Sample records for estimating gross primary

  1. Observations-based GPP estimates

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Yoshida, Y.; Jung, M.; Tucker, C. J.; Pinzon, J. E.

    2017-12-01

    We have developed global estimates of gross primary production based on a relatively simple satellite observations-based approach using reflectance data from the MODIS instruments in the form of vegetation indices that provide information about photosynthetic capacity at both high temporal and spatial resolution and combined with information from chlorophyll solar-induced fluorescence from the Global Ozone Monitoring Experiment-2 instrument that is noisier and available only at lower temporal and spatial scales. We compare our gross primary production estimates with those from eddy covariance flux towers and show that they are competitive with more complicated extrapolated machine learning gross primary production products. Our results provide insight into the amount of variance in gross primary production that can be explained with satellite observations data and also show how processing of the satellite reflectance data is key to using it for accurate GPP estimates.

  2. Integrating solar induced flourescence and the photochemical reflectance index for estimating gross primary production in a cornfield

    USDA-ARS?s Scientific Manuscript database

    The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four ...

  3. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    Quantifying global carbon and water balances requires accurate estimation of gross primary production (GPP) and evapotranspiration (ET), respectively, across space and time. Models that are based on the theory of light use efficiency (LUE) and water use efficiency (WUE) have emerged as efficient met...

  5. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  6. Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010-2016, Oklahoma, USA

    USDA-ARS?s Scientific Manuscript database

    To accurately estimate carbon cycling and food production, it is essential to understand how gross primary production (GPP) of irrigated and non-irrigated grasslands and croplands respond to drought and pluvial events. Oklahoma experienced extreme drought in 2011 and record-breaking precipitation in...

  7. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    NASA Astrophysics Data System (ADS)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=351440','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=351440"><span>Responses of gross primary production of grasslands and croplands to drought and pluvial events and irrigation during 2010-2016, Oklahoma, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>To accurately estimate carbon cycling and food production, it is essential to understand how gross primary production (GPP) of irrigated and non-irrigated grasslands and croplands respond to drought and pluvial events. Oklahoma experienced extreme drought in 2011 and record-breaking precipitation in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41547','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41547"><span>Linking climate, gross primary productivity, and site index across forests of the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke</p> <p>2011-01-01</p> <p>Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7958','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7958"><span>Satellite-based modeling of gross primary production in an evergreen needleleaf forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III</p> <p>2004-01-01</p> <p>The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50258','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50258"><span>A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kevin Schaefer; Christopher R. Schwalm; Chris Williams; M. Altaf Arain; Alan Barr; Jing M. Chen; Kenneth J. Davis; Dimitre Dimitrov; Timothy W. Hilton; David Y. Hollinger; Elyn Humphreys; Benjamin Poulter; Brett M. Raczka; Andrew D. Richardson; Alok Sahoo; Peter Thornton; Rodrigo Vargas; Hans Verbeeck; Ryan Anderson; Ian Baker; T. Andrew Black; Paul Bolstad; Jiquan Chen; Peter S. Curtis; Ankur R. Desai; Michael Dietze; Danilo Dragoni; Christopher Gough; Robert F. Grant; Lianhong Gu; Atul Jain; Chris Kucharik; Beverly Law; Shuguang Liu; Erandathie Lokipitiya; Hank A. Margolis; Roser Matamala; J. Harry McCaughey; Russ Monson; J. William Munger; Walter Oechel; Changhui Peng; David T. Price; Dan Ricciuto; William J. Riley; Nigel Roulet; Hanqin Tian; Christina Tonitto; Margaret Torn; Ensheng Weng; Xiaolu Zhou</p> <p>2012-01-01</p> <p>Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27966534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27966534"><span>Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campioli, M; Malhi, Y; Vicca, S; Luyssaert, S; Papale, D; Peñuelas, J; Reichstein, M; Migliavacca, M; Arain, M A; Janssens, I A</p> <p>2016-12-14</p> <p>The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO 2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...713717C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...713717C"><span>Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.</p> <p>2016-12-01</p> <p>The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5171944','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5171944"><span>Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.</p> <p>2016-01-01</p> <p>The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM. PMID:27966534</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55193','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55193"><span>Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Heather L. Kimball; Paul C. Selmants; Alvaro Moreno; Steve W. Running; Christian P. Giardina; Benjamin Poulter</p> <p>2017-01-01</p> <p>Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=240374','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=240374"><span>Estimating carbon fluxes on small rotationally grazed pastures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. Large-scale estimates of GPP are a necessary component of efforts to monitor the soil carbon balance of grazi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25960765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25960765"><span>Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ardö, Jonas</p> <p>2015-12-01</p> <p>Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=269160&keyword=respiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=269160&keyword=respiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Estimating autotrophic respiration in streams using daily metabolism data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=258249','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=258249"><span>Using NDVI to estimate carbon fluxes from small rotationally grazed pastures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northea...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B51J..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B51J..02W"><span>FLUXNET to MODIS: Connecting the dots to capture heterogenious biosphere metabolism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woods, K. D.; Schwalm, C.; Huntzinger, D. N.; Massey, R.; Poulter, B.; Kolb, T.</p> <p>2015-12-01</p> <p>Eddy co-variance flux towers provide our most widely distributed network of direct observations for land-atmosphere carbon exchange. Carbon flux sensitivity analysis is a method that uses in situ networks to understand how ecosystems respond to changes in climatic variables. Flux towers concurrently observe key ecosystem metabolic processes (e..g. gross primary productivity) and micrometeorological variation, but only over small footprints. Remotely sensed vegetation indices from MODIS offer continuous observations of the vegetated land surface, but are less direct, as they are based on light use efficiency algorithms, and not on the ground observations. The marriage of these two data products offers an opportunity to validate remotely sensed indices with in situ observations and translate information derived from tower sites to globally gridded products. Here we provide correlations between Enhanced Vegetation Index (EVI), Leaf Area Index (LAI) and MODIS gross primary production with FLUXNET derived estimates of gross primary production, respiration and net ecosystem exchange. We demonstrate remotely sensed vegetation products which have been transformed to gridded estimates of terrestrial biosphere metabolism on a regional-to-global scale. We demonstrate anomalies in gross primary production, respiration, and net ecosystem exchange as predicted by both MODIS-carbon flux sensitivities and meteorological driver-carbon flux sensitivities. We apply these sensitivities to recent extreme climatic events and demonstrate both our ability to capture changes in biosphere metabolism, and differences in the calculation of carbon flux anomalies based on method. The quantification of co-variation in these two methods of observation is important as it informs both how remotely sensed vegetation indices are correlated with on the ground tower observations, and with what certainty we can expand these observations and relationships.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27239','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27239"><span>Evaluation of MODIS NPP and GPP products across multiple biomes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl</p> <p>2006-01-01</p> <p>Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/984359','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/984359"><span>A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.</p> <p></p> <p>The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide rangemore » of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these extreme climate events and disturbances.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3508Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3508Z"><span>Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas</p> <p>2018-04-01</p> <p>Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174690','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174690"><span>The importance of hyporheic sediment respiration in several mid-order Michigan rivers: Comparison between methods in estimates of lotic metabolism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Uzarski, D.G.; Stricker, C.A.; Burton, T.M.; King, D. K.; Steinman, A.D.</p> <p>2004-01-01</p> <p>Metabolism was measured in four Michigan streams, comparing estimates made using a flow-through chamber designed to include the hyporheic zone to a 20 cm depth and a traditional closed chamber that enclosed to a 5 cm depth. Mean levels of gross primary productivity and community respiration were consistently greater in the flow-through chamber than the closed chamber in all streams. Ratios of productivity to respiration (P/R) were consistently greater in the closed chambers than the flow-through chambers. P/R ratios were consistently <1 in all streams when estimated with flow-through chambers, suggesting heterotrophic conditions. Maintenance of stream ecosystem structure and function therefore is dependent on subsidies either from the adjacent terrestrial system or upstream sources. Our results suggest that stream metabolism studies that rely on extrapolation of closed chambers to the whole reach will most likely underestimate gross primary productivity and community respiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1398774-large-historical-growth-global-terrestrial-gross-primary-production','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1398774-large-historical-growth-global-terrestrial-gross-primary-production"><span>Large historical growth in global terrestrial gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Campbell, J. E.; Berry, J. A.; Seibt, U.; ...</p> <p>2017-04-05</p> <p>Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1398774','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1398774"><span>Large historical growth in global terrestrial gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Campbell, J. E.; Berry, J. A.; Seibt, U.</p> <p></p> <p>Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26221990','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26221990"><span>Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Danelichen, Victor H M; Biudes, Marcelo S; Velasque, Maísa C S; Machado, Nadja G; Gomes, Raphael S R; Vourlitis, George L; Nogueira, José S</p> <p>2015-09-01</p> <p>The acceleration of the anthropogenic activity has increased the atmospheric carbon concentration, which causes changes in regional climate. The Gross Primary Production (GPP) is an important variable in the global carbon cycle studies, since it defines the atmospheric carbon extraction rate from terrestrial ecosystems. The objective of this study was to estimate the GPP of the Amazon-Cerrado Transitional Forest by the Vegetation Photosynthesis Model (VPM) using local meteorological data and remote sensing data from MODIS and Landsat 5 TM reflectance from 2005 to 2008. The GPP was estimated using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) calculated by MODIS and Landsat 5 TM images. The GPP estimates were compared with measurements in a flux tower by eddy covariance. The GPP measured in the tower was consistent with higher values during the wet season and there was a trend to increase from 2005 to 2008. The GPP estimated by VPM showed the same increasing trend observed in measured GPP and had high correlation and Willmott's coefficient and low error metrics in comparison to measured GPP. These results indicated high potential of the Landsat 5 TM images to estimate the GPP of Amazon-Cerrado Transitional Forest by VPM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38844','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38844"><span>Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito</p> <p>2010-01-01</p> <p>Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39701','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39701"><span>Below-ground carbon flux and partitioning: global patterns and response to temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C.M. Litton; C.P. Giardina</p> <p>2008-01-01</p> <p>1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242619','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242619"><span>Estimating Daytime Ecosystem Respiration to Improve Estimates of Gross Primary Production of a Temperate Forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie</p> <p>2014-01-01</p> <p>Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010022093','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010022093"><span>BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John</p> <p>2000-01-01</p> <p>BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..748S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..748S"><span>Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, W. K.; Biederman, J. A.; Scott, R. L.; Moore, D. J. P.; He, M.; Kimball, J. S.; Yan, D.; Hudson, A.; Barnes, M. L.; MacBean, N.; Fox, A. M.; Litvak, M. E.</p> <p>2018-01-01</p> <p>Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet understanding of the relationship between GPP and remote sensing observations and how it changes with factors such as scale, biophysical constraint, and vegetation type remains limited. This knowledge gap is especially apparent for dryland ecosystems, which have characteristic high spatiotemporal variability and are under-represented by long-term field measurements. Here we utilize an eddy covariance (EC) data synthesis for southwestern North America in an assessment of how accurately satellite-derived vegetation proxies capture seasonal to interannual GPP dynamics across dryland gradients. We evaluate the enhanced vegetation index, solar-induced fluorescence (SIF), and the photochemical reflectivity index. We find evidence that SIF is more accurately capturing seasonal GPP dynamics particularly for evergreen-dominated EC sites and more accurately estimating the full magnitude of interannual GPP dynamics for all dryland EC sites. These results suggest that incorporation of SIF could significantly improve satellite-based GPP estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJAEO..23...29B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJAEO..23...29B"><span>Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brilli, L.; Chiesi, M.; Maselli, F.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Bindi, M.</p> <p>2013-08-01</p> <p>We developed and tested a methodology to estimate olive (Olea europaea L.) gross primary production (GPP) combining ground and multi-sensor satellite data. An eddy-covariance station placed in an olive grove in central Italy provided carbon and water fluxes over two years (2010-2011), which were used as reference to evaluate the performance of a GPP estimation methodology based on a Monteith type model (modified C-Fix) and driven by meteorological and satellite (NDVI) data. A major issue was related to the consideration of the two main olive grove components, i.e. olive trees and inter-tree ground vegetation: this issue was addressed by the separate simulation of carbon fluxes within the two ecosystem layers, followed by their recombination. In this way the eddy covariance GPP measurements were successfully reproduced, with the exception of two periods that followed tillage operations. For these periods measured GPP could be approximated by considering synthetic NDVI values which simulated the expected response of inter-tree ground vegetation to tillages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984CorRe...3...13A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984CorRe...3...13A"><span>Model of a coral reef ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, Marlin J.; Grigg, Richard W.</p> <p>1984-08-01</p> <p>The ECOPATH model for French Frigate Shoals estimates the benthic plant production (net primary production in kg wet weight) required to support the atoll food chain. In this section we estimate the benthic net primary production and net community production of the atoll based on metabolism studies of reef flat, knolls, and lagoon communities at French Frigate Shoals Hawaii. Community metabolism was measured during winter and summer. The reef communities at French Frigate Shoals exhibited patterns and rates of organic carbon production and calcification similar to other reefs in the world. The estimate of net primary production is 6.1·106 kg wet weight km-2 year-1±50%, a value remarkably close to the estimate by the ECOPATH model of 4.3·106 kg wet weight km-2 year-1. Our estimate of net community production or the amount of carbon not consumed by the benthos was high; approximately 15% of the net primary production. Model results indicate that about 5% of net primary production is passed up the food chain to mobile predators. This suggests about 10% of net primary production (˜6% of gross primary production) may be permanently lost to the system via sediment burial or export offshore.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=288989','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=288989"><span>Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This study investigates the utility of in-situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (Vmax) r...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000714&hterms=best+year+ever&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbest%2Byear%2Bever','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000714&hterms=best+year+ever&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbest%2Byear%2Bever"><span>Temporal Consistency Between Gross Primary Production and Solar-Induced Chlorophyll Fluorescence in the Ten Most Populous Megacity Areas over Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cui, Yaoping; Xiao, Xiangmin; Zhang, Yao; Dong, Jinwei; Qin, Yuanwei; Doughty, Russell B.; Zhang, Geli; Wang, Jie; Wu, Xiaocui; Qin, Yaochen; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20180000714'); toggleEditAbsImage('author_20180000714_show'); toggleEditAbsImage('author_20180000714_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20180000714_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20180000714_hide"></p> <p>2017-01-01</p> <p>The gross primary production (GPP) of vegetation in urban areas plays an important role in the study of urban ecology. It is difficult however, to accurately estimate GPP in urban areas, mostly due to the complexity of impervious land surfaces, buildings, vegetation, and management. Recently, we used the Vegetation Photosynthesis Model (VPM), climate data, and satellite images to estimate the GPP of terrestrial ecosystems including urban areas. Here, we report VPM-based GPP (GPPvpm) estimates for the world's ten most populous megacities during 2000-2014. The seasonal dynamics of GPPvpm during 2007-2014 in the ten megacities track well that of the solar-induced chlorophyll fluorescence (SIF) data from GOME-2 at 0.5deg x 0.5deg resolution. Annual GPPvpm during 2000-2014 also shows substantial variation among the ten megacities, and year-to-year trends show increases, no change, and decreases. Urban expansion and vegetation collectively impact GPP variations in these megacities. The results of this study demonstrate the potential of a satellite-based vegetation photosynthesis model for diagnostic studies of GPP and the terrestrial carbon cycle in urban areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31B0997M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31B0997M"><span>Large-scale estimates of gross primary production on the Qinghai-Tibet plateau based on remote sensing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, M., II; Yuan, W.; Dong, J.; Zhang, F.; Cai, W.; Li, H.</p> <p>2017-12-01</p> <p>Vegetation gross primary production (GPP) is an important variable for the carbon cycle on the Qinghai-Tibetan Plateau (QTP). Based on the measurements from twelve eddy covariance (EC) sites, we validated a light use efficiency model (i.e. EC-LUE) to evaluate the spatial-temporal patterns of GPP and the effect of environmental variables on QTP. The EC-LUE model explained 85.4% of the daily observed GPP variations through all of the twelve EC sites, and characterized very well the seasonal changes of GPP. Annual GPP over the entire QTP ranged from 575 to 703 Tg C, and showed a significantly increasing trend from 1982 to 2013. However, there were large spatial heterogeneities in long-term trends of GPP. Throughout the entire QTP, air temperature TA increase had a greater influence than solar radiation and PREC changes on productivity. Moreover, our results highlight the large uncertainties of previous GPP estimates due to insufficient parameterization and validations. When compared with GPP estimates of the EC-LUE model, most Coupled Model Intercomparison Project (CMIP5) GPP products overestimate the magnitude and increasing trends of regional GPP, which potentially impact the feedback of ecosystems to regional climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2304001K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2304001K"><span>Pine Needles as Potential Energy Feedstock: Availability in the Central Himalayan State of Uttarakhand, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kala, L. D.; Subbarao, P. M. V.</p> <p>2017-11-01</p> <p>The amount of pine needles (pinus roxburgii) potentially available for use as energy feedstock in the Central Himalayan state of Uttarakhand in India has been estimated. It involves estimating the gross annual amount of pine needle yield followed by a comprehensive identification and quantification of the factors that affect the net annual pine needle yield available as energy feedstock. These factors include considerations such as accessibility, alternative uses, forest fires, other losses, etc., that are influenced by aspects ranging from physical constraints to traditional societal traits. Tree canopy cover method has been used for estimating the gross annual pine needle yield. The information on canopy density is obtained from remote sensing data, that forms the basis for forest classification. The annual gross pine needle yield has been estimated at 1.9 million tonnes while the annual net pine needle yield at 1.33 million tonnes. The annual primary energy potential of pine needles available as energy feedstock has also been estimated. For annual net energy potential estimation, thermal and electrical routes are considered. Electrical energy generation from pine needles using thermochemical conversion has been examined and the corresponding potential for electricity generation been estimated. An installed capacity of 789 MW can be supported with pine needles feedstock for supplying electricity in rural areas for five hours a day. For round the clock generation, an installed capacity of 165 MW can be supported by the pine needle energy feedstock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20603496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20603496"><span>Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M Altaf; Baldocchi, Dennis; Bonan, Gordon B; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher; Woodward, F Ian; Papale, Dario</p> <p>2010-08-13</p> <p>Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5389783','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5389783"><span>Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo</p> <p>2017-01-01</p> <p>Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29290755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29290755"><span>Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically-based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G; Aires, Filipe; Green, Julia K; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre</p> <p>2017-01-01</p> <p>A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.4101H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.4101H"><span>Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre</p> <p>2017-09-01</p> <p>A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=305069','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=305069"><span>Integrating fAPARchl and PRInadir from EO-1/Hyperion to predict cornfield daily gross primary production (GPP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Accurate estimates of terrestrial carbon sequestration is essential for evaluating changes in the carbon cycle due to global climate change. In a recent assessment of 26 carbon assimilation models at 39 FLUXNET tower sites across the United States and Canada, all models failed to adequately compute...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/22254','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/22254"><span>Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Mark E. Harmon; Ken Bible; Michael G. Ryan; David C. Shaw; H. Chen; Jeffrey Klopatek; Xia Li</p> <p>2004-01-01</p> <p>Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington. These measurements were used to estimate: Gross (GPP) and Net Primary Production (NPP); autotrophic (Ra) and heterotrophic (Rh) respiration; and Net Ecosystem Production (NEP). Monte...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B13F..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B13F..01G"><span>Monitoring crop gross primary productivity using Landsat data (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gitelson, A. A.; Peng, Y.; Keydan, G. P.; Masek, J.; Rundquist, D. C.; Verma, S. B.; Suyker, A. E.</p> <p>2009-12-01</p> <p>There is a growing interest in monitoring the gross primary productivity (GPP) of crops due mostly to their carbon sequestration potential. We presented a new technique for GPP estimation in irrigated and rainfed maize and soybeans based on the close and consistent relationship between GPP and crop chlorophyll content, and entirely on remotely sensed data. A recently proposed Green Chlorophyll Index (Green CI), which employs the green and the NIR spectral bands, was used to retrieve daytime GPP from Landsat ETM+ data. Due to its high spatial resolution (i.e., 30x30m/pixel), this satellite system is particularly appropriate for detecting not only between but also within field GPP variability during the growing season. The Green CI obtained using atmospherically corrected Landsat ETM+ data was found to be linearly related with crop GPP explaining about 90% of GPP variation. Green CI constitutes an accurate surrogate measure for GPP estimation. For comparison purposes, other vegetation indices were also tested. These results open new possibilities for analyzing the spatio-temporal variation of the GPP of crops using the extensive archive of Landsat imagery acquired since the early 1980s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B53C0207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B53C0207J"><span>Sensitivity of Crop Gross Primary Production Simulations to In-situ and Reanalysis Meteorological Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, C.; Xiao, X.; Wagle, P.