using multi-spectral data, which were limited in the literature.

  14. Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent in Afghanistan's Hindu Kush

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Bair, N.; Calfa, A. A.; Skalka, C.; Tolle, K.; Bongard, J.

    2015-12-01

    The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements such as the Hindu Kush range in Afghanistan. During the snow season, we can use two measurements: (1) passive microwave estimates of SWE, which generally underestimate in the mountains; (2) fractional snow-covered area from MODIS. Once the snow has melted, we can reconstruct the accumulated SWE back to the last significant snowfall by calculating the energy used in melt. The reconstructed SWE values provide a training set for predictions from the passive microwave SWE and snow-covered area. We examine several machine learning methods—regression-boosted decision trees, bagged trees, neural networks, and genetic programming—to estimate SWE. All methods work reasonably well, with R2 values greater than 0.8. Predictors built with multiple years of data reduce the bias that usually appears if we predict one year from just one other year's training set. Genetic programming tends to produce results that additionally provide physical insight. Adding precipitation estimates from the Global Precipitation Measurements mission is in progress.

  15. Estimating the snow water equivalent on a glacierized high elevation site (Forni Glacier, Italy)

    NASA Astrophysics Data System (ADS)

    Senese, Antonella; Maugeri, Maurizio; Meraldi, Eraldo; Verza, Gian Pietro; Azzoni, Roberto Sergio; Compostella, Chiara; Diolaiuti, Guglielmina

    2018-04-01

    We present and compare 11 years of snow data (snow depth and snow water equivalent, SWE) measured by an automatic weather station (AWS) and corroborated by data from field campaigns on the Forni Glacier in Italy. The aim of the analysis is to estimate the SWE of new snowfall and the annual SWE peak based on the average density of the new snow at the site (corresponding to the snowfall during the standard observation period of 24 h) and automated snow depth measurements. The results indicate that the daily SR50 sonic ranger measurements and the available snow pit data can be used to estimate the mean new snow density value at the site, with an error of ±6 kg m-3. Once the new snow density is known, the sonic ranger makes it possible to derive SWE values with an RMSE of 45 mm water equivalent (if compared with snow pillow measurements), which turns out to be about 8 % of the total SWE yearly average. Therefore, the methodology we present is interesting for remote locations such as glaciers or high alpine regions, as it makes it possible to estimate the total SWE using a relatively inexpensive, low-power, low-maintenance, and reliable instrument such as the sonic ranger.

  16. Westover AFB, Chicopee Falls, Massachusetts Revised Uniform Summary of Surface Weather Observations (RUSSWO) Parts A-F.

    DTIC Science & Technology

    1981-10-01

    Chicopee Falls, Fia rpt Mass 6. PERFORMING ORG. REPORT NUMBER 7. AUTNOR(e) S. CONTRACT OR GRANT NUMBER(#) 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10...Chicopee Falls, Mass . * It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily...WESTOVER AFB/CHICOPEE FALLS MASS N 42 12 W 072 32 245 CEF 74491 STATION LOCATION AND INSTRUMENTATION HISTORY UNCEl TYPE AT TIS LOCATION ELEVATION ABOVE NSL

  17. Altered precipitation patterns with a shift from snow to rain in the Sierra Nevada Mountains of California

    NASA Astrophysics Data System (ADS)

    Pavelsky, T. M.; Sobolowski, S.; Kapnick, S. B.; Barnes, J. B.

    2011-12-01

    Precipitation patterns in mountain environments affect global water resources and major hazards such as floods and landslides. In mid-latitude mountain ranges such as the Sierra Nevada Mountains of California, much of the precipitation falls as snow, which accumulates and acts as a natural reservoir. As in many snowfall-dependent regions, California water infrastructure has been designed to capture warm season snowmelt runoff and transport it to otherwise dry areas where it is needed. Recent studies suggest that anthropogenic climate change is likely to result in a substantial shift from snow to rain in the Sierra Nevada during the 21st century. One mechanism for changing spatial patterns in precipitation that has not received substantial attention arises directly from a phase change associated with winter temperatures rising above freezing with greater frequency. Because the fall speed of rain is greater than snow, it is not advected as far as snow by the prevailing winds. We hypothesize that an extreme change from snow to rain will result in a substantial westward shift in annual precipitation under a warming climate. To test this hypothesis, we conducted two climate simulations over the central Sierra Nevada using the WRF regional climate model version 3.1.1 for the period October 2001 to September 2002. Both simulations used nested domains with grid spacings of 27 km, 9 km, and 3 km. The first simulation is a control run, while the second run is an idealized simulation in which fall speeds for snow and graupel are set to be identical to those of raindrops. Comparison of the two runs suggests that a change from snow to rain would yield substantial changes in the spatial patterns of precipitation. However, these patterns are fully realized only in the 3 km domain. In the 9 km and especially the 27 km domain these patterns are substantially attenuated, likely due to less detailed orographic forcing. In the 3 km domain, precipitation increases substantially on windward slopes west of the principal drainage divide, in some areas by more than 1400 mm (115%). Conversely, the eastern slope of the Sierra Nevada becomes substantially drier, with decreases of as much as 886 mm (67%) in some areas. Overall, in a rain-only environment precipitation increases by an average of 135 mm (12%) on the west side of the divide and decreases by 174 mm (45%) on the east side compared to present-day conditions. While these results represent an idealized, extreme case in which all snow falls at the speed of rain from the same hydrometeor formation locations, they suggest that changes in spatial precipitation patterns associated with altered precipitation phase may have substantial effects on water resources, particularly the distribution of total precipitation across water basins, partition of water supply across collocated aqueducts, ecology, natural hazards such as floods and landslides, and other components of natural and human systems in the Sierra Nevada and the state of California more generally.

  18. Validating SWE reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, N.; Rittger, K.; Davis, R. E.; Dozier, J.

    2015-12-01

    The Airborne Snow Observatory (ASO) program offers high resolution estimates of snow water equivalent (SWE) in several small basins across California during the melt season. Primarily, water managers use this information to model snowmelt runoff into reservoirs. Another, and potentially more impactful, use of ASO SWE measurements is in validating and improving satellite-based SWE estimates which can be used in austere regions with no ground-based snow or water measurements, such as Afghanistan's Hindu Kush. Using the entire ASO dataset to date (2013-2015) which is mostly from the Upper Tuolumne basin, but also includes measurements from 2015 in the Kings, Rush Creek, Merced, and Mammoth Lakes basins, we compare ASO measurements to those from a SWE reconstruction method. Briefly, SWE reconstruction involves downscaling energy balance forcings to compute potential melt energy, then using satellite-derived estimates of fractional snow covered area (fSCA) to estimate snow melt from potential melt. The snowpack can then be built in reverse, given a remotely-sensed date of snow disappearance (fSCA=0). Our model has improvements over previous iterations in that it: uses the full energy balance (compared to a modified degree-day) approach, models bulk and surface snow temperatures, accounts for ephemeral snow, and uses a remotely-sensed snow albedo adjusted for impurities. To check that ASO provides accurate snow measurements, we compare fSCA derived from ASO snow depth at 3 m resolution with fSCA from a spectral unmixing algorithm for LandSAT at 30 m, and from binary SCA estimates from Geoeye at 0.5 m from supervised classification. To conclude, we document how our reconstruction model has evolved over the years and provide specific examples where improvements have been made using ASO and other verification sources.

  19. Catchment-scale snow depth monitoring with balloon photogrammetry

    NASA Astrophysics Data System (ADS)

    Durand, M. T.; Li, D.; Wigmore, O.; Vanderjagt, B. J.; Molotch, N. P.; Bales, R. C.

    2016-12-01

    Field campaigns and permanent in-situ facilities provide extensive measurements of snowpack properties at catchment (or smaller) scales, and have consistently improved our understanding of snow processes and the estimation of snow water resources. However, snow depth, one of the most important snow states, has been measured almost entirely with discrete point-scale samplings in field measurements; spatiotemporally continuous snow depth measurements are nearly nonexistent, mainly due to the high cost of airborne flights and the ban of Unmanned Aerial Systems in many areas (e.g. in all the national parks). In this study, we estimate spatially continuous snow depth from photogrammetric reconstruction of aerial photos taken from a weather balloon. The study was conducted in a 0.2 km2 watershed in Wolverton, Sequoia National Park, California. We tied a point-and-shoot camera on a helium-inflated weather balloon to take aerial images; the camera was scripted to automatically capture images every 3 seconds and to record the camera position and orientation at the imaging times using a built-in GPS. With the 2D images of the snow-covered ground and the camera position and orientation data, the 3D coordinates of the snow surface were reconstructed at 10 cm resolution using photogrammetry software PhotoScan. Similar measurements were taken for the snow-free ground after snowmelt, and the snow depth was estimated from the difference between the snow-on and snow-off measurements. Comparing the photogrammetric-estimated snow depths with the 32 manually measured depths, taken at the same time as the snow-on balloon flight, we find the RMSE of the photogrammetric snow depth is 7 cm, which is 2% of the long-term peak snow depth in the study area. This study suggests that the balloon photogrammetry is a repeatable, economical, simple, and environmental-friendly method to continuously monitor snow at small-scales. Spatiotemporally continuous snow depth could be regularly measured in future field measurements to supplement traditional snow property observations. In addition, since the process of collecting and processing balloon photogrammetry data is straightforward, the photogrammetric snow depth could be shared with the public in real time using our cloud platform that is currently under development.

  20. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  1. Re-formulation and Validation of Cloud Microphysics Schemes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Georgakakos, K. P.

    2007-12-01

    The research focuses on improving quantitative precipitation forecasts by removing significant uncertainties in current cloud microphysics schemes embedded in models such as WRF and MM5 and cloud-resolving models such as GCE. Reformulation of several production terms in these microphysics schemes was found necessary. When estimating four graupel production terms involved in the accretion between rain, snow and graupel, current microphysics schemes assumes that all raindrops and snow particles are falling at their appropriate mass-weighted mean terminal velocities and thus analytic solutions are able to be found for these production terms. Initial analysis and tests showed that these approximate analytic solutions give significant and systematic overestimates of these terms, and, thus, become one of major error sources of the graupel overproduction and associated extreme radar reflectivity in simulations. These results are corroborated by several reports. For example, the analytic solution overestimates the graupel production by collisions between raindrops and snow by up to 230%. The structure of "pure" snow (not rimed) and "pure graupel" (completely rimed) in current microphysics schemes excludes intermediate forms between "pure" snow and "pure" graupel and thus becomes a significant reason of graupel overproduction in hydrometeor simulations. In addition, the generation of the same density graupel by both the freezing of supercooled water and the riming of snow may cause underestimation of graupel production by freezing. A parameterization scheme of the riming degree of snow is proposed and then a dynamic fallspeed-diameter relationship and density- diameter relationship of rimed snow is assigned to graupel based on the diagnosed riming degree. To test if these new treatments can improve quantitative precipitation forecast, the Hurricane Katrina and a severe winter snowfall event in the Sierra Nevada Range are selected as case studies. A series of control simulation and sensitivity tests was conducted for these two cases. Two statistical methods are used to compare simulated radar reflectivity by the model with that detected by ground-based and airborne radar at different height levels. It was found that the changes made in current microphysical schemes improve QPF and microphysics simulation significantly.

  2. An Operational Assessment of the MODIS False Color Composite with the Great Falls, Montana National Weather Service

    NASA Technical Reports Server (NTRS)

    Loss, GIna; Mercer, Michael; Fuell, Kevin K.; Stano, Geoffrey T.

    2009-01-01

    The close and productive collaborations between the NWS Warning and Forecast Office (WFO) in Great Falls, MT and the Short Term Prediction and Research Transition (SPORT) Center at NASA/Marshall Space Flight Center have provided a unique opportunity for science sharing and technology transfer. In particular, SPoRT has provided a false color composite product derived from MODIS data, which is part of NASA's Earth Observing System. This product is designed to delineate snow and ice covered ground, bare ground and clouds. The Great Falls WFO has been a test bed of the MODIS false color composite as a tool in operations to monitor the development and dissipation of snow cover In particular, preliminary applications have shown that the product can be used to monitor snow cover in remote locations as well as ice in rivers. This information can lead to improved assessments of flooding potential during post event conditions where rapid melting and runoff are anticipated. The potential of this product on future geostationary satellites may substantially contribute to the NWS mission by providing enhanced situational awareness. The operational use of this product has been transitioned at WFO Great Falls through a process of product implementation, discussions with the service hydrologist and forecasters, and post event analysis. A concentrated assessment period from January to March, 2008 was initiated to investigate the impact of the MODIS false color product on WFO Great Falls' operations. This presentation will emphasize the impact the MODIS false color product had in the WFO's situational awareness and how best this information can be used to influence operational decisions.

  3. Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.

    2017-12-01

    Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.

  4. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities.

    PubMed

    Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin

    2016-05-01

    The Tienshan Urumqi Glacier No.1 (TUG1) usually shows "grey" surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look "grey"? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black carbon (BC) and dust, and number concentrations and sizes of the insoluble particles (IPs) in the samples were measured in the laboratory. High temperatures in summer probably enhanced the snow ageing. During the snow ageing process, the snow density varied from 243 to 458 kg m(-3), associated with the snow grain size varying from 290 to 2500 μm. The concentrations of LAIs in aged snow were significantly higher than those in fresh snow. Dust and BC varied from 16 ppm and 25 ppb in fresh snow to 1507 ppm and 1738 ppb in aged snow, respectively. Large albedo difference between the fresh and aged snow suggests a consequent forcing of 180 W m(-2). Simulations under scenarios show that snow ageing, BC, and dust were responsible for 44, 25, and 7 % of the albedo reduction in the accumulation zone, respectively.

  5. Sensitivity of the snowmelt runoff model to underestimates of remotely sensed snow covered area

    USDA-ARS?s Scientific Manuscript database

    Three methods for estimating snow covered area (SCA) from Terra MODIS data were used to derive conventional depletion curves for input to the Snowmelt Runoff Model (SRM). We compared the MOD10 binary and fractional snow cover products and a method for estimating sub-pixel snow cover using spectral m...

  6. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA Goddard Space Flight Center. It was shipped to Japan in November 2012 for launch on a Japanese H-IIA rocket from Tanegashima Island, Japan. The launch has been officially scheduled for 1:07 p.m. to 3:07 p.m. EST Thursday, February 27, 2014 (3:07 a.m. to 5:07 a.m. JST Friday, February 28). The day that the GPM Core was shipped to Japan was the day that GPM's Project Scientist, Dr. Arthur Hou passed away after a year-long battle with cancer. Dr. Hou truly made GPM a global effort with a global team. He excelled in providing scientific oversight for achieving GPM's many science objectives and application goals, including delivering high-resolution precipitation data in near real time for better understanding, monitoring and prediction of global precipitation systems and high-impact weather events such as hurricanes. Dr. Hou successfully forged international partnerships to collect and validate space-borne measurements of precipitation around the globe. He served as a professional mentor to numerous junior and mid-level scientists. His presence, leadership, generous personality, and the example he set for all of us as a true "team-player" will be greatly missed. The GPM mission will be described, Arthur's role as Project Scientist for GPM, and early imagery of GPM's retrievals of precipitation will be presented if available at the end of April 2014 (2 months after launch).

  7. Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca

    2017-01-01

    Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.

  8. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  9. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Jeyaratnam, Jeyavinoth

    2016-01-01

    Snow is a key element of the water and energy cycles and the knowledge of spatio-temporal distribution of snow depth and snow water equivalent (SWE) is fundamental for hydrological and climatological applications. SWE and snow depth estimates can be obtained from spaceborne microwave brightness temperatures at global scale and high temporal resolution (daily). In this regard, the data recorded by the Advanced Microwave Scanning Radiometer-Earth Orbiting System (EOS) (AMSR-E) onboard the National Aeronautics and Space Administration's (NASA) AQUA spacecraft have been used to generate operational estimates of SWE and snow depth, complementing estimates generated with other microwave sensors flying on other platforms. In this study, we report the results concerning the development and assessment of a new operational algorithm applied to historical AMSR-E data. The new algorithm here proposed makes use of climatological data, electromagnetic modeling and artificial neural networks for estimating snow depth as well as a spatio-temporal dynamic density scheme to convert snow depth to SWE. The outputs of the new algorithm are compared with those of the current AMSR-E operational algorithm as well as in-situ measurements and other operational snow products, specifically the Canadian Meteorological Center (CMC) and GlobSnow datasets. Our results show that the AMSR-E algorithm here proposed generally performs better than the operational one and addresses some major issues identified in the spatial distribution of snow depth fields associated with the evolution of effective grain size.

  10. Decorrelation distance of snow in the Colorado River Basin

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Chiu, L. S.

    1989-01-01

    The problem of estimating areal averages from point measurement has been extensively studied by mining engineers and hydrologists. Its application to satellite measurements has recently been introduced. The semivariaogram has been used in many geostatistical applications to estimate spatial structures of observed properties, such as mineral distributions. An examination is made of snow variations in Colorado from daily snow data collected in 11 SNOTEL stations. The associated semivariogram is estimated. The objective is to estimate the spatial structure of the snow field so that the point data can be used for comparison with, and validation for, satellite measurements.

  11. A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-01-01

    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures.

  12. Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.

    1981-01-01

    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.

  13. Uncertainty in Estimates of Net Seasonal Snow Accumulation on Glaciers from In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Pulwicki, A.; Flowers, G. E.; Radic, V.

    2017-12-01

    Accurately estimating the net seasonal snow accumulation (or "winter balance") on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modeling snow distribution is inherently difficult in mountainous terrain, resulting in high uncertainties in estimates of winter balance. Our work focuses on uncertainty attribution within the process of converting direct measurements of snow depth and density to estimates of winter balance. We collected more than 9000 direct measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada in May 2016. Linear regression (LR) and simple kriging (SK), combined with cross correlation and Bayesian model averaging, are used to interpolate estimates of snow water equivalent (SWE) from snow depth and density measurements. Snow distribution patterns are found to differ considerably between glaciers, highlighting strong inter- and intra-basin variability. Elevation is found to be the dominant control of the spatial distribution of SWE, but the relationship varies considerably between glaciers. A simple parameterization of wind redistribution is also a small but statistically significant predictor of SWE. The SWE estimated for one study glacier has a short range parameter (90 m) and both LR and SK estimate a winter balance of 0.6 m w.e. but are poor predictors of SWE at measurement locations. The other two glaciers have longer SWE range parameters ( 450 m) and due to differences in extrapolation, SK estimates are more than 0.1 m w.e. (up to 40%) lower than LR estimates. By using a Monte Carlo method to quantify the effects of various sources of uncertainty, we find that the interpolation of estimated values of SWE is a larger source of uncertainty than the assignment of snow density or than the representation of the SWE value within a terrain model grid cell. For our study glaciers, the total winter balance uncertainty ranges from 0.03 (8%) to 0.15 (54%) m w.e. depending primarily on the interpolation method. Despite the challenges associated with accurately and precisely estimating winter balance, our results are consistent with the previously reported regional accumulation gradient.

  14. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model

    USGS Publications Warehouse

    Dressler, K.A.; Leavesley, G.H.; Bales, R.C.; Fassnacht, S.R.

    2006-01-01

    The USGS precipitation-runoff modelling system (PRMS) hydrologic model was used to evaluate experimental, gridded, 1 km2 snow-covered area (SCA) and snow water equivalent (SWE) products for two headwater basins within the Rio Grande (i.e. upper Rio Grande River basin) and Salt River (i.e. Black River basin) drainages in the southwestern USA. The SCA product was the fraction of each 1 km2 pixel covered by snow and was derived from NOAA advanced very high-resolution radiometer imagery. The SWE product was developed by multiplying the SCA product by SWE estimates interpolated from National Resources Conservation Service snow telemetry point measurements for a 6 year period (1995-2000). Measured SCA and SWE estimates were consistently lower than values estimated from temperature and precipitation within PRMS. The greatest differences occurred in the relatively complex terrain of the Rio Grande basin, as opposed to the relatively homogeneous terrain of the Black River basin, where differences were small. Differences between modelled and measured snow were different for the accumulation period versus the ablation period and had an elevational trend. Assimilating the measured snowfields into a version of PRMS calibrated to achieve water balance without assimilation led to reduced performance in estimating streamflow for the Rio Grande and increased performance in estimating streamflow for the Black River basin. Correcting the measured SCA and SWE for canopy effects improved simulations by adding snow mostly in the mid-to-high elevations, where satellite estimates of SCA are lower than model estimates. Copyright ?? 2006 John Wiley & Sons, Ltd.

  15. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat

    NASA Astrophysics Data System (ADS)

    Selkowitz, David J.; Forster, Richard R.

    2016-07-01

    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s-1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010-2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987-1988 and 2008-2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25-50 years.

  16. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25–50 years.

  17. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  18. Influence of the long-range transport of dust over central Himalayan region - study using MERRA-2 and GLDAS Ver.2.1

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Singh, N.; A.

    2017-12-01

    To elucidate upon the effect of dust loading on the central Himalayan glaciers and snow cover, a study is carried out over the geographical boundary between 28-34° N and 78-98° E, for the period 2011-2015. Only spring and summer seasons are investigated, as the long range transport over the region are usually more prominent during these seasons. To ascertain the dust sources, data obtained from the level-2 of Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations (CALIPSO) ver. 4.10, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) trajectory model, Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) ver. 5.12.4 are utilized. The snow depth and snow fall data are taken from MERRA-2, while, for the surface Albedo, data from Global land data assimilation system (GLDAS) ver. 2.1 Noah land surface model L4 is used. ERA-Interim wind products are also used to understand the prevailing wind pattern over the site during the period of study. To show the impact of aerosols on glaciated surface and the snow fall, a regression analysis is performed between these parameters and the dust column mass density for the period of 1980-2016 using MERRA-2 reanalysis data.

  19. Wet Snow Mapping in Southern Ontario with Sentinel-1A Observations

    NASA Astrophysics Data System (ADS)

    Chen, H.; Kelly, R. E. J.

    2017-12-01

    Wet snow is defined as snow with liquid water present in an ice-water mix. It is can be an indicator for the onset of the snowmelt period. Knowledge about the extent of wet snow area can be of great importance for the monitoring of seasonal snowmelt runoff with climate-induced changes in snowmelt duration having implications for operational hydrological and ecological applications. Spaceborne microwave remote sensing has been used to observe seasonal snow under all-weather conditions. Active microwave observations of snow at C-band are sensitive to wet snow due to the high dielectric contrast with non-wet snow surfaces and synthetic aperture radar (SAR) is now openly available to identify and map the wet snow areas globally at relatively fine spatial resolutions ( 100m). In this study, a semi-automated workflow is developed from the change detection method of Nagler et al. (2016) using multi-temporal Sentinel-1A (S1A) dual-polarization observations of Southern Ontario. Weather station data and visible-infrared satellite observations are used to refine the wet snow area estimates. Wet snow information from National Operational Hydrologic Remote Sensing Center (NOHRSC) is used to compare with the S1A estimates. A time series of wet snow maps shows the variations in backscatter from wet snow on a pixel basis. Different land cover types in Southern Ontario are assessed with respect to their impacts on wet snow estimates. While forests and complex land surfaces can impact the ability to map wet snow, the approach taken is robust and illustrates the strong sensitivity of the approach to wet snow backscattering characteristics. The results indicate the feasibility of the change detection method on non-mountainous large areas and address the usefulness of Sentinel-1A data for wet snow mapping.

  20. Improving snow density estimation for mapping SWE with Lidar snow depth: assessment of uncertainty in modeled density and field sampling strategies in NASA SnowEx

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Smyth, E.; Small, E. E.

    2017-12-01

    The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.

  1. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  2. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea

    2017-01-01

    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.

  3. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar interaction with the snowpack being complex, the methodology for using InSAR to estimate SWE shows great promise when considering NASA's proposed L-Band, weekly repeat time interval, interferometric DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission.

  4. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  5. Neckband retention for lesser snow geese in the western Arctic

    USGS Publications Warehouse

    Samuel, M.D.; Goldberg, Diana R.; Smith, A.E.; Baranyuk, W.; Cooch, E.G.

    2001-01-01

    Neckbands are commonly used in waterfowl studies (especially geese) to identify individuals for determination of movement and behavior and to estimate population parameters. Substantial neckband loss can adversely affect these research objectives and produce biased survival estimates. We used capture, recovery, and observation histories for lesser snow geese (Chen caerulescens caerulescens) banded in the western Arctic, 1993-1996, to estimate neckband retention. We found that neckband retention differed between snow goose breeding colonies at Wrangel Island, Russia, and Banks Island, Northwest Territories, Canada. Male snow geese had higher neckband loss than females, a pattern similar to that found for Canada geese (Branta canadensis) and lesser snow geese in Alaska. We found that the rate of neckband loss increased with time, suggesting that neckbands are lost as the plastic deteriorates. Survival estimates for geese based on resighting neckbands will be biased unless estimates are corrected for neckband loss. We recommend that neckband loss be estimated using survival estimators that incorporate recaptures, recoveries, and observations of marked birds. Research and management studies using neckbands should be designed to improve neckband retention and to include the assessment of neckband retention.

  6. The behavior of the microwave emission of a conifer canopy during the fall-winter in Sodankylä, Finland

    NASA Astrophysics Data System (ADS)

    Li, Q.; Kelly, R. E. J.; Lemmetyinen, J.; Kontu, A.

    2017-12-01

    Spaceborne passive microwave (PM) systems are an important tool for estimating snow water equivalent (SWE) or snow depth (SD) in winter landscapes. However, because spaceborne radiometer footprints have a coarse spatial resolution, the measured upwelling brightness temperature (Tb) typically is a mixed signal propagated from multiple sources. Tree canopies can effectively attenuate microwave emission from the sub-canopy terrain beneath and can also have a strong emission signal. Therefore, these two combined observed processes decrease the sensitivity of the observed signal to SWE or SD. To evaluate the detailed behavior of the microwave emission from a forest landscape, the experiment focused on snow and vegetation radiative transfer processes was conducted at an established field site operated by the Finnish Meteorological Institute's Arctic Research Station in Sodankylä, Finland. In this experiment, downwelling Tbs from a target tree (Scots pine) was measured by an multi-frequency, dual polarization radiometer from Septermber 2016 to March 2017. A dendrometer and thermistor installed on the tree trunk at the height of 2 meters and 4 meters measured the sap flow and skin temperature of the tree. An adjacent weather station measured the air temperature. Snow cover conditions of the canopy was determined by an assessment web camera image time series. The three main findings are that first, the emissivity was positively correlated with tree skin temperatures below 0°C, but not when temperatures were at or greater than than 0°C. Furthermore, lower frequency channel observations were more sensitive to these physical temperatures than higher frequencies. Second, the Tb difference between horizontal and vertical polarizations were also negatively correlated with physical temperatures less than 0°C, but not when the physical temperatures were greater than 0°C. In addition, the Tb polarization differences of the lower frequency channels are more sensitive to temperature than for the higher frequency channels. Third, although the snow on the canopy can influence the microwave Tb response, this influence was found to be relatively small compared with other factors, suggesting that the difference of the canopy Tbs during the snow-covered and no-snow-covered periods were not statistically significant.

  7. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1986-1991 balance years

    USGS Publications Warehouse

    Krimmel, Robert M.

    2000-01-01

    Mass balance and climate variables are reported for South Cascade Glacier, Washington, for the years 1986-91. These variables include air temperature, precipitation, water runoff, snow accumulation, snow and ice melt terminus position, surface level, and ice speed. Data are reduced to daily and monthly values where appropriate. The glacier-averaged values of spring snow accumulation and fall net balance given in this report differ from previous results because amore complete analysis is made. Snow accumulation values for the1986-91 period ranged from 3.54 (water equivalent) meters in 1991 to2.04 meters in 1987. Net balance values ranged from 0.07 meters in1991 to -2.06 meters in 1987. The glacier became much smaller during the 1986-91 period and retreated a cumulative 50 meters.

  8. Assessment of the Relative Accuracy of Hemispheric-Scale Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E.; Riggs, George A.; Chang, Alfred T. C.; Foster, James L.; Houser, Paul (Technical Monitor)

    2001-01-01

    There are several hemispheric-scale satellite-derived snow-cover maps available, but none has been fully validated. For the period October 23 - December 25, 2000, we compare snow maps of North America derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the National Oceanic and Atmospheric Administration (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC), which both rely on satellite data from the visible and near-infrared parts of the spectrum; we also compare MODIS and Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) passive-microwave snow maps. The maps derived from visible and near-infrared data are more accurate for mapping snow cover than are the passive-microwave-derived maps, however discrepancies exist as to the location and extent of the snow cover among those maps. The large (approx. 30 km) footprint of the SSM/I data and the difficulty in distinguishing wet and shallow snow from wet or snow-free ground, reveal differences up to 5.32 million sq km in the amount of snow mapped using MODIS versus SSM/I data. Algorithms that utilize both visible and passive-microwave data, which would take advantage of the all-weather mapping ability of the passive-microwave data, will be refined following the launch of the Advanced Microwave Scanning Radiometer (AMSR) in the fall of 2001.

  9. Indices for estimating fractional snow cover in the western Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.

    Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.

  10. A Comprehensive Snow Density Model for Integrating Lidar-Derived Snow Depth Data into Spatial Snow Modeling

    NASA Astrophysics Data System (ADS)

    Marks, D. G.; Kormos, P.; Johnson, M.; Bormann, K. J.; Hedrick, A. R.; Havens, S.; Robertson, M.; Painter, T. H.

    2017-12-01

    Lidar-derived snow depths when combined with modeled or estimated snow density can provide reliable estimates of the distribution of SWE over large mountain areas. Application of this approach is transforming western snow hydrology. We present a comprehensive approach toward modeling bulk snow density that is reliable over a vast range of weather and snow conditions. The method is applied and evaluated over mountainous regions of California, Idaho, Oregon and Colorado in the western US. Simulated and measured snow density are compared at fourteen validation sites across the western US where measurements of snow mass (SWE) and depth are co-located. Fitting statistics for ten sites from three mountain catchments (two in Idaho, one in California) show an average Nash-Sutcliff model efficiency coefficient of 0.83, and mean bias of 4 kg m-3. Results illustrate issues associated with monitoring snow depth and SWE and show the effectiveness of the model, with a small mean bias across a range of snow and climate conditions in the west.

  11. Preliminary Estimation of Black Carbon Deposition from Nepal Climate Observatory-Pyramid Data and Its Possible Impact on Snow Albedo Changes Over Himalayan Glaciers During the Pre-Monsoon Season

    NASA Technical Reports Server (NTRS)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Duchi, R.; Tartari, G.; Lau, K.-M.

    2010-01-01

    The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition, and snow albedo feedbacks were not considered. This study represents the first investigation about BC deposition on snow from atmospheric aerosol data in Himalayas and related albedo effect is especially the first track at the southern slope of Himalayas.

  12. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  13. Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year

    NASA Astrophysics Data System (ADS)

    Klein, A. G.; Thapa, S.

    2017-12-01

    The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.

  14. Snow loads on roofs in areas of heavy snowfall

    Treesearch

    Robert D. Doty; Glenn H. Deitschman

    1966-01-01

    This study tested the feasibility of estimating snow loads on roofs from measurements of depth and water content of snow on nearby ground. The water content, and therefore the weight, of snow on the ground proved comparable to that of snow on roofs.

  15. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  16. A Particle Batch Smoother Approach to Snow Water Equivalent Estimation

    NASA Technical Reports Server (NTRS)

    Margulis, Steven A.; Girotto, Manuela; Cortes, Gonzalo; Durand, Michael

    2015-01-01

    This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSE was approx.54%of that seen in the EnBS, while for snow courses the PBSRMSE was approx.79%of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.

  17. Radiance Assimilation Shows Promise for Snowpack Characterization: A 1-D Case Study

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward; Margulis, Steve

    2008-01-01

    We demonstrate an ensemble-based radiometric data assimilation (DA) methodology for estimating snow depth and snow grain size using ground-based passive microwave (PM) observations at 18.7 and 36.5 GHz collected during the NASA CLPX-1, March 2003, Colorado, USA. A land surface model was used to develop a prior estimate of the snowpack states, and a radiative transfer model was used to relate the modeled states to the observations. Snow depth bias was -53.3 cm prior to the assimilation, and -7.3 cm after the assimilation. Snow depth estimated by a non-DA-based retrieval algorithm using the same PM data had a bias of -18.3 cm. The sensitivity of the assimilation scheme to the grain size uncertainty was evaluated; over the range of grain size uncertainty tested, the posterior snow depth estimate bias ranges from -2.99 cm to -9.85 cm, which is uniformly better than both the prior and retrieval estimates. This study demonstrates the potential applicability of radiometric DA at larger scales.

  18. The performance of a simple degree-day estimate of snow accumulation to an alpine watershed

    Treesearch

    R. A. Sommerfeld; R. C. Musselman; G. L. Wooldridge; M. A. Conrad

    1991-01-01

    We estimated the yearly snow accumulation to the Glacier Lakes Ecosystems Experiments Site (GLEES) for the winters of 1987-88, 1988-89, and 1989-90, using a simple degree-day model developed by J. Martinec and A. Rango. Comparisons with other data indicate that the estimates are accurate. In particular, a calibration with an intensive snow core-probe survey in 1989-90...

  19. A conceptual snow model with an analytic resolution of the heat and phase change equations

    NASA Astrophysics Data System (ADS)

    Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre

    2017-04-01

    Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.

  20. Independent evaluation of the SNODAS snow depth product using regional scale LiDAR-derived measurements

    NASA Astrophysics Data System (ADS)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2014-06-01

    Repeated Light Detection and Ranging (LiDAR) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 LiDAR-derived dataset of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically-based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the coterminous United States. Independent validation data is scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation dataset with substantial geographic coverage. Within twelve distinctive 500 m × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 LiDAR acquisitions. This supplied a dataset for constraining the uncertainty of upscaled LiDAR estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled LiDAR snow depths were then compared to the SNODAS-estimates over the entire study area for the dates of the LiDAR flights. The remotely-sensed snow depths provided a more spatially continuous comparison dataset and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between LiDAR observations and SNODAS estimates were most drastic, suggesting natural processes specific to these regions as causal influences on model uncertainty.

  1. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements

    NASA Astrophysics Data System (ADS)

    Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elder, K.; Yueh, S.; Cline, D.

    2015-01-01

    Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km2 lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 × 500 m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.

  2. The Modification of Orographic Snow Growth Processes by Cloud Nucleating Aerosols

    NASA Astrophysics Data System (ADS)

    Cotton, W. R.; Saleeby, S.

    2011-12-01

    Cloud nucleating aerosols have been found to modify the amount and spatial distribution of snowfall in mountainous areas where riming growth of snow crystals is known to contribute substantially to the total snow water equivalent precipitation. In the Park Range of Colorado, a 2km deep supercooled liquid water orographic cloud frequently enshrouds the mountaintop during snowfall events. This leads to a seeder-feeder growth regime in which snow falls through the orographic cloud and collects cloud water prior to surface deposition. The addition of higher concentrations of cloud condensation nuclei (CCN) modifies the cloud droplet spectrum toward smaller size droplets and suppresses riming growth. Without rime growth, the density of snow crystals remains low and horizontal trajectories carry them further downwind due to slower vertical fall speeds. This leads to a downwind shift in snowfall accumulation at high CCN concentrations. Cloud resolving model simulations were performed (at 600m horizontal grid spacing) for six snowfall events over the Park Range. The chosen events were well simulated and occurred during intensive observations periods as part of two winter field campaigns in 2007 and 2010 based at Storm Peak Laboratory in Steamboat Springs, CO. For each event, sensitivity simulations were run with various initial CCN concentration vertical profiles that represent clean to polluted aerosol environments. Microphysical budget analyses were performed for these simulations in order to determine the relative importance of the various cloud properties and growth processes that contribute to precipitation production. Observations and modeling results indicate that initial vapor depositional growth of snow tends to be maximized within about 1km of mountaintop above the windward slope while the majority of riming growth occurs within 500m of mountaintop. This suggests that precipitation production is predominantly driven by locally enhanced orography. The large scale synoptic flow simply provides the background dynamics and moisture that impinge upon the steep terrain. The addition of cloud nucleating aerosols to this scenario tends to reduce the amount of riming and leads to greater snow vapor growth. Increased vapor growth leads to larger snow crystals but does not necessarily increase their density or fall speed. There is frequently a zone on the periphery of the orographic cloud where water saturation is low and ice saturation remains high. Here the Bergeron process allows for snow to continue growing at the expense of the cloud water. Furthermore, since less cloud water is removed by riming, and droplets are smaller in polluted conditions, there is an increase in cloud water evaporation along the lee slope. This enhanced droplet evaporation in polluted conditions allows for more saturated air to persist to the lee of the ridge. Higher saturation reduces the amount of snow crystal sublimation prior to surface deposition. In very moist winter events, the lee slope evaporation relative to the primary mountain barrier can saturate the air relative to a downstream ridge and aid in further orographic cloud development. The combination of reduced riming, the Bergeron process, and reduced lee-side sublimation leads to the snowfall spillover effect under polluted conditions.

  3. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  4. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine M.; Ryberg, David Severin

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodologymore » of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  5. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  6. Nuclear Plant Siting Study. Volume 1

    DTIC Science & Technology

    1976-06-01

    electric gene - rating plant is located approximately 0.6 miles south of the New River in Montgomery County, Virginia. The site lies within the confines of...frequencies;* the 100-year return period for snow and ice storms;* and specific data for the ultimate heat sink. Table 2.3-9 presents a summary of those...64 with occasionial snow falls to very warm and humid summers. The regional airflow is predcminantly southerly cxcept during the 4inter when northerly

  7. Estimation of Subpixel Snow-Covered Area by Nonparametric Regression Splines

    NASA Astrophysics Data System (ADS)

    Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2016-10-01

    Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks (ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results indicated that the developed MARS model performed better than th

  8. Snow Water Equivalent Retrieval Using Multitemporal COSMO Skymed X-Band SAR Images To Inform Water Systems Operation

    NASA Astrophysics Data System (ADS)

    Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.

    2015-12-01

    In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.

  9. A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images

    NASA Astrophysics Data System (ADS)

    Bavera, D.; Bocchiola, D.; de Michele, C.

    2007-12-01

    The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.

  10. Snow cover distribution over elevation zones in a mountainous catchment

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Panagopoulos, Y.

    2009-04-01

    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  11. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.

    2017-08-01

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.

  12. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  13. Enhance the accuracy of radar snowfall estimation with Multi new Z-S relationships in MRMS system

    NASA Astrophysics Data System (ADS)

    Qi, Y.