</p> <p>2014-12-01</p> <p>Accurate estimation of crop Gross Primary Production (GPP) is important for food securityand terrestrial carbon cycle. Numerous publications have reported the potential of the satellite-based Production Efficiency Models (PEMs) to estimate GPP driven by in-situ climate data. Simulations of the PEMs often require surface reanalysis climate data as inputs, for example, the North America Regional Reanalysis datasets (NARR). These reanalysis datasets showed certain biases from the in-situ climate datasets. Thus, sensitivity analysis of the PEMs to the climate inputs is needed before their application at the regional scale. This study used the satellite-based Vegetation Photosynthesis Model (VPM), which is driven by solar radiation (R), air temperature (T), and the satellite-based vegetation indices, to quantify the causes and degree of uncertainties in crop GPP estimates due to different meteorological inputs at the 8-day interval (in-situ AmeriFlux data and NARR surface reanalysis data). The NARR radiation (RNARR) explained over 95% of the variability in in-situ RAF and TAF measured from AmeriFlux. The bais of TNARR was relatively small. However, RNARR had a systematical positive bias of ~3.5 MJ m-2day-1 from RAF. A simple adjustment based on the spatial statistic between RNARR and RAF produced relatively accurate radiation data for all crop site-years by reducing RMSE from 4 to 1.7 MJ m-2day-1. The VPM-based GPP estimates with three climate datasets (i.e., in-situ, and NARR before and after adjustment, GPPVPM,AF, GPPVPM,NARR, and GPPVPM,adjNARR) showed good agreements with the seasonal dynamics of crop GPP derived from the flux towers (GPPAF). The GPPVPM,AF differed from GPPAF by 2% for maize, and -8% to -12% for soybean on the 8-day interval. The positive bias of RNARR resulted in an overestimation of GPPVPM,NARR at both maize and soybean systems. However, GPPVPM,adjNARR significantly reduced the uncertainties of the maize GPP from 25% to 2%. The results from this study revealed that the errors of the NARR surface reanalysis data introduced significant uncertainties of the PEMs-based GPP estimates. Therefore, it is important to develop more accurate radiation datasets at the regional and global scales to estimate gross and net primary production of terrestrial ecosystems at the regional and global scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21466101','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21466101"><span>Gross motor ability of native Greek, Roma, and Roma immigrant school-age children in Greece.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsimaras, Vasilios; Arzoglou, Despina; Fotiadou, Eleni; Kokaridas, Dimitrios; Kotzamanidou, Marianna; Angelopoulou, Nikoletta; Bassa, Eleni</p> <p>2011-02-01</p> <p>The purpose of this study was to estimate and compare gross motor ability of children aged 7 to 10 years, all from Roma minority families (Romas, Roma immigrants) and families of indigenous Greeks. The sample consisted of 180 hildren (60 natives, 60 Romas, 60 Roma immigrants) studying in Greek public primary schools. The Test of Gross Motor Development scores showed that the group of indigenous Greek children had significantly higher performance in terms of locomotion skills, handling skills, and general motor ability compared to the groups of Roma and Roma immigrant children. No statistically significant differences were observed between the two other groups. These findings might be attributed to less participation of minority children in organized physical activities in and outside school, as well as to the reduced parental encouragement for attending related activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/3135','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/3135"><span>GPP in Loblolly Pine: A Monthly Comparison of Empirical and Process Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Christopher Gough; John Seiler; Kurt Johnsen; David Arthur Sampson</p> <p>2002-01-01</p> <p>Monthly and yearly gross primary productivity (GPP) estimates derived from an empirical and two process based models (3PG and BIOMASS) were compared. Spatial and temporal variation in foliar gas photosynthesis was examined and used to develop GPP prediction models for fertilized nine-year-old loblolly pine (Pinus taeda) stands located in the North...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..138a2003D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..138a2003D"><span>Partitioning of net carbon dioxide flux measured by automatic transparent chamber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dyukarev, EA</p> <p>2018-03-01</p> <p>Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JESS..126...99D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JESS..126...99D"><span>Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deb Burman, Pramit Kumar; Sarma, Dipankar; Williams, Mathew; Karipot, Anandakumar; Chakraborty, Supriyo</p> <p>2017-10-01</p> <p>Tropical forests act as a major sink of atmospheric carbon dioxide, and store large amounts of carbon in biomass. India is a tropical country with regions of dense vegetation and high biodiversity. However due to the paucity of observations, the carbon sequestration potential of these forests could not be assessed in detail so far. To address this gap, several flux towers were erected over different ecosystems in India by Indian Institute of Tropical Meteorology as part of the MetFlux India project funded by MoES (Ministry of Earth Sciences, Government of India). A 50 m tall tower was set up over a semi-evergreen moist deciduous forest named Kaziranga National Park in north-eastern part of India which houses a significant stretch of local forest cover. Climatically this region is identified to be humid sub-tropical. Here we report first generation of the in situ meteorological observations and leaf area index (LAI) measurements from this site. LAI obtained from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) is compared with the in situ measured LAI. We use these in situ measurements to calculate the total gross photosynthesis (or gross primary productivity, GPP) of the forest using a calibrated model. LAI and GPP show prominent seasonal variation. LAI ranges between 0.75 in winter to 3.25 in summer. Annual GPP is estimated to be 2.11 kg C m^{-2} year^{-1}.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN51F0067H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN51F0067H"><span>Regional crop gross primary production and yield estimation using fused Landsat-MODIS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.</p> <p>2017-12-01</p> <p>Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036443','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036443"><span>Using normalized difference vegetation index to estimate carbon fluxes from small rotationally grazed pastures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Skinner, R.H.; Wylie, B.K.; Gilmanov, T.G.</p> <p>2011-01-01</p> <p>Satellite-based normalized difference vegetation index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northeastern United States might be limited because paddock size is often smaller than the resolution limits of the satellite image. This research compared NDVI data from satellites with data obtained using a ground-based system capable of fine-scale (submeter) NDVI measurements. Gross primary productivity was measured by eddy covariance on two pastures in central Pennsylvania from 2003 to 2008. Weekly 250-m resolution satellite NDVI estimates were also obtained for each pasture from the moderate resolution imaging spectroradiometer (MODIS) sensor. Ground-based NDVI data were periodically collected in 2006, 2007, and 2008 from one of the two pastures. Multiple-regression and regression-tree estimates of GPP, based primarily on MODIS 7-d NDVI and on-site measurements of photosynthetically active radiation (PAR), were generally able to predict growing-season GPP to within an average of 3% of measured values. The exception was drought years when estimated and measured GPP differed from each other by 11 to 13%. Ground-based measurements improved the ability of vegetation indices to capture short-term grazing management effects on GPP. However, the eMODIS product appeared to be adequate for regional GPP estimates where total growing-season GPP across a wide area would be of greater interest than short-term management-induced changes in GPP at individual sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CSR....31..202M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CSR....31..202M"><span>Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar</p> <p>2011-03-01</p> <p>We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8-59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13994','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13994"><span>Total Belowground Carbon Allocation in a Fast-growing Eucalyptus Plantation Estimated Using a Carbon Balance Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Christian P. Giardina; Michael G. Ryan</p> <p>2002-01-01</p> <p>Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=309917','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=309917"><span>Estimation of crop gross primary production (GPP): fAPAR_chl versus MOD15A2 FPAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Within leaf chloroplasts chlorophylls absorb photosynthetically active radiation (PAR) for photosynthesis (PSN). The MOD15A2 FPAR (fraction of PAR absorbed by canopy, i.e., fAPARcanopy) product has been widely used to compute absorbed PAR for PSN (APARPSN). The MOD17A2 algorithm uses MOD15A2 FPAR i...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.2939M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.2939M"><span>Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madani, Nima; Kimball, John S.; Running, Steven W.</p> <p>2017-11-01</p> <p>In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1429885','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1429885"><span>Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.</p> <p></p> <p>A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1429885-water-energy-carbon-artificial-neural-networks-wecann-statistically-based-estimate-global-surface-turbulent-fluxes-gross-primary-productivity-using-solar-induced-fluorescence','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1429885-water-energy-carbon-artificial-neural-networks-wecann-statistically-based-estimate-global-surface-turbulent-fluxes-gross-primary-productivity-using-solar-induced-fluorescence"><span>Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.; ...</p> <p>2017-09-20</p> <p>A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010298','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010298"><span>Integrating Solar Induced Fluorescence and the Photochemical Reflectance Index for Estimating Gross Primary Production in a Cornfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Huemmrich, Karl F.; Campbell, Petya K. E.; Corp, Lawrence A.; Cook, Bruce D.; Kustas, William P.; Daughtry, Criag S.</p> <p>2013-01-01</p> <p>The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four growing seasons. The Photochemical Reflectance Index (PRI) and solar induced chlorophyll fluorescence (SIF), were derived. SIF retrievals were accomplished in the two telluric atmospheric oxygen absorption features centered at 688 nm (O2-B) and 760 nm (O2-A). The PRI and SIF were examined in conjunction with GPP and LUE determined by flux tower-based measurements. All of these fluxes, environmental variables, and the PRI and SIF exhibited diurnal as well as day-to-day dynamics across the four growing seasons. Consistent with previous studies, the PRI was shown to be related to LUE (r2 = 0.54 with a logarithm fit), but the relationship varied each year. By combining the PRI and SIF in a linear regression model, stronger performances for GPP estimation were obtained. The strongest relationship (r2 = 0.80, RMSE = 0.186 mg CO2/m2/s) was achieved when using the PRI and SIF retrievals at 688 nm. Cross-validation approaches were utilized to demonstrate the robustness and consistency of the performance. This study highlights a GPP retrieval method based entirely on hyperspectral remote sensing observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25797359','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25797359"><span>Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in East China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Mingquan; Muhammad, Shakir; Chen, Fang; Niu, Zheng; Wang, Changyao</p> <p>2015-04-01</p> <p>Wetland ecosystems are very important for ecological diversity and have a strong ability to sequester carbon. Through comparisons with field measured eddy covariance data, we evaluated the relationships between the light use efficiency (LUE) index and the enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and land surface temperature (LST). Consequently, we have proposed a new model for the estimation of gross primary production (GPP) for wetland ecosystems using Moderate Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation indices, LST and the fraction of photosynthetically active radiation (FAPAR) absorbed by the active vegetation. This model was developed and validated for a study site on Chongming Island, Shanghai, China. Our results show that photosynthetically active radiation (PAR) was highly correlated with the LST, with a coefficient of determination (R(2)) of 0.59 (p < 0.001). Vegetation indices, such as EVI, NDVI and LST, were highly correlated with LUE. We found that the product of vegetation indices (VIs) and a modified form of LST (Te) can be used to estimate LUE, with an R(2) of 0.82 (P < 0.0001) and an RMSE of 0.054 kg C per mol PAR. This new model can provide reliable estimates of GPP (R(2) of 0.87 and RMSE of 0.009 kg C m(-2) 8 d(-1) (P < 0.0001)).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRG..119..110C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRG..119..110C"><span>Improved estimations of gross primary production using satellite-derived photosynthetically active radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Wenwen; Yuan, Wenping; Liang, Shunlin; Zhang, Xiaotong; Dong, Wenjie; Xia, Jiangzhou; Fu, Yang; Chen, Yang; Liu, Dan; Zhang, Qiang</p> <p>2014-01-01</p> <p>Terrestrial vegetation gross primary production (GPP) is an important variable in determining the global carbon cycle as well as the interannual variability of the atmospheric CO2 concentration. The accuracy of GPP simulation is substantially affected by several critical model drivers, one of the most important of which is photosynthetically active radiation (PAR) which directly determines the photosynthesis processes of plants. In this study, we examined the impacts of uncertainties in radiation products on GPP estimates in China. Two satellite-based radiation products (GLASS and ISCCP), three reanalysis products (MERRA, ECMWF, and NCEP), and a blended product of reanalysis and observations (Princeton) were evaluated based on observations at hundreds of sites. The results revealed the highest accuracy for two satellite-based products over various temporal and spatial scales. The three reanalysis products and the Princeton product tended to overestimate radiation. The GPP simulation driven by the GLASS product exhibited the highest consistency with those derived from site observations. Model validation at 11 eddy covariance sites suggested the highest model performance when utilizing the GLASS product. Annual GPP in China driven by GLASS was 5.55 Pg C yr-1, which was 68.85%-94.87% of those derived from the other products. The results implied that the high spatial resolution, satellite-derived GLASS PAR significantly decreased the uncertainty of the GPP estimates at the regional scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5029/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5029/"><span>Primary Productivity in Meduxnekeag River, Maine, 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Goldstein, Robert M.; Schalk, Charles W.; Kempf, Joshua P.</p> <p>2009-01-01</p> <p>During August and September 2005, dissolved oxygen, temperature, pH, specific conductance, streamflow, and light intensity (LI) were determined continuously at six sites defining five reaches on Meduxnekeag River above and below Houlton, Maine. These data were collected as input for a dual-station whole-stream metabolism model to evaluate primary productivity in the river above and below Houlton. The river receives nutrients and organic matter from tributaries and the Houlton wastewater treatment plant (WWTP). Model output estimated gross and net primary productivity for each reach. Gross primary productivity (GPP) varied in each reach but was similar and positive among the reaches. GPP was correlated to LI in the four reaches above the WWTP but not in the reach below. Net primary productivity (NPP) decreased in each successive downstream reach and was negative in the lowest two reaches. NPP was weakly related to LI in the upper two reaches and either not correlated or negatively correlated in the lower three reaches. Relations among GPP, NPP, and LI indicate that the system is heterotrophic in the downstream reaches. The almost linear decrease in NPP (the increase in metabolism and respiration) indicates a cumulative effect of inputs of nutrients and organic matter from tributaries that drain agricultural land, the town of Houlton, and the discharges from the WWTP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5590934','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5590934"><span>Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Selmants, Paul C.; Moreno, Alvaro; Running, Steve W.; Giardina, Christian P.</p> <p>2017-01-01</p> <p>Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales. PMID:28886187</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190928','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190928"><span>Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kimball, Heather L.; Selmants, Paul; Moreno, Alvaro; Running Steve W,; Giardina, Christian P.</p> <p>2017-01-01</p> <p>Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28886187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28886187"><span>Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kimball, Heather L; Selmants, Paul C; Moreno, Alvaro; Running, Steve W; Giardina, Christian P</p> <p>2017-01-01</p> <p>Gross primary production (GPP) is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B33J..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B33J..04B"><span>Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.</p> <p>2011-12-01</p> <p>The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P < 0.001) and T predictions from an ecosystem model (MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P < 0.001). As an alternative to estimating T, Δ measurements can be used to estimate GPP by combining Ci / Ca estimates with Gs estimates from sapflow data. Estimates of GPP were determined in this fashion and were highly correlated to GPP values derived from EC (y = 0.82 + 0.07; r2 = 0.61; slope P < 0.001) and GPP predictions from MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24539','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24539"><span>Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon</p> <p>2005-01-01</p> <p>Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156284','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156284"><span>Gross primary productivity of the true steppe in central Asia in relation to NDVI: scaling up CO2 fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gilmanov, Tagir G.; Johnson, Douglas A.; Saliendra, Nicanor Z.; Akshalov, Kanat; Wylie, Bruce K.</p> <p>2004-01-01</p> <p>Compared to other characteristics of CO2 exchange, gross primary productivity (P g ) is most directly related to photosynthetic activity. Until recently, it was considered difficult to obtain measurement-based P g . The objective of our study was to evaluate if P g can be estimated from continuous CO2 flux measurements using nonlinear identification of the nonrectangular hyperbolic model of ecosystem-scale, light-response curves. Estimates of P g and ecosystem respiration (R e ) were obtained using Bowen ratio– energy-balance measurements of CO2 exchange in a true-steppe ecosystem in northern Kazakhstan during four growing seasons (1998–2001). The maximum mean weekly apparent quantum yield (αmax) was 0.0388 mol CO2 mol photons and the maximum mean weekly P g was 28 g CO2/m2/day in July 2000. The highest mean weekly R e max (20 g CO2m2/day) was observed in July of both 1999 and 2000. Nighttime respiration calculated from daily respiration corrected for length of the dark period and temperature (using Q 10 = 2) was closely associated with measured nighttime respiration (R 2 = 0.67 to 0.93). The 4-year average annual gross primary production (GPP) was 1617 g CO2/m2/ year (range = 1308–1957). Ten-day normalized difference vegetation index corrected for the start of the season (NDVIsos) was closely associated with 10-day average P g (R 2 = 0.66 to 0.83), which was higher than R 2 values for regressions of mean 10-day net daytime fluxes on NDVIsos (0.55–0.72). This demonstrates the advantage of usingP g in scaling up flux-tower measurements compared to other characteristics (net daytime flux or net 24-h flux).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1805W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1805W"><span>The Regional Differences of Gpp Estimation by Solar Induced Fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X.; Lu, S.</p> <p>2018-04-01</p> <p>Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720019044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720019044"><span>Internal performance of a 10 deg conical plug nozzle with a multispoke primary and translating external shroud</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bresnahan, D. L.</p> <p>1972-01-01</p> <p>An experimental investigation was conducted in a nozzle static test facility to determine the performance characteristics of a cold-flow, 21.59-centimeter-diameter plug nozzle with a multispoke primary. Two multispoke primary nozzles, a 12-spoke and a 24-spoke, were tested and compared with an annular plug nozzle. The supersonic cruise configurations for both spoke primaries performed about the same, with a gross thrust coefficient of 0.974, a decrease of approximately 1.5 percent from the reference nozzle. The takeoff configuration for the 12-spoke primary had a gross thrust coefficient of 0.957, a decrease of 1.5 percent from the reference nozzle, and the 24-spoke primary had a gross thrust coefficient of 0.95.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25375227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25375227"><span>Global validation of a process-based model on vegetation gross primary production using eddy covariance observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Dan; Cai, Wenwen; Xia, Jiangzhou; Dong, Wenjie; Zhou, Guangsheng; Chen, Yang; Zhang, Haicheng; Yuan, Wenping</p> <p>2014-01-01</p> <p>Gross Primary Production (GPP) is the largest flux in the global carbon cycle. However, large uncertainties in current global estimations persist. In this study, we examined the performance of a process-based model (Integrated BIosphere Simulator, IBIS) at 62 eddy covariance sites around the world. Our results indicated that the IBIS model explained 60% of the observed variation in daily GPP at all validation sites. Comparison with a satellite-based vegetation model (Eddy Covariance-Light Use Efficiency, EC-LUE) revealed that the IBIS simulations yielded comparable GPP results as the EC-LUE model. Global mean GPP estimated by the IBIS model was 107.50±1.37 Pg C year(-1) (mean value ± standard deviation) across the vegetated area for the period 2000-2006, consistent with the results of the EC-LUE model (109.39±1.48 Pg C year(-1)). To evaluate the uncertainty introduced by the parameter Vcmax, which represents the maximum photosynthetic capacity, we inversed Vcmax using Markov Chain-Monte Carlo (MCMC) procedures. Using the inversed Vcmax values, the simulated global GPP increased by 16.5 Pg C year(-1), indicating that IBIS model is sensitive to Vcmax, and large uncertainty exists in model parameterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.1409R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.1409R"><span>Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raj, Rahul; Hamm, Nicholas Alexander Samuel; van der Tol, Christiaan; Stein, Alfred</p> <p>2016-03-01</p> <p>Gross primary production (GPP) can be separated from flux tower measurements of net ecosystem exchange (NEE) of CO2. This is used increasingly to validate process-based simulators and remote-sensing-derived estimates of simulated GPP at various time steps. Proper validation includes the uncertainty associated with this separation. In this study, uncertainty assessment was done in a Bayesian framework. It was applied to data from the Speulderbos forest site, The Netherlands. We estimated the uncertainty in GPP at half-hourly time steps, using a non-rectangular hyperbola (NRH) model for its separation from the flux tower measurements. The NRH model provides a robust empirical relationship between radiation and GPP. It includes the degree of curvature of the light response curve, radiation and temperature. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. We defined the prior distribution of each NRH parameter and used Markov chain Monte Carlo (MCMC) simulation to estimate the uncertainty in the separated GPP from the posterior distribution at half-hourly time steps. This time series also allowed us to estimate the uncertainty at daily time steps. We compared the informative with the non-informative prior distributions of the NRH parameters and found that both choices produced similar posterior distributions of GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RvGeo..53..785A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RvGeo..53..785A"><span>Spatiotemporal patterns of terrestrial gross primary production: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anav, Alessandro; Friedlingstein, Pierre; Beer, Christian; Ciais, Philippe; Harper, Anna; Jones, Chris; Murray-Tortarolo, Guillermo; Papale, Dario; Parazoo, Nicholas C.; Peylin, Philippe; Piao, Shilong; Sitch, Stephen; Viovy, Nicolas; Wiltshire, Andy; Zhao, Maosheng</p> <p>2015-09-01</p> <p>Great advances have been made in the last decade in quantifying and understanding the spatiotemporal patterns of terrestrial gross primary production (GPP) with ground, atmospheric, and space observations. However, although global GPP estimates exist, each data set relies upon assumptions and none of the available data are based only on measurements. Consequently, there is no consensus on the global total GPP and large uncertainties exist in its benchmarking. The objective of this review is to assess how the different available data sets predict the spatiotemporal patterns of GPP, identify the differences among data sets, and highlight the main advantages/disadvantages of each data set. We compare GPP estimates for the historical period (1990-2009) from two observation-based data sets (Model Tree Ensemble and Moderate Resolution Imaging Spectroradiometer) to coupled carbon-climate models and terrestrial carbon cycle models from the Fifth Climate Model Intercomparison Project and TRENDY projects and to a new hybrid data set (CARBONES). Results show a large range in the mean global GPP estimates. The different data sets broadly agree on GPP seasonal cycle in terms of phasing, while there is still discrepancy on the amplitude. For interannual variability (IAV) and trends, there is a clear separation between the observation-based data that show little IAV and trend, while the process-based models have large GPP variability and significant trends. These results suggest that there is an urgent need to improve observation-based data sets and develop carbon cycle modeling with processes that are currently treated either very simplistically to correctly estimate present GPP and better quantify the future uptake of carbon dioxide by the world's vegetation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B43A0554S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B43A0554S"><span>Developing a Model to Estimate Freshwater Gross Primary Production Using MODIS Surface Temperature Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saberi, S. J.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Solomon, C.; Boucher, J. M.</p> <p>2016-12-01</p> <p>Lakes contribute to local and regional climate conditions, cycle nutrients, and are viable indicators of climate change due to their sensitivity to disturbances in their water and airsheds. Utilizing spaceborne remote sensing (RS) techniques has considerable potential in studying lake dynamics because it allows for coherent and consistent spatial and temporal observations as well as estimates of lake functions without in situ measurements. However, in order for RS products to be useful, algorithms that relate in situ measurements to RS data must be developed. Estimates of lake metabolic rates are of particular scientific interest since they are indicative of lakes' roles in carbon cycling and ecological function. Currently, there are few existing algorithms relating remote sensing products to in-lake estimates of metabolic rates and more in-depth studies are still required. Here we use satellite surface temperature observations from Moderate Resolution Imaging Spectroradiometer (MODIS) product (MYD11A2) and published in-lake gross primary production (GPP) estimates for eleven globally distributed lakes during a one-year period to produce a univariate quadratic equation model. The general model was validated using other lakes during an equivalent one-year time period (R2=0.76). The statistical analyses reveal significant positive relationships between MODIS temperature data and the previously modeled in-lake GPP. Lake-specific models for Lake Mendota (USA), Rotorua (New Zealand), and Taihu (China) showed stronger relationships than the general combined model, pointing to local influences such as watershed characteristics on in-lake GPP in some cases. These validation data suggest that the developed algorithm has a potential to predict lake GPP on a global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51H1916M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51H1916M"><span>Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, J.; Xiao, X.; Zhang, Y.; Chen, B.; Zhao, B.</p> <p>2017-12-01</p> <p>Great significance exists in accurately estimating spatial-temporal patterns of gross primary production (GPP) because of its important role in global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatially time-sires GPP. However, the estimation of the accuracy of GPP simulations from LUE at both spatial and temporal scales is still a challenging work. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images of 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPPVPM) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPPVPM and SIF data over both single year (2010) and multiple years (2007-2014) in China. Annual GPPVPM is significantly positive correlated with SIF (R2>0.43) spatially for all years during 2007-2014 and all seasons in 2010 (R2>0.37). GPP dynamic trends is high spatial-temporal heterogeneous in China during 2007-2014. The results of this study indicate that GPPVPM is temporally and spatially in line with SIF data, and space-borne SIF data have great potential in validating and parameterizing GPP estimation of LUE-based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3808621','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3808621"><span>Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Batt, Ryan D.; Carpenter, Stephen R.; Cole, Jonathan J.; Pace, Michael L.; Johnson, Robert A.</p> <p>2013-01-01</p> <p>Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems. PMID:24101479</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24101479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24101479"><span>Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Batt, Ryan D; Carpenter, Stephen R; Cole, Jonathan J; Pace, Michael L; Johnson, Robert A</p> <p>2013-10-22</p> <p>Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28345046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28345046"><span>Canopy near-infrared reflectance and terrestrial photosynthesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Badgley, Grayson; Field, Christopher B; Berry, Joseph A</p> <p>2017-03-01</p> <p>Global estimates of terrestrial gross primary production (GPP) remain highly uncertain, despite decades of satellite measurements and intensive in situ monitoring. We report a new approach for quantifying the near-infrared reflectance of terrestrial vegetation (NIR V ). NIR V provides a foundation for a new approach to estimate GPP that consistently untangles the confounding effects of background brightness, leaf area, and the distribution of photosynthetic capacity with depth in canopies using existing moderate spatial and spectral resolution satellite sensors. NIR V is strongly correlated with solar-induced chlorophyll fluorescence, a direct index of photons intercepted by chlorophyll, and with site-level and globally gridded estimates of GPP. NIR V makes it possible to use existing and future reflectance data as a starting point for accurately estimating GPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5362170','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5362170"><span>Canopy near-infrared reflectance and terrestrial photosynthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Badgley, Grayson; Field, Christopher B.; Berry, Joseph A.</p> <p>2017-01-01</p> <p>Global estimates of terrestrial gross primary production (GPP) remain highly uncertain, despite decades of satellite measurements and intensive in situ monitoring. We report a new approach for quantifying the near-infrared reflectance of terrestrial vegetation (NIRV). NIRV provides a foundation for a new approach to estimate GPP that consistently untangles the confounding effects of background brightness, leaf area, and the distribution of photosynthetic capacity with depth in canopies using existing moderate spatial and spectral resolution satellite sensors. NIRV is strongly correlated with solar-induced chlorophyll fluorescence, a direct index of photons intercepted by chlorophyll, and with site-level and globally gridded estimates of GPP. NIRV makes it possible to use existing and future reflectance data as a starting point for accurately estimating GPP. PMID:28345046</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21G1009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21G1009M"><span>Gross Primary Productivity and Vegetation Light Use Efficiency of a Large Metropolitan Region based on CO2 Flux Measurements and WorldView-2 Satellite Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, D. L.; Roberts, D. A.; Clarke, K. C.; Peters, E. B.; Menzer, O.; Lin, Y.; McFadden, J. P.</p> <p>2017-12-01</p> <p>Gross primary productivity (GPP) is commonly estimated with remote sensing techniques over large regions of Earth; however, urban areas are typically excluded due to a lack of light use efficiency (LUE) parameters specific to urban vegetation and challenges stemming from the spatial heterogeneity of urban land cover. In this study, we estimated GPP during the middle of the growing season, both within and among vegetation and land use types, in the Minneapolis-Saint Paul, Minnesota metropolitan region (52.1% vegetation cover). We derived LUE parameters for specific urban vegetation types using estimates of GPP from eddy covariance and tree sap flow-based CO2 flux observations and fraction of absorbed photosynthetically active radiation derived from 2-m resolution WorldView-2 satellite imagery. We produced a pixel-based hierarchical land cover classification of built-up and vegetated urban land cover classes distinguishing deciduous broadleaf trees, evergreen needleleaf trees, turf grass, and golf course grass from impervious and soil surfaces. The overall classification accuracy was 80% (kappa = 0.73). The mapped GPP estimates were within 12% of estimates from independent tall tower eddy covariance measurements. Mean GPP estimates ( ± standard deviation; g C m-2 day-1) for the entire study area from highest to lowest were: golf course grass (11.77 ± 1.20), turf grass (6.05 ± 1.07), evergreen needleleaf trees (5.81 ± 0.52), and deciduous broadleaf trees (2.52 ± 0.25). Turf grass GPP had a larger coefficient of variation (0.18) than the other vegetation classes ( 0.10). Mean land use GPP for the full study area varied as a function of percent vegetation cover. Urban GPP in general, both including and excluding non-vegetated areas, was less than half that of literature estimates for nearby natural forests and grasslands.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3280840','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3280840"><span>Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther</p> <p>2009-01-01</p> <p>In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale. PMID:22399948</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22399948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22399948"><span>Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther</p> <p>2009-01-01</p> <p>In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED087519.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED087519.pdf"><span>Curriculum Guide for Day Care Primary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Radke, Mary Ann</p> <p></p> <p>This curriculum, designed for severely retarded children in a primary day care setting, is divided into three sections: (1) Awareness of Body Parts, (2) Gross Motor Skills, and (3) Language Arts. Detailed activities are suggested to develop and reinforce various gross motor coordinations and learning skills. (CS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=331937','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=331937"><span>Multiscale analyses of solar-induced florescence and gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Remotely sensed solar induced fluorescence (SIF) has shown great promise for probing spatiotemporal variations in terrestrial gross primary production (GPP), the largest component flux of the global carbon cycle. However, scale mismatches between SIF and ground-based GPP have posed challenges toward...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/14746','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/14746"><span>Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Xiangming Xiao; Qingyuan Zhang; David Hollinger; John Aber; Berrien, III Moore</p> <p>2005-01-01</p> <p>Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=347342','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=347342"><span>Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet, understanding of the relationship between GPP and remote sensing observations and how it changes as a function of factors such as scale, biophysical constraint, and vegetation ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51B0392H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51B0392H"><span>Prediction of Gross Primary Production during the Drought and Normal Years over the US Using Solar-Induced Chlorophyll Fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halubok, M.; Yang, Z. L.</p> <p>2016-12-01</p> <p>This study investigates how gross primary production (GPP) estimates can be improved with the use of solar-induced chlorophyll fluorescence (SIF) and presents an effort to produce GPP predictions based on the interdependence between SIF, precipitation, soil moisture and GPP using Global Ozone Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission (TRMM), European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) datasets and FLUXNET observations. We found that considering the relationships between SIF, precipitation and soil moisture, isolating SIF-GPP relationships for different plant functional types (PFTs), and using precipitation and soil moisture conditions pertinent to the continental US provides the most accurate GPP estimates over the Great Plains and Texas. We found that there exists a lag between a precipitation event and corresponding fluorescence levels, ranging from about 2 weeks for grasses to a month for crops. Using these lead-lag relationships, we estimate GPP using SIF, precipitation and soil moisture data for two different PFTs (C3 non-arctic grass and crop) over the US applying the multiple linear regression technique. GPP values estimated from our lead-lag based SIF show the closest possible match with the observational data from the FLUXNET stations. During the drought 2011 year over Texas, our GPP values show a decrease by 100 gC/m2/month as compared to the reference year of 2007. In 2012 (drought year over the Great Plains), we observe significant decrease in GPP, especially in the area of high production (>500 gC/m2/month) that is reduced in July and August 2012. Hence, estimating GPP using specific SIF-GPP relationships, considering the differences in biomes and their interactions with precipitation and soil moisture pertinent to a certain region can detect the drought trends and produce reasonable GPP estimates. Thus, this simple and computationally efficient method based on derived linear equations can be used to obtain GPP predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1009L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1009L"><span>Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, S.; Li, J.; Liu, Q.</p> <p>2018-04-01</p> <p>Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996PhDT........11W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996PhDT........11W"><span>Multimodality Tumor Delineation and Predictive Modelling via Fuzzy-Fusion Deformable Models and Biological Potential Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wasserman, Richard Marc</p> <p></p> <p>The radiation therapy treatment planning (RTTP) process may be subdivided into three planning stages: gross tumor delineation, clinical target delineation, and modality dependent target definition. The research presented will focus on the first two planning tasks. A gross tumor target delineation methodology is proposed which focuses on the integration of MRI, CT, and PET imaging data towards the generation of a mathematically optimal tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modelling, region growing, fuzzy logic, and data fusion. The resulting fuzzy fusion algorithm can integrate both edge and region information from multiple medical modalities to delineate optimal regions of pathological tissue content. The subclinical boundaries of an infiltrating neoplasm cannot be determined explicitly via traditional imaging methods and are often defined to extend a fixed distance from the gross tumor boundary. In order to improve the clinical target definition process an estimation technique is proposed via which tumor growth may be modelled and subclinical growth predicted. An in vivo, macroscopic primary brain tumor growth model is presented, which may be fit to each patient undergoing treatment, allowing for the prediction of future growth and consequently the ability to estimate subclinical local invasion. Additionally, the patient specific in vivo tumor model will be of significant utility in multiple diagnostic clinical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPP12A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPP12A..01C"><span>Are Methods for Estimating Primary Production and the Growth Rates of Phytoplankton Approaching Agreement?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cullen, J. J.</p> <p>2016-02-01</p> <p>During the 1980s, estimates of primary productivity and the growth rates of phytoplankton in oligotrophic waters were controversial, in part because rates based on seasonal accumulations of oxygen in the shallow oxygen maximum were reported to be much higher than could be accounted for with measurements of photosynthesis based on incubations with C-14. Since then, much has changed: tested and standardized methods have been employed to collect comprehensive time-series observations of primary production and related oceanographic properties in oligotrophic waters of the North Pacific subtropical gyre and the Sargasso Sea; technical and theoretical advances have led to new tracer-based estimates of photosynthesis (e.g., oxygen/argon and triple isotopes of dissolved oxygen); and biogeochemical sensor systems on ocean gliders and profiling floats can describe with unprecedented resolution the dynamics of phytoplankton, oxygen and nitrate as driven by growth, loss processes including grazing, and vertical migration for nutrient acquisition. Meanwhile, the estimation of primary productivity, phytoplankton biomass and phytoplankton growth rates from remote sensing of ocean color has matured, complementing biogeochemical models that describe and predict these key properties of plankton dynamics. In a selective review focused on well-studied oligotrophic waters, I compare methods for estimating the primary productivity and growth rates of phytoplankton to see if they are converging on agreement, not only in the estimated rates, but also in the underlying assumptions, such as the ratio of gross- to net primary production — and how this relates to the measurement — and the ratio of chlorophyll to carbon in phytoplankton. Examples of agreement are encouraging, but some stark contrasts illustrate the need for improved mechanistic understanding of exactly what each method is measuring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5609619','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5609619"><span>Hospitalization costs of severe bacterial pneumonia in children: comparative analysis considering different costing methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nunes, Sheila Elke Araujo; Minamisava, Ruth; Vieira, Maria Aparecida da Silva; Itria, Alexander; Pessoa, Vicente Porfirio; de Andrade, Ana Lúcia Sampaio Sgambatti; Toscano, Cristiana Maria</p> <p>2017-01-01</p> <p>ABSTRACT Objective To determine and compare hospitalization costs of bacterial community-acquired pneumonia cases via different costing methods under the Brazilian Public Unified Health System perspective. Methods Cost-of-illness study based on primary data collected from a sample of 59 children aged between 28 days and 35 months and hospitalized due to bacterial pneumonia. Direct medical and non-medical costs were considered and three costing methods employed: micro-costing based on medical record review, micro-costing based on therapeutic guidelines and gross-costing based on the Brazilian Public Unified Health System reimbursement rates. Costs estimates obtained via different methods were compared using the Friedman test. Results Cost estimates of inpatient cases of severe pneumonia amounted to R$ 780,70/$Int. 858.7 (medical record review), R$ 641,90/$Int. 706.90 (therapeutic guidelines) and R$ 594,80/$Int. 654.28 (Brazilian Public Unified Health System reimbursement rates). Costs estimated via micro-costing (medical record review or therapeutic guidelines) did not differ significantly (p=0.405), while estimates based on reimbursement rates were significantly lower compared to estimates based on therapeutic guidelines (p<0.001) or record review (p=0.006). Conclusion Brazilian Public Unified Health System costs estimated via different costing methods differ significantly, with gross-costing yielding lower cost estimates. Given costs estimated by different micro-costing methods are similar and costing methods based on therapeutic guidelines are easier to apply and less expensive, this method may be a valuable alternative for estimation of hospitalization costs of bacterial community-acquired pneumonia in children. PMID:28767921</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title47-vol3/pdf/CFR-2011-title47-vol3-sec61-3.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title47-vol3/pdf/CFR-2011-title47-vol3-sec61-3.pdf"><span>47 CFR 61.3 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>...). (r) GDP Price Index (GDP-PI). The estimate of the Chain-Type Price Index for Gross Domestic Product... Price Index (GNP-PI). The estimate of the “Fixed-Weighted Price Index for Gross National Product, 1982...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017327','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017327"><span>Estimating Canopy Dark Respiration for Crop Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Monje Mejia, Oscar Alberto</p> <p>2014-01-01</p> <p>Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS23A1658S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS23A1658S"><span>Evaluation of the impact of storm event inputs on levels of gross primary production and respiration in a drinking water reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samal, N. R.; Pierson, D. C.; Staehr, P. A.; Pradhanang, S. M.; Smith, D. G.</p> <p>2013-12-01</p> <p>Episodic inputs of dissolved and particulate material during storm events can have important effects on lake and reservoir ecosystem function and also impact reservoir drinking water quality. We evaluate the impacts of storm events using vertical profiles of temperature, dissolved oxygen, turbidity, conductivity and chlorophyll automatically collected at 6 hour intervals in Ashokan Reservoir, which is a part of the New York City drinking water supply. Storm driven inputs to the reservoir periodically result in large input of suspended sediments that result in reservoir turbidity levels exceeding 25 NTU, and substantial reductions in the euphotic depth. Dissolved materials associated with these same storms would be expected to stimulate bacterial production. This study involves the use of a conceptual model to calculate depth specific estimates of gross primary production (GPP) and ecosystem respiration (R) using three years of data that included 777 events that increased reservoir turbidity levels to over 25 NTU. Using data from before, during and after storm events, we examine how the balance between GPP and R is influenced by storm related increases in turbidity and dissolved organic matter, which would in turn influence light attenuation and bacterial production. Key words: metabolism, primary production, GPP, respiration, euphotic depth, storm event, reservoir</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812726H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812726H"><span>Deforestation for oil palm alters the fundamental balance of the soil N cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, Liz; Trimmer, Mark; Bradley, Chris; Pinay, Gilles</p> <p>2016-04-01</p> <p>Expansion of commercial agriculture in equatorial regions has significant implications for regional nitrogen (N) budgets, particularly nitrous oxide (N2O) and nitric oxide (NO) emissions, produced largely by microbial nitrification and denitrification. However, current estimates of soil N turnover are poorly constrained in Southeast Asia for nitrogen gas (N2) production and lesser known N transformations such as nitrate ammonification (DNRA) and anaerobic ammonium oxidation (anammox). We investigated changes in N availability and turnover following replacement of tropical forest with oil palm plantations along a chronosequence of oil palm maturity (3-months to 15-year-old stands) and secondary to primary forest succession in Sabah, Malaysian Borneo. Samples were taken from ten sites during March and April 2012. Using 15N tracing techniques, we measured rates of gross ammonium (NH4+) and nitrate (NO3-) production (mineralisation and nitrification) and consumption (n= 8), potential denitrification, DNRA and anammox (n= 12) in soil cores and slurries respectively. Gross mineralisation rates (0.05 - 3.08 g N m-2 d-1) remained unchanged in oil palm relative to forests. However, a significant reduction in gross nitrification (0.04 - 2.31 g N m-2 d-1) and an increase in NH4+ immobilisation disrupt the pathway to N2 production substantially reducing (by > 90%) rates of denitrification and anammox in recently planted oil palm relative to primary forest. In forests, N2 produced via anammox was ˜30% of that from denitrification highlighting the potential for anammox to contribute significantly to N2 production. NH4+ production rates from DNRA were over two orders of magnitude less than N2 production rates indicating that denitrification is the primary dissimilatory nitrate consumption process in these soils. Potential N2O emissions were greater than potential N2 production, remaining unchanged across the chronosequence and indicating an increased N2O:N2 emission ratio when soils were first disturbed. These results are an important precursor to studies providing improved estimates of regional N turnover and loss in Southeast Asia which will have global implications for N biogeochemical cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48079','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48079"><span>Gas exchange and stand-level estimates of water use and gross primary productivity in an experimental pine and switchgrass intercrop forestry system on the Lower Coastal Plain of North Carolina, U.S.A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Janine M. Albaugha; Jean-Christophe Domeca; Chris A. Maier; Eric B. Sucre; Zakiya H. Leggett; John S. King</p> <p>2014-01-01</p> <p>Despite growing interest in using switchgrass (Panicum virgatum L.) as a biofuel, there are limiteddata on the physiology of this species and its effect on stand water use and carbon (C) assimilationwhen grown as a forest intercrop for bioenergy. Therefore, we quantified gas exchange rates of switch-grass within intercropped plots and in pure switchgrass plots during...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=268936','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=268936"><span>The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=346074','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=346074"><span>Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underl...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26971205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26971205"><span>A multi-sites analysis on the ozone effects on Gross Primary Production of European forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Proietti, C; Anav, A; De Marco, A; Sicard, P; Vitale, M</p> <p>2016-06-15</p> <p>Ozone (O3) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O3 can impair CO2 assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O3 on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000-2010. Due to the lack of carbon assimilation data at O3 monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O3 measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O3 concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O3 on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O3 ability to reduce primary productivity of the forests, this study can help in assessing the O3 impacts on ecosystem services, including wood production and carbon sequestration. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1237681-effects-situ-reanalysis-climate-data-estimation-cropland-gross-primary-production-using-vegetation-photosynthesis-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1237681-effects-situ-reanalysis-climate-data-estimation-cropland-gross-primary-production-using-vegetation-photosynthesis-model"><span>Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jin, Cui; Xiao, Xiangming; Wagle, Pradeep</p> <p>2015-11-01</p> <p>Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climatemore » inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ~25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....914091Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....914091Z"><span>Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.</p> <p>2012-10-01</p> <p>Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruits, the limited root-apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24336199','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24336199"><span>Amazon River carbon dioxide outgassing fuelled by wetlands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio</p> <p>2014-01-16</p> <p>River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005BGD.....2..183S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005BGD.....2..183S"><span>Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandoval-Soto, L.; Stanimirov, M.; von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J.