    2017-12-01

    Snow may have negative affects on roadways and human lives, but the result of the melted snow/ice is good for farm, humans, and animals. For example, in the Southwest and West mountainous area of United States, water shortage is a very big concern. However, snowfall in the winter can provide humans, animals and crops an almost unlimited water supply. So, using radar to accurately estimate the snowfall is very important for human life and economic development in the water lacking area. The current study plans to analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be evaluated with independent CoCoRaHS (Community Collaborative Rain, Hail & Snow Network) gauge observations and eventually implemented in the Multi-Radar Multi-Sensor system for improved quantitative precipitation estimation for snow. This study will analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be used to reduce the error of snowfall estimation in Multi Radar and Multi Sensors (MRMS) system, and tested in MRMS system and evaluated with the COCORaHS observations. Finally, it will be ingested in MRMS sytem, and running in NWS/NCAR operationally

  14. Snowplow Simulator Training Study

    DOT National Transportation Integrated Search

    2011-01-01

    This report evaluates simulation training of IDOT snowplow operators to improve IDOT snow and ice removal : operations. Specifically, it assesses a drivers evaluation of snowplow simulation training immediately after : training in fall 2009 and ag...

  15. Snow Water Equivalent estimation based on satellite observation

    NASA Astrophysics Data System (ADS)

    Macchiavello, G.; Pesce, F.; Boni, G.; Gabellani, S.

    2009-09-01

    The availability of remotely sensed images and them analysis is a powerful tool for monitoring the extension and typology of snow cover over territory where the in situ measurements are often difficult. Information on snow are fundamental for monitoring and forecasting the available water above all in regions at mid latitudes as Mediterranean where snowmelt may cause floods. The hydrological model requirements and the daily acquisitions of MODIS (Moderate Resolution Imaging Spectroradiometer), drove, in previous research activities, to the development of a method to automatically map the snow cover from multi-spectral images. But, the major hydrological parameter related to the snow pack is the Snow Water Equivalent (SWE). This represents a direct measure of stored water in the basin. Because of it, the work was focused to the daily estimation of SWE from MODIS images. But, the complexity of this aim, based only on optical data, doesn’t find any information in literature. Since, from the spectral range of MODIS data it is not possible to extract a direct relation between spectral information and the SWE. Then a new method, respectful of the physic of the snow, was defined and developed. Reminding that the snow water equivalent is the product of the three factors as snow density, snow depth and the snow covered areas, the proposed approach works separately on each of these physical behaviors. Referring to the physical characteristic of snow, the snow density is function of the snow age, then it was studied a new method to evaluate this. Where, a module for snow age simulation from albedo information was developed. It activates an age counter updated by new snow information set to estimate snow age from zero accumulation status to the end of melting season. The height of the snow pack, can be retrieved by adopting relation between vegetation and snow depth distributions. This computes snow height distribution by the relation between snow cover fraction and the forest canopy density. Finally, the SWE has to be calculated for the snow covered areas, detected by means of a previously developed decision tree classifier able to classify snow cover by self selecting rules in a statistically optimum way. The advantages introduced from this work are many. Firstly, applying a suitable method with data features, it is possible to automatically obtain snow cover description with high frequency. Moreover, the advantages of the modularity in the proposed approach allows to improve the three factors estimation in an independent way. Limitations lie into clouds problem that affects results by obscuring the observed territory, that is bounded by fusing temporal and spatial information. Then the spatial resolution of data, satisfactory with the scale of hydrological models, mismatch with the available in situ point information, causing difficulties for a method validation or calibration. However this working flow results computationally cost-effectiveness, robust to the radiometric noise of the original data, provides spatially extended and frequent information.

  16. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    USGS Publications Warehouse

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  17. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.

  18. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  19. Snow cover dynamics in the Catalan Pyrenees range using remote sensing data from 2002 to 2008 period

    NASA Astrophysics Data System (ADS)

    Cea, C.; Cristóbal, J.; Pons, X.

    2009-04-01

    Snow cover dynamics in the Catalan Pyrenees range using remote sensing data from 2002 to 2008 period. C. Cea (1), J. Cristóbal (1), X. Pons (1, 2) (1) Department of Geography. Autonomous University of Barcelona. Cerdanyola del Vallès, 08193. Cristina.Cea@uab.cat, (2) Center for Ecological Research and Forestry Applications (CREAF) Cerdanyola del Vallès, 08193. Water resources and its management are essential in many alpine mountainous areas. Snow cover monitoring in the Mediterranean zone requires obtaining accurate snow cartography to estimate the volume of water derived from snow melting and species distribution modelling. Snow data is usually obtained by field campaigns, but to obtain a spatial and temporal cover of enough detail and quality it is necessary collect an important number of data. However, when a continuous surface is needed, Remote Sensing could provide better snow cover estimation due to its spatial and temporal resolution. The aim of this study is to map snow cover and analyse its spatial and temporal dynamics using medium and coarse remote sensing data at a regional scale over an heterogeneous area, the Catalan Pyrenees (NE of the Iberian Peninsula). The seasonal snow cover period is from October to June. In this period, regular snowfalls usually take place from December to April, although during the rest of the period, punctual but important episodes of snowfalls are frequent. To perform this analysis, a set of 96 Landsat images (36 Landsat-5 TM and 60 Landsat-7 ETM+) of path 197 and 198 and rows 31 and 32 from January 2002 to April 2007, and 90 Terra-MODIS images from October 2007 to July 2008, with a different percentage of cloudiness, have been chosen. The computation of the Landsat-5 TM and Landsat-7 ETM+ data used in snow cover mapping has been carried out by means of the following methodologies. Images have been geometrically corrected by means of techniques based on first order polynomials taking into account the effect of the relief of the land surface using a Digital Elevation Model. Radiometric correction (non-thermal bands) has been done following the methodology which allows us to reduce the number of undesired artefacts that are due to the effects of the atmosphere or to the differential illumination. Finally, cloud removal has been carried out by means of a semi-automatic methodology. In the case of MODIS images, these have been imported by reading all the necessary metadata to document and interpret them. These products have already been radiometrically and geometrically corrected by USGS in a sinusoidal projection. Snow cover mapping has been carried out by means of the Normalized Snow Cover Index (NDSI), one of the most widely methodologies used. This methodology proposes a normalized index using green band 2 and Medium Infrared band because of snow reflectance is higher in the visible bands than in the medium infrared bands. NDSI pixels greater than 0.4 are select as snow cover. Although this threshold also selects water bodies, we have obtained optimal results using a mask of water bodies and generating a pre-boundary snow mask around the snow cover. In shadow cast areas, we have used a hybrid classification to obtain the snow cover. Preliminary results show the snow surface evolution of the Pyrenean basis during the hydrological period, as well as the differences between the different years of study. The obtained data shows how the basins with Mediterranean influence, placed in the east, receive less nival contribution than those with Atlantic influence, situated in the west. In addition, this data allow establishing the beginning and the ending of the snowfall cycle. Eastern basins usually have a shorter period than west basins, where the snow line is lower. The snow cover area average of the studied period is about 1200 km2 and stands out that for the particular period 2006-2007, this area was only about 55% of the average, due to the lack of snow precipitation. It affected the winter sports, an important sector in this area, the vegetation and the extensive livestock, just as the volume of water that flows towards river basins and reservoir when snow melts. Technical characteristics are different between both sensors. On the one hand, Landsat spatial resolution is better to obtain accuracy cartography, however it is not suitable to determine the frequency of snow falls. On the one other hand, MODIS with its daily temporal resolution allows better temporal monitoring, but with coarse spatial resolution.

  20. An integrated uncertainty analysis and data assimilation approach for improved streamflow predictions

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; He, M.; Franz, K. J.; Margulis, S. A.; Vrugt, J. A.

    2010-12-01

    The current study presents an integrated uncertainty analysis and data assimilation approach to improve streamflow predictions while simultaneously providing meaningful estimates of the associated uncertainty. Study models include the National Weather Service (NWS) operational snow model (SNOW17) and rainfall-runoff model (SAC-SMA). The proposed approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. An ensemble Kalman filter (EnKF) is configured with the DREAM-identified uncertainty structure and applied to assimilating snow water equivalent data into the SNOW17 model for improved snowmelt simulations. Snowmelt estimates then serves as an input to the SAC-SMA model to provide streamflow predictions at the basin outlet. The robustness and usefulness of the approach is evaluated for a snow-dominated watershed in the northern Sierra Mountains. This presentation describes the implementation of DREAM and EnKF into the coupled SNOW17 and SAC-SMA models and summarizes study results and findings.

  1. Altitude-dependent influence of snow cover on alpine land surface phenology

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Kneubühler, Mathias; Garonna, Irene; Notarnicola, Claudia; De Gregorio, Ludovica; De Jong, Rogier; Chimani, Barbara; Schaepman, Michael E.

    2017-05-01

    Snow cover impacts alpine land surface phenology in various ways, but our knowledge about the effect of snow cover on alpine land surface phenology is still limited. We studied this relationship in the European Alps using satellite-derived metrics of snow cover phenology (SCP), namely, first snow fall, last snow day, and snow cover duration (SCD), in combination with land surface phenology (LSP), namely, start of season (SOS), end of season, and length of season (LOS) for the period of 2003-2014. We tested the dependency of interannual differences (Δ) of SCP and LSP metrics with altitude (up to 3000 m above sea level) for seven natural vegetation types, four main climatic subregions, and four terrain expositions. We found that 25.3% of all pixels showed significant (p < 0.05) correlation between ΔSCD and ΔSOS and 15.3% between ΔSCD and ΔLOS across the entire study area. Correlations between ΔSCD and ΔSOS as well as ΔSCD and ΔLOS are more pronounced in the northern subregions of the Alps, at high altitudes, and on north and west facing terrain—or more generally, in regions with longer SCD. We conclude that snow cover has a greater effect on alpine phenology at higher than at lower altitudes, which may be attributed to the coupled influence of snow cover with underground conditions and air temperature. Alpine ecosystems may therefore be particularly sensitive to future change of snow cover at high altitudes under climate warming scenarios.

  2. Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan

    2017-01-01

    Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.

  3. Cold Regions Environmental Test of Nuclear, Biological, and Chemical Decontamination Equipment

    DTIC Science & Technology

    1985-05-17

    Blowing Snow "Rain Wet Fog Hail "Falling snow Ice Fog Other (specify) Malfunctions (explain): Remarks: A-1 -. , -17 May 1985 TOP 8-4-007 SAPPENDIX S...displays. * ~4. Remove and replace minor items [) FI FI[ * ( lightbulbs , filters, etc.) 5. Lubricate. ii F ) C 6. Add expendables. (I FJ( * ~~7...Displays are readable under dark [1 [1 [ . :I to bright glare conditions. 21. Cover glass does hot fog up. [ [ [. [E 22. Displays do not freeze up

  4. Consequences of early snowmelt in Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-01-01

    Snow melted significantly earlier in the Rocky Mountains in 2012 than in previous years, with serious consequences for plants and animals, scientists reported at the AGU Fall Meeting. David Inouye of the University of Maryland, College Park, and the Rocky Mountain Biological Laboratory said that "the timing of winter's end is changing." He has been observing snowmelt dates and flowering of plants at a site at 2900 meters altitude. This year's snowmelt occurred 23 April, whereas the previous year, snow melted 19 June, he reported.

  5. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to thismore » deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  6. Accurate Characterization of Winter Precipitation Using In-Situ Instrumentation, CSU-CHILL Radar, and Advanced Scattering Methods

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Notaros, B. M.; Bringi, V. N.; Kleinkort, C.; Huang, G. J.; Kennedy, P.; Thurai, M.

    2015-12-01

    We present a novel approach to remote sensing and characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced in-situ instrumentation for microphysical and geometrical measurements of ice and snow particles, image processing methodology to reconstruct complex particle three-dimensional (3D) shapes, computational electromagnetics to analyze realistic precipitation scattering, and state-of-the-art polarimetric radar. Our in-situ measurement site at the Easton Valley View Airport, La Salle, Colorado, shown in the figure, consists of two advanced optical imaging disdrometers within a 2/3-scaled double fence intercomparison reference wind shield, and also includes PLUVIO snow measuring gauge, VAISALA weather station, and collocated NCAR GPS advanced upper-air system sounding system. Our primary radar is the CSU-CHILL radar, with a dual-offset Gregorian antenna featuring very high polarization purity and excellent side-lobe performance in any plane, and the in-situ instrumentation site being very conveniently located at a range of 12.92 km from the radar. A multi-angle snowflake camera (MASC) is used to capture multiple different high-resolution views of an ice particle in free-fall, along with its fall speed. We apply a visual hull geometrical method for reconstruction of 3D shapes of particles based on the images collected by the MASC, and convert these shapes into models for computational electromagnetic scattering analysis, using a higher order method of moments. A two-dimensional video disdrometer (2DVD), collocated with the MASC, provides 2D contours of a hydrometeor, along with the fall speed and other important parameters. We use the fall speed from the MASC and the 2DVD, along with state parameters measured at the Easton site, to estimate the particle mass (Böhm's method), and then the dielectric constant of particles, based on a Maxwell-Garnet formula. By calculation of the "particle-by-particle" scattering matrices over large time intervals using the in-situ measured data, we obtain, simultaneously, all polarimetric radar observables, which are then compared and analyzed against measurements by the CHILL Radar. We present and discuss results from several interesting events observed during the 2014/2015 winter campaign.

  7. Seasonal food use by white-tailed deer at Valley Forge National Historical Park, Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Cypher, Brian L.; Yahner, Richard H.; Cypher, Ellen A.

    1988-03-01

    Food habits of white-tailed deer ( Odocoileus virginianus) were examined from January to November 1984 via fecal-pellet analysis at Valley Forge National Historical Park (VFNHP), which represents an “island” habitat for deer surrounded by extensive urbanization, in southeastern Pennsylvania. In addition, use of fields by deer was compared to food habits. Herbaceous vegetation (forbs, leaves of woody plants, and conifer needles) was the predominant food type in all seasons except fall. Acorns and graminoids (grasses and sedges) were important food resources in fall and spring, respectively. Use of woody browse (twigs) was similar among seasons. Field use was relatively high during fall, winter without snow cover (<20 cm), and spring when food resources in fields were readily available. In contrast, use of fields was lowest in summer when preferred woodland foods were available and in winter with snow cover when food in fields was not readily accessible. Patterns of food-type use by deer at VFNHP indicate the year-round importance of nonwoody foods and field habitats to deer populations on public lands such as national parks in the northeastern United States.

  8. Estimating snowpack density from Albedo measurement

    Treesearch

    James L. Smith; Howard G. Halverson

    1979-01-01

    Snow is a major source of water in Western United States. Data on snow depth and average snowpack density are used in mathematical models to predict water supply. In California, about 75 percent of the snow survey sites above 2750-meter elevation now used to collect data are in statutory wilderness areas. There is need for a method of estimating the water content of a...

  9. Spring floods prediction with the use of optical satellite data in Québec

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Turcotte, R.

    2009-04-01

    The Centre d'expertise hydrique du Québec (CEHQ) operates a distributed hydrological model, which integrates a snow model, for the management of dams in the south of Québec. It appears that the estimation of the water quantity of snowmelt in spring remains a variable with a large uncertainty and induces generally to an important error in stream flow simulation. Therefore, the National snow and ice center (NSIDC) produces, from MODIS (Moderate Resolution Imaging Spectroradiometer) data, continuous and homogeneous spatial snow cover (snow/swow-free) data on the whole territory, but with a cloud contamination. This research aims to improve the prediction of spring floods and the estimation of the rate of discharge by integrating snow cover data in the CEHQ's snow model. The study is done on two watersheds: du Nord river watershed (45,8°N) and Aux Écorces river watershed (47,9°N). The snow model used in the study (SPH-AV) is an implementation developed by the CEHQ of the snowmelt model of HYDROLTEL in is hydrological forecast system to simulate the melted water. The melted water estimated is then used as input in the empirical hydrological model MOHYSE to simulate stream flow. MODIS data are considered valid only when the cloud cover on each pixel of the watersheds is less then 30%. A pixel by pixel correction is applied to the snow pack when there is a difference between satellite snow cover and modeled snow cover. In the case of model shows to much snow, a factor is applied on temperatures by iterative process (starting from the last valid MODIS data) to melt the snow. In the opposite case, the snow quantity added to the last valid MODIS data is found by iterative process so that the pixel's snow water equivalent is equal to the nonzero neighbor minimum value. The study shows, through the simulations done on the two watersheds, the interest of the use of snow/snow-free product for the operational update of snow water equivalent with the objective to improve spring snowmelt stream flow simulations. The binary aspect (snow/snowfree) of the data is however a limit. Alternatives are discussed (passive microwave data). Keywords : satellite snow cover data, MODIS, satellite data integration, snow model, hydrological model, stream flow simulation, flood.

  10. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A weighted stratified double sample design using hardcopy LANDSAT-1 and ground data was utilized in developmental studies for snow water content estimation. Study results gave a correlation coefficient of 0.80 between LANDSAT sample units estimates of snow water content and ground subsamples. A basin snow water content estimate allowable error was given as 1.00 percent at the 99 percent confidence level with the same budget level utilized in conventional snow surveys. Several evapotranspiration estimation models were selected for efficient application at each level of data to be sampled. An area estimation procedure for impervious surface types of differing impermeability adjacent to stream channels was developed. This technique employs a double sample of 1:125,000 color infrared hightflight transparency data with ground or large scale photography.

  11. Remote sensing-aided systems for snow qualification, evapotranspiration estimation, and their application in hydrologic models

    NASA Technical Reports Server (NTRS)

    Korram, S.

    1977-01-01

    The design of general remote sensing-aided methodologies was studied to provide the estimates of several important inputs to water yield forecast models. These input parameters are snow area extent, snow water content, and evapotranspiration. The study area is Feather River Watershed (780,000 hectares), Northern California. The general approach involved a stepwise sequence of identification of the required information, sample design, measurement/estimation, and evaluation of results. All the relevent and available information types needed in the estimation process are being defined. These include Landsat, meteorological satellite, and aircraft imagery, topographic and geologic data, ground truth data, and climatic data from ground stations. A cost-effective multistage sampling approach was employed in quantification of all the required parameters. The physical and statistical models for both snow quantification and evapotranspiration estimation was developed. These models use the information obtained by aerial and ground data through appropriate statistical sampling design.

  12. Remotely Sensed Spatio-Temporal Variability of Snow Cover in Himalayan Region with Perspective of Climate Change

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Ojha, S.

    2017-12-01

    Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.

  13. Search for the Tunguska event in the Antarctic snow

    NASA Technical Reports Server (NTRS)

    Rocchia, R.; Deangelis, M.; Doclet, D.; Bonte, PH.; Jehanno, C.; Robin, E.

    1988-01-01

    The Tunguska explosion in 1908 is supposed to have been produced by the impact of a small celestial body. The absence of any identifiable crater together with the huge energy released by the event suggest that the impactor exploded in midair and that its material was widely spread over the Earth. The short term contribution of such exceptional events to the total accretion rate of extraterrestrial material by the Earth could be significant. Samples were chosen in a core electromechanically drilled in 1984 near South Pole Station. There, the low temperatures, preventing melting all year long, and the nearly regular snow fall rate provide good conditions for a reliable continuous record of any infalling material. In many samples Ir was below the detection limit of the instrumentation. The iridium infall averaged over 45 samples is given. In a few samples the iridium content is significantly higher than the average: the frequency and amplitude of such fluctuations can be explained by the presence on some filters of finite size cosmic particles. No significant systematic increase above the average level is observed in the part of the core corresponding to the Tunguska event. The two major results of this study are: (1) The presence of Tunguska explosion debris in the Antarctic snow is not confirmed; and (2) The estimate of the average iridium infall, is an order of magnitude lower than the Ganapathy's background but is close to the values measured in Antarctic snow and atmospheric samples by Takahashi et al. The results are also consistent with the flux of micrometeoroids deduced from optical and radar observations or derived from the study of Greenland cosmic dust collection but are lower than the flux at mid-latitude measured in paleocene-oligocene sediments from the central part of the Pacific Ocean.

  14. A comparison of operational and LANDSAT-aided snow water content estimation systems. [Feather River Basin, California

    NASA Technical Reports Server (NTRS)

    Sharp, J. M.; Thomas, R. W.

    1975-01-01

    How LANDSAT imagery can be cost effectively employed to augment an operational hydrologic model is described. Attention is directed toward the estimation of snow water content, a major predictor variable in the volumetric runoff forecasting model. A stratified double sampling scheme is supplemented with qualitative and quantitative analyses of existing operations to develop a comparison between the existing and satellite-aided approaches to snow water content estimation. Results show a decided advantage for the LANDSAT-aided approach.

  15. Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation

    NASA Astrophysics Data System (ADS)

    Andreadis, K.; Lettenmaier, D.

    2008-12-01

    Data assimilation provides a framework for optimally merging model predictions and remote sensing observations of snow properties (snow cover extent, water equivalent, grain size, melt state), ideally overcoming limitations of both. A synthetic twin experiment is used to evaluate a data assimilation system that would ingest remotely sensed observations from passive microwave and visible wavelength sensors (brightness temperature and snow cover extent derived products, respectively) with the objective of estimating snow water equivalent. Two data assimilation techniques are used, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter (EnMKF). One of the challenges inherent in such a data assimilation system is the discrepancy in spatial scales between the different types of snow-related observations. The EnMKF represents the sample model error covariance with a tree that relates the system state variables at different locations and scales through a set of parent-child relationships. This provides an attractive framework to efficiently assimilate observations at different spatial scales. This study provides a first assessment of the feasibility of a system that would assimilate observations from multiple sensors (MODIS snow cover and AMSR-E brightness temperatures) and at different spatial scales for snow water equivalent estimation. The relative value of the different types of observations is examined. Additionally, the error characteristics of both model and observations are discussed.

  16. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis

    NASA Astrophysics Data System (ADS)

    St. Clair, James; Holbrook, W. Steven

    2017-12-01

    Many mountainous regions depend on seasonal snowfall for their water resources. Current methods of predicting the availability of water resources rely on long-term relationships between stream discharge and snowpack monitoring at isolated locations, which are less reliable during abnormal snow years. Ground-penetrating radar (GPR) has been shown to be an effective tool for measuring snow water equivalent (SWE) because of the close relationship between snow density and radar velocity. However, the standard methods of measuring radar velocity can be time-consuming. Here we apply a migration focusing method originally developed for extracting velocity information from diffracted energy observed in zero-offset seismic sections to the problem of estimating radar velocities in seasonal snow from common-offset GPR data. Diffractions are isolated by plane-wave-destruction (PWD) filtering and the optimal migration velocity is chosen based on the varimax norm of the migrated image. We then use the radar velocity to estimate snow density, depth, and SWE. The GPR-derived SWE estimates are within 6 % of manual SWE measurements when the GPR antenna is coupled to the snow surface and 3-21 % of the manual measurements when the antenna is mounted on the front of a snowmobile ˜ 0.5 m above the snow surface.

  17. Multi-parameter monitoring of the construction and evolution of a snow bridge over a crevasse on an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Malet, Emmanuel; Batoux, Philippe

    2017-04-01

    Snow bridges that form over the crevasses of the Alpine glaciers allow mountaineers and skiers to cross them easily but constitute an important danger in case of rupture. Between 2008 and 2014, 37 injured persons and 13 deaths related to falls into crevasse were recorded (i.e. an average of two deaths per year) on the glaciers of the French side of the Mont Blanc massif - out of the famous Vallée Blanche ski route, which however embodies an important part of the aid related to falls into crevasses. To understand the construction and evolution of these fragile structures, instrumentation was set up on the Glacier du Géant, at 3450 m a.s.l., near the Aiguille du Midi (3842 m a.s.l.), on the French side of the Mont Blanc massif, close to a crevasse whose bridge had recently collapsed over a length of 37 m. The maximum width of the crevasse in this area is 6 m. At the top of a 7-m-high pole - to prevent future snowfalls -, sensors have been installed in September 2016 to measure different snow and weather parameters: air temperature, wind speed and direction, snow height. An automatic camera surveys the crevasse and the snow bridge geometry. Several other sensors monitor the temperature of snow and air in the crevasse. In addition, an extensometer was installed into the crevasse to measure the evolution of its width. The results of the first 6 months of survey are presented, including the formation of the bridge in mid-November, during a period of snowfall associated with a strong wind. Although the instrumentation is well suited to the high mountain conditions, its maintenance is delicate due to the strong instability of the environment (glacier movements and extreme weather conditions, primarily) but the results of this work will bring new glaciological knowledges which should participate in a better safety on glaciers.

  18. Estimated snow parameters for vehicle mobility modeling in Korea, Germany and interior Alaska

    DOT National Transportation Integrated Search

    1995-09-01

    Snow is a crucial factor affecting the U.S. Army's operations in cold regions. Values for snow depth and snow density are needed for vehicle mobility studies, but unfortunately the available historical records of these parameters tend to be relativel...

  19. The Fate of Aspen in a World with Diminishing Snowpacks

    NASA Astrophysics Data System (ADS)

    Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.

    2010-12-01

    Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.

  20. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback

    NASA Astrophysics Data System (ADS)

    Déry, Stephen J.; Brown, Ross D.

    2007-11-01

    Monotonic trend analysis of Northern Hemisphere snow cover extent (SCE) over the period 1972-2006 with the Mann-Kendall test reveals significant declines in SCE during spring over North America and Eurasia, with lesser declines during winter and some increases in fall SCE. The weekly mean trend attains -1.28, -0.78, and -0.48 × 106 km2 (35 years)-1 over the Northern Hemisphere, North America, and Eurasia, respectively. The standardized SCE time series vary and trend coherently over Eurasia and North America, with evidence of a poleward amplification of decreasing SCE trends during spring. Multiple linear regression analyses reveal a significant dependence of the retreat of the spring continental SCE on latitude and elevation. The poleward amplification is consistent with an enhanced snow-albedo feedback over northern latitudes that acts to reinforce an initial anomaly in the cryospheric system.

  1. New Perspectives on Blowing Snow Transport, Sublimation, and Layer Thermodynamic Structure over Antarctica

    NASA Technical Reports Server (NTRS)

    Palm, Steve; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca M.

    2017-01-01

    Blowing snow over Antarctica is a widespread and frequent event. Satellite remote sensing using lidar has shown that blowing snow occurs over 70% of the time over large areas of Antarctica in winter. The transport and sublimation of blowing snow are important terms in the ice sheet mass balance equation and the latter is also an important part of the hydrological cycle. Until now the only way to estimate the magnitude of these processes was through model parameterization. We present a technique that uses direct satellite observations of blowing snow and model (MERRA-2) temperature and humidity fields to compute both transport and sublimation of blowing snow over Antarctica for the period 2006 to 2016. The results show a larger annual continent-wide integrated sublimation than current published estimates and a significant transport of snow from continent to ocean. The talk will also include the lidar backscatter structure of blowing snow layers that often reach heights of 200 to 300 m as well as the first dropsonde measurements of temperature, moisture and wind through blowing snow layers.

  2. Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

    2012-01-01

    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

  3. Using Deep Learning to Assess Future Flood Magnitude and Frequency in the Semi-arid and Snowmelt-dominated Missouri River Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Francois, B.; Wi, S.; Brown, C.

    2017-12-01

    There has been growing interest for hydrologists and water resources managers about the emergence of non-stationarities associated with the hydro-meteorological processes driving floods. Among the potential causes of non-stationarity, climate change is deemed a major one. Understanding the effects of climate change on hydrological regimes of the Missouri River is challenging. In this region, floods are mainly triggered by snow melting, either when temperatures get mild in spring/summer, or when rain falls over snow in early spring and fall. The sparsely gauged and topographically complex area degrades the value of hydrological modeling that otherwise might foreshadow the evolution of hydro-meteorological interactions between precipitation, temperature and snow. In this work, we explore the utility of Deep Learning (DL) for assessing flood magnitude change under climate change. By using multiple hidden layers within artificial neural networks (ANNs), DL allows modeling complex interactions between inputs (i.e. precipitation, temperature and snow water equivalent) and outputs (i.e. water discharge). The objective is to develop a parsimonious model of the flood processes that maintain the contribution of nonstationary factors and their potential evolution under climate change, while reducing extraneous factors not central to flood generation. By comparing ANN's performance with outputs from two hydrological models of differing complexity (i.e. VIC, SAC-SMA), we evaluate the modeling capability of ANNs for three snow-dominated catchments that represent different flood regimes (Yellowstone River at Billings (MT; USGS 06214500), Powder River near Locate (MT; USGS 06326500) and James River near Scotland (SD; USGS 06478500)). Nonstationary inputs for each flood process model are derived from dynamically downscaled climate projections (from the NARCCAP experiment) to project floods in the three selected catchments. The uncertainty of future snow projections as well as its impact on spring flooding are explored. Future flood frequency obtained with ANNs is compared with the one obtained thanks to hydrological models and with the traditional approach as described in Bulletin 17C. Keywords: Flood, Climate-change, Snow, Neural Networks

  4. Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover

    NASA Astrophysics Data System (ADS)

    Cornwell, E.; Molotch, N. P.; McPhee, J.

    2016-01-01

    Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.

  5. Evaluation of an assimilation scheme to estimate snow water equivalent in the High Atlas of Morocco.

    NASA Astrophysics Data System (ADS)

    Baba, W. M.; Baldo, E.; Gascoin, S.; Margulis, S. A.; Cortés, G.; Hanich, L.

    2017-12-01

    The snow melt from the Atlas mountains represents a crucial water resource for crop irrigation in Morocco. Due to the paucity of in situ measurements, and the high spatial variability of the snow cover in this semi-arid region, assimilation of snow cover area (SCA) from high resolution optical remote sensing into a snowpack energy-balance model is considered as a promising method to estimate the snow water equivalent (SWE) and snow melt at catchment scales. Here we present a preliminary evaluation of an uncalibrated particle batch smoother data assimilation scheme (Margulis et al., 2015, J. Hydrometeor., 16, 1752-1772) in the High-Atlas Rheraya pilot catchment (225 km2) over a snow season. This approach does not require in situ data since it is based on MERRA-2 reanalyses data and satellite fractional snow cover area data. We compared the output of this prior/posterior ensemble data assimilation system to output from the distributed snowpack evolution model SnowModel (Liston and Elder, 2006, J. Hydrometeor. 7, 1259-1276). SnowModel was forced with in situ meteorological data from five automatic weather stations (AWS) and some key parameters (precipitation correction factor and rain-snow phase transition parameters) were calibrated using a time series of 8-m resolution SCA maps from Formosat-2. The SnowModel simulation was validated using a continuous snow height record at one high elevation AWS. The results indicate that the open loop simulation was reasonably accurate (compared to SnowModel results) in spite of the coarse resolution of the MERRA-2 forcing. The assimilation of Formosat-2 SCA further improved the simulation in terms of the peak SWE and SWE evolution over the melt season. During the accumulation season, the differences between the modeled and estimated (posterior) SWE were more substantial. The differences appear to be due to some observed precipitation events not being captured in MERRA-2. Further investigation will determine whether additional improvement in the posterior estimates result from a calibration of uncertainty input parameters based on the in situ meteorological data. The positive preliminary results pave the way for a SWE reanalysis at the scale of the Atlas mountains using data from wide swath sensors such as Landsat and Sentinel-2.

  6. [Snow cover pollution monitoring in Ufa].

    PubMed

    Daukaev, R A; Suleĭmanov, R A

    2008-01-01

    The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.

  7. Estimating snow leopard population abundance using photography and capture-recapture techniques

    USGS Publications Warehouse

    Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.

    2006-01-01

    Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.

  8. Snow Process Estimation Over the Extratropical Andes Using a Data Assimilation Framework Integrating MERRA Data and Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Cortes, Gonzalo; Girotto, Manuela; Margulis, Steven

    2016-01-01

    A data assimilation framework was implemented with the objective of obtaining high resolution retrospective snow water equivalent (SWE) estimates over several Andean study basins. The framework integrates Landsat fractional snow covered area (fSCA) images, a land surface and snow depletion model, and the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis as a forcing data set. The outputs are SWE and fSCA fields (1985-2015) at a resolution of 90 m that are consistent with the observed depletion record. Verification using in-situ snow surveys showed significant improvements in the accuracy of the SWE estimates relative to forward model estimates, with increases in correlation (0.49-0.87) and reductions in root mean square error (0.316 m to 0.129 m) and mean error (-0.221 m to 0.009 m). A sensitivity analysis showed that the framework is robust to variations in physiography, fSCA data availability and a priori precipitation biases. Results from the application to the headwater basin of the Aconcagua River showed how the forward model versus the fSCA-conditioned estimate resulted in different quantifications of the relationship between runoff and SWE, and different correlation patterns between pixel-wise SWE and ENSO. The illustrative results confirm the influence that ENSO has on snow accumulation for Andean basins draining into the Pacific, with ENSO explaining approximately 25% of the variability in near-peak (1 September) SWE values. Our results show how the assimilation of fSCA data results in a significant improvement upon MERRA-forced modeled SWE estimates, further increasing the utility of the MERRA data for high-resolution snow modeling applications.

  9. Perennial snow and ice volumes on Iliamna Volcano, Alaska, estimated with ice radar and volume modeling

    USGS Publications Warehouse

    Trabant, Dennis C.

    1999-01-01

    The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.

  10. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.

  11. Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2011-12-01

    An electrostatic charge of blowing snow may be a contributing factor in the formation of a snow drift and a snow cornice, and changing of the trajectory of own motion. However, detailed electrification characteristics of blowing snow are not known as there are few reports of charge measurements. We carried out field observations of the electrostatic charges of blowing snow in Tobetsu, Hokkaido, Japan in the mid winter of 2011. An anemovane and a thermohygrometer were used for the meteorological observation. Charge-to-mass ratios of blowing snow were obtained by a Faraday-cage, an electrometer and an electric balance. In this observation period, the air temperature during the blowing snow event was -6.5 to -0.5 degree Celsius. The measured charges in this observation were consistent with the previous studies in sign, which is negative, but they were smaller than the previous one. In most cases, the measured values increased with the temperature decrease, which corresponds with previous studies. However, some results contradicted the tendency, and the maximum value was obtained on the day of the highest air temperature of -0.5 degree Celsius. This discrepancy may be explained from the difference of the snow surface condition on observation day. The day when the maximum value was obtained, the snow surface was covered with old snow, and hard. On the other hand, in many other cases, the snow surface was covered with the fresh snow, and soft. Blowing snow particles on the hard surface can travel longer distance than on the soft one. Therefore, it can be surmised that the hard surface makes the blowing snow particles accumulate a lot of negative charges due to a large number of collisions to the surface. This can be supported by the results of the wind tunnel experiments by Omiya and Sato (2011). By this field observation, it was newly suggested that the electrostatic charge of blowing snow are influenced greatly by the difference of the snow surface condition. REFERENCE: Omiya and Sato,(2010):An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface. AGU Abstract Database, 2010 Fall Meeting.

  12. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    NASA Astrophysics Data System (ADS)

    Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry

    2018-03-01

    Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  13. Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design

    NASA Astrophysics Data System (ADS)

    Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain

    2018-06-01

    Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.

  14. Trace gas and vegetation feedback responses of Alaskan tussock tundra to long-term snow depth manipulations

    NASA Astrophysics Data System (ADS)

    Ebbs, L. M.; Taneva, L.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Changes in the precipitation and temperature regimes in Northern Alaska are manifesting themselves through shifts in sea ice, vegetation traits, animal migration timing and hydrologic dynamics. Changes in precipitation and soil temperature result in changes in plant mineral nutrition, soil nutrient availability, trace gas exchanges and differential nutrient acquisition strategies by arctic plants. In this study, we report on the extent to which long-term increases in snow depth, along with reductions in snow depth alter the magnitudes and pattern of CO2 exchange, soil properties and vegetation traits. A doubling of snow depth (from ~0.5 to ~1.0m) results in a delay of the growing season by ~ 2 weeks, however, by peak season, the rates of CO2 exchange are 50% higher in areas which had experienced deeper snow depth levels. To the contrary, long-term reductions in snow depth results in accelerated rates of plant phenology, however CO2 exchange rates at peak season are 30% less than those areas under ambient snow cover in the preceding winter. Reduced snow depth areas had the coldest winter soil temperatures while the deeper areas had the warmest winter soil temperatures, which may partially explain the summer CO2 fluxes indirectly via different rates of winter N mineralization and differences in leaf N properties. Our results indicate that shifting fall, winter and spring when snow is the primary form of precipitation, may have profound effects on tussock tundra systems.

  15. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir.

  16. Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.

    PubMed

    Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen

    2009-09-01

    The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.

  17. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    NASA Astrophysics Data System (ADS)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.

  18. The Olympic Mountains Experiment (OLYMPEX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houze, Robert A.; McMurdie, Lynn A.; Petersen, Walter A.

    the Olympic Mountains Experiment (OLYMPEX) took place during the 2015-2016 fall-winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S./Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four researchmore » aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching "atmospheric river" status, warm and cold frontal systems, and postfrontal convection« less

  19. A user exposure based approach for non-structural road network vulnerability analysis

    PubMed Central

    Jin, Lei; Wang, Haizhong; Yu, Le; Liu, Lin

    2017-01-01

    Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for “emotionally hurt” of topological road network. PMID:29176832

  20. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    NASA Astrophysics Data System (ADS)

    Fahnestock, J. T.; Jones, M. H.; Brooks, P. D.; Walker, D. A.; Welker, J. M.

    1998-11-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems.

  1. Estimation of Snow Parameters Based on Passive Microwave Remote Sensing and Meteorological Information

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Hwang, Jenq-Neng

    1996-01-01

    A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.

  2. Severe snow loads on mountain afforestation in Japan

    Treesearch

    Ryuzo Nitta; Yoshio Ozeki; Shoichi Niwano

    1991-01-01

    A simple device for estimating snow settling force on tree branches was used to determine the distribution of snow settling force at various heights in a snowy mountainous region in Japan. A trapezoidal distribution of snow settling force was found to exist at all sites tested. It is thought that a zoning scheme based on the damaging potential of snow on young man-made...

  3. Mapping snow depth in complex alpine terrain with close range aerial imagery - estimating the spatial uncertainties of repeat autonomous aerial surveys over an active rock glacier

    NASA Astrophysics Data System (ADS)

    Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander

    2017-04-01

    Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding the rock glacier. Additionally, one of the challenges with processing snow cover imagery with SfM-MVS is dealing with the general homogeneity of the surface, which makes is difficult for automated-feature detection algorithms to identify key features for point matching. This challenge depends on the snow cover surface conditions, such as scale, lighting conditions (high vs. low contrast), and availability of snow-free features within a scene, among others. We attempt to explore this aspect by spatial modelling the factors influencing the precision and bias of the DEMs from image, flight, and terrain attributes.

  4. A cost-effectiveness comparison of existing and Landsat-aided snow water content estimation systems

    NASA Technical Reports Server (NTRS)

    Sharp, J. M.; Thomas, R. W.

    1975-01-01

    This study describes how Landsat imagery can be cost-effectively employed to augment an operational hydrologic model. Attention is directed toward the estimation of snow water content, a major predictor variable in the volumetric runoff forecasting model presently used by the California Department of Water Resources. A stratified double sampling scheme is supplemented with qualitative and quantitative analyses of existing operations to develop a comparison between the existing and satellite-aided approaches to snow water content estimation. Results show a decided advantage for the Landsat-aided approach.

  5. A Physical Based Formula for Calculating the Critical Stress of Snow Movement

    NASA Astrophysics Data System (ADS)

    He, S.; Ohara, N.

    2016-12-01

    In snow redistribution modeling, one of the most important parameters is the critical stress of snow movement, which is difficult to estimate from field data because it is influenced by various factors. In this study, a new formula for calculating critical stress of snow movement was derived based on the ice particle sintering process modeling and the moment balance of a snow particle. Through this formula, the influences of snow particle size, air temperature, and deposited time on the critical stress were explicitly taken into consideration. It was found that some of the model parameters were sensitive to the critical stress estimation through the sensitivity analysis using Sobol's method. The two sensitive parameters of the sintering process modeling were determined by a calibration-validation procedure using the observed snow flux data via FlowCapt. Based on the snow flux and metrological data observed at the ISAW stations (http://www.iav.ch), it was shown that the results of this formula were able to describe very well the evolution of the minimum friction wind speed required for the snow motion. This new formula suggested that when the snow just reaches the surface, the smaller snowflake can move easier than the larger particles. However, smaller snow particles require more force to move as the sintering between the snowflakes progresses. This implied that compact snow with small snow particles may be harder to erode by wind although smaller particles may have a higher chance to be suspended once they take off.

  6. Merging a Terrain-Based Parameter and Snow Particle Counter Data for the Assessment of Snow Redistribution in the Col du Lac Blanc Area

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi

    2015-04-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.

  7. Estimation of Snow Parameters from Dual-Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    1997-01-01

    Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.

  8. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  9. Comparison of AMSR-E and SSM/I snow parameter retrievals over the Ob river basin

    USGS Publications Warehouse

    Mognard, N.M.; Grippa, M.; LeToan, T.; Kelly, R.E.J.; Chang, A.T.C.; Josberger, E.G.

    2004-01-01

    Passive microwave observations from the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) and from the Special Sensor Microwave Imager (SSM/I) are used to analyse the evolution of the snow pack in the Ob river basin during the snow season of 2002-03. The Ob river is the biggest Russian river with respect to its watershed area (2 975 000 km2). The Ob originates in the Altai mountains and flows northward across the vast West Siberian lowland towards the Arctic Ocean. The majority of snow cover is contained in the lowlands rather than in mountainous regions and persists for six months or more. During the snow season, surface air temperatures are very cold. Therefore, the combination of cold dry snow and large areas of uniform topography is ideal for snowpack extent and water equivalent retrievals from passive microwave observations. The thermal gradient through the snow pack is estimated and used to model the growth of the snow grain size and to compute the evolution of the passive microwave derived snow depth over the region. A comparison between the AMSR-E and SSM/I estimates is performed and the differences between the snow parameters from the two satellite instruments are analysed.

  10. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  11. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water equivalent (SWE) using microwave remote sensing and the CREST Snow Depth Regression Tree Model (SDRTM) was developed. Data from AMSR2 onboard the JAXA GCOM-W1 satellite is used to produce daily global snow depth and SWE maps in automated fashion at a 10-km resolution.

  12. Recent research in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1987-01-01

    Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.

  13. Optimizing placements of ground-based snow sensors for areal snow cover estimation using a machine-learning algorithm and melt-season snow-LiDAR data

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2016-12-01

    We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.

  14. A research on snow distribution in mountainous area using airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Nishihara, T.; Tanise, A.

    2015-12-01

    In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it's necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain. Our target area was the Chubetsu dam basin. It's located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it's a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line. First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly. Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are distributed in valleys and that of light cover are on ridges. Lastly we compared the result of 2012 and that of 2015. The same characteristic of snow depth, above mentioned, was found. However, regression coefficients of linear equations were different according to the weather conditions of each year.

  15. Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.

    2016-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.

  16. Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, A.; Suzuki, K.

    2017-12-01

    This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.

  17. An Integrated Uncertainty Analysis and Ensemble-based Data Assimilation Framework for Operational Snow Predictions

    NASA Astrophysics Data System (ADS)

    He, M.; Hogue, T. S.; Franz, K.; Margulis, S. A.; Vrugt, J. A.

    2009-12-01

    The National Weather Service (NWS), the agency responsible for short- and long-term streamflow predictions across the nation, primarily applies the SNOW17 model for operational forecasting of snow accumulation and melt. The SNOW17-forecasted snowmelt serves as an input to a rainfall-runoff model for streamflow forecasts in snow-dominated areas. The accuracy of streamflow predictions in these areas largely relies on the accuracy of snowmelt. However, no direct snowmelt measurements are available to validate the SNOW17 predictions. Instead, indirect measurements such as snow water equivalent (SWE) measurements or discharge are typically used to calibrate SNOW17 parameters. In addition, the forecast practice is inherently deterministic, lacking tools to systematically address forecasting uncertainties (e.g., uncertainties in parameters, forcing, SWE and discharge observations, etc.). The current research presents an Integrated Uncertainty analysis and Ensemble-based data Assimilation (IUEA) framework to improve predictions of snowmelt and discharge while simultaneously providing meaningful estimates of the associated uncertainty. The IUEA approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. The robustness and usefulness of the IUEA-SNOW17 framework is evaluated for snow-dominated watersheds in the northern Sierra Mountains, using the coupled IUEA-SNOW17 and an operational soil moisture accounting model (SAC-SMA). Preliminary results are promising and indicate successful performance of the coupled IUEA-SNOW17 framework. Implementation of the SNOW17 with the IUEA is straightforward and requires no major modification to the SNOW17 model structure. The IUEA-SNOW17 framework is intended to be modular and transferable and should assist the NWS in advancing the current forecasting system and reinforcing current operational forecasting skill.

  18. Towards Improved Snow Water Equivalent Estimation via GRACE Assimilation

    NASA Technical Reports Server (NTRS)

    Forman, Bart; Reichle, Rofl; Rodell, Matt

    2011-01-01

    Passive microwave (e.g. AMSR-E) and visible spectrum (e.g. MODIS) measurements of snow states have been used in conjunction with land surface models to better characterize snow pack states, most notably snow water equivalent (SWE). However, both types of measurements have limitations. AMSR-E, for example, suffers a loss of information in deep/wet snow packs. Similarly, MODIS suffers a loss of temporal correlation information beyond the initial accumulation and final ablation phases of the snow season. Gravimetric measurements, on the other hand, do not suffer from these limitations. In this study, gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission are used in a land surface model data assimilation (DA) framework to better characterize SWE in the Mackenzie River basin located in northern Canada. Comparisons are made against independent, ground-based SWE observations, state-of-the-art modeled SWE estimates, and independent, ground-based river discharge observations. Preliminary results suggest improved SWE estimates, including improved timing of the subsequent ablation and runoff of the snow pack. Additionally, use of the DA procedure can add vertical and horizontal resolution to the coarse-scale GRACE measurements as well as effectively downscale the measurements in time. Such findings offer the potential for better understanding of the hydrologic cycle in snow-dominated basins located in remote regions of the globe where ground-based observation collection if difficult, if not impossible. This information could ultimately lead to improved freshwater resource management in communities dependent on snow melt as well as a reduction in the uncertainty of river discharge into the Arctic Ocean.

  19. Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain

    USGS Publications Warehouse

    Sexstone, Graham A.; Clow, David W.; Stannard, David I.; Fassnacht, Steven R.

    2016-01-01

    Snow sublimation can be an important component of the snow-cover mass balance, and there is considerable interest in quantifying the role of this process within the water and energy balance of snow-covered regions. In recent years, robust eddy covariance (EC) instrumentation has been used to quantify snow sublimation over snow-covered surfaces in complex mountainous terrain. However, EC can be challenging for monitoring turbulent fluxes in snow-covered environments because of intensive data, power, and fetch requirements, and alternative methods of estimating snow sublimation are often relied upon. To evaluate the relative merits of methods for quantifying surface sublimation, fluxes calculated by the EC, Bowen ratio–energy balance (BR), bulk aerodynamic flux (BF), and aerodynamic profile (AP) methods and their associated uncertainty were compared at two forested openings in the Colorado Rocky Mountains. Biases between methods are evaluated over a range of environmental conditions, and limitations of each method are discussed. Mean surface sublimation rates from both sites ranged from 0.33 to 0.36 mm day−1, 0.14 to 0.37 mm day−1, 0.10 to 0.17 mm day−1, and 0.03 to 0.10 mm day−1 for the EC, BR, BF and AP methods, respectively. The EC and/or BF methods are concluded to be superior for estimating surface sublimation in snow-covered forested openings. The surface sublimation rates quantified in this study are generally smaller in magnitude compared with previously published studies in this region and help to refine sublimation estimates for forested openings in the Colorado Rocky Mountains.

  20. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    USGS Publications Warehouse

    Fahnestock, J.T.; Jones, M.H.; Brooks, P.D.; Walker, D.A.; Welker, J.M.

    1998-01-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems. Copyright 1998 by the American Geophysical Union.

  1. Geochemistry of waters from springs, wells, and snowpack on and adjacent to Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Mariner, R.H.; Lowenstern, Jacob B.

    1999-01-01

    Chemical analyses of waters from cold springs and wells of the Medicine Lake volcano and surrounding region indicate small chloride anomalies that may be due to water-rock interaction or limited mixing with high-temperature geothermal fluids. The Fall River Springs (FRS) with a combined discharge of approximately 37 m3/s, show a negative correlation between chloride (Cl) and temperature, implying that the Cl is not derived from a high-temperature geothermal fluid. The high discharge from the FRS indicates recharge over a large geographic region. Chemical and isotopic variations in the FRS show that they contain a mixture of three distinct waters. The isotopic composition of recharge on and adjacent to the volcano are estimated from the isotopic composition of snow and precipitation amounts adjusted for evapotranspiration. Enough recharge of the required isotopic composition (-100 parts per thousand ??D) is available from a combination of the Medicine Lake caldera, the Fall River basin and the Long Bell basin to support the slightly warmer components of the FRS (32 m3/s). The cold-dilute part of the FRS (approximately 5 m3/s) may recharge in the Bear Creek basin or at lower elevations in the Fall River basin.

  2. Blowing Snow Sublimation at a High Altitude Alpine Site and Effects on the Surface Boundary Layer

    NASA Astrophysics Data System (ADS)

    Vionnet, V.; Guyomarc'h, G.; Sicart, J. E.; Deliot, Y.; Naaim-Bouvet, F.; Bellot, H.; Merzisen, H.

    2017-12-01

    In alpine terrain, wind-induced snow transport strongly influences the spatial and temporal variability of the snow cover. During their transport, blown snow particles undergo sublimation with an intensity depending on atmospheric conditions (air temperature and humidity). The mass loss due to blowing snow sublimation is a source of uncertainty for the mass balance of the alpine snowpack. Additionally, blowing snow sublimation modifies humidity and temperature in the surface boundary layer. To better quantify these effects in alpine terrain, a dedicated measurement setup has been deployed at the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps, Cryobs-Clim network) since winter 2015/2016. It consists in three vertical masts measuring the near-surface vertical profiles (0.2-5 m) of wind speed, air temperature and humidity and blowing snow fluxes and size distribution. Observations collected during blowing snow events without concurrent snowfall show only a slight increase in relative humidity (10-20%) and near-surface saturation is never observed. Estimation of blowing snow sublimation rates are then obtained from these measurements. They range between 0 and 5 mmSWE day-1 for blowing snow events without snowfall in agreement with previous studies in different environments (North American prairies, Antarctica). Finally, an estimation of the mass loss due to blowing snow sublimation at our experimental site is proposed for two consecutive winters. Future use of the database collected in this study includes the evaluation of blowing snow models in alpine terrain.

  3. Expanding the Adoption on Private Lands : Blowing-and-Drifting Snow Control Treatments and the Cost Effectiveness of Permanent versus Non-Permanent Treatment Options

    DOT National Transportation Integrated Search

    2017-11-01

    Previous research that estimated the costs and benefits of snow-fences for MnDOT in terms of a reduction in the costs of mitigating blowing-and-drifting snow problem areas (MN/RC 2012-03) demonstrated the ability of snow-fences to significantly lower...

  4. Evaluation of forest snow processes models (SnowMKIP2)

    Treesearch

    Nick Rutter; Richard Essery; John Pomeroy; Nuria Altimir; Kostas Andreadis; Ian Baker; Alan Barr; Paul Bartlett; Aaron Boone; Huiping Deng; Herve Douville; Emanuel Dutra; Kelly Elder; others

    2009-01-01

    Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation...

  5. [Characteristics of chemical pollution of snow cover in Aktobe areas].

    PubMed

    Iskakov, A Zh

    2010-01-01

    The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.

  6. Confronting the demand and supply of snow seasonal forecasts for ski resorts : the case of French Alps

    NASA Astrophysics Data System (ADS)

    Dubois, Ghislain

    2017-04-01

    Alpine ski resorts are highly dependent on snow, which availability is characterized by a both a high inter-annual variability and a gradual diminution due to climate change. Due to this dependency to climatic resources, the ski industry is increasingly affected by climate change: higher temperatures limit snow falls, increase melting and limit the possibilities of technical snow making. Therefore, since the seventies, managers drastically improved their practices, both to adapt to climate change and to this inter-annual variability of snow conditions. Through slope preparation and maintenance, snow stock management, artificial snow making, a typical resort can approximately keep the same season duration with 30% less snow. The ski industry became an activity of high technicity The EUPORIAS FP7 (www.euporias.eu) project developed between 2012 and 2016 a deep understanding of the supply and demand conditions for the provision of climate services disseminating seasonal forecasts. In particular, we developed a case study, which allowed conducting several activities for a better understanding of the demand and of the business model of future services applied to the ski industry. The investigations conducted in France inventoried the existing tools and databases, assessed the decision making process and data needs of ski operators, and provided evidences that some discernable skill of seasonal forecasts exist. This case study formed the basis of the recently funded PROSNOW H2020 project. We will present the main results of EUPORIAS project for the ski industry.

  7. Utilizing ERTS-1 imagery for tectonic analysis through study of the Bighorn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparisons of imagery of three seasons, late summer-fall, winter, and spring indicate that for this region fall imagery is the best for overall geologic analysis. Winter scenes with light to moderate snow cover provide excellent topographic detail owing to snow enhancement, lower sun angle, and clarity of the atmosphere. Spring imagery has considerable reduction of tonal contrast owing to the low reflecting heavy green grass cover which subdues lithologic effects; heavy snow cover in the uplands masks topography. Mapping of geologic formations is impractical in most cases. Separation into tonal units can provide some general clues on structure. A given tonal unit can include parts of several geologic formations and different stratigraphic units can have the same tonal signature. Drainage patterns and anomalies provide the most consistent clues for detecting folds, monoclines, and homoclines. Vegetation only locally reflects lithology and structure. False color infrared 9 x 9 transparencies are the most valuable single imagery. Where these can be supplemented by U-2 color infrared for more detailed work, a tremendous amount of information is available. Adequately field checking such a large area just in one scene is the major logistic problem even in a fairly well known region.

  8. Accomplishments under the Airport Improvement Program: Fiscal Year 1990 (Ninth Annual Report)

    DTIC Science & Technology

    1990-01-01

    ST PAUL 06 $259,200 INSTALL TAXIWAY SIGNS; EXTEND SERVICE ST PAUL DOWNTOWN HOLMAN FIELD ROAD (RELIEVER) THIEF RIVER FALLS 01 $69,075 INSTALL RUNWAY AND...TAXIWAY SIGNS THIEF RIVER FALLS REGIONAL (COMMERCIAL SERVICE) MISSISSIPPI S2 $101,000 CONDUCT STATE SYSTEM PLAN STUDY STATE OF MISSISSIPPI (SYSTEM...SOL5tRG-HUNTERDON (GENERAL AVIATION) TETERBORO 09 $174,103 ACQUIRE SNOW REMOVAL EQUIPMENT TETERBORO (RELIEVER) TOMS RIVER Oa $189,764 IMPROVE DRAINAGE

  9. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan

    NASA Astrophysics Data System (ADS)

    Bair, Edward H.; Abreu Calfa, Andre; Rittger, Karl; Dozier, Jeff

    2018-05-01

    In the mountains, snowmelt often provides most of the runoff. Operational estimates use imagery from optical and passive microwave sensors, but each has its limitations. An accurate approach, which we validate in Afghanistan and the Sierra Nevada USA, reconstructs spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely sensed date of disappearance. However, reconstructed SWE estimates are available only retrospectively; they do not provide a forecast. To estimate SWE throughout the snowmelt season, we consider physiographic and remotely sensed information as predictors and reconstructed SWE as the target. The period of analysis matches the AMSR-E radiometer's lifetime from 2003 to 2011, for the months of April through June. The spatial resolution of the predictions is 3.125 km, to match the resolution of a microwave brightness temperature product. Two machine learning techniques - bagged regression trees and feed-forward neural networks - produced similar mean results, with 0-14 % bias and 46-48 mm RMSE on average. Nash-Sutcliffe efficiencies averaged 0.68 for all years. Daily SWE climatology and fractional snow-covered area are the most important predictors. We conclude that these methods can accurately estimate SWE during the snow season in remote mountains, and thereby provide an independent estimate to forecast runoff and validate other methods to assess the snow resource.

  10. [Research on hyperspectral remote sensing in monitoring snow contamination concentration].

    PubMed

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan

    2011-05-01

    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  11. Estimation de la superficie du couvert nival a partir d'une combinaison des donnees de teledetection MODIS et AMSR-E dans un contexte de prevision des crues printanieres au Quebec

    NASA Astrophysics Data System (ADS)

    Bergeron, Jean

    Snow cover estimation is a principal source of error for spring streamflow simulations in Québec, Canada. Optical and near infrared remote sensing can improve snow cover area (SCA) estimation due to high spatial resolution but is limited by cloud cover and incoming solar radiation. Passive microwave remote sensing is complementary by its near-transparence to cloud cover and independence to incoming solar radiation, but is limited by its coarse spatial resolution. The study aims to create an improved SCA product from blended passive microwave (AMSR-E daily L3 Brightness Temperature) and optical (MODIS Terra and Aqua daily snow cover L3) remote sensing data in order to improve estimation of river streamflow caused by snowmelt with Québec's operational MOHYSE hydrological model through direct-insertion of the blended SCA product in a coupled snowmelt module (SPH-AV). SCA estimated from AMSR-E data is first compared with SCA estimated with MODIS, as well as with in situ snow depth measurements. Results show good agreement (+95%) between AMSR-E-derived and MODIS-derived SCA products in spring but comparisons with Environment Canada ground stations and SCA derived from Advanced Very High Resolution Radiometer (AVHRR) data show lesser agreements (83 % and 74% respectively). Results also show that AMSR-E generally underestimates SCA. Assimilating the blended snow product in SPH-AV coupled with MOHYSE yields significant improvement of simulated streamflow for the aux Écorces et au Saumon rivers overall when compared with simulations with no update during thaw events, These improvements are similar to results driven by biweekly ground data. Assimilation of remotely-sensed passive microwave data was also found to have little positive impact on springflood forecast due to the difficulty in differentiating melting snow from snow-free surfaces. Considering the direct-insertion and Newtonian nudging assimilation methods, the study also shows the latter method to be superior to the former, notably when assimilating noisy data. Keywords: Snow cover, spring streamflow, MODIS, AMSR-E, hydrological model.

  12. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    NASA Astrophysics Data System (ADS)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes and runs off slowly and does not cause floods. About use of satellite images we concluded that first of all, weather is unfavorable - lots of cloudiness in winter, and furthermore a grater part of land is covered by forest which prevents to see the snow cover on image clearly.

  13. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  14. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.

    PubMed

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif

    2014-04-01

    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

  15. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  16. Snow cover monitoring over French Alps based on Spot-Vegetation S-10 products. Application to the Vercors area for the time period 1998-2008.

    NASA Astrophysics Data System (ADS)

    Bigot, S.; Dedieu, Jp.; Rome, S.

    2009-04-01

    Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s.

  17. Improving alpine-region spectral unmixing with optimal-fit snow endmembers

    NASA Technical Reports Server (NTRS)

    Painter, Thomas H.; Roberts, Dar A.; Green, Robert O.; Dozier, Jeff

    1995-01-01

    Surface albedo and snow-covered-area (SCA) are crucial inputs to the hydrologic and climatologic modeling of alpine and seasonally snow-covered areas. Because the spectral albedo and thermal regime of pure snow depend on grain size, areal distribution of snow grain size is required. Remote sensing has been shown to be an effective (and necessary) means of deriving maps of grain size distribution and snow-covered-area. Developed here is a technique whereby maps of grain size distribution improve estimates of SCA from spectral mixture analysis with AVIRIS data.

  18. Estimate of temperature change due to ice and snow accretion in the boreal forest regions

    NASA Astrophysics Data System (ADS)

    Sugiura, K.; Nagai, S.; Suzuki, R.; Eicken, H.; Maximov, T. C.

    2016-12-01

    Previous research has demonstrated that there is a wide difference between the surface albedo in winter/spring in snow-covered forest regions in various global climate models. If the forest is covered with snow, the surface albedo would increase. In this study, we carried out field observations to monitor the frequency of ice and snow accretion in the boreal forest regions. The time-lapse digital camera was set up on each side of the observation towers at the site located to the north of Fairbanks (USA) and at the site located to the north of Yakutsk (Russia). It was confirmed that both forests were not necessarily covered with snow without a break from the start of continuous snow cover until the end. In addition, the boreal forest at the Yakutsk site is covered with snow in comparison with the boreal forest at the Fairbanks site for a long term such as for about five month. Using a one-dimensional mathematics model about the energy flow including atmospheric multiple scattering, we estimated temperature change due to ice and snow accretion in the boreal forest regions. The result show that the mean surface temperature rises approximately 0.5 [oC] when the boreal forest is not covered with snow. In this presentation, we discuss the snow albedo parameterization in the boreal forest regions and the one-dimensional mathematics model to provide a basis for a better understanding of the role of snow in the climate system.

  19. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over most seasons but shows slight increases in spring in North America and during fall over Eurasia. Later spring or earlier fall snow cover can both lead to reductions in TI-NDVI. The time-varying spatial patterns of NDVI trends can be largely explained using either snow cover or land surface temperature trends.

  20. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harder, Phillip; Schirmer, Michael; Pomeroy, John; Helgason, Warren

    2016-11-01

    Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been limited to terrestrial and airborne laser scanning and more recently with application of structure from motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and orthomosaics for snow cover at a cultivated agricultural Canadian prairie and a sparsely vegetated Rocky Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root mean square errors in snow depth estimation from differencing snow-covered and non-snow-covered DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow depth > 30 cm, but the direct observation of snow depth depletion of shallow snowpacks with this method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the flight, with the most consistent performance found for wind speeds < 10 m s-1, clear skies, high sun angles and surfaces with negligible vegetation cover.

  1. Snow in northeastern United States

    NASA Image and Video Library

    2014-03-11

    Snow covered the northeastern United States on last day of meteorological winter, 2014. Climatologists and meteorologists break seasons down into three-month groups, based on annual temperature and our calendar. This method is helpful for weather observing and forecasting, and for planning consistent agricultural dates, such as expected first frosts or best planting date. Meteorological winter – the season where temperatures are, on average, coldest and when snow is most likely to fall – runs from December 1 to February 28 in the United States and Canada. Winter can also be defined by the astronomical calendar, which is based on the rotation of the Earth around the sun. In this method, the seasons are defined by two solstices (times when the sun’s path is furthest from the Earth’s equator) and two equinoxes (the times when the sun passes directly above the equator). In the Northern Hemisphere, winter begins on the winter solstice, which falls on or around December 22 and ends on or around March 21, at the vernal (spring) equinox. On February 28, 2014, the Moderate Resolution Imaging Spectroradiometer aboard NASA’s Aqua satellite captured this true-color image of a sunny winter day in the northeastern United States. Snow stretches from Maine west to Indiana and south along the ridges of the Appalachian Mountains well into West Virginia. In Canada, the landscape appears greener, primarily because snow lies on conifers (evergreen) trees in the boreal forest regions. The Great Lakes, with the exception of Lake Ontario, are almost completely covered with ice. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. From Drought to Flood: An Analysis of the Water Balance of the Tuolumne River Basin During Extreme Conditions (2015 - 2017)

    NASA Astrophysics Data System (ADS)

    Hedrick, A. R.; Marks, D. G.; Havens, S.; Robertson, M.; Johnson, M.; Sandusky, M.; Bormann, K. J.; Painter, T. H.

    2017-12-01

    Closing the water balance of a snow-dominated mountain basin has long been a focal point of the hydrologic sciences. This study attempts to more precisely quantify the solid precipitation inputs to a basin using the iSnobal energy balance snowmelt model and assimilated snow depth information from the Airborne Snow Observatory (ASO). Throughout the ablation seasons of three highly dissimilar consecutive water years (2015 - 2017), the ASO captured high resolution snow depth snapshots over the Tuolumne River Basin in California's Central Sierra Nevada. These measurements were used to periodically update the snow depth state variable of iSnobal, thereby nudging the estimates of water storage (snow water equivalent, or SWE) and melt (surface water input, or SWI) toward a more accurate solution. Once precipitation inputs and streamflow outputs are better constrained, the additional loss terms of the water mass balance equation (i.e. groundwater recharge and evapotranspiration) can be estimated with less uncertainty.

  3. Malmstrom AFB, Great Falls, Montana. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    DTIC Science & Technology

    1978-06-12

    PRECIPITATION PSYCHROMETRIC-DRY VS WET BULB SNOWFALL MEAN & STD DEV. (DRY BULB, WIT BULB, & DEW POINT) SNOW DEPTH RELATIVE HUMIDITY PARTC SURFACE WINDS PART D...CONDITIONS FROM HOURLY OBSERVATIONS JU 00.jAN/RRI 0 RAIN FREEZING SNOW %OF SMOKE DUST % OF OSS TOTAL MONTH HUS TOURS HAt SAND TOT FOSAD/ RTO HOUS. THUNDR.ADOl...WEATHFR 1500-1700. CLAS VS MIEN(LT.) CONDITION SPEED IMEAN (KNTS) 1.3 4.6 7.10 11.16 17.21 22.27V 2833 34. 40 41.47 43.55 ?:56 % WIND cit. ISPEED N 1.1

  4. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    NASA Technical Reports Server (NTRS)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  5. Simulation of Surface Energy Fluxes and Snow Interception Using a Higher Order Closure Multi-Layer Soil-Vegetation-Atmospheric Model: The Effect of Canopy Shape and Structure

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.

    2015-12-01

    Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.

  6. Proof of Concept: Development of Snow Liquid Water Content Profiler Using CS650 Reflectometers at Caribou, ME, USA.

    PubMed

    Pérez Díaz, Carlos L; Muñoz, Jonathan; Lakhankar, Tarendra; Khanbilvardi, Reza; Romanov, Peter

    2017-03-21

    The quantity of liquid water in the snowpack defines its wetness. The temporal evolution of snow wetness's plays a significant role in wet-snow avalanche prediction, meltwater release, and water availability estimations and assessments within a river basin. However, it remains a difficult task and a demanding issue to measure the snowpack's liquid water content (LWC) and its temporal evolution with conventional in situ techniques. We propose an approach based on the use of time-domain reflectometry (TDR) and CS650 soil water content reflectometers to measure the snowpack's LWC and temperature profiles. For this purpose, we created an easily-applicable, low-cost, automated, and continuous LWC profiling instrument using reflectometers at the Cooperative Remote Sensing Science and Technology Center-Snow Analysis and Field Experiment (CREST-SAFE) in Caribou, ME, USA, and tested it during the snow melt period (February-April) immediately after installation in 2014. Snow Thermal Model (SNTHERM) LWC simulations forced with CREST-SAFE meteorological data were used to evaluate the accuracy of the instrument. Results showed overall good agreement, but clearly indicated inaccuracy under wet snow conditions. For this reason, we present two (for dry and wet snow) statistical relationships between snow LWC and dielectric permittivity similar to Topp's equation for the LWC of mineral soils. These equations were validated using CREST-SAFE in situ data from winter 2015. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Additionally, the equations seemed to be able to capture the snowpack state (i.e., onset of melt, medium, and maximum saturation). Lastly, field test results show advantages, such as: automated, continuous measurements, the temperature profiling of the snowpack, and the possible categorization of its state. However, future work should focus on improving the instrument's capability to measure the snowpack's LWC profile by properly calibrating it with in situ LWC measurements. Acceptable validation agreement indicates that the developed snow LWC, temperature, and wetness profiler offers a promising new tool for snow hydrology research.

  7. Crew Earth Observations (CEO) taken during Expedition 8

    NASA Image and Video Library

    2003-12-03

    ISS008-E-09603 (20 December 2003) --- The village of Argudan near the north slopes of the Greater Caucasus Mountains in Russia is featured in this photo taken by an Expedition 8 crewmember onboard the International Space Station (ISS). The striking land use pattern, seen through a high magnification lens and highlighted by winter snow and low sun angles, produces this unique view. This rural, agricultural community sits astride the main highway about 15 kilometers east-southeast of the city of Nalchik. Shadows from a line of trees planted as a windbreak near the highway give the road a ragged appearance. A small stream flowing northeastward exits heavily forested foothills through the village and fields of intensely cultivated croplands on the plains. Snow falls through the vegetation, making the woodlands appear extremely dark compared to the snow-covered fields.

  8. Alone in the Snow.

    ERIC Educational Resources Information Center

    Bockler, Donald J.

    1984-01-01

    Describes a weekend wilderness experience that is part of an outdoor education program on fall and winter survival techniques. Training includes such classroom reinforcement and outdoor exercises as fire and shelter building, map and compass work, group cooperation initiatives, rock climbing, search and rescue techniques, and identification of…

  9. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  10. Ground based remote sensing retrievals and observations of snowfall in the Telemark region of Norway

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; L'Ecuyer, T. S.; Wood, N.; Cooper, S.; Wolff, M. A.; Petersen, W. A.; Bliven, L. F.; Tushaus, S. A.

    2017-12-01

    Snowfall can be broadly categorized into deep and shallow events, based on the vertical extent of the frozen precipitation in the column. The two categories are driven by different thermodynamic and physical mechanisms in the atmosphere and surface. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation and over complex terrain. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes. We present data collected in a recently deployed ground suite of instruments based in Norway. The Meteorological Institute of Norway has a snow measurement suite in Haukeliseter located in the orographically complex Telemark region. This suite consists of several snow accumulation instruments as well as meteorological data (temperature, dew point, wind speeds and directions). A joint project between University of Wisconsin and University of Utah augmented this suite with a 24 GHz radar MicroRain Radar (MRR), a NASA Particle Imaging Package (PIP), and a Multi-Angle Snowflake Camera (MASC). Preliminary data from this campaign are presented along with coincident overpasses from the GPM satellite. We compare the ground-based and spaceborne remotely sensed estimates of snowfall with snow gauge observations from the Haukeliseter site. Finally, we discuss how particle size distribution and fall velocity observations from the PIP and MASC can be used to improve remotely-sensed snowfall retrievals as a function of environmental conditions at Haukeliseter.

  11. Canadian snow and sea ice: historical trends and projections

    NASA Astrophysics Data System (ADS)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  12. A Supplementary Clear-Sky Snow and Ice Recognition Technique for CERES Level 2 Products

    NASA Technical Reports Server (NTRS)

    Radkevich, Alexander; Khlopenkov, Konstantin; Rutan, David; Kato, Seiji

    2013-01-01

    Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm's goal is to enhance the identification of snow and ice within the Clouds and the Earth's Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.

  13. High-Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Painter, Thomas H.; Bormann, Kat J.; McGurk, Bruce; Flint, Alan L.; Flint, Lorraine E.; White, Vince; Lundquist, Jessica D.

    2018-02-01

    Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-derived snow data set over 3 years (2013-2015) during a prolonged drought in California, to estimate basin-scale water balance components. We compare snowmelt and cumulative precipitation over periods from the ASO flight to the end of the water year against cumulative streamflow observations. The basin water balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year. Using soil moisture observations and hydrologic model simulations, we show that the residual term represents short-term changes in basin water storage over the snowmelt season, but that over the period from peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-season ET estimated from this approach is 168 (85-252 at 95% confidence), 162 (0-326) and 191 (48-334) mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations, we quantify spatially-distributed hydrologic processes otherwise difficult to observe.

  14. Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Dutra, Emanuel; Jacobi, Hans-Werner; Zolina, Olga

    2018-06-01

    This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF) during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K-1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.

  15. Factors Impacting Spatial Patterns of Snow Distribution in a Small Catchment near Nome, AK

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wilson, C. J.; Charsley-Groffman, L.; Busey, R.; Bolton, W. R.

    2017-12-01

    Snow cover plays an important role in the climate, hydrology and ecological systems of the Arctic due to its influence on the water balance, thermal regimes, vegetation and carbon flux. Thus, snow depth and coverage have been key components in all the earth system models but are often poorly represented for arctic regions, where fine scale snow distribution data is sparse. The snow data currently used in the models is at coarse resolution, which in turn leads to high uncertainty in model predictions. Through the DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic, high resolution snow distribution data is being developed and applied in catchment scale models to ultimately improve representation of snow and its interactions with other model components in the earth system models . To improve these models, it is important to identify key factors that control snow distribution and quantify the impacts of those factors on snow distribution. In this study, two intensive snow depth surveys (1 to 10 meters scale) were conducted for a 2.3 km2 catchment on the Teller road, near Nome, AK in the winter of 2016 and 2017. We used a statistical model to quantify the impacts of vegetation types, macro-topography, micro-topography, and meteorological parameters on measured snow depth. The results show that snow spatial distribution was similar between 2016 and 2017, snow depth was spatially auto correlated over small distance (2-5 meters), but not spatially auto correlated over larger distance (more than 2-5 meters). The coefficients of variation of snow depth was above 0.3 for all the snow survey transects (500-800 meters long). Variation of snow depth is governed by vegetation height, aspect, slope, surface curvature, elevation and wind speed and direction. We expect that this empirical statistical model can be used to estimate end of winter snow depth for the whole watershed and will further develop the model using data from other arctic regions to estimate seasonally dynamic snow coverage and properties for use in catchment scale to pan-Arctic models.

  16. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  17. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    NASA Astrophysics Data System (ADS)

    Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent

    2018-01-01

    With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

  18. Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development

    NASA Technical Reports Server (NTRS)

    Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.

    2013-01-01

    A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.

  19. Black carbon aerosol size in snow.

    PubMed

    Schwarz, J P; Gao, R S; Perring, A E; Spackman, J R; Fahey, D W

    2013-01-01

    The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.

  20. Theoretical Accuracy of Global Snow-Cover Mapping Using Satellite Data in the Earth Observing System (EOS) Era

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.

    1998-01-01

    Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-cover mapping will be performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow cover is complete, snow-mapping errors are small (less than 1%) in all land covers studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-cover maps is largely determined by percent forest cover north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-cover maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-cover classes and water. Snow-mapping errors estimated for each of the seven land-cover classes are extrapolated to the entire Northern Hemisphere for areas north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-cover maps is 92% or higher. Error estimates will be refined after the first full year that MODIS data are available.

  1. Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.

  2. Early results from NASA's SnowEx campaign

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared

    2017-04-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others. Snow simply varies too much. Thus, the snow community consensus is that a multi-sensor approach is needed to adequately address global snow, combined with modeling and data assimilation. What remains at issue, then, is how best to combine and use the various sensors in an optimal way. That requires field measurements. NASA's SnowEx airborne campaign is designed to do exactly that. A list of core sensors is as follows. All are from NASA unless otherwise noted. • Radar (volume scattering): European Space Agency's SnowSAR, operated by MetaSensing • Lidar & hyperspectral imager: Airborne Snow Observatory (ASO) • Passive microwave: Airborne Earth Science Microwave Imaging Radiometer (AESMIR) • Bi-directional Reflectance Function (BRDF): the Cloud Absorption Radiometer (CAR) • Thermal Infrared imager • Thermal infrared non-imager from U. Washington • Video camera The ASO suite flew on a King Air, and the other sensors flew on a Navy P-3. In addition, two NASA radars flew on G-III aircraft to test more experimental retrieval techniques: • InSAR altimetry: Glacier and Ice Surface Topography Interferometer (GLISTIN-A) • Radar phase delay: Uninhabited Aerial Vehicle Synthetic Aperture Radar, (UAVSAR)

  3. Comparison of estimates of snow input to a small alpine watershed

    Treesearch

    R. A. Sommerfeld; R. C. Musselman; G. L. Wooldridge

    1990-01-01

    We have used five methods to estimate the snow water equivalent input to the Glacier Lakes Ecosystem Experiments Site (GLEES) in south-central Wyoming during the winter 1987-1988 and to obtain an estimate of the errors. The methods are: (1) the Martinec and Rango degree-day method; (2) Wooldridge et al. method of determining the average yearly snowfall from tree...

  4. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will the SWE estimation error statistics be improved using this high-resolution dataset? Third, how will the SWE retrieval accuracy be improved using CETB and the new SWE retrieval techniques?

  5. Winter range arrival and departure of white-tailed deer in northeastern Minnesota

    USGS Publications Warehouse

    Nelson, M.E.