</p> <p>2005-01-01</p> <p>COS uptake by trees, as observed under dark/light changes and under application of the plant hormone abscisic acid, exhibited a strong correlation with the CO2 assimilation rate and the stomatal conductance. As the uptake of COS occurred exclusively through the stomata we compared experimentally derived and re-evaluated deposition velocities (Vd for COS and CO2). We show that Vd of COS is generally significantly larger than that of CO2. We therefore introduced this attribute into a new global estimate of COS fluxes into vegetation. The global COS uptake by vegetation as estimated by the new model ranges between 0.69-1.40 Tg a-1, based on the Net Primary Productivity (NPP). Taking into account Gross Primary Productivity (GPP) the deposition estimate ranges between 1.37-2.81 Tg a-1 (0.73-1.50 Tg S a-1). We believe that in order to obtain accurate and reliable global NPP-based estimates for the COS flux into vegetation, the different deposition velocities of COS and CO2 must be taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28233327','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28233327"><span>Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E</p> <p>2017-06-01</p> <p>The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a  × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3543332','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3543332"><span>Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23083531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23083531"><span>Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree</p> <p>2012-10-19</p> <p>Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14972868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14972868"><span>A simple method for estimating gross carbon budgets for vegetation in forest ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ryan, Michael G.</p> <p>1991-01-01</p> <p>Gross carbon budgets for vegetation in forest ecosystems are difficult to construct because of problems in scaling flux measurements made on small samples over short periods of time and in determining belowground carbon allocation. Recently, empirical relationships have been developed to estimate total belowground carbon allocation from litterfall, and maintenance respiration from tissue nitrogen content. I outline a method for estimating gross carbon budgets using these empirical relationships together with data readily available from ecosystem studies (aboveground wood and canopy production, aboveground wood and canopy biomass, litterfall, and tissue nitrogen contents). Estimates generated with this method are compared with annual carbon fixation estimates from the Forest-BGC model for a lodgepole pine (Pinus contorta Dougl.) and a Pacific silver fir (Abies amabilis Dougl.) chronosequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21F0996B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21F0996B"><span>Upscaling Ameriflux observations to assess drought impacts on gross primary productivity across the Southwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnes, M.; Moore, D. J.; Scott, R. L.; MacBean, N.; Ponce-Campos, G. E.; Breshears, D. D.</p> <p>2017-12-01</p> <p>Both satellite observations and eddy covariance estimates provide crucial information about the Earth's carbon, water and energy cycles. Continuous measurements from flux towers facilitate exploration of the exchange of carbon dioxide, water and energy between the land surface and the atmosphere at fine temporal and spatial scales, while satellite observations can fill in the large spatial gaps of in-situ measurements and provide long-term temporal continuity. The Southwest (Southwest United States and Northwest Mexico) and other semi-arid regions represent a key uncertainty in interannual variability in carbon uptake. Comparisons of existing global upscaled gross primary production (GPP) products with flux tower data at sites across the Southwest show widespread mischaracterization of seasonality in vegetation carbon uptake, resulting in large (up to 200%) errors in annual carbon uptake estimates. Here, remotely sensed and distributed meteorological inputs are used to upscale GPP estimates from 25 Ameriflux towers across the Southwest to the regional scale using a machine learning approach. Our random forest model incorporates two novel features that improve the spatial and temporal variability in GPP. First, we incorporate a multi-scalar drought index at multiple timescales to account for differential seasonality between ecosystem types. Second, our machine learning algorithm was trained on twenty five ecologically diverse sites to optimize both the monthly variability in and the seasonal cycle of GPP. The product and its components will be used to examine drought impacts on terrestrial carbon cycling across the Southwest including the effects of drought seasonality and on carbon uptake. Our spatially and temporally continuous upscaled GPP product drawing from both ground and satellite data over the Southwest region helps us understand linkages between the carbon and water cycles in semi-arid ecosystems and informs predictions of vegetation response to future climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28855518','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28855518"><span>Hydrologic resilience and Amazon productivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B</p> <p>2017-08-30</p> <p>The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B31D2019H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B31D2019H"><span>GEONEX: algorithm development and validation of Gross Primary Production from geostationary satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hashimoto, H.; Wang, W.; Ganguly, S.; Li, S.; Michaelis, A.; Higuchi, A.; Takenaka, H.; Nemani, R. R.</p> <p>2017-12-01</p> <p>New geostationary sensors such as the AHI (Advanced Himawari Imager on Himawari-8) and the ABI (Advanced Baseline Imager on GOES-16) have the potential to advance ecosystem modeling particularly of diurnally varying phenomenon through frequent observations. These sensors have similar channels as in MODIS (MODerate resolution Imaging Spectroradiometer), and allow us to utilize the knowledge and experience in MODIS data processing. Here, we developed sub-hourly Gross Primary Production (GPP) algorithm, leverating the MODIS 17 GPP algorithm. We run the model at 1-km resolution over Japan and Australia using geo-corrected AHI data. Solar radiation was directly calculated from AHI using a neural network technique. The other necessary climate data were derived from weather stations and other satellite data. The sub-hourly estimates of GPP were first compared with ground-measured GPP at various Fluxnet sites. We also compared the AHI GPP with MODIS 17 GPP, and analyzed the differences in spatial patterns and the effect of diurnal changes in climate forcing. The sub-hourly GPP products require massive storage and strong computational power. We use NEX (NASA Earth Exchange) facility to produce the GPP products. This GPP algorithm can be applied to other geostationary satellites including GOES-16 in future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19738242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19738242"><span>Income, insurance, and technology: why does health spending outpace economic growth?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Sheila; Newhouse, Joseph P; Freeland, Mark S</p> <p>2009-01-01</p> <p>A broad consensus holds that increased medical capability-technology-is the primary driver of health spending growth. However, technology does not expand independently of historical context; it is fueled by rising incomes and more generous insurance coverage. We estimate that medical technology explains 27-48 percent of health spending growth since 1960-a smaller percentage than earlier estimates. Income (gross domestic product, or GDP) growth plays a critical role, primarily through the actions of governments and employers on behalf of pools of consumers. The contribution of insurance is likely to differ, with less of a push from increasing generosity of coverage and more of a push from changes in provider payment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26244','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26244"><span>Guidelines for estimating volume, biomass, and smoke production for piled slash.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Colin C. Hardy</p> <p>1998-01-01</p> <p>Guidelines in the form of a six-step approach are provided for estimating volumes, oven-dry mass, consumption, and particulate matter emissions for piled logging debris. Seven stylized pile shapes and their associated geometric volume formulae are used to estimate gross pile volumes. The gross volumes are then reduced to net wood volume by applying an appropriate wood-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=dental+AND+anatomy&pg=2&id=EJ244064','ERIC'); return false;" href="https://eric.ed.gov/?q=dental+AND+anatomy&pg=2&id=EJ244064"><span>Curricular Guidelines in Gross Anatomy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Horn, Stanton D.; And Others</p> <p>1981-01-01</p> <p>An outline of AADS curricular guidelines for gross anatomy in dental education includes primary educational goals, prerequisites, core content, specific course objectives for each section of content, sequencing, faculty requirements, and facility and equipment needs. (MSE)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..415S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..415S"><span>Continental-scale decrease in net primary productivity in streams due to climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Chao; Dodds, Walter K.; Rüegg, Janine; Argerich, Alba; Baker, Christina L.; Bowden, William B.; Douglas, Michael M.; Farrell, Kaitlin J.; Flinn, Michael B.; Garcia, Erica A.; Helton, Ashley M.; Harms, Tamara K.; Jia, Shufang; Jones, Jeremy B.; Koenig, Lauren E.; Kominoski, John S.; McDowell, William H.; McMaster, Damien; Parker, Samuel P.; Rosemond, Amy D.; Ruffing, Claire M.; Sheehan, Ken R.; Trentman, Matt T.; Whiles, Matt R.; Wollheim, Wilfred M.; Ballantyne, Ford</p> <p>2018-06-01</p> <p>Streams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1 °C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194 Pg carbon emitted from such streams every year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27861616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27861616"><span>Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying</p> <p>2016-01-01</p> <p>This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5115830','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5115830"><span>Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying</p> <p>2016-01-01</p> <p>This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season. PMID:27861616</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=motor+AND+movements+AND+preschool&pg=6&id=EJ289866','ERIC'); return false;" href="https://eric.ed.gov/?q=motor+AND+movements+AND+preschool&pg=6&id=EJ289866"><span>Gross Motor Activities: Movement for Fun and Learning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lowenthal, Barbara</p> <p>1983-01-01</p> <p>Examples are provided of ways in which gross motor activities are integrated into mathematics, language arts, social studies, art, and music and creative movement concepts for preschool- and primary-age children with special needs. (CL)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000292','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000292"><span>Estimation of Crop Gross Primary Production (GPP). 2; Do Scaled (MODIS) Vegetation Indices Improve Performance?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Zhang, Xiaoyang; Suyker, Andrew; Verma, Shashi; Shuai, Yanmin; Middleton, Elizabeth M.</p> <p>2015-01-01</p> <p>Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely been made using spectral Vegetation Indices (VIs) over the past two decades. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band Wide Dynamic Range Vegetation Index (WDRVIgreen), and the green band Chlorophyll Index (CIgreen) have been employed to estimate GPP under the assumption that GPP is proportional to the product of VI and photosynthetically active radiation (PAR) (where VI is one of four VIs: NDVI, EVI, WDRVIgreen, or CIgreen). However, the empirical regressions between VI*PAR and GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for regressions). Therefore they are somewhat difficult to interpret and apply. This study investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts) between the fraction of PAR absorbed by chlorophyll of a canopy (fAPARchl) and the VIs, and (2) whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of which are irrigated and one is rainfed. The four VIs and fAPARchl of the fields were computed with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP estimation performance for the scaled VIs was compared to results obtained with the original VIs and evaluated with standard statistics: the coefficient of determination (R2), the root mean square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EVI obtained the best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved across sites, crop types and soil/background wetness conditions. The scaled CIgreen did not improve results, compared to the original CIgreen. The scaled green band indices (WDRVIgreen, CIgreen) did not exhibit superior performance to either the scaled EVI or NDVI in estimating crop daily GPP at these agricultural fields. The scaled VIs are more physiologically meaningful than original un-scaled VIs, but scaling factors and offsets may vary across crop types and surface conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....1213967R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....1213967R"><span>Uncertainty analysis of gross primary production partitioned from net ecosystem exchange measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raj, R.; Hamm, N. A. S.; van der Tol, C.; Stein, A.</p> <p>2015-08-01</p> <p>Gross primary production (GPP), separated from flux tower measurements of net ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based simulators and remote sensing-derived estimates of simulated GPP at various time steps. Proper validation should include the uncertainty associated with this separation at different time steps. This can be achieved by using a Bayesian framework. In this study, we estimated the uncertainty in GPP at half hourly time steps. We used a non-rectangular hyperbola (NRH) model to separate GPP from flux tower measurements of NEE at the Speulderbos forest site, The Netherlands. The NRH model included the variables that influence GPP, in particular radiation, and temperature. In addition, the NRH model provided a robust empirical relationship between radiation and GPP by including the degree of curvature of the light response curve. Parameters of the NRH model were fitted to the measured NEE data for every 10-day period during the growing season (April to October) in 2009. Adopting a Bayesian approach, we defined the prior distribution of each NRH parameter. Markov chain Monte Carlo (MCMC) simulation was used to update the prior distribution of each NRH parameter. This allowed us to estimate the uncertainty in the separated GPP at half-hourly time steps. This yielded the posterior distribution of GPP at each half hour and allowed the quantification of uncertainty. The time series of posterior distributions thus obtained allowed us to estimate the uncertainty at daily time steps. We compared the informative with non-informative prior distributions of the NRH parameters. The results showed that both choices of prior produced similar posterior distributions GPP. This will provide relevant and important information for the validation of process-based simulators in the future. Furthermore, the obtained posterior distributions of NEE and the NRH parameters are of interest for a range of applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......113M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......113M"><span>Estimating Urban Gross Primary Productivity at High Spatial Resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, David Lauchlin</p> <p></p> <p>Gross primary productivity (GPP) is an important metric of ecosystem function and is the primary way carbon is transferred from the atmosphere to the land surface. Remote sensing techniques are commonly used to estimate regional and global GPP for carbon budgets. However, urban areas are typically excluded from such estimates due to a lack of parameters specific to urban vegetation and the modeling challenges that arise in mapping GPP across heterogeneous urban land cover. In this study, we estimated typical midsummer GPP within and among vegetation and land use types in the Minneapolis-Saint Paul, Minnesota metropolitan region by deriving light use efficiency parameters specific to urban vegetation types using in situ flux observations and WorldView-2 high spatial resolution satellite imagery. We produced a land cover classification using the satellite imagery, canopy height data from airborne lidar, and leaf-off color-infrared aerial orthophotos, and used regional GIS layers to mask certain land cover/land use types. The classification for built-up and vegetated urban land cover classes distinguished deciduous trees, evergreen trees, turf grass, and golf grass from impervious and soil surfaces, with an overall classification accuracy of 80% (kappa = 0.73). The full study area had 52.1% vegetation cover. The light use efficiency for each vegetation class, with the exception of golf grass, tended to be low compared to natural vegetation light use efficiencies in the literature. The mapped GPP estimates were within 11% of estimates from independent tall tower eddy covariance measurements. The order of the mapped vegetation classes for the full study area in terms of mean GPP from lowest to highest was: deciduous trees (2.52 gC m -2 d-1), evergreen trees (5.81 gC m-2 d-1), turf grass (6.05 gC m-2 d-1), and golf grass (11.77 gC m-2 d-1). Turf grass GPP had a larger coefficient of variation (0.18) than the other vegetation classes (˜0.10). Mean land use GPP for the full study area varied as a function of percent vegetation cover. Urban GPP in general, both including and excluding non-vegetated areas, tended to be low relative to natural forests and grasslands. Our results demonstrate that, at the scale of neighborhoods and city blocks within heterogeneous urban landscapes, high spatial resolution GPP estimates are valuable to develop comparisons such as within and among vegetation cover classes and land use types.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B51N0612G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B51N0612G"><span>Towards 250 m mapping of terrestrial primary productivity over Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonsamo, A.; Chen, J. M.</p> <p>2011-12-01</p> <p>Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24118456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24118456"><span>Relationship between habitual physical activity and gross motor skills is multifaceted in 5- to 8-year-old children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laukkanen, A; Pesola, A; Havu, M; Sääkslahti, A; Finni, T</p> <p>2014-04-01</p> <p>Adequate motor skills are essential for children participating in age-related physical activities, and gross motor skills may play an important role for maintaining sufficient level of physical activity (PA) during life course. The purpose of this study was to examine the relationship between gross motor skills and PA in children when PA was analyzed by both metabolic- and neuromuscular-based methods. Gross motor skills (KTK--Körperkoordinationstest für Kinder and APM inventory--manipulative skill test) of 84 children aged 5-8 years (53 preschoolers, 28 girls; 31 primary schoolers, 18 girls) were measured, and accelerometer-derived PA was analyzed using in parallel metabolic counts and neuromuscular impact methods. The gross motor skills were associated with moderate-to-high neuromuscular impacts, PA of vigorous metabolic intensity, and mean level of PA in primary school girls (0.5 < r < 0.7, P < 0.05), and with high impacts in preschool girls (0.3 < r < 0.5, P < 0.05). In preschool boys, moderate impacts, light-to-vigorous PA, and mean level of PA were associated with gross motor skills (0.4 < r < 0.7, P < 0.05). In conclusion, the result emphasizes an important relationship between gross motor skills and PA stressing both metabolic and neuromuscular systems in children. Furthermore, PA highly stressing neuromuscular system interacts with gross motor proficiency in girls especially. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24615744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24615744"><span>Estimating the benefits of public health policies that reduce harmful consumption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ashley, Elizabeth M; Nardinelli, Clark; Lavaty, Rosemarie A</p> <p>2015-05-01</p> <p>For products such as tobacco and junk food, where policy interventions are often designed to decrease consumption, affected consumers gain utility from improvements in lifetime health and longevity but also lose utility associated with the activity of consuming the product. In the case of anti-smoking policies, even though published estimates of gross health and longevity benefits are up to 900 times higher than the net consumer benefits suggested by a more direct willingness-to-pay estimation approach, there is little recognition in the cost-benefit and cost-effectiveness literature that gross estimates will overstate intrapersonal welfare improvements when utility losses are not netted out. This paper presents a general framework for analyzing policies that are designed to reduce inefficiently high consumption and provides a rule of thumb for the relationship between net and gross consumer welfare effects: where there exists a plausible estimate of the tax that would allow consumers to fully internalize health costs, the ratio of the tax to the per-unit long-term cost can provide an upper bound on the ratio of net to gross benefits. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1079102-estimating-crop-net-primary-production-using-inventory-data-modis-derived-parameters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1079102-estimating-crop-net-primary-production-using-inventory-data-modis-derived-parameters"><span>Estimating crop net primary production using inventory data and MODIS-derived parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.</p> <p>2013-06-03</p> <p>National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois inmore » years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29386626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29386626"><span>Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacBean, Natasha; Maignan, Fabienne; Bacour, Cédric; Lewis, Philip; Peylin, Philippe; Guanter, Luis; Köhler, Philipp; Gómez-Dans, Jose; Disney, Mathias</p> <p>2018-01-31</p> <p>Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity - GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr -1 to 166 ± 10 PgCyr -1 , bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr -1 . Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO 2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/598/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/598/"><span>Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.</p> <p>2011-01-01</p> <p>Gross alpha-particle activities and beta-particle activities for all 47 samples were analyzed at 72 hours after sample collection and again at 30 days after sample collection, allowing for the measurement of the activity of short-lived isotopes. Gross alpha-particle activities reported in this report were not adjusted for activity contributions by radon or uranium and, therefore, are conservatively high estimates if compared to the U.S. Environmental Protection Agency National Primary Drinking Water Regulation for adjusted gross alpha-particle activity. The gross alpha-particle activities at 30 days in the samples ranged from R0.60 to 25.5 picocuries per liter and at 72 hours ranged from 2.58 to 39.7 picocuries per liter, and the "R" preceding the value of 0.60 picocuries per liter refers to a nondetected result less than the sample-specific critical level. Gross beta-particle activities measured at 30 days ranged from 1.17 to 14.4 picocuries per liter and at 72 hours ranged from 1.97 to 4.4 picocuries per liter. Filtered uranium was detected in quantifiable amounts in all of the 47 wells sampled. The uranium concentrations ranged from 0.03 to 42.7 micrograms per liter. One sample was analyzed for carbon-14, and the amount of modern atmospheric carbon was reported as 0.2 percent. Six source-water samples collected from municipal supply wells were analyzed for radium-226, and all of the concentrations were considered detectable concentrations (greater than their associated sample-specific critical level). Three source-water samples collected were analyzed for radon-222, and all of the concentrations were substantially greater than the associated sample-specific critical level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B43A0567W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B43A0567W"><span>Impacts of climate extremes on gross primary productivity of terrestrial ecosystems in conterminous USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, X.; Xiao, X.; Zhang, Y.; Zhang, G.</p> <p>2016-12-01</p> <p>By offsetting one-third of anthropogenic carbon emissions, terrestrial carbon uptake mitigates atmospheric CO2 concentration and consequent global warming. However, the current global warming trend is inducing more climate extremes, which in turn cause large changes in terrestrial carbon uptake. Here we report the seasonal and regional anomalies of gross primary productivity (GPP) across the conterminous USA (CONUS) in response to two contrasting climate extremes: the cool and wet 2009 versus the warm and dry 2012. We used the Vegetation Photosynthesis Model (VPM, Xiao et al., 2006), MODIS images and NCEP/NARR climate data to estimate GPP from 2009-2014, and evaluated the VPM-predicted GPP with the estimated GPP from the CO2 eddy flux tower sites (24 sites). We analyze the correlation between the anomalies of the continental GPP and the anomalies of temperature and precipitation. The results show a substantial, negative GPP anomaly in 2009, in addition to the positive GPP anomaly in 2012, which was already reported in a previous study (Wolf et al., 2016). We also found that GPP anomalies of different climate regions in four seasons are controlled by either temperature or precipitation. Our study shows the robustness of the VPM to simulate GPP under the condition of climate extremes, and highlights the need of investigating the impacts of cooling events on the terrestrial carbon cycle. Our finding also suggests that there is no uniform pattern for terrestrial ecosystems responding to climate extremes, and that climate extremes should be studied in a case-by-case, location-based approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/21221','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/21221"><span>The sensitivity of derived estimates to the measurment quality objectives for independent variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Francis A. Roesch</p> <p>2002-01-01</p> <p>The effect of varying the allowed measurement error for individual tree variables upon county estimates of gross cubic-foot volume was examined. Measurement Quality Ob~ectives (MQOs) for three forest tree variables (biological identity, diameter, and height) used in individual tree gross cubic-foot volume equations were varied from the current USDA Forest Service...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/14406','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/14406"><span>The Sensitivity of Derived Estimates to the Measurement Quality Objectives for Independent Variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Francis A. Roesch</p> <p>2005-01-01</p> <p>The effect of varying the allowed measurement error for individual tree variables upon county estimates of gross cubic-foot volume was examined. Measurement Quality Objectives (MQOs) for three forest tree variables (biological identity, diameter, and height) used in individual tree gross cubic-foot volume equations were varied from the current USDA Forest Service...