    1995-01-01

    I analyzed 364 spring and 239 fall migrations by 194 white-tailed deer (Odocoileus virginianus) from 1975 to 1993 in northeastern Minnesota to determine the proximate cause of arrivals on and departures from winter ranges. The first autumn temperatures below -7?C initiated fall migrations for 14% (95% confidence interval (CI) = 0-30) of female deer prior to snowfall in three autumns, but only 2% remained on winter ranges. During 14 autumns, the first temperatures below -7?C coincidental with snowfalls elicited migration in 45% (95% CI = 34-57) of females, and 91 % remained on winter ranges. Arrival dates failed to correlate with independent variables of temperature and snow depth, precluding predictive modeling of arrival on winter ranges. During 13 years, a mean of 80% of females permanently arrived on winter ranges by 31 December. Mean departure dates from winter ranges varied annually (19 March - 4 May) and between winter ranges (14 days) and according to snow depth (15-cm differences). Only 15 - 41 % of deer departed when snow depths were> 30 cm but 80% had done so by the time of lO-cm depths. Mean weekly snow depths in March (18-85 cm) and mean temperature in April (0.3 -8.1 ?c) explained most of the variation in mean departure dates from two winter ranges (Ely, R2 = 0.87, P < 0.0005, n = 19 springs; Isabella, R2 = 0.85, P = 0.0001, n = 12 springs). Mean differences between observed mean departure dates and mean departure dates predicted from equations ranged from 3 days (predictions within the study area) to 8 days (predictions for winter ranges 100-440 km distant).

  6. Chapter 7: Precipitation Change in the United States

    NASA Technical Reports Server (NTRS)

    Easterling, D. R.; Kunkel, K. E.; Arnold, J. R.; Knutson, T.; LeGrande, A. N.; Leung, L. R.; Vose, R. S.; Waliser, D. E.; Wehner, M. F.

    2017-01-01

    Annual precipitation has decreased in much of the West, Southwest, and Southeast and increased in most of the Northern and Southern Plains, Midwest, and Northeast. A national average increase of 4% in annual precipitation since 1901 is mostly a result of large increases in the fall season. Heavy precipitation events in most parts of the United States have increased in both intensity and frequency since 1901. There are important regional differences in trends, with the largest increases occurring in the northeastern United States. In particular, mesoscale convective systems (organized clusters of thunderstorms)-the main mechanism for warm season precipitation in the central part of the United States-have increased in occurrence and precipitation amounts since 1979. The frequency and intensity of heavy precipitation events are projected to continue to increase over the 21st century (high confidence). Mesoscale convective systems in the central United States are expected to continue to increase in number and intensity in the future. There are, however, important regional and seasonal differences in projected changes in total precipitation: the northern United States, including Alaska, is projected to receive more precipitation in the winter and spring, and parts of the southwestern United States are projected to receive less precipitation in the winter and spring. Northern Hemisphere spring snow cover extent, North America maximum snow depth, snow water equivalent in the western United States, and extreme snowfall years in the southern and western United States have all declined, while extreme snowfall years in parts of the northern United States have increased. Projections indicate large declines in snowpack in the western United States and shifts to more precipitation falling as rain than snow in the cold season in many parts of the central and eastern United States.

  7. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused bymore » the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the baseline conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake's hydrological response to snowdrift melt, and cost assessment of snowdrift‐generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open‐water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21-29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results of these projects were implemented in the NSDSS model and added to the annual water budget. This implementation allows one to account for snowdrift contributions during ice road planning with the NSDSS and assists with mitigating those risks associated with potentially unfavorable climate and hydrological conditions (that is, surface storage deficit and/or low precipitation).« less

  8. A simple algorithm for identifying periods of snow accumulation on a radiometer

    NASA Astrophysics Data System (ADS)

    Lapo, Karl E.; Hinkelman, Laura M.; Landry, Christopher C.; Massmann, Adam K.; Lundquist, Jessica D.

    2015-09-01

    Downwelling solar, Qsi, and longwave, Qli, irradiances at the earth's surface are the primary energy inputs for many hydrologic processes, and uncertainties in measurements of these two terms confound evaluations of estimated irradiances and negatively impact hydrologic modeling. Observations of Qsi and Qli in cold environments are subject to conditions that create additional uncertainties not encountered in other climates, specifically the accumulation of snow on uplooking radiometers. To address this issue, we present an automated method for estimating these periods of snow accumulation. Our method is based on forest interception of snow and uses common meteorological observations. In this algorithm, snow accumulation must exceed a threshold to obscure the sensor and is only removed through scouring by wind or melting. The algorithm is evaluated at two sites representing different mountain climates: (1) Snoqualmie Pass, Washington (maritime) and (2) the Senator Beck Basin Study Area, Colorado (continental). The algorithm agrees well with time-lapse camera observations at the Washington site and with multiple measurements at the Colorado site, with 70-80% of observed snow accumulation events correctly identified. We suggest using the method for quality controlling irradiance observations in snow-dominated climates where regular, daily maintenance is not possible.

  9. Assessing the Accuracy of Passive Microwave Estimates of Snow Water Equivalent in Data-Scarce Regions for Use in Water Resource Applications: A Case Study in the Upper Helmand Watershed, Afghanistan

    DTIC Science & Technology

    2011-03-01

    to remotely sensed SCA and SWE. The first analysis, a comparison to SCA imagery, tests the models ability to correctly estimate the snow extent...remotely sensed data (Con- galton and Green 2009). The producer’s accuracies consistently show the model underestimating the snow extent at the end...and K. Green. 2009. Assessing the accuracy of remotely sensed data: principals and practices, Second edition. CRC Press, Taylor & Francis Group

  10. Snowpack spatial variability: Towards understanding its effect on remote sensing measurements and snow slope stability

    NASA Astrophysics Data System (ADS)

    Marshall, Hans-Peter

    The distribution of water in the snow-covered areas of the world is an important climate change indicator, and it is a vital component of the water cycle. At local and regional scales, the snow water equivalent (SWE), the amount of liquid water a given area of the snowpack represents, is very important for water resource management, flood forecasting, and prediction of available hydropower energy. Measurements from only a few automatic weather stations, such as the SNOTEL network, or sparse manual snowpack measurements are typically extrapolated for estimating SWE over an entire basin. Widespread spatial variability in the distribution of SWE and snowpack stratigraphy at local scales causes large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due to their large spatial coverage and high temporal resolution. Although snow cover extent can currently be estimated from remote sensing data, accurately quantifying SWE from remote sensing measurements has remained difficult, due to a high sensitivity to variations in grain size and stratigraphy. In alpine snowpacks, the large degree of spatial variability of snowpack properties and geometry, caused by topographic, vegetative, and microclimatic effects, also makes prediction of snow avalanches very difficult. Ground-based radar and penetrometer measurements can quickly and accurately characterize snowpack properties and SWE in the field. A portable lightweight radar was developed, and allows a real-time estimate of SWE to within 10%, as well as measurements of depths of all major density transitions within the snowpack. New analysis techniques developed in this thesis allow accurate estimates of mechanical properties and an index of grain size to be retrieved from the SnowMicroPenetrometer. These two tools together allow rapid characterization of the snowpack's geometry, mechanical properties, and SWE, and are used to guide a finite element model to study the stress distribution on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.

  11. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.

  12. Frost risk for overwintering crops in a changing climate

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Weih, Martin

    2013-04-01

    Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.

  13. Simulation of Seasonal Snow Microwave TB Using Coupled Multi-Layered Snow Evolution and Microwave Emission Models

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Royer, Alain; Picard, Ghislain; Langlois, Alex; Fily, Michel

    2014-01-01

    The accurate quantification of SWE has important societal benefits, including improving domestic and agricultural water planning, flood forecasting and electric power generation. However, passive-microwave SWE algorithms suffer from variations in TB due to snow metamorphism, difficult to distinguish from those due to SWE variations. Coupled snow evolution-emission models are able to predict snow metamorphism, allowing us to account for emissivity changes. They can also be used to identify weaknesses in the snow evolution model. Moreover, thoroughly evaluating coupled models is a contribution toward the assimilation of TB, which leads to a significant increase in the accuracy of SWE estimates.

  14. Everywhere and nowhere: snow and its linkages

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.

    2017-12-01

    Interest has grown in quantifying higher latitude precipitation change and snow-related ecosystem and economic impacts. There is a high demand for creating and using snow-related datasets, yet available datasets contain limitations, aren't scale appropriate, or lack thorough validation. Much of the uncertainty in snow estimates relates to ongoing snow measurement problems that are chronic and pervasive in windy, Arctic environments. This, coupled with diminishing support for long-term snow field observations, creates formidable hydrologic gaps in snow dominated landscapes. Snow touches most aspects of high latitude landscapes and spans albedo, ecosystems, soils, permafrost, and sea ice. In turn, snow can be impacted by disturbances, landscape change, ecosystem, structure, and later arrival of sea or lake ice. Snow, and its changes touch infrastructure, housing, and transportation. Advances in snow measurements, modeling, and data assimilation are under way, but more attention and a concerted effort is needed in a time of dwindling resources to make required advances during a time of rapid change.

  15. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    PubMed

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  16. Freeboard, Snow Depth and Sea-Ice Roughness in East Antarctica from In Situ and Multiple Satellite Data

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Masson, Robert; Worby, Anthony; Lytle, Victoria; Kurtz, Nathan; Maksym, Ted

    2011-01-01

    In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.

  17. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  18. Snow Drift Management: Summit Station Greenland

    DTIC Science & Technology

    2016-05-01

    that about 25% of the estimated snow that the wind transports to Summit each winter is deposited and forms drifts, mostly in close proxim- ity to...the structures. This analysis demonstrates that weather data ( wind speed and direction) and a transport analysis can aid in estimating the vol- ume of...23 Appendix A: Wind Roses

  19. Assimilating Merged Remote Sensing and Ground based Snowpack Information for Runoff Simulation and Forecasting using Hydrological Models

    NASA Astrophysics Data System (ADS)

    Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.

    2013-12-01

    Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.

  20. Comparison of snow melt properties across multiple spatial scales and landscape units in interior sub-Arctic boreal Alaskan watersheds

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.

    2013-12-01

    Interior sub-Arctic Alaskan snow cover is rapidly changing and requires further study for correct parameterization in physically based models. This project undertook field studies during the 2013 snow melt season to capture snow depth, snow temperature profiles, and snow cover extent to compare with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor at four different sites underlain by discontinuous permafrost. The 2013 melt season, which turned out to be the latest snow melt period on record, was monitored using manual field measurements (SWE, snow depth data collection), iButtons to record temperature of the snow pack, GoPro cameras to capture time lapse of the snow melt, and low level orthoimagery collected at ~1500 m using a Navion L17a plane mounted with a Nikon D3s camera. Sites were selected across a range of landscape conditions, including a north facing black spruce hill slope, a south facing birch forest, an open tundra site, and a high alpine meadow. Initial results from the adjacent north and south facing sites indicate a highly sensitive system where snow cover melts over just a few days, illustrating the importance of high resolution temporal data capture at these locations. Field observations, iButtons and GoPro cameras show that the MODIS data captures the melt conditions at the south and the north site with accuracy (2.5% and 6.5% snow cover fraction present on date of melt, respectively), but MODIS data for the north site is less variable around the melt period, owing to open conditions and sparse tree cover. However, due to the rapid melt rate trajectory, shifting the melt date estimate by a day results in a doubling of the snow cover fraction estimate observed by MODIS. This information can assist in approximating uncertainty associated with remote sensing data that is being used to populate hydrologic and snow models (the Sacramento Soil Moisture Accounting model, coupled with SNOW-17, and the Variable Infiltration Capacity hydrologic model) and provide greater understanding of error and resultant model sensitivities associated with regional observations of snow cover across the sub-Arctic boreal landscape.

  1. Analyzing the importance of wind-blown snow accumulations on Mount

    NASA Astrophysics Data System (ADS)

    Nestler, Alexander; Huss, Matthias; Ambartsumian, Rouben; Hambarian, Artak; Mohr, Sandra; Santi, Flavio

    2013-04-01

    Armenia's climate has a predominantly continental character with high amounts of precipitation and low temperatures during wintertime and a lack of precipitation together with high temperatures during summer. On the volcano Mount Aragatz, snow is relocated by strong winds into massive accumulations between 2500 and 4100 m a.s.l. during the winter season. These snow accumulations appear every winter in regular patterns as cornices on the lee side of sharp edges, such as those of ridges and canyons, which are arranged in a radial manner around the central crater. The biggest cornices almost outlast the hot period and provide considerable amounts of melt water until they disappear completely by the end of August. Snow melt water is known to have a high economic importance for agriculture on the slopes of Mount Aragatz and in the surroundings of Armenia's captial Yerewan. The aim of this study is to estimate the quantity of water naturally stored as snow on Mount Aragatz, and to what degree the use of geotextiles can prolong the lives of these snow accumulations. The characteristics and the spatial distribution of snow cornices on Mount Aragatz were determined using classical glaciological methods in June/July 2011 and 2012, involving snow depth soundings, water equivalent measurements and snow melt monitoring using ablation stakes, together with GPS mappings and classifications obtained from satellite images of the snow cornices. The combination of these data with ASTER DEMs and local weather data allows the modelling of the formation of wind-driven snow accumulations. Statistical relationships between the measured extent and volume of the snow cornices and surface parameters such as slope, aspect and curvature are established. In order to analyze the meltdown of the snow accumulations and the consequent impacts on runoff generation and the hydrological regime, a glacio-hydrological model integrating topographic parameters and meteorological data is applied. The combination of in-situ field data and satellite information allows an estimation of the water volume that is stored in the form of snow on Mount Aragatz. Using numerical modelling, we extend these results to other years, and calculate past and future water yields from snow melt from Mount Aragatz. This study is performed in the frame of the Armenian-Swiss project "Freezwater" that aims at an artificial managing of snow melting to better time the release of melt water at low cost. In the past few years, an artificial glacier was built up successfully, and geotextiles were used to reduce the melt rates of snow cornices. In order to estimate the efficiency of geotextiles in delaying the melt-down, ablation rates of protected snow surfaces were compared to those of uncovered areas. This study will contribute to the understanding of aeolian processes within the cryosphere as well as it will help to gain engineering knowledge concerning a new and efficient water storage technique.

  2. The Early Years: The Wonders of Weather

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  3. 33 CFR 83.03 - Definitions (Rule 3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Allen-Morgan City Alternate Route, and that part of the Atchafalaya River above its junction with the Port Allen-Morgan City Alternate Route including the Old River and the Red River; (m) Great Lakes means..., falling snow, heavy rainstorms, sandstorms, or any other similar causes; (l) Western Rivers means the...

  4. Remote estimation of crown size and tree density in snowy areas

    NASA Astrophysics Data System (ADS)

    Kishi, R.; Ito, A.; Kamada, K.; Fukita, T.; Lahrita, L.; Kawase, Y.; Murahashi, K.; Kawamata, H.; Naruse, N.; Takahashi, Y.

    2017-12-01

    Precise estimation of tree density in the forest leads us to understand the amount of carbon dioxide fixed by plants. Aerial photographs have been used to measure the number of trees. Campaign using aircraft, however, is expensive ( $50,000/1 campaign flight) and the research area is limited in drone. In addition, previous studies estimating the density of trees from aerial photographs have been performed in the summer, so there was a gap of 15% in the estimation due to the overlapping of the leaves. Here, we have proposed a method to accurately estimate the number of forest trees from the satellite images of snow-covered deciduous forest area, using the ratio of branches to snow. The advantages of our method are as follows; 1) snow area could be excluded easily due to the high reflectance, 2) tree branches are small overlapping compared to leaves. Although our method can use only in the snowfall region, the area covered with snow in the world becomes more than 12,800,000 km2. Our proposition should play an important role in discussing global warming. As a test area, we have chosen the forest near Mt. Amano in Iwate prefecture in Japan. First, we made a new index of (Band1-Band5)/(Band1+Band5), which will be suitable to distinguish between the snow and the tree trunk using the corresponding spectral reflection data. Next, the index values of changing the ratio in 1% increments were listed. From the satellite image analysis at 4 points, the ratio of snow to tree trunk showed the following values, I:61%, II:65%, III:66% and IV:65%. To confirm the estimation, we used the aerial photograph from Google earth; the rate was I:42.05%, II:48.89%, III:50.64%, IV:49.05%, respectively. There is a correlation between the numerical values of both, but there are differences. We will discuss in detail at this point, focusing on the effect of shadows.

  5. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  6. SWEAT: Snow Water Equivalent with AlTimetry

    NASA Astrophysics Data System (ADS)

    Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge

    2017-04-01

    To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.

  7. Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean

    NASA Astrophysics Data System (ADS)

    Yin, Mengtao; Liu, Guosheng

    2017-12-01

    A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.

  8. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line altitude - ranging within only few hundreds of meters within one year - determines the observed high mass balance gradients. An increase in air temperature by for example 1°C during precipitation events may have even stronger impacts on glacier mass balances of tropical glacier than it would have on those of mid-latitude glaciers. This is an important reason for the high sensitivity of tropical glaciers on past and current climatic changes.

  9. Snow mapping and land use studies in Switzerland

    NASA Technical Reports Server (NTRS)

    Haefner, H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A system was developed for operational snow and land use mapping, based on a supervised classification method using various classification algorithms and representation of the results in maplike form on color film with a photomation system. Land use mapping, under European conditions, was achieved with a stepwise linear discriminant analysis by using additional ratio variables. On fall images, signatures of built-up areas were often not separable from wetlands. Two different methods were tested to correlate the size of settlements and the population with an accuracy for the densely populated Swiss Plateau between +2 or -12%.

  10. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data

    NASA Technical Reports Server (NTRS)

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.

    2015-01-01

    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  11. Trends in annual minimum exposed snow and ice cover in High Mountain Asia from MODIS

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Racoviteanu, Adina; Armstrong, Richard; Dozier, Jeff

    2016-04-01

    Though a relatively short record on climatological scales, data from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000-2014 can be used to evaluate changes in the cryosphere and provide a robust baseline for future observations from space. We use the MODIS Snow Covered Area and Grain size (MODSCAG) algorithm, based on spectral mixture analysis, to estimate daily fractional snow and ice cover and the MODICE Persistent Ice (MODICE) algorithm to estimate the annual minimum snow and ice fraction (fSCA) for each year from 2000 to 2014 in High Mountain Asia. We have found that MODSCAG performs better than other algorithms, such as the Normalized Difference Index (NDSI), at detecting snow. We use MODICE because it minimizes false positives (compared to maximum extents), for example, when bright soils or clouds are incorrectly classified as snow, a common problem with optical satellite snow mapping. We analyze changes in area using the annual MODICE maps of minimum snow and ice cover for over 15,000 individual glaciers as defined by the Randolph Glacier Inventory (RGI) Version 5, focusing on the Amu Darya, Syr Darya, Upper Indus, Ganges, and Brahmaputra River basins. For each glacier with an area of at least 1 km2 as defined by RGI, we sum the total minimum snow and ice covered area for each year from 2000 to 2014 and estimate the trends in area loss or gain. We find the largest loss in annual minimum snow and ice extent for 2000-2014 in the Brahmaputra and Ganges with 57% and 40%, respectively, of analyzed glaciers with significant losses (p-value<0.05). In the Upper Indus River basin, we see both gains and losses in minimum snow and ice extent, but more glaciers with losses than gains. Our analysis shows that a smaller proportion of glaciers in the Amu Darya and Syr Darya are experiencing significant changes in minimum snow and ice extent (3.5% and 12.2%), possibly because more of the glaciers in this region are smaller than 1 km2 than in the Indus, Ganges, and Brahmaputra making analysis from MODIS (pixel area ~0.25 km2) difficult. Overall, we see 23% of the glaciers in the 5 river basins with significant trends (in either direction). We relate these changes in area to topography and climate to understand the driving processes related to these changes. In addition to annual minimum snow and ice cover, the MODICE algorithm also provides the date of minimum fSCA for each pixel. To determine whether the surface was snow or ice we use the date of minimum fSCA from MODICE to index daily maps of snow on ice (SOI), or exposed glacier ice (EGI) and systematically derive an equilibrium line altitude (ELA) for each year from 2000-2014. We test this new algorithm in the Upper Indus basin and produce annual estimates of ELA. For the Upper Indus basin we are deriving annual ELAs that range from 5350 m to 5450 m which is slightly higher than published values of 5200 m for this region.

  12. The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Zatko, Maria; Erbland, Joseph; Savarino, Joel; Geng, Lei; Easley, Lauren; Schauer, Andrew; Bates, Timothy; Quinn, Patricia K.; Light, Bonnie; Morison, David; Osthoff, Hans D.; Lyman, Seth; Neff, William; Yuan, Bin; Alexander, Becky

    2016-11-01

    Reactive nitrogen (Nr = NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71 × 107 molec cm-2 s-1 over the course of the field campaign, with a maximum noontime value of 3.1 × 109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly polluted Uintah Basin boundary layer during winter 2014.

  13. Comparison of GPCP Monthly and Daily Precipitation Estimates with High-Latitude Gauge Observations

    NASA Technical Reports Server (NTRS)

    Bolvin, David T.; Adler, Robert G.; Nelkin, Eric J.; Poutiainen, Jani

    2008-01-01

    It is very important to know how much rain and snow falls around the world for uses that range from crop forecasting to disaster response, drought monitoring to flood forecasting, and weather analysis to climate research. Precipitation is usually measured with rain gauges, but rain gauges don t exist in areas that are sparsely populated, which tends to be a good portion of the globe. To overcome this, meteorologists use satellite data to estimate global precipitation. However, it is difficult to estimate rain and especially snow in cold climates using most current satellites. The satellite sensors are often "confused" by a snowy or frozen surface and therefore cannot distinguish precipitation. One commonly used satellite-based precipitation data set, the Global Precipitation Climatology Project (GPCP) data, overcomes this frozen-surface problem through the innovative use of two sources of satellite data, the Television Infrared Observation Satellite Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). Though the GPCP estimates are generally considered a very reliable source of precipitation, it has been difficult to assess the quality of these estimates in cold climates due to the lack of gauges. Recently, the Finnish Meteorological Institute (FMI) has provided a 12-year span of high-quality daily rain gauge observations, covering all of Finland, that can be used to compare with the GPCP data to determine how well the satellites estimate cold-climate precipitation. Comparison of the monthly GPCP satellite-based estimates and the FMI gauge observations shows remarkably good agreement, with the GPCP estimates being 6% lower in the amount of precipitation than the FMI observations. Furthermore, the month-to-month correlation between the GPCP and FMI is very high at 0.95 (1.0 is perfect). The daily GPCP estimates replicate the FMI daily occurrences of precipitation with a correlation of 0.55 in the summer and 0.45 in the winter. The winter result indicates the GPCP estimates have skill in "seeing" snowfall, which is the most challenging situation. Thus, the GPCP data set successfully overcomes a current limitation in satellite meteorology, namely the estimation of cold-climate precipitation. The success of the GPCP data set bodes well for future missions, whose instrumentation is specifically designed to give even more information for addressing cold-climate precipitation.

  14. Projected climate change impacts on winter recreation in the ...

    EPA Pesticide Factsheets

    A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. The present-day simulations from the snow model without snowmaking are validated with observations of snow-water-equivalent from snow monitoring sites. Projected season lengths are combined with baseline estimates of winter recreation activity to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Estimate the physical and economic impact of climate change on winter recreation in the contiguous U.S.

  15. Influence of tundra snow layer thickness on measured and modelled radar backscatter

    NASA Astrophysics Data System (ADS)

    Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.

    2017-12-01

    Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.

  16. Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals

    NASA Astrophysics Data System (ADS)

    Larue, Fanny; Royer, Alain; De Sève, Danielle; Langlois, Alexandre; Roy, Alexandre; Saint-Jean-Rondeau, Olivier

    2016-04-01

    In Quebec, the water associated to snowmelt represents 30% of the annual electricity production so that the snow cover evaluation in real time is of primary interest. The key variable is snow water equivalent (SWE) which describes the evolution of a global seasonal snow cover. However, the sparse distribution of meteorological stations in northern Québec generates great uncertainty in the extrapolation of SWE. On the contrary, the spatial and temporal coverage of satellite data offer a source of information with a high potential when considered as an alternative to the poor spatial distribution of in-situ information. Thus, this project aims to improve the prediction of SWE by assimilation of satellite passive microwave brightness temperatures (Tb) observations, independently of any ground observations. The snowpack evolution is simulated by the French snow model SURFEX-Crocus, driven by the Canadian atmospheric model GEM with a spatial resolution of 10 km. The bias of the atmospheric model and the impact of initialization errors on the simulated SWE were quantified from our ground measurements. To assimilate satellite observations, the multi-layered snow model is first coupled with a radiative transfer model using the Dense Media Radiative transfer theory (the DMRT-ML model) to estimate the microwave snow emission of the simulated snowpack. In order to retrieve simulated Tb in frequencies of interest (i.e. sensitive to snow dielectric properties), the snow microstructure needs to be well parameterized. It was shown in previous studies that the specific surface area (SSA) of snow grains is a well-defined parameter to describe the size and the shape of snow grains and which allows reproducible field measurements. SURFEX-Crocus estimates a SSA for each simulated snow layer, however, the snow microstructure in DMRT-ML is defined per layer by monodisperse optical radius of grain (~ 1/SSA) and by the stickiness which is not known. It thus becomes necessary to introduce an empirical factor (noted φ) due to the simplification of the representation of snow as non-sticky spheres of ice in the model. In other words, the measured and simulated SSA has to be converted in an effective snow grain metric by optimizing this scaling factor to minimize the root-mean-square error between the measured and simulated brightness temperatures. The φ factor scaling the Crocus simulated SSA was estimated using ground-based radiometric measurements made during several field campaigns in the James Bay territory, Nunavik (in 2013 and 2015), and Churchill, Manitoba in 2010. This new parameterization, adapted to the Canadian arctic and subarctic snowpack, represents an essential step to optimize SWE maps in this remote region which have yet to be proven accurate.

  17. Effects of nontropical forest cover on climate

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Chou, M.-D.; Arking, A.

    1984-01-01

    The albedo of a forest with snow on the ground is much less than that of snow-covered low vegetation such as tundra. As a result, simulation of the Northern Hemisphere climate, when fully forested south of a suitably chosen taiga/tundra boundary (ecocline), produces a hemispheric surface air temperature 1.9 K higher than that of an earth devoid of trees. Using variations of the solar constant to force climate changes in the GLAS Multi-Layer Energy Balance Model, the role of snow-albedo feedback in increasing the climate sensitivity to external perturbations is reexamined. The effect of snow-albedo feedback is found to be significantly reduced when a low albedo is used for snow over taiga, south of the fixed latitude of the ecocline. If the ecocline shifts to maintain equilibrium with the new climate - which is presumed to occur in a prolonged perturbation when time is sufficient for trees to grow or die and fall - the feedback is stronger than for a fixed ecocline, especially at high latitudes. However, this snow/vegetation-albedo feedback is still essentially weaker than the snow-albedo feedback in the forest-free case. The loss of forest to agriculture and other land-use would put the present climate further away from that associated with the fully forested earth south of the ecocline and closer to the forest-free case. Thus, the decrease in nontropical forest cover since prehistoric times has probably affected the climate by reducing the temperatures and by increasing the sensitivity to perturbations, with both effects more pronounced at high latitudes.

  18. A modified force-restore approach to modeling snow-surface heat fluxes

    Treesearch

    Charles H. Luce; David G. Tarboton

    2001-01-01

    Accurate modeling of the energy balance of a snowpack requires good estimates of the snow surface temperature. The snow surface temperature allows a balance between atmospheric heat fluxes and the conductive flux into the snowpack. While the dependency of atmospheric fluxes on surface temperature is reasonably well understood and parameterized, conduction of heat from...

  19. Snow Radar Derived Surface Elevations and Snow Depths Multi-Year Time Series over Greenland Sea-Ice During IceBridge Campaigns

    NASA Astrophysics Data System (ADS)

    Perkovic-Martin, D.; Johnson, M. P.; Holt, B.; Panzer, B.; Leuschen, C.

    2012-12-01

    This paper presents estimates of snow depth over sea ice from the 2009 through 2011 NASA Operation IceBridge [1] spring campaigns over Greenland and the Arctic Ocean, derived from Kansas University's wideband Snow Radar [2] over annually repeated sea-ice transects. We compare the estimates of the top surface interface heights between NASA's Atmospheric Topographic Mapper (ATM) [3] and the Snow Radar. We follow this by comparison of multi-year snow depth records over repeated sea-ice transects to derive snow depth changes over the area. For the purpose of this paper our analysis will concentrate on flights over North/South basin transects off Greenland, which are the closest overlapping tracks over this time period. The Snow Radar backscatter returns allow for surface and interface layer types to be differentiated between snow, ice, land and water using a tracking and classification algorithm developed and discussed in the paper. The classification is possible due to different scattering properties of surfaces and volumes at the radar's operating frequencies (2-6.5 GHz), as well as the geometries in which they are viewed by the radar. These properties allow the returns to be classified by a set of features that can be used to identify the type of the surface or interfaces preset in each vertical profile. We applied a Support Vector Machine (SVM) learning algorithm [4] to the Snow Radar data to classify each detected interface into one of four types. The SVM algorithm was trained on radar echograms whose interfaces were visually classified and verified against coincident aircraft data obtained by CAMBOT [5] and DMS [6] imaging sensors as well as the scanning ATM lidar. Once the interface locations were detected for each vertical profile we derived a range to each interface that was used to estimate the heights above the WGS84 ellipsoid for direct comparisons with ATM. Snow Radar measurements were calibrated against ATM data over areas free of snow cover and over GPS land surveyed areas of Thule and Sondrestrom air bases. The radar measurements were compared against the ATM and the GPS measurements that were located in the estimated radar footprints, which resulted in an overall error of ~ 0.3 m between the radar and ATM. The agreement between ATM and GPS survey is within +/- 0.1 m. References: [1] http://www.nasa.gov/mission_pages/icebridge/ [2] Panzer, B. et. al, "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. of Glaciology Instr. and Tech., July 23, 2012. [3] Krabill, William B. 2009 and 2011, updated current year. IceBridge ATM L1B Qfit Elevation and Return Strength. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [4] Chih-Chung Chang and Chih-Jen Lin. "Libsvm: a library for support vector machines", ACM Transactions on Intelligent Systems and Technology, 2:2:27:1-27:27, 2011. [5] Krabill, William B. 2009 and 2011, updated current year. IceBridge CAMBOT L1B Geolocated Images, [2009-04-25, 2011-04-15]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [6] Dominguez, Roseanne. 2011, updated current year. IceBridge DMS L1B Geolocated and Orthorectified Images. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media

  20. Estimating snow depth in real time using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Witek, Matylda; Spallek, Waldemar; Szymanowski, Mariusz

    2016-04-01

    In frame of the project no. LIDER/012/223/L-5/13/NCBR/2014, financed by the National Centre for Research and Development of Poland, we elaborated a fully automated approach for estimating snow depth in real time in the field. The procedure uses oblique aerial photographs taken by the unmanned aerial vehicle (UAV). The geotagged images of snow-covered terrain are processed by the Structure-from-Motion (SfM) method which is used to produce a non-georeferenced dense point cloud. The workflow includes the enhanced RunSFM procedure (keypoint detection using the scale-invariant feature transform known as SIFT, image matching, bundling using the Bundler, executing the multi-view stereo PMVS and CMVS2 software) which is preceded by multicore image resizing. The dense point cloud is subsequently automatically georeferenced using the GRASS software, and the ground control points are borrowed from positions of image centres acquired from the UAV-mounted GPS receiver. Finally, the digital surface model (DSM) is produced which - to improve the accuracy of georeferencing - is shifted using a vector obtained through precise geodetic GPS observation of a single ground control point (GCP) placed on the Laboratory for Unmanned Observations of Earth (mobile lab established at the University of Wroclaw, Poland). The DSM includes snow cover and its difference with the corresponding snow-free DSM or digital terrain model (DTM), following the concept of the digital elevation model of differences (DOD), produces a map of snow depth. Since the final result depends on the snow-free model, two experiments are carried out. Firstly, we show the performance of the entire procedure when the snow-free model reveals a very high resolution (3 cm/px) and is produced using the UAV-taken photographs and the precise GCPs measured by the geodetic GPS receiver. Secondly, we perform a similar exercise but the 1-metre resolution light detection and ranging (LIDAR) DSM or DTM serves as the snow-free model. Thus, the main objective of the paper is to present the performance of the new procedure for estimating snow depth and to compare the two experiments.

  1. Assessing the hydropower potential of ungauged watersheds in Iceland using hydrological modeling and satellite retrieved snow cover images

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    About 80% of the domestic energy production in Iceland comes from renewable energies. Hydropower accounts for about 20% this production, representing about 75% of the total electricity production in Iceland. In 2008 total electricity production from hydropower was about 12.5 TWh a-1, making Iceland a worldwide leader in hydropower production per capita. Furthermore, the total potential of hydroelectricity in Iceland is estimated to amount up to 220 TWh a-1. In this regard, hydrological modelling is an essential tool to adapt a sustainable management of water resources and estimate the potential of possible new sites for hydropower production. We used the conceptual lumped Hydrologiska Byråns Vattenbalansavdelning model (HBV) to estimate the potential of hydropower production in two remote areas in north-eastern Iceland (Leirdalshraun, a 274 km2 area above 595 m asl and Hafralónsá, a 946 km2 area above 235 m asl). The model parameters were determined by calibrating the model with discharge data from gauged sub catchments. Satellite snow cover images were used to constrain melt parameters of the model and assure adequate modelling of snow melt in the ungauged areas. This was particularly valuable to adequately estimate the contribution of snow melt, rainfall runoff and groundwater intrusion from glaciers outside the topographic boundaries of the selected watersheds. Runoff from the entire area potentially used for hydropower exploitation was estimated using the parameter sets of the gauged sub-catchments. Additionally, snow melt from the ungauged areas was validated with satellite based snow cover images, revealing a robust simulation of snow melt in the entire area. Based on the hydrological modelling the total amount of snow melt and rainfall runoff available in Leirdalshraun and Hafralónsá amounts up to 700 M m3 a-1 and 1000 M m3 a-1, respectively. These results reveal that the total hydropower potential of the two sites amounts up to 1.2 TWh a-1 hydroelectricity, accounting for about 10% of the current production in Iceland. These result are of eminent importance to embed sustainable and resilient based water management in discussions concerning future plans of national energy production.

  2. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  3. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease. ?? 2009 Springer Science+Business Media B.V.

  4. Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.

    2017-12-01

    SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.

  5. On the Impact of Snow Salinity on CryoSat-2 First-Year Sea Ice Thickness Retrievals

    NASA Astrophysics Data System (ADS)

    Nandan, V.; Yackel, J.; Geldsetzer, T.; Mahmud, M.

    2017-12-01

    European Space Agency's Ku-band altimeter CryoSat-2 (CS-2) has demonstrated its potential to provide extensive basin-scale spatial and temporal measurements of Arctic sea ice freeboard. It is assumed that CS-2 altimetric returns originate from the snow/sea ice interface (assumed to be the main scattering horizon). However, in newly formed thin ice ( 0.6 m) through to thick first-year sea ice (FYI) ( 2 m), upward wicking of brine into the snow cover from the underlying sea ice surface produces saline snow layers, especially in the bottom 6-8 cm of a snow cover. This in turn modifies the brine volume at/or near the snow/sea ice interface, altering the dielectric and scattering properties of the snow cover, leading to strong Ku-band microwave attenuation within the upper snow volume. Such significant reductions in Ku-band penetration may substantially affect CS-2 FYI freeboard retrievals. Therefore, the goal of this study is to evaluate a theoretical approach to estimate snow salinity induced uncertainty on CS-2 Arctic FYI freeboard measurements. Using the freeboard-to-thickness hydrostatic equilibrium equation, we quantify the error differences between the CS-2 FYI thickness, (assuming complete penetration of CS-2 radar signals to the snow/FYI interface), and the FYI thickness based on the modeled Ku-band main scattering horizon for different snow cover cases. We utilized naturally occurring saline and non-saline snow cover cases ranging between 6 cm to 32 cm from the Canadian Arctic, observed during late-winter from 1993 to 2017, on newly-formed ice ( 0.6 m), medium ( 1.5 m) and thick FYI ( 2 m). Our results suggest that irrespective of the thickness of the snow cover overlaying FYI, the thickness of brine-wetted snow layers and actual FYI freeboard strongly influence the amount with which CS-2 FYI freeboard estimates and thus thickness calculations are overestimated. This effect is accentuated for increasingly thicker saline snow covers overlaying newly-formed ice, which accounted to an overestimated FYI thickness by 250%, when compared to 80% overestimations on thinner saline snow covers, and the error reduces with increase in FYI thickness. Our study recommends the CS-2 sea ice community to add snow salinity as a potential error source, affecting CS-2 Arctic FYI freeboard and thickness retrievals.

  6. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.

  7. Evaluating indices of lipid and protein content in lesser snow and Ross's geese during spring migration

    USGS Publications Warehouse

    Webb, Elisabeth B.; Fowler, Drew N.; Woodall, Brendan A.; Vrtiska, Mark P.

    2018-01-01

    Assessing nutrient stores in avian species is important for understanding the extent to which body condition influences success or failure in life‐history events. We evaluated predictive models using morphometric characteristics to estimate total body lipids (TBL) and total body protein (TBP), based on traditional proximate analyses, in spring migrating lesser snow geese (Anser caerulescens caerulescens) and Ross's geese (A. rossii). We also compared performance of our lipid model with a previously derived predictive equation for TBL developed for nesting lesser snow geese. We used external and internal measurements on 612 lesser snow and 125 Ross's geese collected during spring migration in 2015 and 2016 within the Central and Mississippi flyways to derive and evaluate predictive models. Using a validation data set, our best performing lipid model for snow geese better predicted TBL (root mean square error [RMSE] of 23.56) compared with a model derived from nesting individuals (RMSE = 48.60), suggesting the importance of season‐specific models for accurate lipid estimation. Models that included body mass and abdominal fat deposit best predicted TBL determined by proximate analysis in both species (lesser snow goose, R2 = 0.87, RMSE = 23.56: Ross's geese, R2 = 0.89, RMSE = 13.75). Models incorporating a combination of external structural measurements in addition to internal muscle and body mass best predicted protein values (R2 = 0.85, RMSE = 19.39 and R2 = 0.85, RMSE = 7.65, lesser snow and Ross's geese, respectively), but protein models including only body mass and body size were also competitive and provided extended utility to our equations for field applications. Therefore, our models indicated the importance of specimen dissection and measurement of the abdominal fat pad to provide the most accurate lipid estimates and provide alternative dissection‐free methods for estimating protein.

  8. Applications systems verification and transfer project. Volume 1: Operational applications of satellite snow cover observations: Executive summary. [usefulness of satellite snow-cover data for water yield prediction

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1981-01-01

    Both LANDSAT and NOAA satellite data were used in improving snowmelt runoff forecasts. When the satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. A cost benefit analysis run in conjunction with the snow mapping indicated a $36.5 million annual benefit accruing from a one percent improvement in forecast accuracy using the snow cover data for the western United States. The annual cost of employing the system would be $505,000. The snow mapping has proven that satellite snow cover data can be used to reduce snowmelt runoff forecast error in a cost effective manner once all operational satellite data are available within 72 hours after acquisition. Executive summaries of the individual snow mapping projects are presented.