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1399084','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1399084"><span>Chapter 12: Survey Design and Implementation for Estimating Gross Savings Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kurnik, Charles W; Baumgartner, Robert</p> <p></p> <p>This chapter presents an overview of best practices for designing and executing survey research to estimate gross energy savings in energy efficiency evaluations. A detailed description of the specific techniques and strategies for designing questions, implementing a survey, and analyzing and reporting the survey procedures and results is beyond the scope of this chapter. So for each topic covered below, readers are encouraged to consult articles and books cited in References, as well as other sources that cover the specific topics in greater depth. This chapter focuses on the use of survey methods to collect data for estimating gross savingsmore » from energy efficiency programs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..107a2119M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..107a2119M"><span>Carbon balance assessment by eddy covariance method for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils of Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meshalkina, J. L.; Yaroslavtsev, A. M.; Vasenev, I. I.; Andreeva, I. V.; Tihonova, M. V.</p> <p>2018-01-01</p> <p>The carbon balance for the agroecosystems with potato plants and oats & vetch mixture on sod-podzolics soils was evaluated using the eddy covariance approach. Absorption of carbon was recorded only during the growing season; maximum values were detected for all crops in July. The number of days during the vegetation period, when the carbon stocked in the fields with potatoes and oats & vetch mixture was about the same and accounted for 53-55 days. During this period, the increase in gross primary production (GPP) is well correlated with the crop yields. The curve of the gross primary productivity is closely linked to the phases of development of plants; for potatoes, this graph differs significantly for all phases. Form of oats & vetch mixture biomass curve shown linear increases. Carbon losses were observed for all the studied agroecosystems: for fields with an oats & vetch mixture they were 254 g C m-2 y-1, while for fields with potato plants they were 307 g C m-2 y-1. Values about 250-300 g C m-2 per year may be considered as estimated values for the total carbon uptake for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...639748Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...639748Z"><span>Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julia; Dong, Jinwei; Kato, Etsushi; Jain, Atul K.; Wiltshire, Andy; Stocker, Benjamin D.</p> <p>2016-12-01</p> <p>Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170001447&hterms=evapotranspiration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Devapotranspiration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170001447&hterms=evapotranspiration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Devapotranspiration"><span>Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170001447'); toggleEditAbsImage('author_20170001447_show'); toggleEditAbsImage('author_20170001447_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170001447_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170001447_hide"></p> <p>2016-01-01</p> <p>Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.3089Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.3089Z"><span>Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.</p> <p>2013-05-01</p> <p>Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruit, the limited root apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=dental+AND+anatomy&pg=4&id=EJ469091','ERIC'); return false;" href="https://eric.ed.gov/?q=dental+AND+anatomy&pg=4&id=EJ469091"><span>Curriculum Guidelines for Gross Anatomy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Journal of Dental Education, 1993</p> <p>1993-01-01</p> <p>The American Association of Dental Schools' revised guidelines on curricula for gross anatomy suggest percentages of effort and time devoted to curricular areas, offer a rationale for anatomy instruction, note primary educational goals and prerequisites, outline content, and make recommendations for sequencing. Appropriate faculty and facilities…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005BGeo....2..125S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005BGeo....2..125S"><span>Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandoval-Soto, L.; Stanimirov, M.; von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J.</p> <p>2005-06-01</p> <p>COS uptake by trees, as observed under dark/light changes and under application of the plant hormone abscisic acid, exhibited a strong correlation with the CO2 assimilation rate and the stomatal conductance. As the uptake of COS occurred exclusively through the stomata we compared experimentally derived and re-evaluated deposition velocities (Vd; related to stomatal conductance) for COS and CO2. We show that Vd of COS is generally significantly larger than that of CO2. We therefore introduced this attribute into a new global estimate of COS fluxes into vegetation. The new global estimate of the COS uptake based on available net primary productivity data (NPP) ranges between 0.69-1.40 Tga-1. However, as a COS molecule is irreversibly split in contrast to CO2 which is released again by respiration processes, we took into account the Gross Primary Productivity (GPP) representing the true CO2 leaf flux the COS uptake has to be related to. Such a GPP based deposition estimate ranged between 1.4--2.8 Tga-1 (0.73-1.50 TgSa-1). We believe that in order to obtain accurate global COS sink estimates such a GPP-based estimate corrected by the different deposition velocities of COS and CO2 must be taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790027376&hterms=aesthetic+social&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D*aesthetic%2Bsocial*','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790027376&hterms=aesthetic+social&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D*aesthetic%2Bsocial*"><span>The value of volume and growth measurements in timber sales management of the National Forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lietzke, K. R.</p> <p>1977-01-01</p> <p>This paper summarizes work performed in the estimation of gross social value of timber volume and growth rate information used in making regional harvest decisions in the National Forest System. A model was developed to permit parametric analysis. The problem is formulated as one of finding optimal inventory holding patterns. Public timber management differs from other inventory holding problems in that the inventory, itself, generates value over time in providing recreational, aesthetic and environmental goods. 'Nontimber' demand estimates are inferred from past Forest Service harvest and sales levels. The solution requires a description of the harvest rates which maintain the optimum inventory level. Gross benefits of the Landsat systems are estimated by comparison with Forest Service information gathering models. Gross annual benefits are estimated to be $5.9 million for the MSS system and $7.2 million for the TM system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55222','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55222"><span>Post-classification approaches to estimating change in forest area using remotely sense auxiliary data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald E. McRoberts</p> <p>2014-01-01</p> <p>Multiple remote sensing-based approaches to estimating gross afforestation, gross deforestation, and net deforestation are possible. However, many of these approaches have severe data requirements in the form of long time series of remotely sensed data and/or large numbers of observations of land cover change to train classifiers and assess the accuracy of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/22249','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/22249"><span>Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S.C. Hagen; B.H. Braswell; E. Linder; S. Frolking; A.D. Richardson; David Hollinger. D.Y; Hollinger. D.Y</p> <p>2006-01-01</p> <p>We present an uncertainty analysis of gross ecosystem carbon exchange (GEE) estimates derived from 7 years of continuous eddy covariance measurements of forest atmosphere CO2 fluxes at Howland Forest, Maine, USA. These data, which have high temporal resolution, can be used to validate process modeling analyses, remote sensing assessments, and field surveys. However,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2710193','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2710193"><span>A Simulation of the Importance of Length of Growing Season and Canopy Functional Properties on the Seasonal Gross Primary Production of Temperate Alpine Meadows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baptist, Florence; Choler, Philippe</p> <p>2008-01-01</p> <p>Background and Aims Along snowmelt gradients, the canopies of temperate alpine meadows differ strongly in their structural and biochemical properties. Here, a study is made of the effects of these canopy dissimilarities combined with the snow-induced changes in length of growing season on seasonal gross primary production (GPP). Methods Leaf area index (LAI) and community-aggregated values of leaf angle and leaf nitrogen content were estimated for seven alpine plant canopies distributed along a marked snowmelt gradient, and these were used as input variables in a sun–shade canopy bulk-photosynthesis model. The model was validated for plant communities of early and late snowmelt sites by measuring the instantaneous CO2 fluxes with a canopy closed-chamber technique. A sensitivity analysis was conducted to estimate the relative impact of canopy properties and environmental factors on the daily and seasonal GPP. Key Results Carbon uptake was primarily related to the LAI and total canopy nitrogen content, but not to the leaf angle. For a given level of photosynthetically active radiation, CO2 assimilation was higher under overcast conditions. Sensitivity analysis revealed that increase of the length of the growing season had a higher effect on the seasonal GPP than a similar increase of any other factor. It was also found that the observed greater nitrogen content and larger LAI of canopies in late-snowmelt sites largely compensated for the negative impact of the reduced growing season. Conclusions The results emphasize the primary importance of snow-induced changes in length of growing season on carbon uptake in alpine temperate meadows. It was also demonstrated how using leaf-trait values of the dominants is a useful approach for modelling ecosystem carbon-cycle-related processes, particularly when continuous measurements of CO2 fluxes are technically difficult. The study thus represents an important step in addressing the challenge of using a plant functional-trait approach for biogeochemical modelling. PMID:18182383</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24967601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24967601"><span>Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Andrew Black, T; Yan, Wende; Goulden, Mike L; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo</p> <p>2014-06-26</p> <p>The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188052','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188052"><span>Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Black, T. Andrew; Yan, Wende; Goulden, Michael; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A.; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo</p> <p>2014-01-01</p> <p>The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27341574','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27341574"><span>Student Outcomes of School-Based Physical Therapy as Measured by Goal Attainment Scaling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiarello, Lisa A; Effgen, Susan K; Jeffries, Lynn; McCoy, Sarah Westcott; Bush, Heather</p> <p>2016-01-01</p> <p>The main purposes were to describe individualized outcomes of students receiving school-based physical therapy and determine if goal attainment differed by gross motor ability and age. One hundred nine physical therapists and 296 students participated. At the beginning of the school year, therapists translated students' Individualized Education Program goals into subgoals using Goal Attainment Scaling and determined students' Gross Motor Functional Classification System level. Researchers categorized goals (posture/mobility, recreation/fitness, self-care, or academics), and therapists identified students' primary goal. At the end of the school year, therapists scored the goals. Descriptive statistics and 2-way analyses of variance were conducted. Students exceeded their expected goal level for primary goals and goals categorized as posture/mobility, recreation/fitness, and self-care and made progress on academic goals. No differences were found by gross motor ability. Younger students had higher goal attainment for primary and recreation goals. Students achieve individualized outcomes addressed by school-based physical therapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23687009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23687009"><span>Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ogutu, Booker O; Dash, Jadunandan; Dawson, Terence P</p> <p>2013-09-01</p> <p>This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4 ) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps ) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R(2)  > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry-grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R(2)  > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps ) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1414522-regional-contribution-variability-trends-global-gross-primary-productivity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1414522-regional-contribution-variability-trends-global-gross-primary-productivity"><span>Regional contribution to variability and trends of global gross primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Min; Rafique, Rashid; Asrar, Ghassem R.</p> <p></p> <p>Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117±13 Pg C yr-1 (mean ± 1 standard deviation), whichmore » was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12j5005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12j5005C"><span>Regional contribution to variability and trends of global gross primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Min; Rafique, Rashid; Asrar, Ghassem R.; Bond-Lamberty, Ben; Ciais, Philippe; Zhao, Fang; Reyer, Christopher P. O.; Ostberg, Sebastian; Chang, Jinfeng; Ito, Akihiko; Yang, Jia; Zeng, Ning; Kalnay, Eugenia; West, Tristram; Leng, Guoyong; Francois, Louis; Munhoven, Guy; Henrot, Alexandra; Tian, Hanqin; Pan, Shufen; Nishina, Kazuya; Viovy, Nicolas; Morfopoulos, Catherine; Betts, Richard; Schaphoff, Sibyll; Steinkamp, Jörg; Hickler, Thomas</p> <p>2017-10-01</p> <p>Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr-1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41D1465W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41D1465W"><span>Continuous estimation of evapotranspiration and gross primary productivity from an Unmanned Aerial System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, S.; Bandini, F.; Jakobsen, J.; J Zarco-Tejada, P.; Liu, X.; Haugård Olesen, D.; Ibrom, A.; Bauer-Gottwein, P.; Garcia, M.</p> <p>2017-12-01</p> <p>Model prediction of evapotranspiration (ET) and gross primary productivity (GPP) using optical and thermal satellite imagery is biased towards clear-sky conditions. Unmanned Aerial Systems (UAS) can collect optical and thermal signals at unprecedented very high spatial resolution (< 1 meter) under sunny and cloudy weather conditions. However, methods to obtain model outputs between image acquisitions are still needed. This study uses UAS based optical and thermal observations to continuously estimate daily ET and GPP in a Danish willow forest for an entire growing season of 2016. A hexacopter equipped with multispectral and thermal infrared cameras and a real-time kinematic Global Navigation Satellite System was used. The Normalized Differential Vegetation Index (NDVI) and the Temperature Vegetation Dryness Index (TVDI) were used as proxies for leaf area index and soil moisture conditions, respectively. To obtain continuously daily records between UAS acquisitions, UAS surface temperature was assimilated by the ensemble Kalman filter into a prognostic land surface model (Noilhan and Planton, 1989), which relies on the force-restore method, to simulate the continuous land surface temperature. NDVI was interpolated into daily time steps by the cubic spline method. Using these continuous datasets, a joint ET and GPP model, which combines the Priestley-Taylor Jet Propulsion Laboratory ET model (Fisher et al., 2008; Garcia et al., 2013) and the Light Use Efficiency GPP model (Potter et al., 1993), was applied. The simulated ET and GPP were compared with the footprint of eddy covariance observations. The simulated daily ET has a RMSE of 14.41 W•m-2 and a correlation coefficient of 0.83. The simulated daily GPP has a root mean square error (RMSE) of 1.56 g•C•m-2•d-1 and a correlation coefficient of 0.87. This study demonstrates the potential of UAS based multispectral and thermal mapping to continuously estimate ET and GPP for both sunny and cloudy weather conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160010306&hterms=sun&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsun','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160010306&hterms=sun&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsun"><span>Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160010306'); toggleEditAbsImage('author_20160010306_show'); toggleEditAbsImage('author_20160010306_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160010306_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160010306_hide"></p> <p>2016-01-01</p> <p>Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1185Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1185Y"><span>Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in a global dynamic vegetation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, Chao; Ciais, Philippe; Li, Wei</p> <p>2018-02-01</p> <p>Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the predefined forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs over Africa reveal that a longer rotation length over the historical period likely results in higher emissions. Our results highlight that although gross land use change as a former missing emission component is included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to be overestimated when models ignore sub-grid secondary forests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.5089M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.5089M"><span>A simplified gross primary production and evapotranspiration model for boreal coniferous forests - is a generic calibration sufficient?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minunno, F.; Peltoniemi, M.; Launiainen, S.; Aurela, M.; Lindroth, A.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Mäkelä, A.</p> <p>2015-07-01</p> <p>The problem of model complexity has been lively debated in environmental sciences as well as in the forest modelling community. Simple models are less input demanding and their calibration involves a lower number of parameters, but they might be suitable only at local scale. In this work we calibrated a simplified ecosystem process model (PRELES) to data from multiple sites and we tested if PRELES can be used at regional scale to estimate the carbon and water fluxes of Boreal conifer forests. We compared a multi-site (M-S) with site-specific (S-S) calibrations. Model calibrations and evaluations were carried out by the means of the Bayesian method; Bayesian calibration (BC) and Bayesian model comparison (BMC) were used to quantify the uncertainty in model parameters and model structure. To evaluate model performances BMC results were combined with more classical analysis of model-data mismatch (M-DM). Evapotranspiration (ET) and gross primary production (GPP) measurements collected in 10 sites of Finland and Sweden were used in the study. Calibration results showed that similar estimates were obtained for the parameters at which model outputs are most sensitive. No significant differences were encountered in the predictions of the multi-site and site-specific versions of PRELES with exception of a site with agricultural history (Alkkia). Although PRELES predicted GPP better than evapotranspiration, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. Our analyses underlined also the importance of using long and carefully collected flux datasets in model calibration. In fact, even a single site can provide model calibrations that can be applied at a wider spatial scale, since it covers a wide range of variability in climatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRG..115.4025I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRG..115.4025I"><span>Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko</p> <p>2010-12-01</p> <p>Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14..111M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14..111M"><span>Tree-grass phenology information improves light use efficiency modelling of gross primary productivity for an Australian tropical savanna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Caitlin E.; Beringer, Jason; Evans, Bradley; Hutley, Lindsay B.; Tapper, Nigel J.</p> <p>2017-01-01</p> <p>The coexistence of trees and grasses in savanna ecosystems results in marked phenological dynamics that vary spatially and temporally with climate. Australian savannas comprise a complex variety of life forms and phenologies, from evergreen trees to annual/perennial grasses, producing a boom-bust seasonal pattern of productivity that follows the wet-dry seasonal rainfall cycle. As the climate changes into the 21st century, modification to rainfall and temperature regimes in savannas is highly likely. There is a need to link phenology cycles of different species with productivity to understand how the tree-grass relationship may shift in response to climate change. This study investigated the relationship between productivity and phenology for trees and grasses in an Australian tropical savanna. Productivity, estimated from overstory (tree) and understory (grass) eddy covariance flux tower estimates of gross primary productivity (GPP), was compared against 2 years of repeat time-lapse digital photography (phenocams). We explored the phenology-productivity relationship at the ecosystem scale using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and flux tower GPP. These data were obtained from the Howard Springs OzFlux/Fluxnet site (AU-How) in northern Australia. Two greenness indices were calculated from the phenocam images: the green chromatic coordinate (GCC) and excess green index (ExG). These indices captured the temporal dynamics of the understory (grass) and overstory (trees) phenology and were correlated well with tower GPP for understory (r2 = 0.65 to 0.72) but less so for the overstory (r2 = 0.14 to 0.23). The MODIS enhanced vegetation index (EVI) correlated well with GPP at the ecosystem scale (r2 = 0.70). Lastly, we used GCC and EVI to parameterise a light use efficiency (LUE) model and found it to improve the estimates of GPP for the overstory, understory and ecosystem. We conclude that phenology is an important parameter to consider in estimating GPP from LUE models in savannas and that phenocams can provide important insights into the phenological variability of trees and grasses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJAEO..65...79T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJAEO..65...79T"><span>Assessing the relationship between microwave vegetation optical depth and gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.</p> <p>2018-03-01</p> <p>At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B33F0682H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B33F0682H"><span>Detecting Soil Moisture Related Impacts on Gross Primary Productivity using the MODIS-based Photochemical Reflectance Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, M.; Kimball, J. S.; Running, S. W.; Ballantyne, A.; Guan, K.; Huemmrich, K. F.</p> <p>2016-12-01</p> <p>Satellite remote sensing provides continuous observations of vegetation properties that can be used to estimate ecosystem gross primary production (GPP). The Photochemical Reflectance Index (PRI) has been shown to be sensitive to photosynthetic light use efficiency (LUE), GPP and canopy water-stress. The NASA EOS MODIS (Moderate Resolution Imaging Spectroradiometer) sensor provides potential PRI estimation globally at daily time step and 1-km spatial resolution for more than 10 years. Here, we use the MODIS based PRI with eddy covariance CO2 flux measurements and meteorological observations from 20 tower sites representing 5 major plant functional types (PFT) within the continental USA (CONUS) to assess GPP sensitivity to seasonal water supply variability. The sPRI (scaled PRI) derived using MODIS band 13 as a reference band (sPRI13) generally shows higher correspondence with tower GPP observations than other potential MODIS reference bands (MODIS band 1, 4, 10 and 12). The sPRI13 was used to represent soil moisture related water supply constraints to LUE within a terrestrial carbon flux model to estimate GPP (GPPPRI). The GPPPRI calculations show generally strong relationships with tower GPP observations (0.457 ≤ R2 ≤ 0.818), except for lower GPPPRI performance over evergreen needleleaf forest (ENF) sites. A regional model sensitivity analysis using the sPRI13 as a proxy for soil moisture related water supply limits indicated that water restrictions limit GPP over more than 21% of the CONUS domain, particularly in northwest and southwest CONUS subregions, and drier climate areas where atmospheric moisture deficits (VPD) alone are insufficient to represent both atmosphere demand and soil water supply controls affecting productivity. Our results indicate strong potential of the MODIS sPRI13 to represent GPP sensitivity to seasonal soil moisture related water supply variability, with enhanced (1-km resolution) delineation of these processes closer to the scale of in situ tower observations, providing an effective tool to characterize sub-grid spatial heterogeneity in soil moisture related water supply controls that inform coarser scale observations and estimates determined from other satellite observations and global carbon, and climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3535429','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3535429"><span>Vast Portfolio Selection with Gross-exposure Constraints*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fan, Jianqing; Zhang, Jingjin; Yu, Ke</p> <p>2012-01-01</p> <p>We introduce the large portfolio selection using gross-exposure constraints. We show that with gross-exposure constraint the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 600 stocks randomly selected from Russell 3000. PMID:23293404</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5807415','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5807415"><span>Decrease in the Photosynthetic Performance of Temperate Grassland Species Does Not Lead to a Decline in the Gross Primary Production of the Ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Digrado, Anthony; de la Motte, Louis G.; Bachy, Aurélie; Mozaffar, Ahsan; Schoon, Niels; Bussotti, Filippo; Amelynck, Crist; Dalcq, Anne-Catherine; Fauconnier, Marie-Laure; Aubinet, Marc; Heinesch, Bernard; du Jardin, Patrick; Delaplace, Pierre</p> <p>2018-01-01</p> <p>Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO2 gas exchange at the ecosystem-scale. Over a 2-year period, photosynthetic performance of a temperate grassland ecosystem was characterized by conducting frequent chlorophyll fluorescence (ChlF) measurements on three primary grassland species (Lolium perenne L., Taraxacum sp., and Trifolium repens L.). Ecosystem photosynthetic performance was estimated from measurements performed on the three dominant grassland species weighed based on their relative abundance. In addition, monitoring CO2 fluxes was performed by eddy covariance. The highest decrease in photosynthetic performance was detected in summer, when environmental constraints were combined. Dicot species (Taraxacum sp. and T. repens) presented the strongest capacity to up-regulate PSI and exhibited the highest electron transport efficiency under stressful environmental conditions compared with L. perenne. The decline in ecosystem photosynthetic performance did not lead to a reduction in gross primary productivity, likely because increased light energy was available under these conditions. The carbon amounts fixed at light saturation were not influenced by alterations in photosynthetic processes, suggesting photosynthesis was not impaired. Decreased photosynthetic performance was associated with high respiration flux, but both were influenced by temperature. Our study revealed variation in photosynthetic performance of a grassland ecosystem responded to environmental constraints, but alterations in photosynthetic processes appeared to exhibit a negligible influence on ecosystem CO2 fluxes. PMID:29459875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21F0994Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21F0994Y"><span>Assessing spatiotemporal changes in forest carbon turnover times in observational data and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.</p> <p>2017-12-01</p> <p>Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=gross+AND+motor+AND+skills&pg=7&id=EJ1049381','ERIC'); return false;" href="https://eric.ed.gov/?q=gross+AND+motor+AND+skills&pg=7&id=EJ1049381"><span>Effective Collaboration among the Gross Motor Assessment Team Members</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Menear, Kristi S.; Davis, Timothy D.</p> <p>2015-01-01</p> <p>This article describes the gross motor assessment team (GMAT) members' roles and collaborative approach to making appropriate decisions and modifications when addressing the needs of individuals with disabilities in physical education. Case studies of students are used to demonstrate effective uses of the GMAT. The primary outcome of the GMAT's…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030020949','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030020949"><span>Estimating Net Primary Productivity Using Satellite and Ancillary Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choudhury, Bhaskar J.</p> <p>2002-01-01</p> <p>The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122..716V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122..716V"><span>Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, Manish; Schimel, David; Evans, Bradley; Frankenberg, Christian; Beringer, Jason; Drewry, Darren T.; Magney, Troy; Marang, Ian; Hutley, Lindsay; Moore, Caitlin; Eldering, Annmarie</p> <p>2017-03-01</p> <p>Recent studies have utilized coarse spatial and temporal resolution remotely sensed solar-induced fluorescence (SIF) for modeling terrestrial gross primary productivity (GPP) at regional scales. Although these studies have demonstrated the potential of SIF, there have been concerns about the ecophysiological basis of the relationship between SIF and GPP in different environmental conditions. Launched in 2014, the Orbiting Carbon Observatory-2 (OCO-2) has enabled fine-scale (1.3 by 2.5 km) retrievals of SIF that are comparable with measurements recorded at eddy covariance towers. In this study, we examine the effect of environmental conditions on the relationship of OCO-2 SIF with tower GPP over the course of a growing season at a well-characterized natural grassland site. Combining OCO-2 SIF and eddy covariance tower data with a canopy radiative transfer and an ecosystem model, we also assess the potential of OCO-2 SIF to constrain the estimates of Vcmax, one of the most important parameters in ecosystem models. Based on the results, we suggest that although environmental conditions play a role in determining the nature of relationship between SIF and GPP, overall, the linear relationship is more robust at ecosystem scale than the theory based on leaf-level processes might suggest. Our study also shows that the ability of SIF to constrain Vcmax is weak at the selected site.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045078','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045078"><span>Estimating economic losses from earthquakes using an empirical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jaiswal, Kishor; Wald, David J.</p> <p>2013-01-01</p> <p>We extended the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) empirical fatality estimation methodology proposed by Jaiswal et al. (2009) to rapidly estimate economic losses after significant earthquakes worldwide. The requisite model inputs are shaking intensity estimates made by the ShakeMap system, the spatial distribution of population available from the LandScan database, modern and historic country or sub-country population and Gross Domestic Product (GDP) data, and economic loss data from Munich Re's historical earthquakes catalog. We developed a strategy to approximately scale GDP-based economic exposure for historical and recent earthquakes in order to estimate economic losses. The process consists of using a country-specific multiplicative factor to accommodate the disparity between economic exposure and the annual per capita GDP, and it has proven successful in hindcast-ing past losses. Although loss, population, shaking estimates, and economic data used in the calibration process are uncertain, approximate ranges of losses can be estimated for the primary purpose of gauging the overall scope of the disaster and coordinating response. The proposed methodology is both indirect and approximate and is thus best suited as a rapid loss estimation model for applications like the PAGER system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol5/pdf/CFR-2010-title32-vol5-sec750-47.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol5/pdf/CFR-2010-title32-vol5-sec750-47.pdf"><span>32 CFR 750.47 - Measure of damages for property claims.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... appreciation in value effected through the repair shall be deducted from the actual or estimated gross cost of repairs. The amount of any net depreciation in the value of the property shall be added to such gross cost...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43E0601M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43E0601M"><span>Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.</p> <p>2015-12-01</p> <p>Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..489...28S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..489...28S"><span>Gross domestic product estimation based on electricity utilization by artificial neural network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.</p> <p>2018-01-01</p> <p>The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1926b0011B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1926b0011B"><span>GDP and efficiency of Russian economy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borodachev, Sergey M.</p> <p>2018-01-01</p> <p>The goal is to study GDP (gross domestic product) as an unobservable characteristic of the Russian national economy state on the basis of more reliable observed data on gross output (systems output) and final consumption (systems control). To do this, the dynamic Leontief model is presented in a system-like form and its parameters and GDP dynamics are estimated by the Kalman filter (KF). We consider that all previous year's investments affect the growth of the gross output by the next year. The weights of these investments in the sum are equal to unity and decrease in geometric progression. The estimation of the model parameters was carried out by the maximum likelihood method. The original data on the gross output and final consumption in the period from 1995 to 2015 years where taken from the Rosstat website, where maximally aggregated economy of Russia is reflected in the system of national accounts. The growth of direct costs and capital expenditures at gross output increase has been discovered, which indicates the extensive character of the development of the economy. Investments are being absorbed 2 - 4 years; any change of them causes a surge of commissioned fixed assets fluctuation with a period of 2 years. Then these parameter values were used in the KF to estimate the states of the system. The emerging tendency of the transition of GDP growth to its fall means that the rate of growth of final consumption is higher than the rate of GDP growth. In general, the behavior of the curve of Rosstat GDP obviously follows the declared investments, whereas in the present calculation it is closer to the behavior of final consumption. Estimated GDP and investments that really increased it were significantly less after the crisis of 2008-2009 years than officially published data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14..257K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14..257K"><span>Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korrensalo, Aino; Alekseychik, Pavel; Hájek, Tomáš; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina</p> <p>2017-01-01</p> <p>In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements.Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which, in turn, determined the seasonal variation in ecosystem PG. The upscaled growing season PG estimate, 230 g C m-2, agreed well with the GPP estimated by the EC (243 g C m-2).Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity, i.e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27374843','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27374843"><span>Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S</p> <p>2016-08-20</p> <p>One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3136G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3136G"><span>Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gentine, P.; Alemohammad, S. H.</p> <p>2018-04-01</p> <p>Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B53C0204P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B53C0204P"><span>Analysis of Water Use Efficiency derived from MODIS satellite image in Northeast Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, J.; Jang, K.; Kang, S.</p> <p>2014-12-01</p> <p>Water Use Efficiency (WUE) is defined as ratio of evapotranspriation (ET) to gross primary productivity (GPP). It can detect the changes of ecosystem properties due to the variability of enviromental condition, and provide a chance to understand the linkage between carbon and water processes in terrestrial ecosystem. In a changing climate, the understanding of ecosystem functional responses to climate variability is crucial for evaluating effect. However, continental or sub-continental scale WUE analysis is were rare. In this study, WUE was estimated in the Northeast Asia using satellite data from 2003 to 2010. ET and GPP were estimated using various MODIS products. The estimated ET and GPP showed favorable agreements with flux tower observations. WUE in the study domain showed considerable variations according to the plant functional types and climatic and elevational gradients. The results produced in this study indicate that satellite remote sensing provides a useful tool for monitoring variability of terrestrial ecosystem functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1497L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1497L"><span>Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, Peter; van Oijen, Marcel; Buys, Gwen; Tomlinson, Sam</p> <p>2018-03-01</p> <p>We present a method for estimating land-use change using a Bayesian data assimilation approach. The approach provides a general framework for combining multiple disparate data sources with a simple model. This allows us to constrain estimates of gross land-use change with reliable national-scale census data, whilst retaining the detailed information available from several other sources. Eight different data sources, with three different data structures, were combined in our posterior estimate of land use and land-use change, and other data sources could easily be added in future. The tendency for observations to underestimate gross land-use change is accounted for by allowing for a skewed distribution in the likelihood function. The data structure produced has high temporal and spatial resolution, and is appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately into the output, so we have a full posterior distribution of output and parameters. The data are available in the widely used netCDF file format from <a href="http://eidc.ceh.ac.uk/" target="_blank">http://eidc.ceh.ac.uk/</a>.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25048899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25048899"><span>Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gorur, F Korkmaz; Camgoz, H</p> <p>2014-10-01</p> <p>The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol6/pdf/CFR-2010-title7-vol6-sec400-170.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol6/pdf/CFR-2010-title7-vol6-sec400-170.pdf"><span>7 CFR 400.170 - General qualifications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>...) Have and meet the ratio requirements of the Gross Premium to Surplus and Net Premium to Surplus...) Gross Premium to Surplus Less than 900%. (ii) Net Premium to Surplus Less than 300%. (2) Analytical: (i... estimated retained premium proposed to be reinsured, multiplied by the appropriate Minimum Surplus Factor...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27919309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27919309"><span>COST-UTILITY ANALYSIS OF PRIMARY PROPHYLAXIS, COMPARED WITH ON-DEMAND TREATMENT, FOR PATIENTS WITH SEVERE HEMOPHILIA TYPE A IN COLOMBIA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castro Jaramillo, Héctor Eduardo; Moreno Viscaya, Mabel; Mejia, Aurelio E</p> <p>2016-01-01</p> <p>This article presents a cost-utility analysis from the Colombian health system perspective comparing primary prophylaxis to on-demand treatment using exogenous clotting factor VIII (FVIII) for patients with severe hemophilia type A. We developed a Markov model to estimate expected costs and outcomes (measured as quality-adjusted life-years, QALYs) for each strategy. Transition probabilities were estimated using published studies; utility weights were obtained from a sample of Colombian patients with hemophilia and costs were gathered using local data. Both deterministic and probabilistic sensitivity analysis were performed to assess the robustness of results. The additional cost per QALY gained of primary prophylaxis compared with on-demand treatment was 105,081,022 Colombian pesos (COP) (55,204 USD), and thus not considered cost-effective according to a threshold of up to three times the current Colombian gross domestic product (GDP) per-capita. When primary prophylaxis was provided throughout life using recombinant FVIII (rFVIII), which is much costlier than FVIII, the additional cost per QALY gained reached 174,159,553 COP (91,494 USD). using a decision rule of up to three times the Colombian GDP per capita, primary prophylaxis (with either FVIII or rFVIII) would not be considered as cost-effective in this country. However, a final decision on providing or preventing patients from primary prophylaxis as a gold standard of care for severe hemophilia type A should also consider broader criteria than the incremental cost-effectiveness ratio results itself. Only a price reduction of exogenous FVIII of 50 percent or more would make primary prophylaxis cost-effective in this context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Bruininks-Oseretsky&pg=2&id=EJ854422','ERIC'); return false;" href="https://eric.ed.gov/?q=Bruininks-Oseretsky&pg=2&id=EJ854422"><span>Can Norms Developed in One Country Be Applicable to Children of Another Country?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lam, Hazel Mei Yung</p> <p>2008-01-01</p> <p>The primary aim this study was to investigate whether a gross motor proficiency norm developed in one country could be applied to young children in another country. The secondary aim of the study was to assess the gross motor proficiency of Hong Kong preschoolers aged five years. The Bruininks-Oseretsky Test of Motor Proficiency (BOTMP) (subtests…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21145516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21145516"><span>Simultaneous uterine and urinary bladder rupture in an otherwise successful vaginal birth after cesarean delivery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ho, Szu-Ying; Chang, Shuenn-Dhy; Liang, Ching-Chung</p> <p>2010-12-01</p> <p>Uterine rupture is the primary concern when a patient chooses a trial of labor after a cesarean section. Bladder rupture accompanied by uterine rupture should be taken into consideration if gross hematuria occurs. We report the case of a patient with uterine rupture during a trial of labor after cesarean delivery. She had a normal course of labor and no classic signs of uterine rupture. However, gross hematuria was noted after repair of the episiotomy. The patient began to complain of progressive abdominal pain, gross hematuria and oliguria. Cystoscopy revealed a direct communication between the bladder and the uterus. When opening the bladder peritoneum, rupture sites over the anterior uterus and posterior wall of the bladder were noted. Following primary repair of both wounds, a Foley catheter was left in place for 12 days. The patient had achieved a full recovery by the 2-year follow-up examination. Bladder injury and uterine rupture can occur at any time during labor. Gross hematuria immediately after delivery is the most common presentation. Cystoscopy is a good tool to identify the severity of bladder injury. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1825b0026W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1825b0026W"><span>Gross regional domestic product estimation: Application of two-way unbalanced panel data models to economic growth in East Nusa Tenggara province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wibowo, Wahyu; Sinu, Elisabeth B.; Setiawan</p> <p>2017-03-01</p> <p>The condition of East Nusa Tenggara Province which recently developed new districts can affect the number of information or data collected become unbalanced. One of the consequences of ignoring the data incompleteness is the estimator become not valid. Therefore, the analysis of unbalanced panel data is very crucial.The aim of this paper is to find the estimation of Gross Regional Domestic Product in East Nusa Tenggara Province using unbalanced panel data regression model for two-way error component which assume random effect model (REM). In this research, we employ Feasible Generalized Least Squares (FGLS) as regression coefficients estimation method. Since variance of the model is unknown, ANOVA method is considered to obtain the variance components in order to construct the variance-covariance matrix. The data used in this research is secondary data taken from Central Bureau of Statistics of East Nusa Tenggara Province in 21 districts period 2004-2013. The predictors are the number of labor over 15 years old (X1), electrification ratios (X2), and local revenues (X3) while Gross Regional Domestic Product based on constant price 2000 is the response (Y). The FGLS estimation result shows that the value of R2 is 80,539% and all the predictors chosen are significantly affect (α = 5%) the Gross Regional Domestic Product in all district of East Nusa Tenggara Province. Those variables are the number of labor over 15 years old (X1), electrification ratios (X2), and local revenues (X3) with 0,22986, 0,090476, and 0,14749 of elasticities, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title7-vol1/pdf/CFR-2014-title7-vol1-sec14-6.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title7-vol1/pdf/CFR-2014-title7-vol1-sec14-6.pdf"><span>7 CFR 14.6 - Criteria for determining the primary purpose of payments with respect to potential exclusion from...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... 7 Agriculture 1 2014-01-01 2014-01-01 false Criteria for determining the primary purpose of... Secretary of Agriculture DETERMINING THE PRIMARY PURPOSE OF CERTAIN PAYMENTS FOR FEDERAL TAX PURPOSES § 14.6 Criteria for determining the primary purpose of payments with respect to potential exclusion from gross...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol1/pdf/CFR-2012-title7-vol1-sec14-6.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol1/pdf/CFR-2012-title7-vol1-sec14-6.pdf"><span>7 CFR 14.6 - Criteria for determining the primary purpose of payments with respect to potential exclusion from...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 7 Agriculture 1 2012-01-01 2012-01-01 false Criteria for determining the primary purpose of... Secretary of Agriculture DETERMINING THE PRIMARY PURPOSE OF CERTAIN PAYMENTS FOR FEDERAL TAX PURPOSES § 14.6 Criteria for determining the primary purpose of payments with respect to potential exclusion from gross...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19500165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19500165"><span>Employer-sponsored insurance, health care cost growth, and the economic performance of U.S. Industries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sood, Neeraj; Ghosh, Arkadipta; Escarce, José J</p> <p>2009-10-01</p> <p>To estimate the effect of growth in health care costs that outpaces gross domestic product (GDP) growth ("excess" growth in health care costs) on employment, gross output, and value added to GDP of U.S. industries. We analyzed data from 38 U.S. industries for the period 1987-2005. All data are publicly available from various government agencies. We estimated bivariate and multivariate regressions. To develop the regression models, we assumed that rapid growth in health care costs has a larger effect on economic performance for industries where large percentages of workers receive employer-sponsored health insurance (ESI). We used the estimated regression coefficients to simulate economic outcomes under alternative scenarios of health care cost inflation. Faster growth in health care costs had greater adverse effects on economic outcomes for industries with larger percentages of workers who had ESI. We found that a 10 percent increase in excess growth in health care costs would have resulted in 120,803 fewer jobs, US$28,022 million in lost gross output, and US$14,082 million in lost value added in 2005. These declines represent 0.17 to 0.18 percent of employment, gross output, and value added in 2005. Excess growth in health care costs is adversely affecting the economic performance of U.S. industries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/569000','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/569000"><span>International energy annual 1996</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p>1998-02-01</p> <p>The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal,more » and the consumption and flaring of natural gas. 72 tabs.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29209658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29209658"><span>Surgical Pathology Resident Rotation Restructuring at a Tertiary Care Academic Center.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehr, Chelsea R; Obstfeld, Amrom E; Barrett, Amanda C; Montone, Kathleen T; Schwartz, Lauren E</p> <p>2017-01-01</p> <p>Changes in the field of pathology and resident education necessitate ongoing evaluation of residency training. Evolutionary change is particularly important for surgical pathology rotations, which form the core of anatomic pathology training programs. In the past, we organized this rotation based on subjective insight. When faced with the recent need to restructure the rotation, we strove for a more evidence-based process. Our approach involved 2 primary sources of data. We quantified the number of cases and blocks submitted per case type to estimate workload and surveyed residents about the time required to gross specimens in all organ systems. A multidisciplinary committee including faculty, residents, and staff evaluated the results and used the data to model how various changes to the rotation would affect resident workload, turnaround time, and other variables. Finally, we identified rotation structures that equally distributed work and created a point-based system that capped grossing time for residents of different experience. Following implementation, we retrospectively compared turnaround time and duty hour violations before and after these changes and surveyed residents about their experiences with both systems. We evaluated the accuracy of the point-based system by examining grossing times and comparing them to the assigned point values. We found overall improvement in the rotation following the implementation. As there is essentially no literature on the subject of surgical pathology rotation organization, we hope that our experience will provide a road map to improve pathology resident education at other institutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18434526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18434526"><span>Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst</p> <p>2008-04-23</p> <p>If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20100209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20100209"><span>Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Jia; Moore, David J P; Riveros-Iregui, Diego A; Burns, Sean P; Monson, Russell K</p> <p>2010-03-01</p> <p>*Understanding controls over plant-atmosphere CO(2) exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO(2) assimilation rate (A(Tree)) in a subalpine forest ecosystem. *We analysed the carbon isotope ratio (delta(13)C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate A(Tree). Estimates of A(Tree) for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. *A sensitivity analysis showed that estimates of A(Tree) were more sensitive to dynamics in E than delta(13)C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. *The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B31A1973W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B31A1973W"><span>Optimized estimation and its uncertainties of gross primary production over oasis-desert ecosystems in an arid region of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, H.; Li, X.; Xiao, J.; Ma, M.</p> <p>2017-12-01</p> <p>Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation over the main ecosystems in arid region of China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033124','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033124"><span>Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, Li; Wylie, Bruce K.; Loveland, Thomas R.; Fosnight, Eugene A.; Tieszen, Larry L.; Ji, Lei; Gilmanov, Tagir</p> <p>2007-01-01</p> <p>Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results.In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub-pixel cropland components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29805334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29805334"><span>Seasonal oxygen dynamics in a warm temperate estuary: effects of hydrologic variability on measurements of primary production, respiration, and net metabolism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murrell, Michael C; Caffrey, Jane M; Marcovich, Dragoslav T; Beck, Marcus W; Jarvis, Brandon M; Hagy, James D</p> <p>2018-05-01</p> <p>Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum's open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O 2 m -2 d -1 ) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates, but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O 2 m -2 d -1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O 2 m -2 d -1 . The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem - water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O 2 m -2 d -1 , but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O 2 m -2 d -1 in spring to 86.7 mmol O 2 m -2 d -1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes, and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28778185','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28778185"><span>Complete surgical resection improves outcome in INRG high-risk patients with localized neuroblastoma older than 18 months.