  9. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  10. The spatial and seasonal variations in mineral particle composition on the snow surface and their possible effect on snow algae in the Tateyama Mountains, Japan

    NASA Astrophysics Data System (ADS)

    Umino, T.; Takeuchi, N.

    2012-12-01

    Snow algae are autotrophic microbes and play an important role as primary producers in food chain of glaciers and snowfield. Although their reproduction requires nutrients, snow and ice is extreamly poor in nutrients. One of the possible sources of nutrients is mineral particles blown by wind and deposited on the snow. They may contain variable elements and provide nutrients for snow algae. However, we scarcely know about the relationship between mineral particles and snow algae. In this study, we described spatial and seasonal variations in mineral particle composition and also snow algae on the snow surface in the Tateyama Mountains, Japan. We discussed the possible effect of mineral particles on snow algae. Tateyama Mountains are located in middle-north part of Japan ranging from 2000 - 3000 m above sea level and have heavy snow fall in winter due to strong monsoon wind from Siberia. The snow starts to thaw in April and remains until late summer as perennial snow patches in some valleys. Kosa eolian dust is known to be blown from Chinese deserts and deposited on the snow every spring. Also, snow algal bloom is often observed as red-colored snow in summer. Samples were collected from the snow surface during summer in 2008 - 2011 at four different sites (A - D) in this area. We examined them by X-ray diffractometer (XRD) and microscope to obtain composition of mineral particles and structure of snow algae community. XRD analysis revealed mineral particles on the snow surface were mainly composed of quartz, plagioclase, hornblende, mica, chlorite, and amorphous. In April, mineral compositions of all sites were almost similar to that of Kosa eolian dust, indicating that these mineral particles were derived from Chinese arid regions. After May, the mineral compositions changed according to sites. The proportion of hornblende at the site C significantly increased whereas that of mica increased at the site D. Since the site C was located near geological features mainly composed of hornblende, the supply of mineral particles from local sources is likely to increase after May. These results indicate mineral particles on the snow surface were blown from distant Chinese deserts in April when snow covered entire ground surface, and they may change to be supplied from the local exposed ground surface after May. Microscopy revealed over 90 % of snow algal cells attached mineral particles on their surfaces, suggesting mineral particles may be beneficial for their growth. Furthermore, algal community structure was different among study sites. The difference may be due to different composition of mineral particles. This suggests composition of mineral particles may affect algal community structure. Hornblende, which was abundant at the site C, is usually rich in Fe or Mg, and it may affect algal growth in the site.

  11. Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.

    2010-01-01

    As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.

  12. Climate Change and Adaptation Planning on the Los Angeles Aqueduct

    NASA Astrophysics Data System (ADS)

    Roy, S. B.; Bales, R. C.; Costa-Cabral, M. C.; Chen, L.; Maurer, E. P.; Miller, N. L.; Mills, W. B.

    2009-12-01

    This study provides an assessment of the potential impacts of climate change on the Eastern Sierra Nevada snowpack and snowmelt timing, using a combination of empirical (i.e., data-based) models, and computer simulation models forced by GCM-projected 21st century climatology (IPCC 2007 AR4 projections). Precipitation from the Eastern Sierra Nevada is one of the main water sources for Los Angeles' more than 4 million people - a source whose future availability is critical to the city's growing population and large economy. Precipitation in the region falls mostly in winter and is stored in the large natural reservoir that is the snowpack. Meltwater from the Eastern Sierra is delivered to the city by the 340-mile long Los Angeles Aqueducts. The analysis is focused on the nature of the impact to the LAA water supplies over the 21st century due to potential climate change, including volume of precipitation, the mix of snowfall and rainfall, shifts in the timing of runoff, interannual variability and multi-year droughts. These impacts further affect the adequacy of seasonal and annual carryover water storage, and potentially water treatment. Most of the snow in the 10,000 km^2 Mono-Owens basins that feed the LAA occurs in a relatively narrow, 10-20 km wide, high-elevation band on the steep slopes of 20 smaller basins whose streams drain into the Owens River and thence LAA. Extending over 240 km in the north-south direction, these basins present special challenges for estimating snowpack amounts and downscaling climate-model data. In addition, there are few meteorological stations and snow measurements in the snow-producing parts of the basins to drive physically based hydrologic modeling.

  13. Snowmelt Pattern and Lake Ice Phenology around Tibetan Plateau Estimated from Enhanced Resolution Passive Microwave Data

    NASA Astrophysics Data System (ADS)

    Xiong, C.; Shi, J.; Wang, T.

    2017-12-01

    Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.

  14. Snow multivariable data assimilation for hydrological predictions in Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè

    2017-04-01

    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of a DA scheme enables to assimilate simultaneously ground-based observations of different snow-related variables (snow depth, snow density, surface temperature and albedo). SMASH performances are evaluated by using observed data supplied by meteorological stations located in three experimental Alpine sites: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). A comparison analysis between the resulting performaces of Particle Filter and Ensemble Kalman Filter schemes is shown.

  15. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates.

    PubMed

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; Paudyal, Rukumesh; He, Yuanqing; Li, Gang; Wang, Shijin; Pu, Tao; Shi, Xiaoyi

    2017-03-01

    The Tibetan Plateau (TP) or the third polar cryosphere borders geographical hotspots for discharges of black carbon (BC). BC and dust play important roles in climate system and Earth's energy budget, particularly after they are deposited on snow and glacial surfaces. BC and dust are two kinds of main light-absorbing impurities (LAIs) in snow and glaciers. Estimating concentrations and distribution of LAIs in snow and glacier ice in the TP is of great interest because this region is a global hotspot in geophysical research. Various snow samples, including surface aged-snow, superimposed ice and snow meltwater samples were collected from a typical temperate glacier on Mt. Yulong in the snow melt season in 2015. The samples were determined for BC, Organic Carbon (OC) concentrations using an improved thermal/optical reflectance (DRI Model 2001) method and gravimetric method for dust concentrations. Results indicated that the LAIs concentrations were highly elevation-dependent in the study area. Higher contents and probably greater deposition at relative lower elevations (generally <5000masl) of the glacier was observed. Temporal difference of LAIs contents demonstrated that LAIs in snow of glacier gradually increased as snow melting progressed. Evaluations of the relative absorption of BC and dust displayed that the impact of dust on snow albedo and radiative forcing (RF) is substantially larger than BC, particularly when dust contents are higher. This was verified by the absorption factor, which was <1.0. In addition, we found the BC-induced albedo reduction to be in the range of 2% to nearly 10% during the snow melting season, and the mean snow albedo reduction was 4.63%, hence for BC contents ranging from 281 to 894ngg -1 in snow of a typical temperate glacier on Mt. Yulong, the associated instantaneous RF will be 76.38-146.96Wm -2 . Further research is needed to partition LAIs induced glacial melt, modeling researches in combination with long-term in-situ observations of LAIs in glaciers is also urgent needed in the future work. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA

    NASA Astrophysics Data System (ADS)

    Matter, M. A.; Garcia, L. A.; Fontane, D. G.

    2005-12-01

    Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the UCRB advances understanding of atmosphere/land surface processes and interactions in complex terrain and subsequent effects on snowpack development and runoff (i.e., water supply), and may be used to improve seasonal forecast accuracy and extend lead time to develop more efficient and effective management strategies for water resources and ecosystems.

  17. General-circulation-model simulations of future snowpack in the western United States

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    1999-01-01

    April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western US. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow.

  18. A Full Snow Season in Yellowstone: A Database of Restored Aqua Band 6

    NASA Technical Reports Server (NTRS)

    Gladkova, Irina; Grossberg, Michael; Bonev, George; Romanov, Peter; Riggs, George; Hall, Dorothy

    2013-01-01

    The algorithms for estimating snow extent for the Moderate Resolution Imaging Spectroradiometer (MODIS) optimally use the 1.6- m channel which is unavailable for MODIS on Aqua due to detector damage. As a test bed to demonstrate that Aqua band 6 can be restored, we chose the area surrounding Yellowstone and Grand Teton national parks. In such rugged and difficult-to-access terrain, satellite images are particularly important for providing an estimation of snow-cover extent. For the full 2010-2011 snow season covering the Yellowstone region, we have used quantitative image restoration to create a database of restored Aqua band 6. The database includes restored radiances, normalized vegetation index, normalized snow index, thermal data, and band-6-based snow-map products. The restored Aqua-band-6 data have also been regridded and combined with Terra data to produce a snow-cover map that utilizes both Terra and Aqua snow maps. Using this database, we show that the restored Aqua-band-6-based snow-cover extent has a comparable performance with respect to ground stations to the one based on Terra. The result of a restored band 6 from Aqua is that we have an additional band-6 image of the Yellowstone region each day. This image can be used to mitigate cloud occlusion, using the same algorithms used for band 6 on Terra. We show an application of this database of restored band-6 images to illustrate the value of creating a cloud gap filling using the National Aeronautics and Space Administration s operational cloud masks and data from both Aqua and Terra.

  19. Sensitivity of snow process simulations to precipitation-phase transition method in forested and open areas

    NASA Astrophysics Data System (ADS)

    Lundberg, A.; Gustafsson, D.

    2009-04-01

    Modeling of forest snow processes is complicated and especially problematic seems to be the separation of precipitation phase in climates where a large part of the precipitation falls at temperatures near zero degrees Celsius. When the precipitation is classified as snow, the tree crowns can carry an order of magnitude more canopy storage as compared to when the precipitation is classified as rain, and snow in the trees also alters the albedo of the forest while rain does not. Many different schemes for the precipitation phase separation are used by various snow models. Some models use just one air temperature threshold (TR/S) below which all precipitation is assumed to be snow and above which all precipitation is classified as rain. A more common approach for forest snow models is to use two temperature thresholds. The snow fraction (SF) is then set to one below the snow threshold (TS) and to zero above the rain threshold (TR) and SF is assumed to decrease linearly between these two thresholds. Also more sophisticated schemes exist, but three seems to be a lack of agreement on how the precipitation phase separations should be performed. The aim with this study is to use a hydrological model including canopy snow processes to illustrate the sensitivity for different formulations of the precipitation phase separation on a) the simulated maximum snow pack storage b) the interception evaporation loss and c) snow melt runoff. In other words, to investigate of the choice of precipitation phase separation has an impact on the simulated wintertime water balance. Simulations are made for sites in different climates and for both open fields and forest sites in different regions of Sweden from north to south. In general, precipitation phase separation methods that classified snowfall at higher temperatures resulted in a larger proportion of the precipitation lost by interception evaporation as a result of the increased interception capacity. However, the maximum snow accumulation was also increased in some cases due to the overall increased snowfall, depending on canopy density and precipitation and temperature regimes. Results show that the choice of precipitation phase separation method can have an significant impact on the simulated wintertime water balance, especially in forested regions.

  20. On the characterization of subpixel effects for passive microwave remote sensing of snow in montane environments

    NASA Astrophysics Data System (ADS)

    Vander Jagt, Benjamin John

    Snow and its water equivalent plays a vital role in global water and energy balances, with particular relevance in mountainous areas with arid and semi-arid climate regimes. Spaceborne passive microwave (PM) remote sensing measurements are attractive for snowpack characterization due to their continuous global coverage and historical record; over 30 years of research has been invested in the development of methods to characterize large-scale snow water resources from PM-based measurements. Historically, use of PM data for snowpack characterization in montane enviroments has been obstructed by the complex subpixel variability of snow properties within the PM measurement footprint. The main subpixel effects can be grouped as: the effect of snow microstructure (e.g. snow grain size) and stratigraphy on snow microwave emission, vegetation attenuation of PM measurements, and the sensitivity PM brightness temperature (Tb) observation to the variability of different subpixel properties at spaceborne measurement scales. This dissertation is focused on a systematic examination of these issues, which thus far have prevented the widespread integration of snow water equivalent (SWE) retrieval methods. It is meant to further our comprehension of the underlying processes at work in these rugged, remote, a hydrologically important areas. The role that snow microstructure plays in the PM retrievals of SWE is examined first. Traditional estimates of grain size are subjective and prone to error. Objective techniques to characterize grain size are described and implemented, including near infrared (NIR), stereology, and autocorrelation based approaches. Results from an intensive Colorado field study in which independent estimates of grain size and their modeled brightness temperature (Tb) emission are evaluated against PM Tb observations are included. The coarse resolution of the passive microwave measurements provides additional challenges when trying to resolve snow states via remote sensing observations. The natural heterogeneity of snowpack (e.g. depth, stratigraphy, etc) and vegetative states within the PM footprint occurs at spatial scales smaller than PM observation scales. The sensitivity to changes in snow depth given sub-pixel variability in snow and vegetation is explored and quantified using the comprehensive dataset acquired during the Cold Land Processes experiment (CLPX). Lastly, vegetation has long been an obstacle in efforts to derive snow depth and mass estimates from passive microwave (PM) measurements of brightness temperature (Tb). We introduce a vegetation transmissivity model that is derived entirely from multi-scale and multi-temporal PM Tb observations and a globally available vegetation dataset, specifically the Leaf Area Index (LAI). This newly constructed model characterizes the attenuation of PM Tb observations at frequencies typically employed for snow retrieval algorithms, as a function of LAI. Additionally, the model is used to predict how much SWE is observable within the major river basins of Colorado and the central Rockies.

  1. Workplace Breathing Rates: Defining Anticipated Values and Ranges for Respirator Certification Testing

    DTIC Science & Technology

    2004-09-01

    Test participants cleared heavy, wet snow with either a shovel or an electric snow thrower in random order, with 10- to 15-minute rest periods between...automated snow thrower . Using the average subject population weight of 85.7 kg, estimated Po2 in L-min-l would be about 1.71 L-min-’ for shoveling and 0.72

  2. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  3. Continuous Estimates of Surface Density and Annual Snow Accumulation with Multi-Channel Snow/Firn Penetrating Radar in the Percolation Zone, Western Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Meehan, T.; Marshall, H. P.; Bradford, J.; Hawley, R. L.; Osterberg, E. C.; McCarthy, F.; Lewis, G.; Graeter, K.

    2017-12-01

    A priority of ice sheet surface mass balance (SMB) prediction is ascertaining the surface density and annual snow accumulation. These forcing data can be supplied into firn compaction models and used to tune Regional Climate Models (RCM). RCMs do not accurately capture subtle changes in the snow accumulation gradient. Additionally, leading RCMs disagree among each other and with accumulation studies in regions of the Greenland Ice Sheet (GrIS) over large distances and temporal scales. RCMs tend to yield inconsistencies over GrIS because of sparse and outdated validation data in the reanalysis pool. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) implemented multi-channel 500 MHz Radar in multi-offset configuration throughout two traverse campaigns totaling greater than 3500 km along the western percolation zone of GrIS. The multi-channel radar has the capability of continuously estimating snow depth, average density, and annual snow accumulation, expressed at 95% confidence (+-) 0.15 m, (+-) 17 kgm-3, (+-) 0.04 m w.e. respectively, by examination of the primary reflection return from the previous year's summer surface.

  4. Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-03-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  5. Small-area snow surveys on the northern plains of North Dakota

    USGS Publications Warehouse

    Emerson, Douglas G.; Carroll, T.R.; Steppuhn, Harold

    1985-01-01

    Snow-cover data are needed for many facets of hydrology. The variation in snow cover over small areas is the focus of this study. The feasibility of using aerial surveys to obtain information on the snow water equivalent of the snow cover in order to minimize the necessity of labor intensive ground snow surveys was- evaluated. A low-flying aircraft was used to measure attenuations of natural terrestrial gamma radiation by snow cover. Aerial and ground snow surveys of eight 1-mile snow courses and one 4-mile snow course were used in the evaluation, with ground snow surveys used as the base to evaluate aerial data. Each of the 1-mile snow courses consisted of a single land use and all had the same terrain type (plane). The 4-mile snow course consists of a variety of land uses and the same terrain type (plane). Using the aerial snow-survey technique, the snow water equivalent of the 1-mile snow courses was. measured with three passes of the aircraft. Use of more than one pass did not improve the results. The mean absolute difference between the aerial- and ground-measured snow water equivalents for the 1-mile snow courses was 26 percent (0.77 inches). The aerial snow water equivalents determined for the 1-mile snow courses were used to estimate the variations in the snow water equivalents over the 4-mile snow course. The weighted mean absolute difference for the 4-mile snow course was 27 percent (0.8 inches). Variations in snow water equivalents could not be verified adequately by segmenting the aerial snow-survey data because of the uniformity found in the snow cover. On the 4-mile snow coirse, about two-thirds of the aerial snow-survey data agreed with the ground snow-survey data within the accuracy of the aerial technique ( + 0.5 inch of the mean snow water equivalent).

  6. Snow cover retrieval over Rhone and Po river basins from MODIS optical satellite data (2000-2009).

    NASA Astrophysics Data System (ADS)

    Dedieu, Jean-Pierre, ,, Dr.; Boos, Alain; Kiage, Wiliam; Pellegrini, Matteo

    2010-05-01

    Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the MODIS optical satellite sensor can be used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas (2,500 km range). However, as the pixel size is 500m x 500m, a MODIS pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the Sub-Pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Integrated into the EU-FP7 ACQWA Project (www.acqwa.ch), this approach was first applied over Alpine area of Rhone river basin upper Geneva Lake: Canton du Valais, Switzerland (5 375 km²). In a second step over Alps, rolling hills and plain areas in Po catchment for Val d'Aosta and Piemonte regions, Italy (37 190 km²). Watershed boundaries were provided respectively by GRID (Ch) and ARPA (It) partners. The complete satellite images database was extracted from the U.S. MODIS/NASA website (http://modis.gsfc.nasa.gov/) for MOD09_B1 Reflectance images, and from the MODIS/NSIDC website (http://nsidc.org/index.html) for MOD10_A2 snow cover images. Only the Terra platform was used because images are acquired in the morning and are therefore better correlated with dry snow surface, avoiding cloud coverage of the afternoon (Aqua Platform). The MOD9 Image reflectance and MOD10_A2 products were respectively analyzed to retrieve (i) Fractional Snow cover at sub-pixel scale, and (ii) maximum snow cover. All products were retrieved at 8-days over a complete time period of 10 years (2000-2009), giving 500 images for each river basin. Digital Model Elevation was given by NASA/SRTM database at 90-m resolution and used (i) for illumination versus topography correction on snow cover, (ii) geometric rectification of images. Geographic projection is WGS84, UTM 32. Fractional Snow cover mapping was derived from the NDSI linear regression method (Salomonson et al., 2004). Cloud mask was given by MODIS-NASA library (radiometric threshold) and completed by inverse slope regression to avoid lowlands fog confusing with thin snow cover (Po river basin). Maximum Snow Cover mapping was retrieved from the NSIDC database classification (Hall et al., 2001). Validation step was processed using comparison between MODIS Snow maps outputs and meteorological data provided by network of 87 meteorological stations: temperature, precipitation, snow depth measurement. A 0.92 correlation was observed for snow/non snow cover and can be considered as quite satisfactory, given the radiometric problems encountered in mountainous areas, particularly in snowmelt season. The 10-years time period results indicates a main difference between (i) regular snow accumulation and depletion in Rhone and (ii) the high temporal and spatial variability of snow cover for Po. Then, a high sensitivity to low variation of air temperature, often close to 1° C was observed. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s, particularly for Po river basin. Results will be combined with two hydrological models: Topkapi and Fest.

  7. Improving the Terrain-Based Parameter for the Assessment of Snow Redistribution in the Col du Lac Blanc Area and Comparisons with TLS Snow Depth Data

    NASA Astrophysics Data System (ADS)

    Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert

    2014-05-01

    Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.

  8. [Evaluation of pollution of an urban area by level of heavy metals in snow cover].

    PubMed

    Stepanova, N V; Khamitova, R Ia; Petrova, R S

    2003-01-01

    The goal of this study was to systematize various methodological approaches to evaluating the contamination of the snow cover with heavy metals (HM) by using Kazan, an industrial city with diversified industry, as an example. The findings suggest that it is necessary to characterize the contamination of the snow cover by the actual entrance of an element per area unit of the snow cover for a definite period of time rather than by the concentration of TM in the volume unit of snow water (mg/l), which minimizes the uncertainties with spatial and temporary snow cover variations. The index of the maximum allowable entrance, which is of practical value, may be used to objectively calibrate the pollution of the snow cover, by estimating the amount of a coming element and its toxicity.

  9. Estimating terrestrial snow depth with the Topex-Poseidon altimeter and radiometer

    USGS Publications Warehouse

    Papa, F.; Legresy, B.; Mognard, N.M.; Josberger, E.G.; Remy, F.

    2002-01-01

    Active and passive microwave measurements obtained by the dual-frequency Topex-Poseidon radar altimeter from the Northern Great Plains of the United States are used to develop a snow pack radar backscatter model. The model results are compared with daily time series of surface snow observations made by the U.S. National Weather Service. The model results show that Ku-band provides more accurate snow depth determinations than does C-band. Comparing the snow depth determinations derived from the Topex-Poseidon nadir-looking passive microwave radiometers with the oblique-looking Satellite Sensor Microwave Imager (SSM/I) passive microwave observations and surface observations shows that both instruments accurately portray the temporal characteristics of the snow depth time series. While both retrievals consistently underestimate the actual snow depths, the Topex-Poseidon results are more accurate.

  10. Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-09-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.

  11. Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Weatherford, J. M.; Eibert, D.

    2015-12-01

    Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.

  12. Wide-area mapping of snow water equivalent by Sentinel-1&2 data

    NASA Astrophysics Data System (ADS)

    Conde, Vasco; Nico, Giovanni; Catalao, Joao; Kontu, Anna; Gritsevich, Maria

    2017-04-01

    The mapping of snow physical properties over large mountain areas of remote areas is an important topic in both climatological studies and hydrological models where the effects of snow melting are modeled and used to forecast extreme flood events. Usually, these models are run using in-situ measurements of snow which are expensive and statistically not representative of the spatial distribution of snow properties due to slope orientation of terrain, local terrain morphology and height as well as vegetation cover. In this work we investigate the use of data acquired by Sentinel-1 and 2 missions using a C-band SAR and multispectral sensor, respectively. The Sentinel-1 SAR data are processed to estimate the Snow Water Equivalent (SWE) using both the radar amplitude and the output of the SAR interferometry processing. Both approaches need in-situ data to process SAR data and calibrate SWE estimates. The use of SAR amplitude to estimate the SWE is well established and the basic idea is that the radar signal backscattered by snow is related to the SWE so, after modeling the relationship between these two quantities at the site of in-situ measurements this relationship can be used to map the SWE at all site where the SAR amplitude information is available. The physical principle used by SAR interferometry is that of phase delay due to propagation in a non-dispersive medium. This implies that the snow is supposed to be dry in order to allow the propagation of the SAR signal. Sentinel-2 images have been used to get land-use maps and identify areas covered by vegetation. Finland has been chosen as a study region with in-situ measurements acquired thanks to the availability of rich database of in-situ measurements of SWE. Sentinel data used in this work have been acquired starting from November 2015. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  13. Large Area Crop Inventory Experiment (LACIE). Evaluation of the LACIE transition year crop calendar model. [Wheat growth in the Great Plains Corridor, North America

    NASA Technical Reports Server (NTRS)

    Cheffin, R. E.; Woolley, S. K. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The estimates of developmental stage dates from the LACIE adjustable crop calendar (ACC) winter wheat model was somewhat more accurate than the historical crop calendar after jointing. The ACC winter wheat model was not so accurate for the Texas Panhandle as it was for the other areas of the USPG-7 because dry soil conditions delayed fall planting in the Panhandle. Since the LACIE ACC winter wheat model does not contain a moisture term and it was started with historical planting dates, lengthy delays in planting mean that the ACC model will probably be started early and will estimate the developmental growth stages to occur too early in the season. The LACIE ACC spring wheat model was also started early in most areas because of late planting due to fields wet from melting snow and rain. The starter model used to estimate spring planting dates was not accurate under these wet soil conditions and tended to predict the developmental stages to occur earlier than the dates observed in the fields.

  14. The relationship of Arctic precipitation rates to stratus cloud thickness

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Garrett, T. J.

    2013-12-01

    Cloud properties are changing with a warming Arctic, yet it is unclear how precipitation rates will respond. For mid-latitude stratiform clouds, van Zanten et al. (2005) have shown that precipitation rates R decrease with droplet concentration N, but that they increase with the cube of cloud depth H. Furthermore, Kostinski (2008) used physical reasoning to show that the drizzle rate is related to the water content volume fraction (f) and the size dependent fall speed of particles u(r), i.e. R = f u(r). Kostinski's result suggests that R = f u(r) ~ H^ (1+2a), where a = 1 and 0.5 in the intermediate and turbulent regimes of fall speed, respectively. In general, mid-latitude stratocumuli tend to produce drizzles whose fall speed u(r) = k r^1 (a = 1) falls within the intermediate regime. Thus, the physically derived R ~ H^ (1+2 x 1) =H^3 relationship agrees well with the van Zanten et al. (2005) observations. To evaluate Kostinski's hypotheses with respect to Arctic stratus, cloud and precipitation retrieval techniques developed by Zhao and Garrett (2008) and Garrett and Zhao (2012) are used from the ARM NSA-AAO site near Barrow, Alaska. Specifically, cloud top height, cloud base height, and rain rate at cloud base and ground are used to develop dependence relationships. These data show that R ~ H^1.54 in the summer of Arctic, implying that a = 0.27. A low value of parameter a in the relationship u(r) = k r^a suggests wake turbulence behind falling precipitation particles. In the Arctic, stratocumuli often generate ice phase precipitation (or snow crystals). Snow crystals falling in air generate wake turbulence more than the drizzle that is characteristic of stratocumuli in mid-latitudes. A fall speed versus size dependence of u(r) = k r^0.27 suggests that a parameterization R ~ H^ (1+2 x 0.27) = H^1.54 is most suitable for Arctic cloud and climate models that do not explicitly resolve small and fast scale microphysical processes.

  15. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello

    2017-07-01

    The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.

  16. Monitoring snow cover and its effect on runoff regime in the Jizera Mountains

    NASA Astrophysics Data System (ADS)

    Kulasova, Alena

    2015-04-01

    The Jizera Mountains in the northern Bohemia are known by its rich snow cover. Winter precipitation represents usually a half of the precipitation in the hydrological year. Gradual snow accumulation and melt depends on the course of the particular winter period, the topography of the catchments and the type of vegetation. During winter the snow depth, and especially the snow water equivalent, are affected by the changing character of the falling precipitation, air and soil temperatures and the wind. More rapid snowmelt occurs more on the slopes without forest oriented to the South, while a gradual snowmelt occurs on the locations turned to the North and in forest. Melting snow recharges groundwater and affects water quality in an important way. In case of extreme situation the snowmelt monitoring is important from the point of view of flood protection of communities and property. Therefore the immediate information on the amount of water in snow is necessary. The way to get this information is the continuous monitoring of the snow depth and snow water equivalent. In the Jizera Mountains a regular monitoring of snow cover has been going on since the end of the 19th century. In the 80s of the last century the Jizera Mountains were affected by the increased fallout of pollutants in the air. There followed a gradual dieback of the forest cover and cutting down the upper part of the ridges. In order to get data for the quantification of runoff regime changes in the changing natural environment, the Czech Hydrometeorological Institute (CHMI) founded in the upper part of the Mountains several experimental catchments. One of the activities of the employees of the experimental basis is the regular measurement of snow cover at selected sites from 1982 up to now. At the same time snow cover is being observed using snow pillows, where its mass is monitored with the help of pressure sensors. In order to improve the reliability of the continuous measurement of the snow water equivalent the LDSMS (Libor Danes Snow Measurement System) which uses weighing sensors has been developed. The system contains a novel device precluding the snowbridging (protected by a utility model). Data from manual and automatic measurements are transmitted to the central forecasting service of CHMI in Prague - Komorany (CPP) and to regional forecasting branches (RPP), where they are one of the inputs of the hydrological forecasting models. The contribution deals with the results of the manual snow measurement during the dieback of forest and now, in comparison with the automatic snow measurement in the experimental catchments of CHMI Uhlirska, Jezdecka and with the effect of snowmelt on the water level in the streams.

  17. Snow drift: acoustic sensors for avalanche warning and research

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.

  18. Snow depth on Arctic sea ice from historical in situ data

    NASA Astrophysics Data System (ADS)

    Shalina, Elena V.; Sandven, Stein

    2018-06-01

    The snow data from the Soviet airborne expeditions Sever in the Arctic collected over several decades in March, April and May have been analyzed in this study. The Sever data included more measurements and covered a much wider area, particularly in the Eurasian marginal seas (Kara Sea, Laptev Sea, East Siberian Sea and Chukchi Sea), compared to the Soviet North Pole drifting stations. The latter collected data mainly in the central part of the Arctic Basin. The following snow parameters have been analyzed: average snow depth on the level ice (undisturbed snow) height and area of sastrugi, depth of snow dunes attached to ice ridges and depth of snow on hummocks. In the 1970s-1980s, in the central Arctic, the average depth of undisturbed snow was 21.2 cm, the depth of sastrugi (that occupied about 30 % of the ice surface) was 36.2 cm and the average depth of snow near hummocks and ridges was about 65 cm. For the marginal seas, the average depth of undisturbed snow on the level ice varied from 9.8 cm in the Laptev Sea to 15.3 cm in the East Siberian Sea, which had a larger fraction of multiyear ice. In the marginal seas the spatial variability of snow depth was characterized by standard deviation varying between 66 and 100 %. The average height of sastrugi varied from 23 cm to about 32 cm with standard deviation between 50 and 56 %. The average area covered by sastrugi in the marginal seas was estimated to be 36.5 % of the total ice area where sastrugi were observed. The main result of the study is a new snow depth climatology for the late winter using data from both the Sever expeditions and the North Pole drifting stations. The snow load on the ice observed by Sever expeditions has been described as a combination of the depth of undisturbed snow on the level ice and snow depth of sastrugi weighted in proportion to the sastrugi area. The height of snow accumulated near the ice ridges was not included in the calculations because there are no estimates of the area covered by those features from the Sever expeditions. The effect of not including that data can lead to some underestimation of the average snow depth. The new climatology refines the description of snow depth in the central Arctic compared to the results by Warren et al. (1999) and provides additional detailed data in the marginal seas. The snow depth climatology is based on 94 % Sever data and 6 % North Pole data. The new climatology shows lower snow depth in the central Arctic comparing to Warren climatology and more detailed data in the Eurasian seas.

  19. Measuring Snow Precipitation in New Zealand- Challenges and Opportunities.

    NASA Astrophysics Data System (ADS)

    Renwick, J. A.; Zammit, C.

    2015-12-01

    Monitoring plays a pivotal role in determining sustainable strategy for efficient overall management of the water resource. Though periodic monitoring provides some information, only long-term monitoring can provide data sufficient in quantity and quality to determine trends and develop predictive models. These can support informed decisions about sustainable and efficient use of water resources in New Zealand. However the development of such strategies is underpinned by our understanding and our ability to measure all inputs in headwaters catchments, where most of the precipitation is falling. Historically due to the harsh environment New Zealand has had little to no formal high elevation monitoring stations for all climate and snow related parameters outside of ski field climate and snow stations. This leads to sparse and incomplete archived datasets. Due to the importance of these catchments to the New Zealand economy (eg irrigation, hydro-electricity generation, tourism) NIWA has developed a climate-snow and ice monitoring network (SIN) since 2006. This network extends existing monitoring by electricity generator and ski stations and it is used by a number of stakeholders. In 2014 the network comprises 13 stations located at elevation above 700masl. As part of the WMO Solid Precipitation Intercomparison Experiment (SPICE), NIWA is carrying out an intercomparison of precipitation data over the period 2013-2015 at Mueller Hut. The site was commissioned on 11 July 2013, set up on the 17th September 2013 and comprises two Geonor weighing bucket raingauges, one shielded and the other un-shielded, in association with a conventional tipping bucket raingauge and conventional climate and snow measurements (temperature, wind, solar radiation, relative humidity, snow depth and snow pillow). The presentation aims to outline the state of the current monitoring network in New Zealand, as well as the challenge and opportunities for measurement of precipitation in alpine environment.

  20. Record Blizzard Buries U.S. Northeast

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After two days of blustery weather, the skies cleared over Massachusetts on January 24, 2005. Along with other northeastern U.S. states, Massachusetts was slammed with a powerful blizzard on January 22 and 23 that shut down travel and businesses and extinguished power. The storm brought record snow to many places, but Massachusetts topped the list. The cities of Salem and Plymouth were buried in 38 inches (96.5 cm) of snow, and strong winds created drifts up to seven feet (2 meters) high, according to the National Weather Service. For Boston, the storm was the fifth worst blizzard to hit the city since 1892, dumping 22.5 inches (57 cm) of snow in two days. Of that, 13.4 inches (34 cm) fell on January 23' the most snow to fall on the city in a single day since records began. These totals gave Boston nearly twice its average snowfall for January (the average is 13.5 inches, 34.3 cm), and over half its annual average snow of 41.8 inches (106 cm). This Moderate Resolution Imaging Spectroradiometer (MODIS) image, taken on January 24 by NASA's Terra satellite, shows the effects of the storm on Massachusetts and its southern neighbors, Connecticut (left) and Rhode Island (right). New York's Long Island is in the lower left corner of the image. The entire region is coated with snow, though clouds obscure the ground on the left side of the image. The snow was accompanied by powerful hurricane-force winds that helped create white-out conditions and large snowdrifts. The wind also churned ocean waters around Cape Cod, leaving them milky with sediment. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC.

  1. Monitoring Sand Sheets and Dunes

    NASA Image and Video Library

    2017-06-12

    NASA's Mars Reconnaissance Orbiter (MRO) captured this crater featuring sand dunes and sand sheets on its floor. What are sand sheets? Snow fall on Earth is a good example of sand sheets: when it snows, the ground gets blanketed with up to a few meters of snow. The snow mantles the ground and "mimics" the underlying topography. Sand sheets likewise mantle the ground as a relatively thin deposit. This kind of environment has been monitored by HiRISE since 2007 to look for movement in the ripples covering the dunes and sheets. This is how scientists who study wind-blown sand can track the amount of sand moving through the area and possibly where the sand came from. Using the present environment is crucial to understanding the past: sand dunes, sheets, and ripples sometimes become preserved as sandstone and contain clues as to how they were deposited The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 75 centimeters (29.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21757

  2. A comparison study of two snow models using data from different Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume

    2017-04-01

    The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.

  3. Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Zhong, Efang; Li, Qian; Sun, Shufen; Chen, Wen; Chen, Shangfeng; Nath, Debashis

    2017-11-01

    The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow-Atmosphere-Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m-2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

  4. Evaluating the Impact of Vegetation Cover and Atmospheric Characteristics on the Estimation of Snow Water Equivalent from Spaceborne Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.; Foster, James L.

    2010-01-01

    A radiative transfer model for estimating snow water equivalent (SWE, mm) from satellite-observed brightness temperature (K) at 19 and 37 GHz (respectively, T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)) over partially forested area is presented, as an extension of a previously published model, by considering scattering of radiation within the canopy. For the specific case of dense vegetation covering fractional area f, the model can be written as, SWE = alpha{ A. delta (T(sub B(sub, sat)) + B - C. f}/(l f), where delta T(sub B(sub, sat)), is the difference of T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)), alpha(mm/K) is the slope of SWE vs. brightness temperature difference at 19 and 37 GHz that would be obtained by ignoring the presence of atmosphere, delta(T(sub B)sub g)), for a homogeneous snow cover (which varies with grain size). The parameters A, B, and C, are determined primarily by atmospheric characteristics, and for a likely range of atmospheric conditions appear to be in the range of, respectively, 1.15-1.63, 0.69-2.84 K and 0.59-2.39 K. Ignoring atmospheric correction would introduce bias towards underestimation of SWE (and also, snow cover area and snow depth). Increasing cloud liquid water path (L) has the effect of increasing A, and ignoring this variation of A with L would have the impact of biasing the estimate of SWE (and snow extent). Such biasing is further exacerbated with increasing f, because of the appearance of term (l-f) in the denominator. The impact of ignoring the intercept parameters (B and C) would be noticeable at low values of SWE (appearing as a bias towards underestimation of SWE), which has been determined to be about 6 mm for average environmental conditions. The uncertainty in estimating SWE due to variations in the atmospheric characteristics is likely to be less than 15%, but could be up to 25% for non-vegetated snow-covered areas. Better estimates of SWE (and snow extent) would be obtained by adjusting the parameters of the above model to regional differences in the atmospheric characteristics. The biases in determining SWE arising due to variations in atmospheric conditions and due to changes in fractional forest cover are not independent, since they interact as {A/(l-f)}. The present calculations also show that improvement in determining snow cover area from the microwave data is likely to occur when these data are corrected for atmospheric effects, as demonstrated by a specific case study.

  5. Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, a Revised Algorithm and a Snow Depth Climatology

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.

    1997-01-01

    While it is recognized that no single snow algorithm is capable of producing accurate global estimates of snow depth, for research purposes it is useful to test an algorithm's performance in different climatic areas in order to see how it responds to a variety of snow conditions. This study is one of the first to develop separate passive microwave snow algorithms for North America and Eurasia by including parameters that consider the effects of variations in forest cover and crystal size on microwave brightness temperature. A new algorithm (GSFC 1996) is compared to a prototype algorithm (Chang et al., 1987) and to a snow depth climatology (SDC), which for this study is considered to be a standard reference or baseline. It is shown that the GSFC 1996 algorithm compares much more favorably to the SDC than does the Chang et al. (1987) algorithm. For example, in North America in February there is a 15% difference between the GSFC 198-96 Algorithm and the SDC, but with the Chang et al. (1987) algorithm the difference is greater than 50%. In Eurasia, also in February, there is only a 1.3% difference between the GSFC 1996 algorithm and the SDC, whereas with the Chang et al. (1987) algorithm the difference is about 20%. As expected, differences tend to be less when the snow cover extent is greater, particularly for Eurasia. The GSFC 1996 algorithm performs better in North America in each month than dose the Chang et al. (1987) algorithm. This is also the case in Eurasia, except in April and May when the Chang et al.(1987) algorithms is in closer accord to the SDC than is GSFC 1996 algorithm.