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fischer, Janina; Pohl, Alexandra; Volland, Ruth; Hero, Barbara; Dübbers, Martin; Cernaianu, Grigore; Berthold, Frank; von Schweinitz, Dietrich; Simon, Thorsten</p> <p>2017-08-04</p> <p>Although several studies have been conducted on the role of surgery in localized neuroblastoma, the impact of surgical timing and extent of primary tumor resection on outcome in high-risk patients remains controversial. Patients from the German neuroblastoma trial NB97 with localized neuroblastoma INSS stage 1-3 age > 18 months were included for retrospective analysis. Imaging reports were reviewed by two independent physicians for Image Defined Risk Factors (IDRF). Operation notes and corresponding imaging reports were analyzed for surgical radicality. The extent of tumor resection was classified as complete resection (95-100%), gross total resection (90-95%), incomplete resection (50-90%), and biopsy (<50%) and correlated with local control rate and outcome. Patients were stratified according to the International Neuroblastoma Risk Group (INRG) staging system. Survival curves were estimated according to the method of Kaplan and Meier and compared by the log-rank test. A total of 179 patients were included in this study. 77 patients underwent more than one primary tumor operation. After best surgery, 68.7% of patients achieved complete resection of the primary tumor, 16.8% gross total resection, 14.0% incomplete surgery, and 0.5% biopsy only. The cumulative complication rate was 20.3% and the surgery associated mortality rate was 1.1%. Image defined risk factors (IDRF) predicted the extent of resection. Patients with complete resection had a better local-progression-free survival (LPFS), event-free survival (EFS) and OS (overall survival) than the other groups. Subgroup analyses showed better EFS, LPFS and OS for patients with complete resection in INRG high-risk patients. Multivariable analyses revealed resection (complete vs. other), and MYCN (non-amplified vs. amplified) as independent prognostic factors for EFS, LPFS and OS. In patients with localized neuroblastoma age 18 months or older, especially in INRG high-risk patients harboring MYCN amplification, extended surgery of the primary tumor site improved local control rate and survival with an acceptable risk of complications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGeo...11.6855R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGeo...11.6855R"><span>How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.</p> <p>2014-12-01</p> <p>The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and they highlight the value of maintaining continuous experimental measurements over the long term.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28866011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28866011"><span>Development of a Computerized Adaptive Test of Children's Gross Motor Skills.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Wu, Hing-Man; Chen, Kuan-Lin; Hsieh, Ching-Lin</p> <p>2018-03-01</p> <p>To (1) develop a computerized adaptive test for gross motor skills (GM-CAT) as a diagnostic test and an outcome measure, using the gross motor skills subscale of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT-GM) as the candidate item bank; and (2) examine the psychometric properties and the efficiency of the GM-CAT. Retrospective study. A developmental center of a medical center. Children with and without developmental delay (N=1738). Not applicable. The CDIIT-GM contains 56 universal items on gross motor skills assessing children's antigravity control, locomotion, and body movement coordination. The item bank of the GM-CAT had 44 items that met the dichotomous Rasch model's assumptions. High Rasch person reliabilities were found for each estimated gross motor skill for the GM-CAT (Rasch person reliabilities =.940-.995, SE=.68-2.43). For children aged 6 to 71 months, the GM-CAT had good concurrent validity (r values =.97-.98), adequate to excellent diagnostic accuracy (area under receiver operating characteristics curve =.80-.98), and moderate to large responsiveness (effect size =.65-5.82). The averages of items administered for the GM-CAT were 7 to 11, depending on the age group. The results of this study support the use of the GM-CAT as a diagnostic and outcome measure to estimate children's gross motor skills in both research and clinical settings. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B33B0398I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B33B0398I"><span>Comparison of Modeling Approaches for Carbon Partitioning: Impact on Estimates of Global Net Primary Production and Equilibrium Biomass of Woody Vegetation from MODIS GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ise, T.; Litton, C. M.; Giardina, C. P.; Ito, A.</p> <p>2009-12-01</p> <p>Plant partitioning of carbon (C) to above- vs. belowground, to growth vs. respiration, and to short vs. long lived tissues exerts a large influence on ecosystem structure and function with implications for the global C budget. Importantly, outcomes of process-based terrestrial vegetation models are likely to vary substantially with different C partitioning algorithms. However, controls on C partitioning patterns remain poorly quantified, and studies have yielded variable, and at times contradictory, results. A recent meta-analysis of forest studies suggests that the ratio of net primary production (NPP) and gross primary production (GPP) is fairly conservative across large scales. To illustrate the effect of this unique meta-analysis-based partitioning scheme (MPS), we compared an application of MPS to a terrestrial satellite-based (MODIS) GPP to estimate NPP vs. two global process-based vegetation models (Biome-BGC and VISIT) to examine the influence of C partitioning on C budgets of woody plants. Due to the temperature dependence of maintenance respiration, NPP/GPP predicted by the process-based models increased with latitude while the ratio remained constant with MPS. Overall, global NPP estimated with MPS was 17 and 27% lower than the process-based models for temperate and boreal biomes, respectively, with smaller differences in the tropics. Global equilibrium biomass of woody plants was then calculated from the NPP estimates and tissue turnover rates from VISIT. Since turnover rates differed greatly across tissue types (i.e., metabolically active vs. structural), global equilibrium biomass estimates were sensitive to the partitioning scheme employed. The MPS estimate of global woody biomass was 7-21% lower than that of the process-based models. In summary, we found that model output for NPP and equilibrium biomass was quite sensitive to the choice of C partitioning schemes. Carbon use efficiency (CUE; NPP/GPP) by forest biome and the globe. Values are means for 2001-2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED116025.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED116025.pdf"><span>Income Tax Law: U.S. Armed Forces Training: Course Book.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Internal Revenue Service (Dept. of Treasury), Washington, DC.</p> <p></p> <p>The course book contains eight lessons designed for military Personnel learning how to properly prepare their U.S. Income Tax returns. The lessons cover the following subjects: requirments for filing returns of income and declaration of estimated tax; exemptions; gross income; exclusions and deductions to arrive at adjusted gross income;…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53L..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53L..01N"><span>Global Gross Primary Productivity for 2015 Inferred from OCO-2 SIF and a Carbon-Cycle Data Assimilation System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norton, A.; Rayner, P. J.; Scholze, M.; Koffi, E. N. D.</p> <p>2016-12-01</p> <p>The intercomparison study CMIP5 among other studies (e.g. Bodman et al., 2013) has shown that the land carbon flux contributes significantly to the uncertainty in projections of future CO2 concentration and climate (Friedlingstein et al., 2014)). The main challenge lies in disaggregating the relatively well-known net land carbon flux into its component fluxes, gross primary production (GPP) and respiration. Model simulations of these processes disagree considerably, and accurate observations of photosynthetic activity have proved a hindrance. Here we build upon the Carbon Cycle Data Assimilation System (CCDAS) (Rayner et al., 2005) to constrain estimates of one of these uncertain fluxes, GPP, using satellite observations of Solar Induced Fluorescence (SIF). SIF has considerable benefits over other proxy observations as it tracks not just the presence of vegetation but actual photosynthetic activity (Walther et al., 2016; Yang et al., 2015). To combine these observations with process-based simulations of GPP we have coupled the model SCOPE with the CCDAS model BETHY. This provides a mechanistic relationship between SIF and GPP, and the means to constrain the processes relevant to SIF and GPP via model parameters in a data assimilation system. We ingest SIF observations from NASA's Orbiting Carbon Observatory 2 (OCO-2) for 2015 into the data assimilation system to constrain estimates of GPP in space and time, while allowing for explicit consideration of uncertainties in parameters and observations. Here we present first results of the assimilation with SIF. Preliminary results indicate a constraint on global annual GPP of at least 75% when using SIF observations, reducing the uncertainty to < 3 PgC yr-1. A large portion of the constraint is propagated via parameters that describe leaf phenology. These results help to bring together state-of-the-art observations and model to improve understanding and predictive capability of GPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJAEO..65..124M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJAEO..65..124M"><span>Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martínez, B.; Sanchez-Ruiz, S.; Gilabert, M. A.; Moreno, A.; Campos-Taberner, M.; García-Haro, F. J.; Trigo, I. F.; Aurela, M.; Brümmer, C.; Carrara, A.; De Ligne, A.; Gianelle, D.; Grünwald, T.; Limousin, J. M.; Lohila, A.; Mammarella, I.; Sottocornola, M.; Steinbrecher, R.; Tagesson, T.</p> <p>2018-03-01</p> <p>The main goal of this paper is to derive a method for a daily gross primary production (GPP) product over Europe and Africa taking the full advantage of the SEVIRI/MSG satellite products from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors delivered from the Satellite Application Facility for Land Surface Analysis (LSA SAF) system. Special attention is paid to model the daily GPP response from an optimized Montheith's light use efficiency model under dry conditions by controlling water shortage limitations from the actual evapotranspiration and the potential evapotranspiration (PET). The PET was parameterized using the mean daily air temperature at 2 m (Ta) from ERA-Interim data. The GPP product (MSG GPP) was produced for 2012 and assessed by direct site-level comparison with GPP from eddy covariance data (EC GPP). MSG GPP presents relative bias errors lower than 40% for the most forest vegetation types with a high agreement (r > 0.7) when compared with EC GPP. For drylands, MSG GPP reproduces the seasonal variations related to water limitation in a good agreement with site level GPP estimates (RMSE = 2.11 g m-2 day-1; MBE = -0.63 g m-2 day-1), especially for the dry season. A consistency analysis against other GPP satellite products (MOD17A2 and FLUXCOM) reveals a high consistency among products (RMSD < 1.5 g m-2 day-1) over Europe, North and South Africa. The major GPP disagreement arises over moist biomes in central Africa (RMSD > 3.0 g m-2 day-1) and over dry biomes with MSG GPP estimates lower than FLUXCOM (MBD up to -3.0 g m-2 day-1). This newly derived product has the potential for analysing spatial patterns and temporal dynamics of GPP at the MSG spatial resolutions on a daily basis allowing to better capture the GPP dynamics and magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B11C0463L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B11C0463L"><span>Evaluating the ecosystem water use efficiency and gross primary productivity in boreal forest based on tree ring data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, S.; Zhuang, Q.</p> <p>2016-12-01</p> <p>Climatic change affects the plant physiological and biogeochemistry processes, and therefore on the ecosystem water use efficiency (WUE). Therefore, a comprehensive understanding of WUE would help us understand the adaptability of ecosystem to variable climate conditions. Tree ring data have great potential in addressing the forest response to climatic changes compared with mechanistic model simulations, eddy flux measurement and manipulative experiments. Here, we collected the tree ring isotopic carbon data in 12 boreal forest sites to develop a multiple linear regression model, and the model was extrapolated to the whole boreal region to obtain the WUE spatial and temporal variation from 1948 to 2010. Two algorithms were also used to estimate the inter-annual gross primary productivity (GPP) based on our derived WUE. Our results demonstrated that most of boreal regions showed significant increasing WUE trend during the period except parts of Alaska. The spatial averaged annual mean WUE was predicted to increase by 13%, from 2.3±0.4 g C kg-1 H2O at 1948 to 2.6±0.7 g C kg-1 H2O at 2012, which was much higher than other land surface models. Our predicted GPP by the WUE definition algorithm was comparable with site observation, while for the revised light use efficiency algorithm, GPP estimation was higher than site observation as well as than land surface models. In addition, the increasing GPP trends by two algorithms were similar with land surface model simulations. This is the first study to evaluate regional WUE and GPP in forest ecosystem based on tree ring data and future work should consider other variables (elevation, nitrogen deposition) that influence tree ring isotopic signals and the dual-isotope approach may help improve predicting the inter-annual WUE variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26669788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26669788"><span>Economic Valuation of the Global Burden of Cleft Disease Averted by a Large Cleft Charity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Poenaru, Dan; Lin, Dan; Corlew, Scott</p> <p>2016-05-01</p> <p>This study attempts to quantify the burden of disease averted through the global surgical work of a large cleft charity, and estimate the economic impact of this effort over a 10-year period. Anonymized data of all primary cleft lip and cleft palate procedures in the Smile Train database were analyzed and disability-adjusted life years (DALYs) calculated using country-specific life expectancy tables, established disability weights, and estimated success of surgery and residual disability probabilities; multiple age weighting and discounting permutations were included. Averted DALYs were calculated and gross national income (GNI) per capita was then multiplied by averted DALYs to estimate economic gains. 548,147 primary cleft procedures were performed in 83 countries between 2001 and 2011. 547,769 records contained complete data available for the study; 58 % were cleft lip and 42 % cleft palate. Averted DALYs ranged between 1.46 and 4.95 M. The mean economic impact ranged between USD 5510 and 50,634 per person. This corresponded to a global economic impact of between USD 3.0B and 27.7B USD, depending on the DALY and GNI values used. The estimated cost of providing these procedures based on an average reimbursement rate was USD 197M (0.7-6.6 % of the estimated impact). The immense economic gain realized through procedures focused on a small proportion of the surgical burden of disease highlights the importance and cost-effectiveness of surgical treatment globally. This methodology can be applied to evaluate interventions for other conditions, and for evidence-based health care resource allocation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B41G0393M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B41G0393M"><span>Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, S. R.; Beven, K.; Freer, J. E.; Law, B. E.</p> <p>2010-12-01</p> <p>Semi-arid forests are very sensitive to climatic change and among the most difficult ecosystems to accurately model. We tested the performance of the Biome-BGC model against eddy flux data taken from young (years 2004-2008), mature (years 2002-2008), and old-growth (year 2000) Ponderosa pine stands at Metolius, Oregon, and subsequently examined several potential causes for model-data mismatch. We used the generalized likelihood uncertainty estimation (GLUE) methodology, which involved 500,000 model runs for each stand (1,500,000 total). Each simulation was run with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in modeled estimates of net ecosystem CO2 exchange (NEE) that were compared to measured eddy flux data. Simulations for the young stand exhibited the highest level of performance, though they over-estimated ecosystem C accumulation (-NEE) 99% of the time. Among the simulations for the mature and old-growth stands, 100% and 99% of the simulations under-estimated ecosystem C accumulation. One obvious area of model-data mismatch is soil moisture, which was overestimated by the model in the young and old-growth stands yet underestimated in the mature stand. However, modeled estimates of soil water content and associated water deficits did not appear to be the primary cause of model-data mismatch; our analysis indicated that gross primary production can be accurately modeled even if soil moisture content is not. Instead, difficulties in adequately modeling ecosystem respiration, both autotrophic and heterotrophic, appeared to be fundamental causes of model-data mismatch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22723420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22723420"><span>Baseline map of carbon emissions from deforestation in tropical regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander</p> <p>2012-06-22</p> <p>Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Sci...336.1573H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Sci...336.1573H"><span>Baseline Map of Carbon Emissions from Deforestation in Tropical Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, Nancy L.; Brown, Sandra; Hagen, Stephen C.; Saatchi, Sassan S.; Petrova, Silvia; Salas, William; Hansen, Matthew C.; Potapov, Peter V.; Lotsch, Alexander</p> <p>2012-06-01</p> <p>Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24422898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24422898"><span>Current usage and future trends in gross digital photography in Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Horn, Christopher L; DeKoning, Lawrence; Klonowski, Paul; Naugler, Christopher</p> <p>2014-01-14</p> <p>The purpose of this study was to assess the current usage, utilization and future direction of digital photography of gross surgical specimens in pathology laboratories across Canada. An online survey consisting of 23 multiple choice and free-text questions regarding gross digital photography was sent out to via email to laboratory staff across Canada involved in gross dissection of surgical specimens. Sixty surveys were returned with representation from most of the provinces. Results showed that gross digital photography is utilized at most institutions (90.0%) and the primary users of the technology are Pathologists (88.0%), Pathologists' Assistants (54.0%) and Pathology residents (50.0%). Most respondents felt that there is a definite need for routine digital imaging of gross surgical specimens in their practice (80.0%). The top two applications for gross digital photography are for documentation of interesting/ complex cases (98.0%) and for teaching purposes (84.0%). The main limitations identified by the survey group are storage space (42.5%) and security issues (40.0%). Respondents indicated that future applications of gross digital photography mostly include teaching (96.6%), presentation at tumour boards/ clinical rounds (89.8%), medico-legal documentation (72.9%) and usage for consultation purposes (69.5%). The results of this survey indicate that pathology staff across Canada currently utilizes gross digital images for regular documentation and educational reasons. They also show that the technology will be needed for future applications in teaching, consultation and medico-legal purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2754542','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2754542"><span>Employer-Sponsored Insurance, Health Care Cost Growth, and the Economic Performance of U.S. Industries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sood, Neeraj; Ghosh, Arkadipta; Escarce, José J</p> <p>2009-01-01</p> <p>Objective To estimate the effect of growth in health care costs that outpaces gross domestic product (GDP) growth (“excess” growth in health care costs) on employment, gross output, and value added to GDP of U.S. industries. Study Setting We analyzed data from 38 U.S. industries for the period 1987–2005. All data are publicly available from various government agencies. Study Design We estimated bivariate and multivariate regressions. To develop the regression models, we assumed that rapid growth in health care costs has a larger effect on economic performance for industries where large percentages of workers receive employer-sponsored health insurance (ESI). We used the estimated regression coefficients to simulate economic outcomes under alternative scenarios of health care cost inflation. Results Faster growth in health care costs had greater adverse effects on economic outcomes for industries with larger percentages of workers who had ESI. We found that a 10 percent increase in excess growth in health care costs would have resulted in 120,803 fewer jobs, US$28,022 million in lost gross output, and US$14,082 million in lost value added in 2005. These declines represent 0.17 to 0.18 percent of employment, gross output, and value added in 2005. Conclusion Excess growth in health care costs is adversely affecting the economic performance of U.S. industries. PMID:19500165</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/11908','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/11908"><span>Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Christian P. Giardina; Michael G. Ryan; Dan Binkley; Dan Binkley; James H. Fownes</p> <p>2003-01-01</p> <p>Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA),...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3174215','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3174215"><span>The supply of physicians and care for breast cancer in Ontario and California, 1998 to 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gorey, Kevin M.; Luginaah, Isaac N.; Hamm, Caroline; Balagurusamy, Madhan; Holowaty, Eric J.</p> <p>2011-01-01</p> <p>Introduction We examined the differential effects of the supply of physicians on care for breast cancer in Ontario and California. We then used criteria for optimum care for breast cancer to estimate the regional needs for the supply of physicians. Methods Ontario and California registries provided 951 and 984 instances of breast cancer diagnosed between 1998 and 2000 and followed until 2006. These cohorts were joined with the supply of county-level primary care physicians (PCPs) and specialists in cancer care and compared on care for breast cancer. Results Significant protective PCP thresholds (7.75 to ≥ 8.25 PCPs per 10 000 inhabitants) were observed for breast cancer diagnosis (odds ratio [OR] 1.62), receipt of adjuvant radiotherapy (OR 1.64) and 5-year survival (OR 1.87) in Ontario, but not in California. The number of physicians seemed adequate to optimize care for breast cancer across diverse places in California and in most Ontario locations. However, there was an estimated need for 550 more PCPs and 200 more obstetrician–gynecologists in Ontario’s rural and small urban areas. We estimated gross physician surpluses for Ontario’s 2 largest cities. Conclusion Policies are needed to functionally redistribute primary care and specialist physicians. Merely increasing the supply of physicians is unlikely to positively affect the health of Ontarians. PMID:21453604</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/5252','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/5252"><span>Valuing a log: alternative approaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R.V. Nagubadi; R.D. Fight; R.J. Barbour</p> <p>2003-01-01</p> <p>The gross value of products that can be manufactured from a tree is the starting point for a residual-value appraisal of a forest operation involving the harvest of trees suitable for making forest products. The amount of detail in a model of gross product value will affect the statistical properties of the estimate and the amount of ancillary information that is...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1326732','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1326732"><span>User Guide for the International Jobs and Economic Development Impacts Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keyser, David; Flores-Espino, Francisco; Uriarte, Caroline</p> <p></p> <p>The International Jobs and Economic Development Impacts (I-JEDI) model is a freely available economic model that estimates gross economic impacts from wind, solar, and geothermal energy projects for several different countries. Building on the original JEDI model, which was developed for the United States, I-JEDI was developed under the USAID Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support countries in assessing economic impacts of LEDS actions in the energy sector. I-JEDI estimates economic impacts by characterizing the construction and operation of energy projects in terms of expenditures and the portion of these expenditures made within the countrymore » of analysis. These data are then used in a country-specific input-output (I-O) model to estimate employment, earnings, gross domestic product (GDP), and gross output impacts. Total economic impacts are presented as well as impacts by industry. This user guide presents general information about how to use I-JEDI and interpret results as well as detailed information about methodology and model limitations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23178677','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23178677"><span>Cost of improving Access to Psychological Therapies (IAPT) programme: an analysis of cost of session, treatment and recovery in selected Primary Care Trusts in the East of England region.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Radhakrishnan, Muralikrishnan; Hammond, Geoffrey; Jones, Peter B; Watson, Alison; McMillan-Shields, Fiona; Lafortune, Louise</p> <p>2013-01-01</p> <p>Recent literature on Improving Access to Psychological Therapies (IAPT) has reported on improvements in clinical outcomes, changes in employment status and the concept of recovery attributable to IAPT treatment, but not on the costs of the programme. This article reports the costs associated with a single session, completed course of treatment and recovery for four treatment courses (i.e., remaining in low or high intensity treatment, stepping up or down) in IAPT services in 5 East of England region Primary Care Trusts. Costs were estimated using treatment activity data and gross financial information, along with assumptions about how these financial data could be broken down. The estimated average cost of a high intensity session was £177 and the average cost for a low intensity session was £99. The average cost of treatment was £493 (low intensity), £1416 (high intensity), £699 (stepped down), £1514 (stepped up) and £877 (All). The cost per recovered patient was £1043 (low intensity), £2895 (high intensity), £1653 (stepped down), £2914 (stepped up) and £1766 (All). Sensitivity analysis revealed that the costs are sensitive to cost ratio assumptions, indicating that inaccurate ratios are likely to influence overall estimates. Results indicate the cost per session exceeds previously reported estimates, but cost of treatment is only marginally higher. The current cost estimates are supportive of the originally proposed IAPT model on cost-benefit grounds. The study also provides a framework to estimate costs using financial data, especially when programmes have block contract arrangements. Replication and additional analyses along with evidence-based discussion regarding alternative, cost-effective methods of intervention is recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESASP.724E.122Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESASP.724E.122Y"><span>Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei</p> <p>2014-11-01</p> <p>The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESASP.724..122Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESASP.724..122Y"><span>Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei</p> <p>2014-11-01</p> <p>The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa"><span>Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.; ...