  6. A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Marksu, T.; Ivanoff, A.; Miller, J. A.; Brucker, L.; Sturm, M.; Maslanik, J. A.; Heinrichs, J. F.; Gasiewski, A.; Leuschen, C.; hide

    2011-01-01

    A comparison of snow depths on sea ice was made using airborne altimeters and an Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) simulator. The data were collected during the March 2006 National Aeronautics and Space Administration (NASA) Arctic field campaign utilizing the NASA P-3B aircraft. The campaign consisted of an initial series of coordinated surface and aircraft measurements over Elson Lagoon, Alaska and adjacent seas followed by a series of large-scale (100 km ? 50 km) coordinated aircraft and AMSR-E snow depth measurements over portions of the Chukchi and Beaufort seas. This paper focuses on the latter part of the campaign. The P-3B aircraft carried the University of Colorado Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops Airborne Topographic Mapper (ATM) lidar altimeter, and the University of Kansas Delay-Doppler (D2P) radar altimeter. The PSR-A was used as an AMSR-E simulator, whereas the ATM and D2P altimeters were used in combination to provide an independent estimate of snow depth. Results of a comparison between the altimeter-derived snow depths and the equivalent AMSR-E snow depths using PSR-A brightness temperatures calibrated relative to AMSR-E are presented. Data collected over a frozen coastal polynya were used to intercalibrate the ATM and D2P altimeters before estimating an altimeter snow depth. Results show that the mean difference between the PSR and altimeter snow depths is -2.4 cm (PSR minus altimeter) with a standard deviation of 7.7 cm. The RMS difference is 8.0 cm. The overall correlation between the two snow depth data sets is 0.59.

  7. The Preservation and Recycling of Snow Pack Nitrate at the West Antarctic Ice Sheet (WAIS) Divide Ice Core Site from the Present Day to the Last Glacial Period.

    NASA Astrophysics Data System (ADS)

    Robinson, J. W.; Buffen, A.; Hastings, M. G.; Schauer, A. J.; Moore, L.; Isaacs, A.; Geng, L.; Savarino, J. P.; Alexander, B.

    2017-12-01

    We use observations of the nitrogen isotopic composition of nitrate (δ15N(NO3-)) from snow and ice collected at the West Antarctic ice sheet (WAIS) divide ice core site to quantify the preservation and recycling of snow nitrate. Ice-core samples cover a continuous section from 36 to 52 thousand years ago and discrete samples from the Holocene, the last glacial maximum (LGM), and the glacial-Holocene transition. Higher δ15N of nitrate is consistently associated with lower temperatures with δ15N(NO3-) varying from 26 to 45 ‰ during the last glacial period and from 1 to 45 ‰ between the Holocene and glacial periods, respectively. We attribute the higher δ15N in colder periods to lower snow accumulation rates which lead to greater loss of snow nitrate via photolysis before burial beneath the snow photic zone. Modeling of nitrate preservation in snow pack was performed for modern and LGM conditions. The model is used in conjunction with observations to estimate the fraction of snow nitrate that is photolyzed, re-oxidized, and re-deposited over WAIS divide versus the fraction of primary nitrate that is deposited via long range transport. We used these estimates of fractional loss of snow nitrate in different time periods to determine the variation in the deposition flux of primary nitrate at WAIS divide with climate. Our findings have implications for the climate sensitivity of the oxidizing capacity of the polar atmosphere and the interpretation of ice-core records of nitrate in terms of past atmospheric composition.

  8. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  9. Environmental impacts of urban snow management--the alpine case study of Innsbruck.

    PubMed

    Engelhard, C; De Toffol, S; Lek, I; Rauch, W; Dallinger, R

    2007-09-01

    In regions with colder climate, snow at roads can accumulate significant amounts of pollutant chemicals. In northern countries various efforts have been made to face this problem, but for the alpine region little is known about the pollution of urban snow. The present case study was carried out in the city of Innsbruck (Austria). It aimed at measuring pollution of roadside snow and estimating the impact of snow management practises on environmental quality. Concentrations of copper, zinc, lead, cadmium, suspended solids and chloride were determined during a series of sampling events. Various locations with low and high traffic densities and in different distances from a highway have been investigated. The concentrations of copper were generally higher at sites with high traffic density compared to locations with low traffic impact. In contrast to this, the concentrations of zinc and lead remained almost unvaried irrespective of traffic density at the different sampling sites. For cadmium, the picture was more diverse, showing moderately elevated concentrations of this metal also at the urban reference site not polluted by traffic. This indicates that there may be also other important sources for cadmium besides traffic. Suspended solids accumulated in the roadside snow, the highest concentrations were found at the sites with high traffic density. The chloride concentrations were considerable in the snow, especially at the highway. Based on the results of the present measurement campaign, the environmental impact of snow disposal in rivers was also estimated. A negative impact on rivers from snow disposal seems likely to occur, although the discharged loads could only be calculated with substantial uncertainty, considering the high variability of the measured pollutant concentrations. For a more accurate evaluation of this management practise on rivers, further investigations would be necessary.

  10. Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps

    PubMed Central

    Meola, Marco; Lazzaro, Anna; Zeyer, Josef

    2015-01-01

    Deposition of Sahara dust (SD) particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.). After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria. Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport. PMID:26733988

  11. Determining minimum staffing levels during snowstorms using an integrated simulation, regression, and reliability model.

    PubMed

    Kunkel, Amber; McLay, Laura A

    2013-03-01

    Emergency medical services (EMS) provide life-saving care and hospital transport to patients with severe trauma or medical conditions. Severe weather events, such as snow events, may lead to adverse patient outcomes by increasing call volumes and service times. Adequate staffing levels during such weather events are critical for ensuring that patients receive timely care. To determine staffing levels that depend on weather, we propose a model that uses a discrete event simulation of a reliability model to identify minimum staffing levels that provide timely patient care, with regression used to provide the input parameters. The system is said to be reliable if there is a high degree of confidence that ambulances can immediately respond to a given proportion of patients (e.g., 99 %). Four weather scenarios capture varying levels of snow falling and snow on the ground. An innovative feature of our approach is that we evaluate the mitigating effects of different extrinsic response policies and intrinsic system adaptation. The models use data from Hanover County, Virginia to quantify how snow reduces EMS system reliability and necessitates increasing staffing levels. The model and its analysis can assist in EMS preparedness by providing a methodology to adjust staffing levels during weather events. A key observation is that when it is snowing, intrinsic system adaptation has similar effects on system reliability as one additional ambulance.

  12. Comparison of different methods for estimating snowcover in forested, mountainous basins using LANDSAT (ERTS) images. [Washington and Santiam River, Oregon

    NASA Technical Reports Server (NTRS)

    Meier, M. J.; Evans, W. E.

    1975-01-01

    Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced.

  13. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    In mountainous regions across the western USA, the composition of aspen (Populus tremuloides) and sagebrush steppe plant communities is often closely related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) and critical zone observatory (CZO) in southwest Idaho provides a unique opportunity to study the relationship between vegetation types and redistributed snow. Within the RCEW, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. As shifts in precipitation phase continue, future trends in vegetation composition and net primary productivity (NPP) of different plant functional types remains a critical question. We hypothesize that redistribution of snow may supplement drought sensitive species like aspen more so than drought tolerant species like mountain big sagebrush (Artemisia tridentata spp. vaseyana). To assess the importance of snowdrift subsidies on sagebrush steppe vegetation, NPP of aspen, shrub, and grass species was simulated at three sites using the biogeochemical process model BIOME-BGC. Each site is located directly downslope from snowdrifts providing soil moisture inputs to aspen stands and neighboring vegetation. Drifts vary in size with the largest containing up to four times the snow water equivalent (SWE) of a uniform precipitation layer. Precipitation inputs used by BIOME-BGC were modified to represent the redistribution of snow and simulations were run using daily climate data from 1985-2013. Simulated NPP of annual grasses at each site was not responsive to subsidies from drifting snow. However, at the driest site, aspen and shrub annual NPP was increased by as much as 44 and 30%, respectively, with the redistribution of snow. These results indicate that as snow water subsidies decrease, ecosystems may shift from tree and shrub dominated to grassland dominated. As climate change progresses, shifts in the precipitation regimes in semi-arid environments may lead to changes in species composition and carbon stores throughout the intermountain west.

  14. [Multi-Scale Convergence of Cold-Land Process Representation in Land-Surface Models, Microwave Remote Sensing, and Field Observations

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng

    2005-01-01

    The cryosphere is a major component of the hydrosphere and interacts significantly with the global climate system, the geosphere, and the biosphere. Measurement of the amount of water stored in the snow pack and forecasting the rate of melt are thus essential for managing water supply and flood control systems. Snow hydrologists are confronted with the dual problems of estimating both the quantity of water held by seasonal snow packs and time of snow melt. Monitoring these snow parameters is essential for one of the objectives of the Earth Science Enterprise-understanding of the global hydrologic cycle. Measuring spatially distributed snow properties, such as snow water equivalence (SWE) and wetness, from space is a key component for improvement of our understanding of coupled atmosphere-surface processes. Through the GWEC project, we have significantly advanced our understandings and improved modeling capabilities of the microwave signatures in response to snow and underground properties.

  15. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  16. Experience from one year of operating a boundary-layer profiler in the center of a large city

    NASA Astrophysics Data System (ADS)

    Rogers, R. R.; Cohn, S. A.; Ecklund, W. L.; Wilson, J. S.; Carter, D. A.

    1994-06-01

    Since May 1992 a small, 915-MHz profiler has been operated continuously in downtown Montreal. It is a five-beam system employing a microstrip array antenna, located atop a 14-story office building that houses several academic departments of McGill University. The data are used for research on precipitation physics and the clear-air reflectivity in addition to wind profiling. We are especially interested in situations in which the reflectivities of the clear air and the precipitation are comparable. This permits the study of interactions between the precipitation and the clear air, a new area of research made possible by wind profilers. On clear days in the summer, 30-min consensus winds can often be measured to an altitude of 3 km, but ground clutter in the antenna sidelobes interferes with measurements below 600 m. Rain when present often permits wind profiling down to 100 m and up to 6 km or higher. On cold winter days there are some periods when the reflectivity is too weak at all levels to permit wind estimation. Falling snow, however, provides readily detectable echoes and serves as a good tracer of the wind and so allows profiling over its full altitude extent. The best conditions for observing interactions between precipitation and the clear air are when light rain falls through a reflective layer associated with a frontal surface or inversion. Unexpectedly, flocks of migrating birds sometimes completely dominate the signal at night in the spring and fall seasons.

  17. Application of a Snow Growth Model to Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Erfani, E.; Mitchell, D. L.

    2014-12-01

    Microphysical growth processes of diffusion, aggregation and riming are incorporated analytically in a steady-state snow growth model (SGM) to solve the zeroth- and second- moment conservation equations with respect to mass. The SGM is initiated by radar reflectivity (Zw), supersaturation, temperature, and a vertical profile of the liquid water content (LWC), and it uses a gamma size distribution (SD) to predict the vertical evolution of size spectra. Aggregation seems to play an important role in the evolution of snowfall rates and the snowfall rates produced by aggregation, diffusion and riming are considerably greater than those produced by diffusion and riming alone, demonstrating the strong interaction between aggregation and riming. The impact of ice particle shape on particle growth rates and fall speeds is represented in the SGM in terms of ice particle mass-dimension (m-D) power laws (m = αDβ). These growth rates are qualitatively consistent with empirical growth rates, with slower (faster) growth rates predicted for higher (lower) β values. In most models, β is treated constant for a given ice particle habit, but it is well known that β is larger for the smaller crystals. Our recent work quantitatively calculates β and α for cirrus clouds as a function of D where the m-D expression is a second-order polynomial in log-log space. By adapting this method to the SGM, the ice particle growth rates and fall speeds are predicted more accurately. Moreover, the size spectra predicted by the SGM are in good agreement with those from aircraft measurements during Lagrangian spiral descents through frontal clouds, indicating the successful modeling of microphysical processes. Since the lowest Zw over complex topography is often significantly above cloud base, the precipitation is often underestimated by radar quantitative precipitation estimates (QPE). Our SGM is capable of being initialized with Zw at the lowest reliable radar echo and consequently improves QPE at ground level.

  18. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  19. Validation of the Daily Passive Microwave Snow Depth Products Over Northern China

    NASA Astrophysics Data System (ADS)

    Qiao, D.; Li, Z.; Wang, N.; Zhou, J.; Zhang, P.; Gao, S.

    2018-04-01

    Passive microwave sensors have the capability to provide information on snow depth (SD), which is critically important for hydrological modeling and water resource management. However, the different algorithms used to produce SD products lead to discrepancies in the data. To determine which products might be most suitable for Northern China, this paper assesses the accuracy of the existing snow depth products in the period of 2002-2011. By comparing three daily snow depth products, including NSIDC, WESTDC and ESA Globsnow, with snow cover product and meteorological stations data, the accuracies of the different SD products are analyzed for different snow class and forest cover fraction. The results show that comparison between snow cover derived from snow depth of NSIDC, ESA GlobSnow and WESTDC with snow cover product shows that accuracy of WESTDC and ESA GlobSnow in snow cover detecting can reach 0.70. Compared to meteorological stations data below 20 cm, NSIDC consistently overestimate, WESTDC and ESA Globsnow underestimate, furthermore the product from WESTDC is superior to the others. The three products have the same tendency of significant undervaluation over 20 cm. The WESTDC is superior to the ESA Globsnow and NSIDC in non-forest regions, whereas the ESA GlobSnow estimate is superior to the WESTDC and NSIDC in forest regions. As for the prairie and alpine snow, WESTDC has smaller bias and RMSE, meanwhile Globsnow has advantages in the snow depth retrieval in tundra and taiga snow. Therefore, we should choose the more suitable snow depth products according to different needs.

  20. Bioavailable mercury cycling in polar snowpacks.

    PubMed

    Larose, Catherine; Dommergue, Aurélien; Marusczak, Nicolas; Coves, Jacques; Ferrari, Christophe P; Schneider, Dominique

    2011-03-15

    Polar regions are subject to contamination by mercury (Hg) transported from lower latitudes, severely impacting human and animal health. Atmospheric Mercury Depletion Events (AMDEs) are an episodic process by which Hg is transferred from the atmospheric reservoir to arctic snowpacks. The fate of Hg deposited during these events is the subject of numerous studies, but its speciation remains unclear, especially in terms of environmentally relevant forms such as bioavailable mercury (BioHg). Here, using a bacterial mer-lux biosensor, we report the fraction of newly deposited Hg at the surface and at the bottom of the snowpack that is bioavailable. Snow samples were collected over a two-month arctic field campaign in 2008. In surface snow, BioHg is related to atmospheric Hg deposition and snow fall events were shown to contribute to higher proportions of BioHg than AMDEs. Based on our data, AMDEs represent a potential source of 20 t.y(-1) of BioHg, while wet and dry deposition pathways may provide 135-225 t.y(-1) of BioHg to Arctic surfaces.

  1. A Legacy for IPY: The Global Snowflake Network (GSN) Together With Art and Ice, and Music and Ice; Unique new Features for Science Education.

    NASA Astrophysics Data System (ADS)

    Wasilewski, P. J.

    2007-12-01

    The Global Snowflake Network (GSN) is a program that is simultaneously a science program and an education program. When the validation of the procedures (collection and identification of the type of snowflakes and the associated satellite image archive, as a serial record of a storm), is achieved, then the program becomes a scientific resource. This latter is the ultimate goal. That's why NASA has launched the Global Snowflake Network, a massive project that aims to involve the general public to "collect and classify" falling snowflakes. The data will be compiled into a massive database, along with satellite images, that will help climatologists and others who study climate-related phenomena gain a better understanding of wintry meteorology as they track various snowstorms around the globe. A great deal of information about the atmosphere dynamics and cloud microphysics can be derived from the serial collection and identification of the types of snow crystals and the degree of riming of the snow crystals during the progress of a snow storm. Forecasting winter weather depends in part on cloud physics, which deals with precipitation type, and if it happens to be snow- the crystal type, size, and density of the snowflake population. The History of Winter website will host the evolving snow and ice features for the IPY. Type "Global Snowflake Network" into the search engine (such as GOOGLE) and you will receive a demonstration of the operation of the preliminary GSN by the Indigenous community. The expeditions FINNMARK2007 and the POLAR Husky GoNorth 2007 expedition took the complement of Thermochrons with multimedia instructions for the Global Snowflake Network. This approach demonstrates the continuous Thermochron monitoring of expedition temperature and provides otherwise inaccessible snowflake information to NASA and others interested in the Polar region snow. In addition, reindeer herder and Ph.D. student, Inger Marie G. Eira, will incorporate the HOW, GSN thermochrons, snow pit observations, and snowflake identification protocols into her Ph.D. dissertation on snow changes, and reindeer pastures in Northern Norway. SCIENTISTS DISCOVER - ARTISTS INTERPRET - TOGETHER WE CAN OPEN THE EYES OF THE WORLD. This theme of the "Polar Artists "can be reached from the web search. Water ice is one of the most widespread, intriguing, and familiar compounds on the planet, in the solar system, and beyond. On the planet, it falls as snow, forms lacy deposits on winter windows, creates skating surfaces on lakes, gracefully drapes rock cliffs, packs thickly on the polar oceans, and lays even thicker on the ice caps blanketing Greenland and Antarctica. Of the 11 forms of water ice so far identified, only the form found on Earth can provide a "Frizion". Communicating this is part of Polar Artists outreach. We are working with Terje Isungset, from Norway, who creates musical instruments from ice. We will demonstrate how ART and Ice and Music and Ice are presented. In addition to video presentations appearing on YOUTUBE, we are preparing additional live performances of this work.

  2. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness and subsequent snow thickness (ie. Rougher surfaces acquire thicker snow covers) and then how this surface manifests into statistically distinguishable surface melt pond fractions which largely governs the optical derived albedo. Such relationships are useful for modelling the subsequent summer melt pond fraction and albedo from winter snow cover.

  3. Snow multivariable data assimilation for hydrological predictions in mountain areas

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground-based and remotely sensed data of different snow-related variables (snow albedo and surface temperature, Snow Water Equivalent from passive microwave sensors and Snow Cover Area). SMASH performance was evaluated in the period June 2012 - December 2013 at the meteorological station of Torgnon (Tellinod, 2 160 msl), located in Aosta Valley, a mountain region in northwestern Italy. The EnKF algorithm was firstly tested by assimilating several ground-based measurements: snow depth, land surface temperature, snow density and albedo. The assimilation of snow observed data revealed an overall considerable enhancement of model predictions with respect to the open loop experiments. A first attempt to integrate also remote sensed information was performed by assimilating the Land Surface Temperature (LST) from METEOSAT Second Generation (MSG), leading to good results. The analysis allowed identifying the snow depth and the snowpack surface temperature as the most impacting variables in the assimilation process. In order to pinpoint an optimal number of ensemble instances, SMASH performances were also quantitatively evaluated by varying the instances amount. Furthermore, the impact of the data assimilation frequency was analyzed by varying the assimilation time step (3h, 6h, 12h, 24h).

  4. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.

  5. Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Alewell, C.

    2013-07-01

    The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  6. The Contribution to High Asia Runoff from Ice and Snow (CHARIS): Understanding the source and trends of cryospheric contributions to the water balance

    NASA Astrophysics Data System (ADS)

    Rittger, K.; Armstrong, R. L.; Bair, N.; Racoviteanu, A.; Brodzik, M. J.; Hill, A. F.; Wilson, A. M.; Khan, A. L.; Ramage, J. M.; Khalsa, S. J. S.; Barrett, A. P.; Raup, B. H.; Painter, T. H.

    2017-12-01

    The Contribution to High Asia Runoff from Ice and Snow, or CHARIS, project is systematically assessing the role that glaciers and seasonal snow play in the freshwater resources of Central and South Asia. The study area encompasses roughly 3 million square kilometers of the Himalaya, Karakoram, Hindu Kush, Pamir and Tien Shan mountain ranges that drain to five major rivers: the Ganges, Brahmaputra, Indus, Amu Darya and Syr Darya. We estimate daily snow and glacier ice contributions to the water balance. Our automated partitioning method generates daily maps of 1) snow over ice (SOI), 2) exposed glacier ice (EGI), 3) debris covered glacier ice (DGI) and 4) snow over land (SOL) using fractional snow cover, snow grain size, and annual minimum ice and snow from the 500 m MODIS-derived MODSCAG and MODICE products. Maps of snow and ice cover are validated using high-resolution (30 m) maps of snow, ice, and debris cover from Landsat. The probability of detection is 0.91 and precision is 0.85 for MODICE. We examine trends in annual and monthly snow and ice maps and use daily maps as inputs to a calibrated temperature-index model and an uncalibrated energy balance model, ParBal. Melt model results and measurements of isotopes and specific ions used as an independent validation of melt modeling indicate a sharp geographic contrast in the role of snow and ice melt to downstream water supplies between the arid Tien Shan and Pamir ranges of Central Asia, where melt water dominates dry season flows, and the monsoon influenced central and eastern Himalaya where rain controls runoff. We also compare melt onset and duration from the melt models to the Calibrated, Enhanced Resolution Passive Microwave Brightness Temperature Earth Science Data Record. Trend analysis of annual and monthly area of permanent snow and ice (the union of SOI and EGI) for 2000 to 2016 shows statistically significant negative trends in the Ganges and Brahmaputra basins. There are no statistically significant trends in permanent snow and ice in the other basins and no statistically significant trends in SOL, the renewable and seasonal component of snow and ice cover, in any of the five basins. This work gives a better understanding of the current hydrologic regime to guide realistic estimates of the future availability and vulnerability of water resources in these regions.

  7. The Status of NASA's Global Precipitation Measurement (GPM) Mission 26 Months After Launch

    NASA Astrophysics Data System (ADS)

    Jackson, Gail; Huffman, George

    2016-04-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). The unique 65o non-Sun-synchronous orbit at an altitude of 407 km for the GPM Core Observatory allows for highly sophisticated observations of precipitation in the mid-latitudes where a majority of the population lives. Indeed, the GOM Core Observatory serves as the cornerstone, as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. GPM's requirements are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. GPM has several retrieval product levels ranging from raw instrument data to Core and partner swath precipitation estimates to gridded and accumulated products and finally to multi-satellite merged products. The latter merged product, called IMERG, is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1o x 0.1o (~10km x 10km) grid box. Some products have a 1-hour latency for societal applications such as floods, landslides, hurricanes, blizzards, and typhoons and all have late-latency high-quality science products. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales via providing precipitation particle size distributions internal to the cloud, 5-15 km estimates of regional precipitation and merged global precipitation. Once TRMM data is recalibrated to the high quality standards of GPM (and as GPM continues to operate), TRMM and GPM together, with partner data) can provide a 25-30+ year record of global precipitation. Scientists and hazard decision makers all over the world value GPM's data. Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented.

  8. Rainy Days in the New Arctic: A Comprehensive Look at Precipitation from 8 Reanalysis

    NASA Astrophysics Data System (ADS)

    Boisvert, L.; Webster, M.; Petty, A.; Markus, T.

    2017-12-01

    Precipitation in the Arctic plays an important role in the fresh water budget, and is the primary control of snow accumulation on sea ice. However, Arctic precipitation from reanalysis is highly uncertain due to differences in the atmospheric physics and use/approaches of data assimilation and sea ice concentrations across the different products. More specifically, yearly cumulative precipitation in some regions can vary by 100-150 mm across reanalyses. This creates problems for those modeling snow depth on sea ice, specifically for use in deriving sea ice thickness from satellite altimetry. In recent years, this new Arctic has become warmer and wetter, and evaporation from the ice-free ocean has been increasing, which leads to the question: is more precipitation falling and is more of this precipitation rain? This could pose a big problem for model and remote sensing applications and studies those modeling snow accumulation because rain events will can melt the existing snow pack, reduce surface albedo, and modify the ocean-to-atmosphere heat flux via snow densification. In this work we compare precipitation (both snow and rain) from 8 different reanalysis: MERRA, MERRA2, NCEP-R1, NCEP-R2, ERA-Interim, ERA-5, ASR and JRA-55. We examine the annual, seasonal, and regional differences and compare with buoy data to assess discrepancies between products during observed snowfall and rainfall events. Magnitudes and frequencies of these precipitation events are evaluated, as well as the "residual drizzle" between reanalyzes. Lastly, we will look at whether the frequency and magnitude of "rainy days" in the Arctic have been changing over recent decades.

  9. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  10. A Look at Seasonal Snow Cover and Snow Mass in the Southern Hemisphere from 1979-2006 Using SMMR and SSM/I Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Foster, James

    2009-01-01

    Seasonal snow cover in extra-tropical areas of South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite and from the Special Sensor Microwave Imagers (SSM/I) on board the Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2006, both snow cover extent and snow mass were estimated for the months of May-September. Most of the seasonal snow in South America occurs in the Patagonia region of Argentina. The average snow cover extent for July, the month with the greatest average extent during the 28-year period of record, is 321,674 sq km. The seasonal (May-September) 2 average snow cover extent was greatest in 1984 (464,250 sq km) and least in 1990 (69,875 sq km). In terms of snow mass, 1984 was also the biggest year (1.19 x 10(exp 13) kg) and 1990 was the smallest year (0.12 X 10(exp 13) kg). A strong relationship exists between the snow cover area and snow mass, correlated at 0.95, though no significant trend was found over the 28 year record for either snow cover extent or snow mass. For this long term climatology, snow mass and snow cover extent are shown to vary considerably from month to month and season to season. This analysis presents a consistent approach to mapping and measuring snow in South America utilizing an appropriate and readily available long term snow satellite dataset. This is the optimal dataset available, thus far, for deriving seasonal snow cover and snow mass in this region. Nonetheless, shallow snow, wet snow, snow beneath forests, as well as snow along coastal areas all may confound interpretation using passive microwave approaches. More work needs to be done to reduce the uncertainties in the data and hence, increase the confidence of the interpretation

  11. Simulating the Dependence of Aspen on Redistributed Snow

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset of drought stress occurring in stands located along a precipitation phase gradient. These results further emphasize the importance of redistributed snow in heterogeneous landscapes along with the need to account for temporal shifts in water resource availability when assessing ecosystem vulnerability to climate change.

  12. Iron snow in the Martian core?

    NASA Astrophysics Data System (ADS)

    Davies, Christopher J.; Pommier, Anne

    2018-01-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  13. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images

    NASA Astrophysics Data System (ADS)

    Belart, Joaquín M. C.; Berthier, Etienne; Magnússon, Eyjólfur; Anderson, Leif S.; Pálsson, Finnur; Thorsteinsson, Thorsteinn; Howat, Ian M.; Aðalgeirsdóttir, Guðfinna; Jóhannesson, Tómas; Jarosch, Alexander H.

    2017-06-01

    Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (< 0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.

  14. Differences between nipher and slter shielded rain gages at two Colorado deposition monitoring sites

    USGS Publications Warehouse

    Bigelow, David S.; Denning, A. Scott

    1990-01-01

    In the last decade the United States and Canada have made significant progress in establishing spatial ad temporal estimates of atmospheric deposition throughout North America. Fundamental to the wet-deposition portion of these estimates is the accurate and precise measurement of precipitation amount. Goodison and others (I-3) have reported on a new type of shielded snow gage known as the Canadian MSC Nipher shielded snow gage. Because this shielded snow gage has been shown to be superior to other precipitation gages for the estimation of snowfall amount, its design was adapted to the Universal Belfort precipitation gage (4), the dominant precipitation gage used at deposition monitoring sites in the United States. Favorable results taken from monitoring sites using this modified Nipher shielded snow gage (3-6) have prompted the U.S. Environmental Protection Agency and the Electric Power Research Institute to adopt the Nipher shielded Belfort gage as a standard piece of equipment in the Acid MODES and Operational Evaluation Network (OEN) monitoring programs and to propose that is be included as a standard snow gage in other North American deposition monitoring programs. This communication details preliminary results from two of nine NADP/NTN deposition monitoring sites selected by the Environmental Protection Agency to compare Nipher shielded Belfort precipitation gage volumes to volumes obtained from the standard Belfort gage used in the NADP/NTN monitoring program.

  15. View Angle Effects on MODIS Snow Mapping in Forests

    NASA Technical Reports Server (NTRS)

    Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.

    2012-01-01

    Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.

  16. Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei

    2018-01-01

    We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths < 1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC-induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.

  17. Improving Understanding of Glacier Melt Contribution to High Asian River Discharge through Collaboration and Capacity Building with High Asian CHARIS Partner Institutions

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard; Brodzik, Mary Jo; Armstrong, Betsy; Barrett, Andrew; Fetterer, Florence; Hill, Alice; Jodha Khalsa, Siri; Racoviteanu, Adina; Raup, Bruce; Rittger, Karl; Williams, Mark; Wilson, Alana; Ye, Qinghua

    2017-04-01

    The Contribution to High Asia Runoff from Ice & Snow (CHARIS) project uses remote sensing data combined with modeling from 2000 to the present to improve proportional estimates of melt from glaciers and seasonal snow surfaces. Based at the National Snow and Ice Data Center (NSIDC), University of Colorado, Boulder, USA, the CHARIS project objectives are twofold: 1) capacity-building efforts with CHARIS partners from eight High Asian countries to better forecast future availability and vulnerability of water resources in the region, and 2) improving our ability to systematically assess the role of glaciers and seasonal snow in the freshwater resources of High Asia. Capacity-building efforts include working with CHARIS partners from Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Kyrgyzstan and Tajikistan. Our capacity-building activities include training, data sharing, supporting fieldwork, graduate student education and infrastructure development. Because of the scarcity of in situ data in this High Asian region, we are using the wealth of available remote sensing data to characterize digital elevation, daily maps of fractional snow-cover, annual maps of glacier and permanent snow cover area and downscaled reanalysis temperature data in snow melt models to estimate the relative proportions of river runoff from glacierized and seasonally snow-covered surfaces. Current collaboration with Qinghua Ye, visiting scientist at NSIDC from the Institute of Tibetan Plateau Research, CAS, focuses on remote sensing methods to detect changes in the mountain cryosphere. Collaboration with our Asian partners supports the systematic analysis of the annual cycle of seasonal snow and glacier ice melt across the High Mountain Asia region. With our Asian partners, we have derived reciprocal benefits, learning from their specialized local knowledge and obtaining access to their in situ data. We expect that the improved understanding of runoff from snow and glacier surfaces will inform the development of adaptation and mitigation measures. The CHARIS Project is funded by USAID.

  18. Trends in snowfall versus rainfall in the Western United States--Revisited

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Knowles, N.; Cayan, D. R.

    2015-12-01

    Knowles et al. (J. Climate, 2006) documented long-term (1949-2004) trends in precipitation form, with a smaller fraction of precipitation falling, in recent decades, on days with reported snow compared to days when no snow was reported (and when precipitation was presumably rain). This precipitation-amount-corrected trend was found at three-quarters of 261 cooperative weather stations across the region. The trends correlated with corresponding trends towards warmer winter air temperatures at the weather stations involved. An update of those analyses through the more recent period indicates that the overall swing towards less precipitation fraction occurring on snowy days has continued through the intervening years, with 21st Century rain/snow fractions remaining significantly higher than historical norms at most stations. The same data have also been used to develop site-specific statistical relations between precipitation form (snowy-day precipitation vs purely rainy day) and air temperatures by logistical regressions at over 200 stations across the West, to determine whether the general temperature trends mentioned above have, in fact, been large enough to explain the trending precipitation forms. That is, were the warming trends detected across the West large enough to actually raise temperatures above the local snow-rain thresholds at most stations? The regression relations show that the temperature at which half of the wet days have been snowy historically varies, from station to station, across a range from -2ºC to +4ºC. Thus at some stations winter storm temperatures would have to rise above about -2ºC to markedly impact precipitation forms, while at other stations, temperature had to rise above +4ºC. Nonetheless, observed temperature trends since 1950 have been sufficient to explain the observed regional precipitation-form trends. The fitted precipitation form-temperature relations also provide a basis for estimating precipitation forms in hydrological models and in climate-change projections across the region, allowing—for example—more geographically informed projections of precipitation-form changes under future climates. On the whole, though, the expected relations between warming trends and precipitation-form trends found by Knowles et al. (2006) continue to hold.

  19. Soil properties in the sorted patterned ground of Piata Lazin, NW Italy

    NASA Astrophysics Data System (ADS)

    Freppaz, M.; Letey, S.; Francesconi, R.; Cat Berro, D.; Mercalli, L.; Zanini, E.

    2009-04-01

    Most of the patterned ground phenomena occur in permafrost areas, whose distribution in alpine environments at middle latitudes, is strongly controlled by local climatic conditions, and specifically by snow cover. There are problems in determining the amount of precipitation at a given site in mountain permafrost areas, because snow can be redistributed by wind or avalanches. Surface soil conditions also affect permafrost distribution. Dry blocky surfaces, peaty soils and soils with a thick organic horizon tend to favour permafrost development. The dimensions of patterned ground show significant spatial variability, depending on microclimate and soil conditions. The field study was undertaken in the Gran Paradiso National Park, at an elevation of 3028 m ASL, on a gentle slope plateau, exposed to wind. The dimension and distribution of stone circles was determined through field survey (October 2008). The soil temperature (10 cm depth) during the winter season 2007-2008 was measured by data loggers UTL-1. Nivo-meteorological data were recorded by an automatic weather station located 3 km away (2400 m ASL). Topsoil samples were taken across a section in two stone circles, considering the border of stones and the finer materials in the centre. The number of stone circles was estimated equal to 233/ha, with diameters ranging from 0.5 to 5 m. The diameter of stones on the borders ranged between 5 and 25 cm. Miniature sorted circles (d=10 cm) were recognized in the finer materials in the centre. The mean soil temperature from October 2007 to April 2008 was equal to -4°C, with a minimum of -11.5°C recorded the 17th December 2007, under a thin snow cover accumulated late in the fall season. The soil skeleton content decreased from the borders to the centre, ranging respectively from 42-70% to 33-39%. The area is affected by intense soil frost action especially during winter, presumably due to the lack of snow cover caused by the wind action. The frequency of freeze/thaw cycles may cause the segregation of stones and the concentration of fines into separate domains, which appears to be still an active process in the area.

  20. In Situ Observations of Snow Metamorphosis Acceleration Induced by Dust and Black Carbon

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.

    2017-12-01

    Previous studies demonstrate the dependence of shortwave infrared (SWIR) reflectance on snow specific surface area (SSA) and others examine the direct darkening effect dust and black carbon (BC) deposition has on snow and ice-covered surfaces. The extent to which these light absorbing aerosols (LAAs) accelerate snow metamorphosis, however, is challenging to assess in situ as measurement techniques easily disturb snowpack. Here, we use two Near-Infrared Emitting Reflectance Domes (NERDs) to measure 1300 and 1550nm bidirectional reflectance factors (BRFs) of natural snow and experimental plots with added dust and BC. We obtain NERD measurements and subsequently collect and transport snow samples to the nearby U.S. Army Corps of Engineers' Cold Regions Research and Engineering Lab for micro computed tomography (micro-CT) analysis. Snow 1300 (1550) nm BRFs evolve from 0.6 (0.15) in fresh snow to 0.2 (0.03) after metamorphosis. Hourly-scale time evolving snow surface BRFs and SSA estimates from micro-CT reveal more rapid SWIR darkening and snow metamorphosis in contaminated versus natural plots. Cloudiness and high wind speeds can completely obscure these results if LAAs mobilize before absorbing enough radiant energy. These findings verify experimentally that dust and BC deposition can accelerate snow metamorphosis and enhance snow albedo feedback in sunny, calm weather conditions. Although quantifying the enhancement of snow albedo feedback induced by LAAs requires further surface temperature, solar irradiance, and impurity concentration measurements, this study provides experimental verification of positive feedback occurring where dust and BC accelerate snow metamorphosis.

  1. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  2. Retention and radiative forcing of black carbon in Eastern Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.

    2012-06-01

    Snow and glacier melt water contribute water resources to a fifth of Earth's population. Snow melt processes are sensitive not only to temperature changes, but also changes in albedo caused by deposition of particles such as refractory black carbon (rBC) and continental dust. The concentrations, sources, and fate of rBC particles in seasonal snow and its surface layers are uncertain, and thus an understanding of rBC's effect on snow albedo, melt processes, and radiation balance is critical for water management in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the Eastern Sierra Nevada of California during the snow accumulation and melt seasons of 2009 show that concentrations of rBC were enhanced seven fold in surface snow (~25 ng g-1) compared to bulk values in the snow pack (~3 ng g-1). Unlike major ions which are preferentially released during initial melt, rBC and continental dust are retained in the snow, enhancing concentrations late into spring, until a final flush well into the melt period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing than rBC.

  3. Fluctuating snow line altitudes in the Hunza basin (Karakoram) using Landsat OLI imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, Adina; Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Armstrong, Richard

    2016-04-01

    Snowline altitudes (SLAs) on glacier surfaces are needed for separating snow and ice as input for melt models. When measured at the end of the ablation season, SLAs are used for inferring stable-state glacier equilibrium line altitudes (ELAs). Direct measurements of snowlines are rarely possible particularly in remote, high altitude glacierized terrain, but remote sensing data can be used to separate these snow and ice surfaces. Snow lines are commonly visible on optical satellite images acquired at the end of the ablation season if the images are contrasted enough, and are manually digitized on screen using various satellite band combinations for visual interpretation, which is a time-consuming, subjective process. Here we use Landsat OLI imagery at 30 m resolution to estimate glacier SLAs for a subset of the Hunza basin in the Upper Indus in the Karakoram. Clean glacier ice surfaces are delineated using a standardized semi-automated band ratio algorithm with image segmentation. Within the glacier surface, snow and ice are separated using supervised classification schemes based on regions of interest, and glacier SLAs are extracted on the basis of these areas. SLAs are compared with estimates from a new automated method that relies on fractional snow covered area rather than on band ratio algorithms for delineating clean glacier ice surfaces, and on grain size (instead of supervised classification) for separating snow from glacier ice on the glacier surface. The two methods produce comparable snow/ice outputs. The fSCA-derived glacierized areas are slightly larger than the band ratio estimates. Some of the additional area is the result of better detection in shadows from spectral mixture analysis (true positive) while the rest is shallow water, which is spectrally similar to snow/ice (false positive). On the glacier surface, a thresholding the snow grain size image (grain size > 500μm) results in similar glacier ice areas derived from the supervised classification, but there is noise (snow) on edges of dirty ice/ moraines at the glacier termini and around rock outcrops on the glacier surface. Neither of the two methods distinguishes the debris-covered ice, so these were mapped separately using a combination of topographic indices (slope, terrain curvature), along with remote sensing surface temperature and texture data. Using average elevation of snow and ice areas, we calculate an ELA of 5260 m for 2013. We construct yearly time series of the ELAs around the centerlines of selected glaciers in the Hunza for the period 2000 - 2014 using Landsat imagery. We explore spatial trends in glacier ELAs within the region, as well as relationships between ELA and topographic characteristics extracted on a glacier-by-glacier basis from a digital elevation model.

  4. Putting the Capital 'A' in CoCoRAHS: A Pilot Program to Measure Albedo using the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Stampone, M. D.; Wake, C. P.; Dibb, J. E.

    2012-12-01

    The Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network, started in 1998 as a community-based network of volunteer weather observer in Colorado, is the single largest provider of daily precipitation observations in the United States. We embrace the CoCoRaHS mission to use low-cost measurement tools, provide training and education, and utilize an interactive website to collect high quality albedo data for research and education applications. We trained a select sub-set of CoCoRaHS's eighteen most enthusiastic, self-proclaimed 'weather nuts' in the state of New Hampshire to collect surface albedo, snow depth, and snow density measurements between 23-Nov-2011 and 15-Mar-2012. At less than 700 per observer, the low-cost albedo data falls within ±0.05 of albedo values collected from a First Class Kipp and Zonen Albedometer (CMA6) at local solar noon. CoCoRaHS albedo values range from 0.99 for fresh snow to 0.34 for shallow, aged snow. Snow-free albedo ranges from 0.09 to 0.39, depending on ground cover. Albedo is found to increase logarithmically with snow depth and decrease linearly with snow density. The latter relationship with snow density is inferred to be a proxy for increasing snow grain size as snowpack ages and compacts, supported by spectral albedo measurements collected with an ASD FieldSpec4 spectrometer. The newly established albedo network also serves as a development test bed for interactive online mapping and graphing applications for CoCoRaHS observers to investigate spatial and temporal patterns in albedo, snow depth, and snow density (www.cocorahs-albedo.org). The 2012-2013 field season will include low-cost infrared temperature guns (<40 each) to investigate the relationship between surface albedo and skin temperature. We have also recruited middle- and high-schools as volunteer observers and are working with the teachers to develop curriculum and lesson plans that utilize the low-cost measurement tools provided by CoCoRAHS. CoCoRAHS data will provide critical spatially distributed measurements of surface data that will be used to validate and improve land surface modeling of New Hampshire climate under different land cover scenarios. Building on the success of the first season, the newly established albedo network shows promise to put the capital 'A' in CoCoRAHS.Figure 1. (a) Map of Community Collaborative Rain, Hail, and Snow (CoCoRAHS) volunteers participating in the pilot albedo project, and (b) CoCoRAHS snow measurement kit.

  5. Let it snow! Let it snow! Let it snow! Estimating cocaine production using a novel dataset based on reported seizures of laboratories in Colombia.

    PubMed

    Leoncini, Riccardo; Rentocchini, Francesco

    2012-11-01

    Data on the cocaine market appear inconsistent, as they tend to show declining prices vis-a-vis steady or increasing demand and a declining supply. This paper proposes an explanation for this trend by providing evidence of an under-estimation of the supply of cocaine. We propose a conservative estimate of cocaine production in Colombia for 2008, using data based on all reported seizures from 328 laboratories made by the counteracting organisations operating within the Colombian territory. Our conservative estimate of 935 tons from the seized laboratories is at least twice the estimate declared in official statistics of 295-450 tons. We are careful to keep all variables to their minimum boundary values. Our methodology could prove to be a useful tool, especially if used in parallel with the standard tools. Moreover, its characteristics (affordability, ease of use and potential for worldwide adoption) make it a powerful instrument to counteract cocaine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Lessons learned from the snow emergency management of winter season 2008-2009 in Piemonte

    NASA Astrophysics Data System (ADS)

    Bovo, Dr.; Pelosini, Dr.; Cordola, Dr.

    2009-09-01

    The winter season 2008-2009 has been characterized by heavy snowfalls over the whole Piemonte, in the Western Alps region. The snowfalls have been exceptional because of their earliness, persistence and intensity. The impact on the regional environment and territory has been relevant, also from the economical point of view, as well as the effort of the people involved in the forecasting, prevention and fighting actions. The environmental induced effects have been shown until late spring. The main critical situations have been arisen from the snowfalls earliness in season, the several snow precipitation events over the plains, the big amount of snow accumulation on the ground, as well as the anomaly with respect to the last 30 years climatic trend of snow conditions in Piemonte. The damage costs to the public property caused by the snowfalls have been estimated by the Regione Piemonte to be 470 million euros, giving evidence of the real emergency dimension of the event, never occurred during the last 20 years. The technical support from the Regional Agency for Environmental Protection of Regione Piemonte (Arpa Piemonte) to the emergency management allowed to analyse and highlight the direct and induced effects of the heavy snowfalls, outlining risk scenarios characterized by different space and time scales. The risk scenarios deployment provided a prompt recommendation list, both for the emergency management and for the natural phenomena evolution surveillance planning to assure the people and property safety. The risk scenarios related to the snow emergency are different according to the geographical and anthropic territory aspects. In the mountains, several natural avalanche releases, characterized frequently by a large size, may affect villages, but they may also interrupt the main and secondary roads both down in the valleys and small villages road access, requiring a long time for the complete and safe snow removal and road re-opening. The avalanches often cause the service breakdowns and damage the infrastructures in the built-up areas and the forest heritage. Critical situations due to the snow loading and the snow removal necessity involve all the mountain people directly. Over the plain and the hill country, where the new snow density is generally high giving rise to effects related to its load capacity, to the isolation of little residential and rural settlements, several damages on the secondary road system due to the tree and tree branch falls comes up , together with many public services interruptions (electric power and telephone), warehouse and barn collapses, determining a widespread critical situation. The urban and commuting traffic during the snow emergency enhances the difficulties related to the road management and traffic control over the whole road system in the plains, even with little snow accumulation on the ground. Critical situations may also arise from road frost and intense freezing spells. The operational implementation of the technical rules for the snow emergency management, tested the first time during the event in a dynamic way, pointed out its drawbacks and potentiality, highlighting the "emergency preparedness" importance at different institutional levels, with the population and stakeholder involvement. Some measures have to be especially underlined: the coordination of the snow monitoring over the territory performed by the local operators (avalanche activity and linked damages reporting) and the steps taken locally; the improvement of the tools for the snow pack evaluation to drive the avalanche artificial triggering off, in case of snow mass hazard assessment, and their regional coordination. Moreover it is important to define the standard, acknowledged and accepted prevention actions suited to minimize the heavy snowfall effects, with particular attention to the viableness,to the school systemopening/closing and to the preventive information care in order to avoid the missing perception of the risk. Special attention must be paid to the hydrogeological risk condition assessment, forecasting and surveillance. In fact they are enhanced by the winter heavy snowfalls and show their effects during the following season. The improvement in the prediction of the risk evolution scenarios and in the prevention action planning helps the decision making to a considerable degree.

  7. Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model

    NASA Astrophysics Data System (ADS)

    Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.

    2017-12-01

    Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and in four out of five physiographic regions.

  8. Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)

    NASA Technical Reports Server (NTRS)

    Toure, Ally M.; Rodell, Matthew; Yang, Zong-Liang; Beaudoing, Hiroko; Kim, Edward; Zhang, Yongfei; Kwon, Yonghwan

    2015-01-01

    This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30 deg N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of -1.54 x 10(exp 2) sq km. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow-no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044m (0.19 m) and -0.010m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.

  9. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  10. Experimental investigation of drifting snow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2015-11-01

    Drifting snow has a significant impact on snow distribution in mountains, prairies as well as on glaciers and polar regions. In all these environments, the local mass balance is highly influenced by drifting snow. Despite most of the model approaches still rely on the assumption of steady-state and equilibrium saltation, recent advances have proven the mass-transport of drifting snow events to be highly intermittent. A clear understanding of such high intermittency has not yet been achieved. Therefore in our contribution we investigate mass- and momentum fluxes during drifting snow events, in order to better understand that the link between snow cover erosion and deposition. Experiments were conducted in a cold wind tunnel, employing sensors for the momentum flux measurements, the mass flux measurement and for the snow depth estimation over a certain area upstream of the other devices. Preliminary results show that the mass flux is highly intermittent at scales ranging from eddy turnover time to much larger scales. The former scales are those that contribute the most to the overall intermittency and we observe a link between the turbulent flow structures and the mass flux of drifting snow at those scales. The role of varying snow properties in inducing drifting snow intermittency goes beyond such link and is expected to occur at much larger scales, caused by the physical snow properties such as density and cohesiveness.

  11. Multi-resolution Changes in the Spatial Extent of Perennial Arctic Alpine Snow and Ice Fields with Potential Archaeological Significance in the Central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Tedesche, M. E.; Freeburg, A. K.; Rasic, J. T.; Ciancibelli, C.; Fassnacht, S. R.

    2015-12-01

    Perennial snow and ice fields could be an important archaeological and paleoecological resource for Gates of the Arctic National Park and Preserve in the central Brooks Range mountains of Arctic Alaska. These features may have cultural significance, as prehistoric artifacts may be frozen within the snow and ice. Globally significant discoveries have been made recently as ancient artifacts and animal dung have been found in melting alpine snow and ice patches in the Southern Yukon and Northwest Territories in Canada, the Wrangell mountains in Alaska, as well as in other areas. These sites are melting rapidly, which results in quick decay of biological materials. The summer of 2015 saw historic lows in year round snow cover extent for most of Alaska. Twenty mid to high elevation sites, including eighteen perennial snow and ice fields, and two glaciers, were surveyed in July 2015 to quantify their areal extent. This survey was accomplished by using both low flying aircraft (helicopter), as well as with on the ground in-situ (by foot) measurements. By helicopter, visual surveys were conducted within tens of meters of the surface. Sites visited by foot were surveyed for extent of snow and ice coverage, melt water hydrologic parameters and chemistry, and initial estimates of depths and delineations between snow, firn, and ice. Imagery from both historic aerial photography and from 5m resolution IKONOS satellite information were correlated with the field data. Initial results indicate good agreement in permanent snow and ice cover between field surveyed data and the 1985 to 2011 Landsat imagery-based Northwest Alaska snow persistence map created by Macander et al. (2015). The most deviation between the Macander et al. model and the field surveyed results typically occurred as an overestimate of perennial extent on the steepest aspects. These differences are either a function of image classification or due to accelerated ablation rates in perennial snow and ice coverage between 2011 and 2015. Further work is ongoing to develop a model to guide archaeological and paleoecological snow and ice field surveys. This will entail a fine scale, empirically based model of accumulation and ablation to estimate changes in three dimensional geometries of historically perennial arctic alpine snow and ice fields in the study area.

  12. Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.

    2014-12-01

    Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.

  13. Effects of the May 5-6, 1973, storm in the Greater Denver area, Colorado

    USGS Publications Warehouse

    Hansen, Wallace R.

    1973-01-01

    Rain began falling on the Greater Denver area the evening of Saturday, May 5, 1973, and continued through most of Sunday, May 6. Below about 7,000 feet altitude, the precipitation was mostly rain; above that altitude, it was mostly snow. Although the rate of fall was moderate, at least 4 inches of rain or as much as 4 feet of snow accumulated in some places. Sustained precipitation falling at a moderate rate thoroughly saturated the ground and by midday Sunday sent most of the smaller streams into flood stage. The South Platte River and its major tributaries began to flood by late Sunday evening and early Monday morning. Geologic and hydrologic processes activated by the May 5-6 storm caused extensive damage to lands and to manmade structures in the Greater Denver area. Damage was generally most intense in areas where man had modified the landscape--by channel constrictions, paving, stripping of vegetation and topsoil, and oversteepening of hillslopes. Roads, bridges, culverts, dams, canals, and the like were damaged or destroyed by erosion and sedimentation. Streambanks and structures along them were scoured. Thousands of acres of croplands, pasture, and developed urban lands were coated with mud and sand. Flooding was intensified by inadequate storm sewers, blocked drains, and obstructed drainage courses. Saturation of hillslopes along the Front Range caused rockfalls, landslides, and mudflows as far west as Berthoud Pass. Greater attention to geologic conditions in land-use planning, design, and construction would minimize storm damage in the future.

  14. Vigorous dynamics underlie a stable population of the endangered snow leopard Panthera uncia in Tost Mountains, South Gobi, Mongolia.

    PubMed

    Sharma, Koustubh; Bayrakcismith, Rana; Tumursukh, Lkhagvasumberel; Johansson, Orjan; Sevger, Purevsuren; McCarthy, Tom; Mishra, Charudutt

    2014-01-01

    Population monitoring programmes and estimation of vital rates are key to understanding the mechanisms of population growth, decline or stability, and are important for effective conservation action. We report, for the first time, the population trends and vital rates of the endangered snow leopard based on camera trapping over four years in the Tost Mountains, South Gobi, Mongolia. We used robust design multi-season mark-recapture analysis to estimate the trends in abundance, sex ratio, survival probability and the probability of temporary emigration and immigration for adult and young snow leopards. The snow leopard population remained constant over most of the study period, with no apparent growth (λ = 1.08+-0.25). Comparison of model results with the "known population" of radio-collared snow leopards suggested high accuracy in our estimates. Although seemingly stable, vigorous underlying dynamics were evident in this population, with the adult sex ratio shifting from being male-biased to female-biased (1.67 to 0.38 males per female) during the study. Adult survival probability was 0.82 (SE+-0.08) and that of young was 0.83 (SE+-0.15) and 0.77 (SE +-0.2) respectively, before and after the age of 2 years. Young snow leopards showed a high probability of temporary emigration and immigration (0.6, SE +-0.19 and 0.68, SE +-0.32 before and after the age of 2 years) though not the adults (0.02 SE+-0.07). While the current female-bias in the population and the number of cubs born each year seemingly render the study population safe, the vigorous dynamics suggests that the situation can change quickly. The reduction in the proportion of male snow leopards may be indicative of continuing anthropogenic pressures. Our work reiterates the importance of monitoring both the abundance and population dynamics of species for effective conservation.

  15. Diagnosing land management and climate change impacts on snowmelt in semi-arid agricultural cold regions with an improved snowmelt model

    NASA Astrophysics Data System (ADS)

    Harder, P.; Pomeroy, J. W.; Helgason, W.

    2017-12-01

    Spring snowmelt is the most important hydrological event in semi-arid agricultural cold regions, recharging soil moisture and generating the majority of annual runoff. Adoption of no-till agricultural practices means vast areas of the Canadian Prairies, and other analogous regions, are characterized by standing crop stubble. The emergence of stubble during snowmelt will have important implications for the snowpack energy balance. In addition, spatiotemporally dynamic snowcover heterogeneity leads to enhancement of turbulent flux contributions to melt by advection of energy from warm moist bare ground to snow. Stubble emergence and advection are generally unaccounted for in snow models. To address these challenges a stubble-snow-atmosphere surface energy balance model is developed that relates stubble parameters to the snow surface energy balance. Existing fractal understandings of snowcover geometry are applied to a conceptualized boundary layer integration model to estimate a sensible and latent heat advection efficiency. The small-scale nature of stubble-snow-atmosphere interactions makes direct validation of the energy balance terms challenging. However, the energy balance estimates are assessed by comparing to measured snow and stubble surface temperatures, snow surface incoming shortwave radiation and areal average turbulent fluxes. Advection estimates are validated from a two-dimensional air temperature, water vapor and windspeed profiles. Snowcover geometry relationships are validated/updated with unmanned air vehicle observations. Observations for model assessment occurred in 2015 and 2016 on wheat and canola stubble fields in north-central Saskatchewan, Canada. The model is not calibrated to melt rates, yet compares well with available observations, providing confidence in the model structure and parameterization. Sensitivity analysis using the model revealed compensatory relationships in energy balance terms resulting in limited reduction of energy available for snowmelt as stubble height increases. The proposed model is used to diagnose the influence of stubble management and climate change on melt processes to reveal the potential implications on runoff generation, infiltration and land-atmosphere interactions.

  16. Vigorous Dynamics Underlie a Stable Population of the Endangered Snow Leopard Panthera uncia in Tost Mountains, South Gobi, Mongolia

    PubMed Central

    Sharma, Koustubh; Bayrakcismith, Rana; Tumursukh, Lkhagvasumberel; Johansson, Orjan; Sevger, Purevsuren; McCarthy, Tom; Mishra, Charudutt

    2014-01-01

    Population monitoring programmes and estimation of vital rates are key to understanding the mechanisms of population growth, decline or stability, and are important for effective conservation action. We report, for the first time, the population trends and vital rates of the endangered snow leopard based on camera trapping over four years in the Tost Mountains, South Gobi, Mongolia. We used robust design multi-season mark-recapture analysis to estimate the trends in abundance, sex ratio, survival probability and the probability of temporary emigration and immigration for adult and young snow leopards. The snow leopard population remained constant over most of the study period, with no apparent growth (λ = 1.08+−0.25). Comparison of model results with the “known population” of radio-collared snow leopards suggested high accuracy in our estimates. Although seemingly stable, vigorous underlying dynamics were evident in this population, with the adult sex ratio shifting from being male-biased to female-biased (1.67 to 0.38 males per female) during the study. Adult survival probability was 0.82 (SE+−0.08) and that of young was 0.83 (SE+−0.15) and 0.77 (SE +−0.2) respectively, before and after the age of 2 years. Young snow leopards showed a high probability of temporary emigration and immigration (0.6, SE +−0.19 and 0.68, SE +−0.32 before and after the age of 2 years) though not the adults (0.02 SE+−0.07). While the current female-bias in the population and the number of cubs born each year seemingly render the study population safe, the vigorous dynamics suggests that the situation can change quickly. The reduction in the proportion of male snow leopards may be indicative of continuing anthropogenic pressures. Our work reiterates the importance of monitoring both the abundance and population dynamics of species for effective conservation. PMID:25006879

  17. Annual Soil Temperature Wave at Four Depths in Southwestern Wisconsin

    Treesearch

    Richard S. Sartz

    1967-01-01

    Soil temperature was measured for a year on a southeast-facing slope of 25 percent, latitude 43 degrees 50 minutes N. The spring-summer cover was unmowed alfalfa-bluegrass meadow, the fall-winter cover, meadow stubble. Snow cover was light or absent. The soil was Fayette silt loam, valley phase. The annual temperature wave at all depths followed the air temperature...

  18. [Changes in skiing accidents during the last 20 years].

    PubMed

    Röthlisberger, M

    1990-01-01

    Since 23 years the skiing-accidents are statistically surveyed in the private practice of the author. The number of injured patients is continuously decreasing. Specially the injuries in years with little snow fall are analyzed. It is evident that leg fractures are quite rare but severe injuries of the knee are increasing. 50% of ski accidents are minor injuries.

  19. Annual cycles of soil and water temperatures at Hubbard Brook

    Treesearch

    C. Anthony Federer

    1973-01-01

    Soil temperatures in the Hubbard Brook Experimental Forest in central New Hampshire decline very slowly from December to March and are restricted from falling below OºC by insulation of snow and organic matter. Soil in the hardwood forest on a moderate south slope warms rapidly in the spring leafless period after snowmelt and reaches a maximum temperature in...

  20. Uncertainty in the Future of Seasonal Snowpack over North America.

    NASA Astrophysics Data System (ADS)

    McCrary, R. R.; Mearns, L.

    2017-12-01

    The uncertainty in future changes in seasonal snowpack (snow water equivalent, SWE) and snow cover extent (SCE) for North America are explored using the North American Regional Climate Change Assessment Program (NARCCAP) suite of regional climate models (RCMs) and their driving CMIP3 global circulation models (GCMs). The higher resolution of the NARCCAP RCMs is found to add significant value to the details of future projections of SWE in topographically complex regions such as the Pacific Northwest and the Rocky Mountains. The NARCCAP models also add detailed information regarding changes in the southernmost extent of snow cover. 11 of the 12 NARCCAP ensemble members contributed SWE output which we use to explore the uncertainty in future snowpack at higher resolution. In this study, we quantify the uncertainty in future projections by looking at the spread of the interquartile range of the different models. By mid-Century the RCMs consistently predict that winter SWE amounts will decrease over most of North America. The only exception to this is in Northern Canada, where increased moisture supply leads to increases in SWE in all but one of the RCMs. While the models generally agree on the sign of the change in SWE, there is considerable spread in the magnitude (absolute and percent) of the change. The RCMs also agree that the number of days with measureable snow on the ground is projected to decrease, with snow accumulation occurring later in the Fall/Winter and melting starting earlier in the Spring/Summer. As with SWE amount, spread across the models is large for changes in the timing of the snow season and can vary by over a month between models. While most of the NARCCAP models project a total loss of measurable snow along the southernmost edge of their historical range, there is considerable uncertainty about where this will occur within the ensemble due to the bias in snow cover extent in the historical simulations. We explore methods to increase our confidence about the regions that will lose any seasonal snow.

  1. Quantifying forest mortality with the remote sensing of snow

    NASA Astrophysics Data System (ADS)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and needlefall, showing that needlefall occurred an average of 2.6 +/- 1.2 years after green-stage mortality. We relate observed increases in the VGF with crown mortality, showing that a 1% increase in mortality area produces a 0.33 +/- 0.1 % increase in the VGF.

  2. Spatial Relationships Between Snow Contaminant Content, Grain Size, and Surface Temperature in Multi-spectral Remote Sensing Data of Mt. Rainier, WA

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Hansen, G.; Gillespie, A.; Pettit, E.

    2002-12-01

    Relating cryosphere change to climate change requires estimation of radiative fluxes on snow-covered surfaces. The distribution of, and relationship between, snow-pack properties that affect radiative balance can be estimated with high-resolution remote-sensing data. MODIS/ASTER airborne simulator (MASTER) data were collected at Mt. Rainier to reveal spatial patterns of, and correlations between, snow contaminant content, grain size, and temperature. The visible and near-infrared (VNIR: 11 bands, 0.4-1.0 μm) and the short-wave infrared (SWIR: 14 bands, 1.6-2.4 μm) data are processed to bi-directional reflectance (BDR) and albedo, by removing atmospheric effects and by normalizing to Solar irradiance and incidence angle. VNIR BDR and albedo are used as a proxy for snow contaminant content. Physical and optical grain size are estimated by comparing SWIR BDR and albedo to modeled and measured spectra, and ground-truth measurements. The thermal infrared data (TIR: 10 bands, 8-13 μm) are processed to temperature by removing emissivity and atmospheric effects. In combination, the VNIR, SWIR, and TIR data reveal a distinct pattern of contaminants, grain size, and temperature related to a recent snowfall and the end-of-the-summer melting season. At lower elevations, the surface accumulation of dirty lag deposits resulted in snow with very low visible albedo (20-30 %), large physical and optical grain radii (500-1500 μm, 200 μm), and temperatures near the melting point. At higher elevations, the recent snowfall left snow with low contaminant content, and a higher visible albedo (60-90 %). However, a region near the summit with smaller physical and optical grain radii (400 μm, 100 μm), and temperatures below the melting point, is distinguished from a middle elevation region with grain sizes and temperatures similar to the lower region. Contaminants reduce VNIR albedo and significantly enhance absorption of incoming solar radiation. The spatial correlation between temperature and grain size supports the idea that rapid, destructive metamorphism occurs when snow temperatures are at the melting point.

  3. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclaurin, Galen; Sengupta, Manajit; Xie, Yu

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less

  4. Geophysical investigations of underplating at the Middle American Trench, weathering in the critical zone, and snow water equivalent in seasonal snow

    NASA Astrophysics Data System (ADS)

    St. Clair, James

    This dissertation consists of four chapters that are broadly related through the use of geophysical methods to investigate Earth processes. In Chapter 1, an along-strike seismic reflection/refraction data set is used to investigate the plate boundary beneath the forearc offshore Costa Rica. The convergent margin offshore Costa Rica is representative of the 19,000 km of subduction zones that are considered to be erosive, or that experience a net mass loss over time. At these margins, sediments along with material that is tectonically eroded from the overlying plate are presumably carried down the subduction zones and recycled into the mantle. In addition to the mass that they represent, sediments, eroded upper-plate material, and subducted oceanic crust carry fluids into the subduction zone, which influence both magma generating processes and the chemical composition of arc lavas. Thus, understanding the ultimate fate of subducted material along these margins is critical for evaluating both the chemical and mass balances. Beneath the forearc offshore Costa Rica, we observe an ˜40 km long, 1-to-3 km-thick lens of material sitting directly above the subducting Cocos plate. Directly above this lens, the forearc shows evidence for long-term uplift consistent with the steady growth of this lens. Our results suggest that the convergent margin at Costa Rica experience simultaneous outer-forearc erosion and underplating beneath the inner forearc. In Chapter 2, a combination of three-dimensional stress modeling and landscape scale geophysical imaging is used to test the hypothesis that topographic perturbations to regional stress fields control lateral variations in bedrock permeability. The permeability of bedrock fractures influences groundwater flow, water and nutrient availability for biota, chemical weathering rates, and the long-term evolution of life-sustaining layer at Earth's surface commonly referred to as the "critical zone" (CZ). The results of this study indicate that to a first order, the permeability structure of the CZ can be predicted with knowledge of the regional tectonic stress field and local topography. In landscapes characterized by strongly compressive tectonic stresses or closely space ridges and valleys, deep zones of permeable bedrock are found beneath ridges, while the depth to impermeable bedrock beneath drainages is comparatively shallow. In landscapes characterized by weakly compressive tectonic stresses or widely spaced ridges and valleys, the depth to impermeable bedrock is approximately uniform throughout the landscape. In Chapter 3, a semi-automated method of estimating snow water equivalent (SWE) in seasonal snow packs from common offset Ground Penetrating Radar (GPR) data is presented. Many mountainous regions of the world depend on seasonal snow for fresh water resources. Water forecasting relies principally on historical records that relate SWE observations at a limited number of locations to stream discharge. As climate change contributes to a wider range of variability in seasonal snow fall, water forecasts are likely to become less reliable, thus there is a need to find new methods of estimating how much water is stored in seasonal snow. GPR has been shown to be an effective tool for measuring SWE if the radar velocity can be measured. In this chapter, a method that was originally developed to measure seismic velocities from zero-offset seismic reflection data is applied to common-offset GPR data collected over seasonal snow. The method involves suppressing continuous reflections in the image so that the velocity information contained in diffracted energy can be exploited. The filtered images are migrated through a suite of velocities and the velocity that best focus the diffracted energy is chosen on the basis of the varimax norm, which measures how peaked the energy distribution is. GPR derived SWE estimates agree with manual measurements within the uncertainty bounds of both methods. In Chapter 4, a travel-time tomography code written in Matlab is presented. Rays are traced using the shortest path algorithm, smoothness constraints are implemented with first and second order derivative operators, and the inversion is carried out with built in Matlab functions. The primary strength of this code lies is the ability to automate monte-carlo uncertainty analyses in which a data set is inverted many times with different starting models. The code is tested with a synthetic data set.

  5. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    NASA Astrophysics Data System (ADS)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles (< 0.5 m s-1) coexisted with faster-falling particles (> 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested large, faster-falling, high-reflectivity particles, consistent with large aggregates (> 1 cm) observed at the ground. The presentation will show an advanced analysis using synergy between multi frequency, polarimetry, and Doppler spectra measurements.

  6. Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the Northern Great Plains

    USGS Publications Warehouse

    Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.

    2005-01-01

    Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.

  7. Large scale snow water status monitoring: comparison of different snow water products in the upper Colorado basins

    USGS Publications Warehouse

    Artan, G.A.; Verdin, J.P.; Lietzow, R.

    2013-01-01

    We illustrate the ability to monitor the status of snowpack over large areas by using a~spatially distributed snow accumulation and ablation model in the Upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) datasets; remaining meteorological model input data was from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a~region of the Western United States that covers parts of the Upper Colorado Basin. We also compared the SWE product estimated from the Special Sensor Microwave Imager (SSM/I) and Scanning Multichannel Microwave Radiometer (SMMR) to the SNODAS and SNOTEL SWE datasets. Agreement between the spatial distribution of the simulated SWE with both SNODAS and SNOTEL was high for the two model runs for the entire snow accumulation period. Model-simulated SWEs, both with MPE and TRMM, were significantly correlated spatially on average with the SNODAS (r = 0.81 and r = 0.54; d.f. = 543) and the SNOTEL SWE (r = 0.85 and r = 0.55; d.f. = 543), when monthly basinwide simulated average SWE the correlation was also highly significant (r = 0.95 and r = 0.73; d.f. = 12). The SWE estimated from the passive microwave imagery was not correlated either with the SNODAS SWE or (r = 0.14, d.f. = 7) SNOTEL-reported SWE values (r = 0.08, d.f. = 7). The agreement between modeled SWE and the SWE recorded by SNODAS and SNOTEL weakened during the snowmelt period due to an underestimation bias of the air temperature that was used as model input forcing.

  8. Retention and radiative forcing of black carbon in eastern Sierra Nevada snow

    NASA Astrophysics Data System (ADS)

    Sterle, K. M.; McConnell, J. R.; Dozier, J.; Edwards, R.; Flanner, M. G.

    2013-02-01

    When contaminated by absorbing particles, such as refractory black carbon (rBC) and continental dust, snow's albedo decreases and thus its absorption of solar radiation increases, thereby hastening snowmelt. For this reason, an understanding of rBC's affect on snow albedo, melt processes, and radiation balance is critical for water management, especially in a changing climate. Measurements of rBC in a sequence of snow pits and surface snow samples in the eastern Sierra Nevada of California during the snow accumulation and ablation seasons of 2009 show that concentrations of rBC were enhanced sevenfold in surface snow (~25 ng g-1) compared to bulk values in the snowpack (~3 ng g-1). Unlike major ions, which were preferentially released during the initial melt, rBC and continental dust were retained in the snow, enhancing concentrations well into late spring, until a final flush occurred during the ablation period. We estimate a combined rBC and continental dust surface radiative forcing of 20 to 40 W m-2 during April and May, with dust likely contributing a greater share of the forcing.

  9. Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice

    NASA Technical Reports Server (NTRS)

    Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.

    2007-01-01

    An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.

  10. Domain-averaged snow depth over complex terrain from flat field measurements

    NASA Astrophysics Data System (ADS)

    Helbig, Nora; van Herwijnen, Alec

    2017-04-01

    Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.

  11. Sublimation From Snow in Northern Environments

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.

    2002-12-01

    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  12. Estimation of the spatiotemporal dynamics of snow covered area by using cellular automata models

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Collados-Lara, Antonio-Juan; Pulido-Velazquez, David

    2017-07-01

    Given the need to consider the cryosphere in water resources management for mountainous regions, the purpose of this paper is to model the daily spatially distributed dynamics of snow covered area (SCA) by using calibrated cellular automata models. For the operational use of the calibrated model, the only data requirements are the altitude of each cell of the spatial discretization of the area of interest and precipitation and temperature indexes for the area of interest. For the calibration step, experimental snow covered area data are needed. Potential uses of the model are to estimate the snow covered area when satellite data are absent, or when they provide a temporal resolution different from the operational resolution, or when the satellite images are useless because they are covered by clouds or because there has been a sensor failure. Another interesting application is the simulation of SCA dynamics for the snow covered area under future climatic scenarios. The model is applied to the Sierra Nevada mountain range, in southern Spain, which is home to significant biodiversity, contains important water resources in its snowpack, and contains the most meridional ski resort in Europe.

  13. Potential Elevation Biases for Laser Altimeters from Subsurface Scattered Photons: Laboratory and Model Exploration of Green Light Scattering in Snow

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.

    2015-12-01

    Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.

  14. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  15. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  16. Estimating the Application Rate of Liquid Chloride Products Based on Residual Salt Concentration on Pavement

    DOT National Transportation Integrated Search

    2018-03-21

    This technical report summarizes the results of laboratory testing on asphalt and concrete pavement. A known quantity of salt brine was applied as an anti-icer, followed by snow application, traffic simulation, and mechanical snow removal via simulat...

  17. Investigation of the impact of snow removal activities on pavement markings in Virginia.

    DOT National Transportation Integrated Search

    1995-01-01

    Snow removal activities resulted in substantial damage to pavement markings in Virginia over the last 2 years. Typically, the estimates of the extent of pavement marking damage are based on the observations of the staff of the Virginia Department of ...

  18. How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Yao, Zhijun

    2017-04-01

    Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.

  19. Open System Tribology and Influence of Weather Condition.

    PubMed

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-08-30

    The tribology of an open system at temperatures ranging between 3 °C and -35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to -15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to -25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear.

  20. Open System Tribology and Influence of Weather Condition

    PubMed Central

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-01-01

    The tribology of an open system at temperatures ranging between 3 °C and −35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to −15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to −25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear. PMID:27573973

  1. Satellite Estimation of Spectral Surface UV Irradiance. 2; Effect of Horizontally Homogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Krothov, N.; Herman, J. R.; Bhartia, P. K.; Ahmad, Z.a; Fioletov, V.

    1998-01-01

    The local variability of UV irradiance at the Earth's surface is mostly caused by clouds in addition to the seasonal variability. Parametric representations of radiative transfer RT calculations are presented for the convenient solution of the transmission T of ultraviolet radiation through plane parallel clouds over a surface with reflectivity R(sub s). The calculations are intended for use with the Total Ozone Mapping Spectrometer (TOMS) measured radiances to obtain the calculated Lambert equivalent scene reflectivity R for scenes with and without clouds. The purpose is to extend the theoretical analysis of the estimation of UV irradiance from satellite data for a cloudy atmosphere. Results are presented for a range of cloud optical depths and solar zenith angles for the cases of clouds over a low reflectivity surface R(sub s) less than 0.1, over a snow or ice surface R(sub s) greater than 0.3, and for transmission through a non-conservative scattering cloud with single scattering albedo omega(sub 0) = 0.999. The key finding for conservative scattering is that the cloud-transmission function C(sub T), the ratio of cloudy-to clear-sky transmission, is roughly C(sub T) = 1 - R(sub c) with an error of less than 20% for nearly overhead sun and snow-free surfaces. For TOMS estimates of UV irradiance in the presence of both snow and clouds, independent information about snow albedo is needed for conservative cloud scattering. For non-conservative scattering with R(sub s) greater than 0.5 (snow) the satellite measured scene reflectance cannot be used to estimate surface irradiance. The cloud transmission function has been applied to the calculation of UV irradiance at the Earth's surface and compared with ground-based measurements.

  2. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack accumulation and this increase can be efficiently estimated at a landscape scale using satellite data.

  3. Planetesimal formation starts at the snow line

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Alibert, Y.

    2017-12-01

    Context. The formation stage of planetesimals represents a major gap in our understanding of the planet formation process. Late-stage planet accretion models typically make arbitrary assumptions about planetesimal and pebble distribution, while dust evolution models predict that planetesimal formation is only possible at some orbital distances. Aims: We wish to test the importance of the water snow line in triggering the formation of the first planetesimals during the gas-rich phase of a protoplanetary disk, when cores of giant planets have to form. Methods: We connected prescriptions for gas disk evolution, dust growth and fragmentation, water ice evaporation and recondensation, the transport of both solids and water vapor, and planetesimal formation via streaming instability into a single one-dimensional model for protoplanetary disk evolution. Results: We find that processes taking place around the snow line facilitate planetesimal formation in two ways. First, because the sticking properties between wet and dry aggregates change, a "traffic jam" inside of the snow line slows the fall of solids onto the star. Second, ice evaporation and outward diffusion of water followed by its recondensation increases the abundance of icy pebbles that trigger planetesimal formation via streaming instability just outside of the snow line. Conclusions: Planetesimal formation is hindered by growth barriers and radial drift and thus requires particular conditions to take place. The snow line is a favorable location where planetesimal formation is possible for a wide range of conditions, but not in every protoplanetary disk model, however. This process is particularly promoted in large cool disks with low intrinsic turbulence and an increased initial dust-to-gas ratio. The movie attached to Fig. 3 is only available at http://www.aanda.org

  4. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  5. Simulating Black Carbon and Dust and their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Hu, Zhiyuan; Qian, Yun

    2014-10-30

    A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in themore » clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 μg g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.« less

  6. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    NASA Astrophysics Data System (ADS)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  7. The pulse of a montane ecosystem: coupled diurnal cycles in solar flux, snowmelt, evapotranspiration, groundwater, and streamflow at Sagehen Creek (Sierra Nevada, California)

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2016-04-01

    Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow-covered, and negatively correlated with solar flux when the whole catchment is snow-free. The correlation with solar flux gradually shifts from positive to negative over several weeks, as the snow-covered area contracts higher and higher in the basin. The dates at which the snowmelt and ET signals in the stream cancel each other out occur systematically later at higher altitudes along the stream's longitudinal profile. At these particular dates, it may be possible to infer spatially averaged rates of ET (which are difficult to measure accurately) from spatially averaged rates of snowmelt (which can be estimated somewhat more straightforwardly from energy balance). These observations illustrate how groundwater and stream stage fluctuations are mirrors of the landscape, reflecting the energetics of snowmelt and evapotranspiration at the plot and catchment scale.

  8. Estimating Snow Water Equivalent over the American River in the Sierra Nevada Basin Using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.

    2011-12-01

    We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.

  9. Obtaining sub-daily new snow density from automated measurements in high mountain regions

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc

    2018-05-01

    The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow pillows are appropriate for calculating station mean new snow densities, we recommend instruments with higher accuracy e.g. optical devices for more reliable investigations of the variability of new snow densities at sub-daily intervals.

  10. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  11. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover, which prevents cooling. Reina Sofia shows a very different behavior from the other sites, with a frequent stabilization of ground temperatures during all the winters, and last until late-fall. This situation could be related to the structure, and physical and thermal properties of snow cover. The analysis of the Freezing Degree Days (FDDs) and freezing n-factor reveals significant interannual variations. Ohridski shows the highest FDDs values followed by Reina Sofia. Nuevo Incinerador showed the lowest FDDs values. The freezing n-factor shows highest values at Ohridski, followed by Collado Ramos and Reina Sofia with very similar values. Nuevo Incinerador shows the lowest n-factor values. Snow cover doesn't insulate the ground from freezing, but depending on its thickness, density and the amount of heat in the ground, it decreases ground temperatures amplitudes and increases delays relative to air temperature changes. Even where snow cover remains several centimeters thick for several months, slow decrease of bottom temperature is possible, reaching a minimum value at the end of the winter. The results demonstrate that Reina Sofia and Ohridski sites, because of the seasonal behavior, FDDs and freezing n-factor, demonstrate higher winter ground cooling. This research was funded by PERMANTAR-3 (PTDC/AAG-GLO/3908/2012) project (Fundação para a Ciência e a Tecnologia of Portugal)

  12. Transformations of snow chemistry in the boreal forest: Accumulation and volatilization

    USGS Publications Warehouse

    Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.

    1999-01-01

    This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik. Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.

  13. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  14. Mapping snow depth distribution in forested terrain using unmanned aerial vehicles and structure-from-motion

    NASA Astrophysics Data System (ADS)

    Webster, C.; Bühler, Y.; Schirmer, M.; Stoffel, A.; Giulia, M.; Jonas, T.

    2017-12-01

    Snow depth distribution in forests exhibits strong spatial heterogeneity compared to adjacent open sites. Measurement of snow depths in forests is currently limited to a) manual point measurements, which are sparse and time-intensive, b) ground-penetrating radar surveys, which have limited spatial coverage, or c) airborne LiDAR acquisition, which are expensive and may deteriorate in denser forests. We present the application of unmanned aerial vehicles in combination with structure-from-motion (SfM) methods to photogrammetrically map snow depth distribution in forested terrain. Two separate flights were carried out 10 days apart across a heterogeneous forested area of 900 x 500 m. Corresponding snow depth maps were derived using both, LiDAR-based and SfM-based DTM data, obtained during snow-off conditions. Manual measurements collected following each flight were used to validate the snow depth maps. Snow depths were resolved at 5cm resolution and forest snow depth distribution structures such as tree wells and other areas of preferential melt were represented well. Differential snow depth maps showed maximum ablation in the exposed south sides of trees and smaller differences in the centre of gaps and on the north side of trees. This new application of SfM to map snow depth distribution in forests demonstrates a straightforward method for obtaining information that was previously only available through manual spatially limited ground-based measurements. These methods could therefore be extended to more frequent observation of snow depths in forests as well as estimating snow accumulation and depletion rates.

  15. Klamath Falls downtown development geothermal sidewalk snowmelt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.

    1995-10-01

    The Klamuth Falls, Oregon, downtown has seen a period of decline over the past 20 years as businesses have moved to new suburban shopping centers. Downtown business owners and the Klamuth Falls Downtown Redevelopment Agency are working to reverse that trend with a Downtown Streetscape Project intended to make the downtown a more pleasant place to work and do business. The visible elements of the project include new crosswalks with brick pavers, wheelchair ramps at sidewalk corners, new concrete sidewalks with a consistent decorative grid pattern, sidewalk planters for trees and flowers, and antique-style park benches and lighting fixtures. Amore » less visible, but equally valuable feature of the project is the plastic tubing installed under the sidewalks, wheelchair ramps and crosswalks, designed to keep them snow and ice free in the winter. A unique feature of the snowmelt system is the use of geothermal heated water on the return side of the Klamath Falls Geothermal District Heating System, made possible by the recent expansion of the district heating system.« less

  16. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua

    2017-08-01

    Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.

  17. Another Blizzard Piles Up the Snow in New England

    NASA Image and Video Library

    2015-02-18

    Yet another potent winter storm battered the northeastern United States on February 14-15, 2015. The nor'easter brought 12 to 20 inches (30 to 50 centimeters) of snow across much of eastern New England, along with tropical storm force winds over 60 miles (100 kilometers) per hour. The latest snowfall pushed Boston to its highest monthly total on record—58 inches and counting—and its third highest yearly snow total. This image was acquired by the GOES-East weather satellite at 3:45 p.m. Eastern Standard Time (20:45 Universal Time) on February 15, 2015, as the storm was mostly out to sea. Note the comma-like shape of the nor'easter, which spawned blizzard conditions at coastal locations. The official meteorological definition of a blizzard is three consecutive hours of falling or blowing snow with winds gusting above 35 miles (56 kilometers) per hour and visibility below one-fourth of a mile (0.4 kilometers). As of February 17, the snow depth near Boston was greater than in all but two reported locations in Alaska. It was significantly higher than the notoriously snowy states of Michigan, Wisconsin, and Minnesota. Only Buffalo, New York, had a higher snow pack. On February 16-17, more snow and ice fell across the eastern United States from northern Mississippi all the way to Maine. Read more: 1.usa.gov/19wR4LI Via: NASA Earth Observatory GOES image courtesy of the NASA/NOAA GOES Project Science team. Terra MODIS image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response at NASA Goddard Space Flight Center. Caption by Mike Carlowicz. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Sastrugi Geometrical Properties and Morphometry Over Two Winter Seasons at col du Lac Blanc (french Alps, 2700 m a.s.l)

    NASA Astrophysics Data System (ADS)

    Naaim, Florence; Picard, Ghislain; Bellot, Hervé; Arnaud, Laurent; Vionnet, Vincent

    2017-04-01

    Some elements of snow surface roughness, such as ripple or sastrugi, are a direct manifestation of wind erosion and in turn modify the near-surface wind field and consequently the horizontal snow mass fluxes. This leads to a negative feedback between wind strength and surface roughness that must be taken into account in numerical models. Formation of sastrugi, which are elongated metric-scale ridges of wind-packed snow whose longitudinal axis is parallel to the prevailing wind at the time of their formation, is still not well-understood. The first step to provide new information about the formation and evolution of such features is to integrate meteorological data and accurate description of geometrical properties. But the complex and dynamic surface of sastrugi cannot be easily captured by manual measurements (Bellot et al., 2014), which furthermore must be frequent as the formation of new landforms can happen very quickly. That's why the potential of a low-cost time-lapse terrestrial laserscan RLS (Picard et al., 2016) has been investigated during the winter seasons 2015-2016 and 2016-2017 at Col du Lac Blanc in the French Alps. This experimental test site, dedicated to drifting snow studies, and subject to the formation of sastrugi is well-suited for such study : accurate meteorological data, including drifting snow fluxes, are available each 10 minutes. RLS covered a surface area of around 200 m2 for a spatial horizontal resolution of nearly 2 cm and monitored successfully surface roughness once a day during the whole winter seasons. Sastrugi geometrical parameters, such as the frontal area and average height of roughness elements has been extracted from the RLS data and the sastrugi morphometry has be examined over two winter seasons in link with snow fall, drifting snow occurence and intensity and wind speed.

  19. Observed Trends in West Coast Atmospheric River Temperatures

    NASA Astrophysics Data System (ADS)

    Gonzales, K. R.; Swain, D. L.; Barnes, E. A.; Diffenbaugh, N. S.

    2017-12-01

    Understanding the changing characteristics of atmospheric rivers (ARs) in a warming climate is critical in light of their importance in generating precipitation and creating the potential for flood and geophysical hazards. Numerous changes to the characteristics of ARs under the influence of a changing climate have been documented or hypothesized; one simple hypothesis is that AR precipitation will occur at increasingly warm temperatures, potentially altering the critical rain/snow balance in snowpack-dependent watersheds and causing precipitation at higher elevations to fall as rain rather than snow. Not only would warmer, primarily rain-producing ARs greatly affect snow accumulation, but they might also increase the intensity of runoff, the potential for flooding, and the occurrence of rain-on-snow events. Since the West Coast of North America relies heavily on ARs as a source of precipitation and snowpack accumulation, these regions may be profoundly affected by changes in AR temperatures and associated impacts. Using a catalog of ARs encompassing 1979-2014 and ERA-Interim reanalysis, we assess whether detectable trends exist in cool season AR temperatures over the Pacific Coast states of California, Oregon, and Washington. We define AR temperature by the mean temperature of the air mass between 1000 hPa and 750 hPa, and compare AR temperature trends to background temperature trends over the same period. We find overall AR warming over this period and particularly robust warming in March ARs coincident with an apparent poleward shift in March AR frequency. Further analysis suggests that warmer ARs have higher rates of warming than cooler ARs. AR temperature trends generally scale with background temperature trends, although some regions exhibit a near one-to-one relationship while others are largely uncorrelated. The observed warming of ARs making landfall on the West Coast may have potentially significant implications for rain vs. snow at higher elevations, the rain/snow balance, and rain-on-snow flood hazards (particularly in March).

  20. Scanning Radar Investigations to Characterize Cloud and Precipitation Processes for ASR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatachalam, Chandrasekar

    2016-12-17

    The project conducted investigations in the following areas related to scanning radar retrievals: a) Development for Cloud drizzle separation studies for the ENA site based on Doppler Spectra b) Advanced radar retrieval for the SGP site c) Characterizing falling snow using multifrequency dual-polarization measurements d) BAECC field experiment. More details about these investigations can be found within each subtopic within the report.

  1. NAVO MSRC Navigator. Fall 2001

    DTIC Science & Technology

    2001-01-01

    of the CAVE. A view from the VR Juggler simulator . The particles indicate snow (white) & ice (blue). Rainfall is shown on the terrain, and clouds as...the Cover: Virtual environment built by the NAVO MSRC Visualization Center for the Concurrent Computing Laboratory for Materials Simulation at...Louisiana State University. This application allows the researchers to visualize a million atom simulation of an indentor puncturing a block of gallium

  2. Application of the Electrically Scanning Microwave Radiometer (ESMR) to classification of the moisture condition of the ground

    NASA Technical Reports Server (NTRS)

    Meneely, J. M.

    1977-01-01

    The ability of the Nimbus 5 ESMR to characterize the moisture condition of the uppermost portion of the soil was evaluated. In the absence of snow cover, ESMR-5 brightness temperatures were compared with computed upper soil zone moisture values from a soil moisture budgeting scheme. The study was conducted over the U.S. Great Plains for the late summer and early fall in 1974 and 1975. Favorable results were limited by the relatively high vegetative cover and infrequent substantial rainfalls at that time of year. Satisfactory characterization of the general moisture condition was deemed feasible in agricultural regions at times of the year when fields were nearly bare. An additional evaluation demonstrated that ESMR-6 data could delineate the active boundary of a snow pack.

  3. Snow water equivalent mapping in Norway

    NASA Astrophysics Data System (ADS)

    Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.

    2003-04-01

    In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.

  4. The Cold Land Processes Experiment (CLPX-1): Analysis and Modelling of LSOS Data (IOP3 Period)

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Hardy, Janet; Armstrong, Richard; Brodzik, Mary

    2004-01-01

    Microwave brightness temperatures at 18.7,36.5, and 89 GHz collected at the Local-Scale Observation Site (LSOS) of the NASA Cold-Land Processes Field Experiment in February, 2003 (third Intensive Observation Period) were simulated using a Dense Media Radiative Transfer model (DMRT), based on the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). Inputs to the model were averaged from LSOS snow pit measurements, although different averages were used for the lower frequencies vs. the highest one, due to the different penetration depths and to the stratigraphy of the snowpack. Mean snow particle radius was computed as a best-fit parameter. Results show that the model was able to reproduce satisfactorily brightness temperatures measured by the University of Tokyo s Ground Based Microwave Radiometer system (CBMR-7). The values of the best-fit snow particle radii were found to fall within the range of values obtained by averaging the field-measured mean particle sizes for the three classes of Small, Medium and Large grain sizes measured at the LSOS site.

  5. Long-term erythemal UV doses at Sodankylä estimated using total ozone, sunshine duration and snow depth

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; Svenøe, T.

    2003-04-01

    A method for estimating daily erythemal UV doses using total ozone, sunshine duration and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses and the duration of bright sunshine, (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950--99. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Statistically significant increasing trends in erythemal UV doses of a few percents per decade over the period 1950--99 were found for March and April, suggesting a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of about 3% per decade, supported by the changes in both total ozone and sunshine duration, was found. The produced data set of erythemal UV doses is the longest time series of estimated UV known to the authors.

  6. Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal.

    PubMed

    Karmacharya, Dibesh B; Thapa, Kamal; Shrestha, Rinjan; Dhakal, Maheshwar; Janecka, Jan E

    2011-11-28

    The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal. A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP) in the west and Kangchanjunga Conservation Area (KCA) in the east. Nineteen (27%) scats were genetically identified as snow leopards, and 10 (53%) of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females) and five (2 males and 3 females) in KCA. We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites.

  7. Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal

    PubMed Central

    2011-01-01

    Background The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal. Results A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP) in the west and Kangchanjunga Conservation Area (KCA) in the east. Nineteen (27%) scats were genetically identified as snow leopards, and 10 (53%) of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females) and five (2 males and 3 females) in KCA. Conclusions We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites. PMID:22117538

  8. Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: Quantification based on generalized additive models.

    PubMed

    Li, Yijia; Ye, Tao; Liu, Weihang; Gao, Yu

    2018-06-01

    Livestock snow disaster occurs widely in Central-to-Eastern Asian temperate and alpine grasslands. The effects of snow disaster on livestock involve a complex interaction between precipitation, vegetation, livestock, and herder communities. Quantifying the relationship among livestock mortality, snow hazard intensity, and seasonal environmental stressors is of great importance for snow disaster early warning, risk assessments, and adaptation strategies. Using a wide-spatial extent, long-time series, and event-based livestock snow disaster dataset, this study quantified those relationships and established a quantitative model of livestock mortality for prediction purpose for the Qinghai-Tibet Plateau region. Estimations using generalized additive models (GAMs) were shown to accurately predict livestock mortality and mortality rate due to snow disaster, with adjusted-R 2 up to 0.794 and 0.666, respectively. These results showed that a longer snow disaster duration, lower temperatures during the disaster, and a drier summer with less vegetation all contribute significantly and non-linearly to higher mortality (rate), after controlling for elevation and socioeconomic conditions. These results can be readily applied to risk assessment and risk-based adaptation actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Satellite Snow-Cover Mapping: A Brief Review

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    1995-01-01

    Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.

  10. New, Improved Goddard Bulk-Microphysical Schemes for Studying Precipitation Processes in WRF

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    An improved bulk microphysical parameterization is implemented into the Weather Research and Forecasting ()VRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with a cloud ice-snow-hail configuration agreed better with observations in terms of rainfall intensity and a narrow convective line than did simulations with a cloud ice-snow-graupel or cloud ice-snow (i.e., 2ICE) configuration. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 in For an Atlantic hurricane case, the Goddard microphysical schemes had no significant impact on the track forecast but did affect the intensity slightly. The improved Goddard schemes are also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in the southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE scheme with the hail option and the Thompson scheme agree better with observations in terms of rainfall intensity, expect that the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model simulated cloud species (i.e., snow) are quite sensitive to microphysical schemes, which is an important issue for future verification against satellite retrievals. Both the Purdue-Lin and WSM6 schemes simulated very little snow compared to the other schemes for both the midlatitude convective line and hurricane cases. Sensitivity tests are performed for these two WRF schemes to identify that snow productions could be increased by increasing the snow intercept, turning off the auto-conversion from snow to graupel and reducing the transfer processes from cloud-sized particles to precipitation-sized ice.

  11. Studying Precipitation Processes in WRF with Goddard Bulk Microphysics in Comparison with Other Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Shi, J.J.; Braun, S.; Simpson, J.; Chen, S.S.; Lang, S.; Hong, S.Y.; Thompson, G.; Peters-Lidard, C.

    2009-01-01

    A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model-simulated cloud species (e.g., snow) are quite sensitive to the microphysical schemes, which is an issue for future verification against satellite retrievals. Both the Purdue-Lin and WSM6 schemes simulated very little snow compared to the other schemes for both the midlatitude convective line and hurricane case. Sensitivity tests with these two schemes showed that increasing the snow intercept, turning off the auto-conversion from snow to graupel, eliminating dry growth, and reducing the transfer processes from cloud-sized particles to precipitation-sized ice collectively resulted in a net increase in those schemes' snow amounts.

  12. Improved Passive Microwave Algorithms for North America and Eurasia

    NASA Technical Reports Server (NTRS)

    Foster, James; Chang, Alfred; Hall, Dorothy

    1997-01-01

    Microwave algorithms simplify complex physical processes in order to estimate geophysical parameters such as snow cover and snow depth. The microwave radiances received at the satellite sensor and expressed as brightness temperatures are a composite of contributions from the Earth's surface, the Earth's atmosphere and from space. Owing to the coarse resolution inherent to passive microwave sensors, each pixel value represents a mixture of contributions from different surface types including deep snow, shallow snow, forests and open areas. Algorithms are generated in order to resolve these mixtures. The accuracy of the retrieved information is affected by uncertainties in the assumptions used in the radiative transfer equation (Steffen et al., 1992). One such uncertainty in the Chang et al., (1987) snow algorithm is that the snow grain radius is 0.3 mm for all layers of the snowpack and for all physiographic regions. However, this is not usually the case. The influence of larger grain sizes appears to be of more importance for deeper snowpacks in the interior of Eurasia. Based on this consideration and the effects of forests, a revised SMMR snow algorithm produces more realistic snow mass values. The purpose of this study is to present results of the revised algorithm (referred to for the remainder of this paper as the GSFC 94 snow algorithm) which incorporates differences in both fractional forest cover and snow grain size. Results from the GSFC 94 algorithm will be compared to the original Chang et al. (1987) algorithm and to climatological snow depth data as well.

  13. Evaluation of the satellite derived snow cover area - Runoff forecasting models for the inaccessible basins of western Himalayas

    NASA Technical Reports Server (NTRS)

    Dey, B.

    1985-01-01

    In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.

  14. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  15. Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover

    NASA Astrophysics Data System (ADS)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.

    2010-12-01

    Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In : Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. This work is performed in the framework of the SCAMPEI ANR (French research project).

  16. Modeling Patterns of Precipitation Phase in the Central Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Strikas, O.; Pavelsky, T.

    2013-12-01

    Snowpack provides 75% of summer hydrologic flow in the western United States. This summer flow is vitally important in California, the country's leading producer of agriculture, with $43.5 billion dollars in cash receipts in 2011. Snowpack in the California Sierra Nevada has declined by approximately half from 1900 to 1990. In this study, we use the Weather Research and Forecasting (WRF) regional climate model at a 3km resolution to understand the critical temperature window at which both snow and rain fall for the Central Sierra Nevada during the 2002 water year. Results suggest that temperature and snow fraction [snowfall / (snowfall + rainfall)] share a logistic relationship with the snow fraction being 1 until approximately 272 K, then the snow fraction decreases by approximately 22%/K leveling at 0 snow fraction at 276.5 K. We further examine the spatial patterns of temperatures, precipitation amounts, and precipitation types in the Sierra Nevada to determine the areas of greatest potential snow to rain transition under a future warmer climate. Preliminary results suggest that the high risk areas are at the low to mid elevations. This research provides evidence that even a minor increase in temperature (+0.5 K) will yield changes in spring and summer hydrographs for the region. The spatial variability of IPCC temperature regime change for 2050 and 2100 will be downscaled for a higher resolution prediction of precipitation. It is currently under investigation how the proposed IPCC (A1 and B2) predictions of climate change for the region by 2050 (+2.7 K; +1.6 K ) and 2100 (+4.4 K; +2.7 K) will alter the corresponding annual river hydrographs. Given the complex topography of the Sierra Nevada, several spatial interpolations using GIS and statistical algorithms will be executed to render this high resolution (3km) output. Other future work with collaborators intends to model the agricultural risk associated with our predicted changes. This plot demonstrates the relation between temperature and snow fraction. The red line represents 273 K. The Loess regression (and its standard error) is shown in black (gray). It indicates a snow fraction decrease that begins 272.5 K and finishes with 100% rain at 277.5 K.

  17. Black carbon aerosols and the third polar ice cap

    NASA Astrophysics Data System (ADS)

    Menon, S.; Koch, D.; Beig, G.; Sahu, S.; Fasullo, J.; Orlikowski, D.

    2010-05-01

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  18. Black carbon aerosols and the third polar ice cap

    NASA Astrophysics Data System (ADS)

    Menon, S.; Koch, D.; Beig, G.; Sahu, S.; Fasullo, J.; Orlikowski, D.

    2009-12-01

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~30%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  19. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  20. Snow depth of the Weddell and Bellingshausen sea ice covers from IceBridge surveys in 2010 and 2011: An examination

    NASA Astrophysics Data System (ADS)

    Kwok, R.; Maksym, T.

    2014-07-01

    We examine the snow radar data from the Weddell and Bellingshausen Seas acquired by eight IceBridge (OIB) flightlines in October of 2010 and 2011. In snow depth retrieval, the sidelobes from the stronger scattering snow-ice (s-i) interfaces could be misidentified as returns from the weaker air-snow (a-s) interfaces. In this paper, we first introduce a retrieval procedure that accounts for the structure of the radar system impulse response followed by a survey of the snow depths in the Weddell and Bellingshausen Seas. Limitations and potential biases in our approach are discussed. Differences between snow depth estimates from a repeat survey of one Weddell Sea track separated by 12 days, without accounting for variability due to ice motion, is -0.7 ± 13.6 cm. Average snow depth is thicker in coastal northwestern Weddell and thins toward Cape Norvegia, a decrease of >30 cm. In the Bellingshausen, the thickest snow is found nearshore in both Octobers and is thickest next to the Abbot Ice Shelf. Snow depth is linearly related to freeboard when freeboards are low but diverge as the freeboard increases especially in the thicker/rougher ice of the western Weddell. We find correlations of 0.71-0.84 between snow depth and surface roughness suggesting preferential accumulation over deformed ice. Retrievals also seem to be related to radar backscatter through surface roughness. Snow depths reported here, generally higher than those from in situ records, suggest dissimilarities in sample populations. Implications of these differences on Antarctic sea ice thickness are discussed.

  1. What Does a Multilayer Canopy Model Tell Us About Our Current Understanding of Snow-Canopy Unloading?

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.

    2017-12-01

    In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.

  2. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  3. Integrated Status and Effectiveness Monitoring Program; Expansion of Existing Smolt Trapping Program in Nason Creek, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevatte, Scott A.

    2006-03-01

    In the fall of 2004, as one part of a Basin-Wide Monitoring Program developed by the Upper Columbia Regional Technical Team and Upper Columbia Salmon Recovery Board, the Yakama Nation Fisheries Resource Management program began monitoring downstream migration of ESA listed Upper Columbia River spring chinook salmon and Upper Columbia River steelhead in Nason Creek, a tributary to the Wenatchee River. This report summarizes juvenile spring chinook salmon and steelhead trout migration data collected in Nason Creek during 2005 and also incorporates data from 2004. We used species enumeration at the trap and efficiency trials to describe emigration timing andmore » to estimate population size. Data collection was divided into spring/early summer and fall periods with a break during the summer months occurring due to low stream flow. Trapping began on March 1st and was suspended on July 29th when stream flow dropped below the minimum (30 cfs) required to rotate the trap cone. The fall period began on September 28th with increased stream flow and ended on November 23rd when snow and ice began to accumulate on the trap. During the spring and early summer we collected 311 yearling (2003 brood) spring chinook salmon, 86 wild steelhead smolts and 453 steelhead parr. Spring chinook (2004 brood) outgrew the fry stage of fork length < 60 mm during June and July, 224 were collected at the trap. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages whenever ample numbers of fish were being collected. A total of 247 spring chinook yearlings, 54 steelhead smolts, and 178 steelhead parr were used during efficiency trials. A statically significant relationship between stream discharge and trap efficiency has not been identified in Nason Creek, therefore a pooled trap efficiency was used to estimate the population size of both spring chinook (14.98%) and steelhead smolts (12.96%). We estimate that 2,076 ({+-} 119 95%CI) yearling spring chinook and 688 ({+-} 140 95%CI) steelhead smolts emigrated past the trap during the spring/early summer sample period along with 10,721 ({+-} 1,220 95%CI) steelhead parr. During the fall we collected 924 subyearling (2004 brood) spring chinook salmon and 1,008 steelhead parr of various size and age classes. A total of 732 spring chinook subyearlings and 602 steelhead parr were used during 13 mark-recapture trap efficiency trials. A pooled trap efficiency of 24.59% was used to calculate the emigration of spring chinook and 17.11% was used for steelhead parr during the period from September 28th through November 23rd. We estimate that 3758 ({+-} 92 95%CI) subyearling spring chinook and 5,666 ({+-} 414 95%CI) steelhead parr migrated downstream past the trap along with 516 ({+-} 42 95%CI) larger steelhead pre-smolts during the 2005 fall sample period.« less

  4. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data

    NASA Astrophysics Data System (ADS)

    Slobbe, D. C.; Ditmar, P.; Lindenbergh, R. C.

    2009-01-01

    The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth's gravity field as observed by the Gravity Recovery and Climate Experiment (GRACE) mission. Based on a stand alone processing scheme of ICESat data, the most probable estimate of the mass change rate from 2003 February to 2007 April equals -139 +/- 68 Gtonyr-1. Here, we used a density of 600+/-300 kgm-3 to convert the estimated elevation change rate in the region above 2000m into a mass change rate. For the region below 2000m, we used a density of 900+/-300 kgm-3. Based on GRACE gravity models from half 2002 to half 2007 as processed by CNES, CSR, DEOS and GFZ, the estimated mass change rate for the whole of Greenland ranges between -128 and -218Gtonyr-1. Most GRACE solutions show much stronger mass losses as obtained with ICESat, which might be related to a local undersampling of the mass loss by ICESat and uncertainties in the used snow/ice densities. To solve the problem of uncertainties in the snow and ice densities, two independent joint inversion concepts are proposed to profit from both GRACE and ICESat observations simultaneously. The first concept, developed to reduce the uncertainty of the mass change rate, estimates this rate in combination with an effective snow/ice density. However, it turns out that the uncertainties are not reduced, which is probably caused by the unrealistic assumption that the effective density is constant in space and time. The second concept is designed to convert GRACE and ICESat data into two totally new products: variations of ice volume and variations of snow volume separately. Such an approach is expected to lead to new insights in ongoing mass change processes over the Greenland ice sheet. Our results show for different GRACE solutions a snow volume change of -11 to 155km3yr-1 and an ice loss with a rate of -136 to -292km3yr-1.

  5. A comparison of two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund

    NASA Astrophysics Data System (ADS)

    Luks, B.; Osuch, M.; Romanowicz, R. J.

    2012-04-01

    We compare two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund. In the first approach we apply physically-based Utah Energy Balance Snow Accumulation and Melt Model (UEB) (Tarboton et al., 1995; Tarboton and Luce, 1996). The model uses a lumped representation of the snowpack with two primary state variables: snow water equivalence and energy. Its main driving inputs are: air temperature, precipitation, wind speed, humidity and radiation (estimated from the diurnal temperature range). Those variables are used for physically-based calculations of radiative, sensible, latent and advective heat exchanges with a 3 hours time step. The second method is an application of a statistically efficient lumped parameter time series approach to modelling the dynamics of snow cover , based on daily meteorological measurements from the same area. A dynamic Stochastic Transfer Function model is developed that follows the Data Based Mechanistic approach, where a stochastic data-based identification of model structure and an estimation of its parameters are followed by a physical interpretation. We focus on the analysis of uncertainty of both model outputs. In the time series approach, the applied techniques also provide estimates of the modeling errors and the uncertainty of the model parameters. In the first, physically-based approach the applied UEB model is deterministic. It assumes that the observations are without errors and that the model structure perfectly describes the processes within the snowpack. To take into account the model and observation errors, we applied a version of the Generalized Likelihood Uncertainty Estimation technique (GLUE). This technique also provide estimates of the modelling errors and the uncertainty of the model parameters. The observed snowpack water equivalent values are compared with those simulated with 95% confidence bounds. This work was supported by National Science Centre of Poland (grant no. 7879/B/P01/2011/40). Tarboton, D. G., T. G. Chowdhury and T. H. Jackson, 1995. A Spatially Distributed Energy Balance Snowmelt Model. In K. A. Tonnessen, M. W. Williams and M. Tranter (Ed.), Proceedings of a Boulder Symposium, July 3-14, IAHS Publ. no. 228, pp. 141-155. Tarboton, D. G. and C. H. Luce, 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB). Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station (http://www.engineering.usu.edu/dtarb/). 64 pp.

  6. Radiative effects of light-absorbing particles deposited in snow over Himalayas using WRF-Chem simulations

    NASA Astrophysics Data System (ADS)

    Sarangi, C.; Qian, Y.; Painter, T. H.; Liu, Y.; Lin, G.; Wang, H.

    2017-12-01

    Radiative forcing induced by light-absorbing particles (LAP) deposited on snow is an important surface forcing. It has been debated that an aerosol-induced increase in atmospheric and surface warming over Tibetan Plateau (TP) prior to the South Asian summer monsoon can have a significant effect on the regional thermodynamics and South Asian monsoon circulation. However, knowledge about the radiative effects due to deposition of LAP in snow over TP is limited. In this study we have used a high-resolution WRF-Chem (coupled with online chemistry and snow-LAP-radiation model) simulations during 2013-2014 to estimate the spatio-temporal variation in LAP deposition on snow, specifically black carbon (BC) and dust particles, in Himalayas. Simulated distributions in meteorology, aerosol concentrations, snow albedo, snow grain size and snow depth are evaluated against satellite and in-situ measurements. The spatio-temporal change in snow albedo and snow grain size with variation in LAP deposition is investigated and the resulting shortwave LAP radiative forcing at surface is calculated. The LAP-radiative forcing due to aerosol deposition, both BC and dust, is higher in magnitude over Himalayan slopes (terrain height below 4 km) compared to that over TP (terrain height above 4 km). We found that the shortwave aerosol radiative forcing efficiency at surface due to increase in deposited mass of BC particles in snow layer ( 25 (W/m2)/ (mg/m2)) is manifold higher than the efficiency of dust particles ( 0.1 (W/m2)/ (mg/m2)) over TP. However, the radiative forcing of dust deposited in snow is similar in magnitude (maximum 20-30 W/m2) to that of BC deposited in snow over TP. This is mainly because the amount of dust deposited in snow over TP can be about 100 times greater than the amount of BC deposited in snow during polluted conditions. The impact of LAP on surface energy balance, snow melting and atmospheric thermodynamics is also examined.

  7. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  8. Assimilation of Remotely-Sensed Snow information to improve streamflow predictions in the Southwestern US

    NASA Astrophysics Data System (ADS)

    López-Burgos, V.; Rajagopal, S.; Martinez Baquero, G. F.; Gupta, H. V.

    2009-12-01

    Rapidly growing population in the southwestern US is leading to increasing demand and decreasing availability of water, requiring a detailed quantification of hydrological processes. The integration of detailed spatial information of water fluxes from remote sensing platforms, and hydrological models coupled with ground based data is an important step towards this goal. This project is exploring the use of Snow Water Equivalent (SWE) estimates to update the snow component of the Variable Infiltration Capacity model (VIC). SWE estimates are obtained by combining SNOTEL data with MODIS Snow Cover Area (SCA) information. Because, cloud cover corrupts the estimates of SCA, a rule-based method is used to clean up the remotely sensed images. The rules include a time interpolation method, and the probability of a pixel for been covered with snow based on the relationships between elevation, temperature, lapse rate, aspect and topographic shading. The approach is used to improve streamflow predictions on two rivers managed by the Salt River Project, a water and energy supplier in central Arizona. This solution will help improve the management of reservoirs in the Salt and Verde River in Phoenix, Arizona (tributaries of the lower Colorado River basin), by incorporating physically based distributed models and remote sensing observations into their Decision Support Tools and planning tools. This research seeks to increase the knowledge base used to manage reservoirs and groundwater resources in a region affected by a long-term drought. It will be applicable and relevant for other water utility companies facing the challenges of climate change and decreasing water resources.

  9. Vection is modulated by the semantic meaning of stimuli and experimental instructions.

    PubMed

    Ogawa, Masaki; Seno, Takeharu

    2014-01-01

    Vection strength is modulated by the semantic meanings of stimuli. In experiment 1--even though vection stimuli were of uniform size, color, and luminance--when they also had semantic meaning as falling objects, vection was inhibited. Specifically, stimuli perceived as feathers, petals, and leaves did not effectively induce vection. In experiment 2 we used the downward motion of identical dots to induce vection. Participants observed stimuli while holding either an umbrella or a wooden sword. Results showed that vection was inhibited when participants held the umbrella and the stimuli was perceived as rain or snow falling. The two experiments suggest that vection is modulated by the semantic meaning of stimuli.

  10. Estimated flood flows in the Lake Tahoe basin, California and Nevada

    USGS Publications Warehouse

    Crompton, E. James; Hess, Glen W.; Williams, Rhea P.

    2002-01-01

    Lake Tahoe, the largest alpine lake in North America, covers about 192 square miles (mi2) of the 506-mi2 Lake Tahoe Basin, which straddles the border between California and Nevada (Fig. 1). In cooperation with the Nevada Department of Transportation (NDOT), the U.S. Geological Survey (USGS) estimates the flood frequencies of the streams that enter the lake. Information about potential flooding of these streams is used by NDOT in the design and construction of roads and highways in the Nevada portion of the basin. The stream-monitoring network in the Lake Tahoe Basin is part of the Lake Tahoe Interagency Monitoring Program (LTIMP), which combines the monitoring and research efforts of various Federal, State, and regional agencies, including both USGS and NDOT. The altitude in the basin varies from 6,223 feet (ft) at the lake's natural rim to over 10,000 ft along the basin's crest. Precipitation ranges from 40 inches per year (in/yr) on the eastern side to 90 in/yr on the western side (Crippen and Pavelka, 1970). Most of the precipitation comes during the winter months as snow. Precipitation that falls from June through September accounts for less than 20 percent of the annual total.

  11. Black carbon radiative forcing over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Takano, Yoshi; Gu, Yu; Qi, Ling; Mao, Yuhao; Leung, L. Ruby

    2014-11-01

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. The annual mean BC snow albedo forcing is 2.9 W m-2 averaged over snow-covered plateau regions, which is a factor of 3 larger than the value over global land snowpack. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, and coated BC increases the forcing by 30-50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. The annual BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70-85% in the plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network observations. The BC forcings are attributed to emissions from different regions.

  12. Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape

    PubMed Central

    2016-01-01

    Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research. PMID:27171203

  13. Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape.

    PubMed

    Alexander, Justine Shanti; Gopalaswamy, Arjun M; Shi, Kun; Hughes, Joelene; Riordan, Philip

    2016-01-01

    Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research.

  14. Estimation of Coastal Freshwater Discharge into Prince William Sound using a High-Resolution Hydrological Model

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Liston, G. E.; Arendt, A. A.; Hood, E. W.

    2013-12-01

    In Prince William Sound (PWS), Alaska, there is a pressing need for accurate estimates of the spatial and temporal variations in coastal freshwater discharge (FWD). FWD into PWS originates from streamflow due to rainfall, annual snowmelt, and changes in stored glacier mass and is important because it helps establish spatial and temporal patterns in ocean salinity and temperature, and is a time-varying boundary condition for oceanographic circulation models. Previous efforts to model FWD into PWS have been heavily empirical, with many physical processes absorbed into calibration coefficients that, in many cases, were calibrated to streams and rivers not hydrologically similar to those discharging into PWS. In this work we adapted and validated a suite of high-resolution (in space and time), physically-based, distributed weather, snowmelt, and runoff-routing models designed specifically for snow melt- and glacier melt-dominated watersheds like PWS in order to: 1) provide high-resolution, real-time simulations of snowpack and FWD, and 2) provide a record of historical variations of FWD. SnowModel, driven with gridded topography, land cover, and 32 years (1979-2011) of 3-hourly North American Regional Reanalysis (NARR) atmospheric forcing data, was used to simulate snowpack accumulation and melt across a PWS model domain. SnowModel outputs of daily snow water equivalent (SWE) depth and grid-cell runoff volumes were then coupled with HydroFlow, a runoff-routing model which routed snowmelt, glacier-melt, and rainfall to each watershed outlet (PWS coastline) in the simulation domain. The end product was a continuous 32-year simulation of daily FWD into PWS. In order to validate the models, SWE and snow depths from SnowModel were compared with observed SWE and snow depths from SnoTel and snow survey data, and discharge from HydroFlow was compared with observed streamflow measurements. As a second phase of this research effort, the coupled models will be set-up to run in real-time, where daily measurements from weather stations in the PWS will be used to drive simulations of snow cover and streamflow. In addition, we will deploy a strategic array of instrumentation aimed at validating the simulated weather estimates and the calculations of freshwater discharge. Upon successful implementation and validation of the modeling system, it will join established and ongoing computational and observational efforts that have a common goal of establishing a comprehensive understanding of the physical behavior of PWS.

  15. Investigating the effect and uncertainties of light absorbing impurities in snow and ice on snow melt and discharge generation using a hydrologic catchment model and satellite data

    NASA Astrophysics Data System (ADS)

    Matt, Felix; Burkhart, John F.

    2017-04-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.

  16. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  17. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we compare a daily version of MCD43B3 with the daily albedo from MOD10A1. and MCD43B3 with a 16-day average of MOD10A1, over Greenland. We also discuss some near-future planned enhancements to MOD10A1.

  18. Estimating Catchment-Scale Snowpack Variability in Complex Forested Terrain, Valles Caldera National Preserve, NM

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.

    2011-12-01

    Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of canopy), which further explained snow depth variability. The importance of SFI for explaining catchment-scale snow depth variability demonstrates that aspect is not a sufficient metric for direct radiation in complex terrain where slope and remote topographic shading are significant. Surprisingly, the net effects of interception and shading by vegetation on snow depths were minimal compared to elevation and aspect in these catchments. These results suggest that snowpack losses from interception may be balanced by increased shading to reduce the overall impacts from vegetation compared to topographic factors in this high radiation environment. Our analysis indicated that elevation and solar radiation are likely to control snow variability in larger catchments, with interception and shading from vegetation becoming more important at smaller scales.

  19. Modeling of Future Changes in Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Jenicek, Michal; Seibert, Jan; Staudinger, Maria

    2018-01-01

    It is expected that an increasing proportion of the precipitation will fall as rain in alpine catchments in the future. Consequently, snow storage is expected to decrease, which, together with changes in snowmelt rates and timing, might cause reductions in spring and summer low flows. The objectives of this study were (1) to simulate the effect of changing snow storage on low flows during the warm seasons and (2) to relate drought sensitivity to the simulated snow storage changes at different elevations. The Swiss Climate Change Scenarios 2011 data set was used to derive future changes in air temperature and precipitation. A typical bucket-type catchment model, HBV-light, was applied to 14 mountain catchments in Switzerland to simulate streamflow and snow in the reference period and three future periods. The largest relative decrease in annual maximum SWE was simulated for elevations below 2,200 m a.s.l. (60-75% for the period 2070-2099) and the snowmelt season shifted by up to 4 weeks earlier. The relative decrease in spring and summer minimum runoff that was caused by the relative decrease in maximum SWE (i.e., elasticity), reached 40-90% in most of catchments for the reference period and decreased for the future periods. This decreasing elasticity indicated that the effect of snow on summer low flows is reduced in the future. The fraction of snowmelt runoff in summer decreased by more than 50% at the highest elevations and almost disappeared at the lowest elevations. This might have large implications on water availability during the summer.

  20. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.

Top