</p> <p>2016-05-31</p> <p>Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1254864-differential-responses-carbon-water-vapor-fluxes-climate-among-evergreen-needleleaf-forests-usa"><span>Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.</p> <p></p> <p>Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25430918','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25430918"><span>Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christina, Mathias; Le Maire, Guerric; Battie-Laclau, Patricia; Nouvellon, Yann; Bouillet, Jean-Pierre; Jourdan, Christophe; de Moraes Gonçalves, José Leonardo; Laclau, Jean-Paul</p> <p>2015-05-01</p> <p>Global climate change is expected to increase the length of drought periods in many tropical regions. Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water deficit on the physiological mechanisms governing plant growth. A process-based model (MAESPA) parameterized in a split-plot experiment in Brazil was used to gain insight into the combined effects of K deficiency and water deficit on absorbed radiation (aPAR), gross primary productivity (GPP), and light-use efficiency for carbon assimilation and stem biomass production (LUEC and LUEs ) in Eucalyptus grandis plantations. The main-plot factor was the water supply (undisturbed rainfall vs. 37% of throughfall excluded) and the subplot factor was the K supply (with or without 0.45 mol K m(-2 ) K addition). Mean GPP was 28% lower without K addition over the first 3 years after planting whether throughfall was partly excluded or not. K deficiency reduced aPAR by 20% and LUEC by 10% over the whole period of growth. With K addition, throughfall exclusion decreased GPP by 25%, resulting from a 21% decrease in LUEC at the end of the study period. The effect of the combination of K deficiency and water deficit was less severe than the sum of the effects of K deficiency and water deficit individually, leading to a reduction in stem biomass production, gross primary productivity and LUE similar to K deficiency on its own. The modeling approach showed that K nutrition and water deficit influenced absorbed radiation essentially through changes in leaf area index and tree height. The changes in gross primary productivity and light-use efficiency were, however, driven by a more complex set of tree parameters, especially those controlling water uptake by roots and leaf photosynthetic capacities. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29714626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29714626"><span>Factors Associated with Enhanced Gross Motor Progress in Children with Cerebral Palsy: A Register-Based Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Størvold, Gunfrid V; Jahnsen, Reidun B; Evensen, Kari Anne I; Romild, Ulla K; Bratberg, Grete H</p> <p>2018-05-01</p> <p>To examine associations between interventions and child characteristics; and enhanced gross motor progress in children with cerebral palsy (CP). Prospective cohort study based on 2048 assessments of 442 children (256 boys, 186 girls) aged 2-12 years registered in the Cerebral Palsy Follow-up Program and the Cerebral Palsy Register of Norway. Gross motor progress estimates were based on repeated measures of reference percentiles for the Gross Motor Function Measure (GMFM-66) in a linear mixed model. Mean follow-up time: 2.9 years. Intensive training was the only intervention factor associated with enhanced gross motor progress (mean 3.3 percentiles, 95% CI: 1.0, 5.5 per period of ≥3 sessions per week and/or participation in an intensive program). Gross motor function was on average 24.2 percentiles (95% CI: 15.2, 33.2) lower in children with intellectual disability compared with others. Except for eating problems (-10.5 percentiles 95% CI: -18.5, -2.4) and ankle contractures by age (-1.9 percentiles 95% CI: -3.6, -0.2) no other factors examined were associated with long-term gross motor progress. Intensive training was associated with enhanced gross motor progress over an average of 2.9 years in children with CP. Intellectual disability was a strong negative prognostic factor. Preventing ankle contractures appears important for gross motor progress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51H1925B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51H1925B"><span>Comparison of several satellite-derived Sun-Induced Fluorescence products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bacour, C.; Maignan, F.; MacBean, N.; Köhler, P.; Vountas, M.; Khosravi, N.; Guanter, L.; Joiner, J.; Frankenberg, C.; Somkuti, P.; Peylin, P.</p> <p>2017-12-01</p> <p>Large uncertainties remain in our representation of the global carbon budget, in particular regarding the spatial and temporal dynamics of the net land surface CO2 fluxes along with its two constitutive components, photosynthesis and respiration. Bolstered by the evidenced linear relationship between remotely sensed sun-induced fluorescence (SIF) and plant gross carbon uptake (GPP - gross primary productivity) at broad spatial and temporal scales, satellite SIF products are foreseen to provide significant constraint on one of the key component of the terrestrial carbon cycle, and ultimately to help reducing the uncertainties in the projections of the fate of carbon sinks and sources under a changing climate.Global SIF estimates are now "routinely" produced from observations of space-borne spectrometers having sufficient spectral resolution/sampling in solar Fraunhofer lines or atmospheric absorption bands in the visible - near-infrared domain. Differences between SIF products derived from different instruments are expected depending on evaluated wavelengths (SIF has a spectral signature with maxima around 685 and 740 nm) and their own observation characteristics (time of satellite overpass, spatial resolution, revisit frequency, spectral resolution, etc.). For instance, SIF products estimated at 760 nm (GOSAT, OCO-2) are about 1.5 times lower than estimates at 740 nm (GOME-2, SCIAMACHY). However, as highlighted by Köhler et al. (2015), strong discrepancies in SIF absolute values may arise for products derived from the same set of observations (GOME-2) but using different estimation algorithms. In the view of using satellite SIF products to calibrate terrestrial biosphere models (e.g. through data assimilation), this is highly problematic, especially for evergreen ecosystems where SIF magnitude is the only observational constraint that can be made use of.In this study, we compare several gridded satellite SIF products and quantify their similarities/discrepancies with respect to both their absolute value and seasonality (plant phenology): GOME-2, OCO2, GOSAT, and SCIAMACHY. Our main objective is to assess the potential impacts of their differences in a data assimilation perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ISPAr3820W.134P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ISPAr3820W.134P"><span>Satellite Driven Estimation of Primary Productivity of Agroecosystems in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patel, N. R.; Dadhwal, V. K.; Agrawal, S.; Saha, S. K.</p> <p>2011-08-01</p> <p>Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as gross primary productivity (GPP) and net primary production (NPP) over terrestrial ecosystems, including agriculture. The present study therefore evaluate satellite-driven vegetation photosynthesis (VPM) model for GPP estimation over agro-ecosystems in India by using time series of the Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION, cloud cover observation from MODIS, coarse-grid C3/C4 crop fraction and decadal grided databases of maximum and minimum temperatures. Parameterization of VPM parameters e.g. maximum light use efficiency (ɛ*) and Tscalar was done based on eddy-covariance measurements and literature survey. Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper Indo-Gangetic plains had the highest magnitude of GPP with peak GPP during kharif occurs in sugarcane-wheat system (western UP) and it occurs in rice-wheat system (Punjab) during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2) and NPP (> 600 g C m-2) due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859 Pg C year-1, respectively. Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-2). Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat system and validating with eddy-covariance measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1431443-spatio-temporal-convergence-maximum-daily-light-use-efficiency-based-radiation-absorption-canopy-chlorophyll','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1431443-spatio-temporal-convergence-maximum-daily-light-use-efficiency-based-radiation-absorption-canopy-chlorophyll"><span>Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; ...</p> <p>2018-04-03</p> <p>Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1431443-spatio-temporal-convergence-maximum-daily-light-use-efficiency-based-radiation-absorption-canopy-chlorophyll','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1431443-spatio-temporal-convergence-maximum-daily-light-use-efficiency-based-radiation-absorption-canopy-chlorophyll"><span>Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian</p> <p></p> <p>Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040561','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040561"><span>Variations in surface water-ground water interactions along a headwater mountain stream : comparisons between transient storage and water balance analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ward, Adam S.; Payn, Robert A.; Gooseff, Michael N.; McGlynn, Brian L.; Bencala, Kenneth E.; Kelleher, Christa A.; Wondzell, Steven M.; Wagener, Thorsten</p> <p>2013-01-01</p> <p>The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We conducted transient storage and mass recovery analyses of artificial tracer studies completed for 28 contiguous 100 m reaches along a stream valley, repeated under four base-flow conditions. We calculated net and gross gains and losses, temporal moments of tracer breakthrough curves, and best fit transient storage model parameters (with uncertainty estimates) for 106 individual tracer injections. Results supported predictions that gross loss of channel water would decrease with increased discharge. However, results showed no clear relationship between discharge and transient storage, and further analysis of solute tracer methods demonstrated that the lack of this relation may be explained by uncertainty and equifinality in the transient storage model framework. Furthermore, comparison of water balance and transient storage approaches reveals complications in clear interpretation of either method due to changes in advective transport time, which sets a the temporal boundary separating transient storage and channel water balance. We have little ability to parse this limitation of solute tracer methods from the physical processes we seek to study. We suggest the combined analysis of both transient storage and channel water balance more completely characterizes transport of solutes in stream networks than can be inferred from either method alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/30189','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/30189"><span>Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua</p> <p>2003-01-01</p> <p>There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645702-reirradiation-recurrent-second-primary-head-neck-cancer-proton-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645702-reirradiation-recurrent-second-primary-head-neck-cancer-proton-therapy"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McDonald, Mark W., E-mail: mark.mcdonald@emory.edu; Zolali-Meybodi, Omid; Lehnert, Stephen J.</p> <p></p> <p>Purpose: To report the clinical outcomes of head and neck reirradiation with proton therapy. Methods and Materials: From 2004 to 2014, 61 patients received curative-intent proton reirradiation, primarily for disease involving skull base structures, at a median of 23 months from the most recent previous course of radiation. Most had squamous cell (52.5%) or adenoid cystic (16.4%) carcinoma. Salvage surgery before reirradiation was undertaken in 47.5%. Gross residual disease was present in 70.5%. For patients with microscopic residual disease, the median dose of reirradiation was 66 Gy (relative biological effectiveness), and for gross disease was 70.2 Gy (relative biological effectiveness). Concurrent chemotherapy was givenmore » in 27.9%. Results: The median follow-up time was 15.2 months and was 28.7 months for patients remaining alive. The 2-year overall survival estimate was 32.7%, and the median overall survival was 16.5 months. The 2-year cumulative incidence of local failure with death as a competing risk was 19.7%; regional nodal failure, 3.3%; and distant metastases, 38.3%. On multivariable analysis, Karnofsky performance status ≤70%, the presence of a gastrostomy tube before reirradiation, and an increasing number of previous courses of radiation therapy were associated with a greater hazard ratio for death. A cutaneous primary tumor, gross residual disease, increasing gross tumor volume, and a lower radiation dose were associated with a greater hazard ratio for local failure. Grade ≥3 toxicities were seen in 14.7% acutely and 24.6% in the late setting, including 3 treatment-related deaths. Conclusions: Reirradiation with proton therapy, with or without chemotherapy, provided reasonable locoregional disease control, toxicity profiles, and survival outcomes for an advanced-stage and heavily pretreated population. Additional data are needed to identify which patients are most likely to benefit from aggressive efforts to achieve local disease control and to evaluate the potential benefit of proton therapy relative to other modalities of reirradiation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.4032N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.4032N"><span>Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicholson, David P.; Wilson, Samuel T.; Doney, Scott C.; Karl, David M.</p> <p>2015-05-01</p> <p>Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg-1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m-3 d-1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m-2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43181','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43181"><span>Effects of winter flooding on mass and gross energy of bottomland hardwood acorns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Alan G. Leach; Jacob N. Straub; Richard M. Kaminski; Andrew W. Ezell; Tracy S. Hawkins; Theodor D. Leininger</p> <p>2012-01-01</p> <p>Decomposition of red oak acorns (Quercus spp.; Section Erythrobalanus) could decrease forage biomass and gross energy (GE) available to wintering ducks from acorns. We estimated changes in mass and GE for 3 species of red oak acorns in flooded and non-flooded bottomland hardwood forests in Mississippi during winter 2009–2010. Mass...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121.1540L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121.1540L"><span>Interplay of drought and tropical cyclone activity in SE U.S. gross primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowman, Lauren E. L.; Barros, Ana P.</p> <p>2016-06-01</p> <p>Tropical cyclones (TCs), often associated with massive flooding and landslides in the Southeast U.S. (SE U.S.), provide a significant input of freshwater to the hydrologic system, and their timing and trajectory significantly impact drought severity and persistence. This manuscript investigates the sensitivity of gross primary productivity (GPP) in the SE U.S. to TC activity using the 1-D column implementation of the Duke Coupled Hydrology Model with Vegetation (DCHM-V) including coupled water and energy cycles and a biochemical representation of photosynthesis. Decadal-scale simulations of water, energy, and carbon fluxes were conducted at high temporal (30 min) and spatial (4 km) resolution over the period 2002-2012. At local scales, model results without calibration compare well against AmeriFlux tower data. At regional scales, differences between the DCHM-V estimates and the Moderate Resolution Imaging Spectroradiometer GPP product reflect the spatial organization of soil hydraulic properties and soil moisture dynamics by physiographic region, highlighting the links between the water and carbon cycles. To isolate the contribution of TC precipitation to SE U.S. productivity, control forcing simulations are contrasted with simulations where periods of TC activity in the atmospheric forcing data were replaced with climatology. During wet years, TC activity impacts productivity in 40-50% of the SE U.S. domain and explains a regional GPP increase of 3-5 Mg C/m2 that is 9% of the warm season total. In dry years, 23-34% of the domain exhibits a smaller positive response that corresponds to 4-8% of the seasonal carbon uptake, depending on TC timing and trajectory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.1549H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.1549H"><span>Assessment of SMAP soil moisture for global simulation of gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong</p> <p>2017-07-01</p> <p>In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (<fi>r</fi>) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the <fi>r</fi> value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (<fi>p</fi> < 0.05). Significant improvement in <fi>r</fi> appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, <fi>p</fi> < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5400058','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5400058"><span>Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wohlfahrt, Georg; Galvagno, Marta</p> <p>2017-01-01</p> <p>So-called CO2 flux partitioning algorithms are widely used to partition the net ecosystem CO2 exchange into the two component fluxes, gross primary productivity and ecosystem respiration. Common CO2 flux partitioning algorithms conceptualize ecosystem respiration to originate from a single source, requiring the choice of a corresponding driving temperature. Using a conceptual dual-source respiration model, consisting of an above- and a below-ground respiration source each driven by a corresponding temperature, we demonstrate that the typical phase shift between air and soil temperature gives rise to a hysteresis relationship between ecosystem respiration and temperature. The hysteresis proceeds in a clockwise fashion if soil temperature is used to drive ecosystem respiration, while a counter-clockwise response is observed when ecosystem respiration is related to air temperature. As a consequence, nighttime ecosystem respiration is smaller than daytime ecosystem respiration when referenced to soil temperature, while the reverse is true for air temperature. We confirm these qualitative modelling results using measurements of day and night ecosystem respiration made with opaque chambers in a short-statured mountain grassland. Inferring daytime from nighttime ecosystem respiration or vice versa, as attempted by CO2 flux partitioning algorithms, using a single-source respiration model is thus an oversimplification resulting in biased estimates of ecosystem respiration. We discuss the likely magnitude of the bias, options for minimizing it and conclude by emphasizing that the systematic uncertainty of gross primary productivity and ecosystem respiration inferred through CO2 flux partitioning needs to be better quantified and reported. PMID:28439145</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26377953','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26377953"><span>Indirect costs of absenteeism due to rheumatoid arthritis, psoriasis, multiple sclerosis, insulin-dependent diabetes mellitus, and ulcerative colitis in 2012: a study based on real-life data from the Social Insurance Institution in Poland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malinowski, Krzysztof Piotr; Kawalec, Paweł Piotr; Moćko, Paweł</p> <p>2016-01-01</p> <p>The aim of this study is to assess the indirect costs of six major autoimmune diseases including seropositive rheumatoid arthritis, other types of rheumatoid arthritis, psoriasis, multiple sclerosis, Type 1 diabetes, and ulcerative colitis. Relevant data for 2012 on sick leave and short- and long-term work disabilities were obtained from the Social Insurance Institution in Poland. Indirect costs were estimated using the human capital approach based on gross domestic product per capita, gross value added per worker, and gross income per worker in Poland in 2012 and expressed in euro. We recorded data on the total number of 45,500 patients. The total indirect costs were EUR 146,862,569; 353,683,508; and 108,154,271, calculated using gross domestic product, gross value added, and gross income, respectively. Considering only data on absenteeism collected by the Social Insurance Institution in Poland, we can conclude that the selected autoimmune diseases are associated with great indirect costs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017LPICo2041.5018G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017LPICo2041.5018G"><span>Quantifying Elements of a Lunar Economy Based on Resource Needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenblatt, J. B.</p> <p>2017-10-01</p> <p>We model a simplified lunar economy from human life support, Earth materials consumption, and energy and propulsion requirement estimates, constrained by lunar elemental abundances; estimate likely imports/exports and "gross interplanetary product."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUSM.V41A..09L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUSM.V41A..09L"><span>Productivity Estimation of Hypersaline Microbial Mat Communities - Diurnal Cycles of Dissolved Oxygen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Less, G.; Cohen, Y.; Luz, B.; Lazar, B.</p> <p>2002-05-01</p> <p>Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10-6 mol O2 m-2 h-1 in summer and winter, respectively. Independent estimate of the gross productivity and respiration is provided by the oxygen isotopic measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24726148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24726148"><span>Gross hematuria and urinary retention among men from a nationally representative survey in Sierra Leone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patel, Hiten D; Kamara, Thaim B; Kushner, Adam L; Groen, Reinou S; Allaf, Mohamad E</p> <p>2014-06-01</p> <p>To estimate the prevalence of gross hematuria and urinary retention among men in Sierra Leone and report on barriers to care and associated disability. Gross hematuria and urinary retention are classic urologic complaints that require medical attention for significant underlying pathology, but their burden has not been quantified in a developing country. A cluster randomized, cross-sectional household survey was administered in Sierra Leone using the Surgeons OverSeas Assessment of Surgical need tool as a verbal head-to-toe examination. A total of 2 respondents in each of 25 households in 75 clusters were surveyed to assess surgical needs. Data on questions related to blood from the penis and the inability to urinate for men>12 years were included in the present analysis to determine the period and point prevalence of hematuria and urinary retention. From 3645 total respondents, 1054 (28.9%) were men>12 years included in the analysis. Period and point prevalence of gross hematuria were 21.8 per 1000 (95% confidence interval [CI] 13.0-30.7) and 12.3 per 1000 (95% CI 5.7-19.0), respectively, and for urinary retention, they were 19.9 per 1000 (95% CI 11.5-28.4) and 4.7 per 1000 (95% CI 0.5-8.9), respectively. Lack of financial resources was the major barrier to care. Disability assessment showed 19.1% were not able to work as a result of urinary retention, and 34.8% felt ashamed of their gross hematuria. The results provide a prevalence estimate of gross hematuria and urinary retention for men in Sierra Leone. Accessible medical and surgical care will be critical for early intervention and management. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26153642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26153642"><span>The indirect costs of systemic autoimmune diseases, systemic lupus erythematosus, systemic sclerosis and sarcoidosis: a summary of 2012 real-life data from the Social Insurance Institution in Poland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kawalec, Paweł P; Malinowski, Krzysztof P</p> <p>2015-01-01</p> <p>Systemic lupus erythematosus, systemic sclerosis and sarcoidosis are three different autoimmune systemic diseases that generate a significant burden to society due to treatment costs and also those caused by a work disability or absenteeism among patients. Relevant 2012 data referring to the three components of absenteeism produced by autoimmune systemic diseases, sick leave, short-term and long-term work disability, were obtained from the Social Insurance Institution in Poland (PSII). By applying the Human Capital Approach using gross domestic product per capita, gross value added per worker and gross income per worker in 2012, total indirect costs for the diseases were calculated. All costs were presented in euros and were valid for 2012. The PSII recorded 1600 patients with systemic lupus erythematosus, 500 patients with systemic sclerosis and 2700 patients with sarcoidosis in the 2012 - total indirect costs were as high as 7,260,595, 2,268,571 and 4,027,575 EUR, respectively. Costs were estimated using gross domestic product per capita; 17,485,412, 5,463,312 and 9,699,455 EUR, accordingly, calculated using gross value added per worker and 5,346,933, 1,670,648 and 2,966,034 EUR estimated using gross income per worker, respectively. Considering only data on absenteeism gathered by the PSII we can conclude that the three autoimmune systemic diseases bore great indirect costs. Their social burden for Poland could be even greater when considering presenteeism as well as other components of absenteeism such as loss of unpaid work, a gray economy or loss of leisure time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27856337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27856337"><span>Understanding the relationship between sales of legal cigarettes and deaths: A case-study in Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szklo, André Salem; Iglesias, Roberto Magno; de Souza, Mirian Carvalho; Szklo, Moysés; Cavalcante, Tânia Maria; de Almeida, Liz Maria</p> <p>2017-01-01</p> <p>Brazil has experienced a large decline in cigarette consumption in the last 25years. However, the most recent annual reports from the tobacco industry market leader in Brazil did not show a decrease in its gross profits. This is particularly important because tobacco industry donations/sponsorships come directly from the industry's reported gross-profits and are used to subvert health policies. The aim of the present study was to estimate (i) tobacco industry's gross-profit from legal cigarettes sales, and (ii) all-cause smoking-attributable deaths (SADs) among current Brazilian smokers who consumed legal cigarettes in 2013. We collected information on prevalence of legal cigarette use, cigarette consumption, price per cigarette pack among individuals aged ≥35years from the Global Adult Tobacco Survey, legal cigarettes sales (e.g., average costs and total volume of sales) provided by the Federal Secretariat of Revenues, and population mortality from the available vital statistics. With a gross-profit of US$1.378 billion (1.307-1.434) from sales of 54.6 billion sticks of cigarettes (53.4-55.5) to 8,424,510 smokers aged 35years and older in Brazil in 2013, cumulative SADs were estimated at 96,012 (85,647-107,654) (around 34% of cumulative SADs also including current smoking of illegal cigarettes and past smoking), i.e., one SAD was equivalent to a gross-profit of US$14,352 (12,140-16,743). Our results revealed the association between sales of cigarettes, gross-profits, and deaths in Brazil. As tobacco industry donations/sponsorships originate from industry's gross profits, which, in turn, depend on cigarette sales, our findings may be useful for increasing "moral pressure" on individuals and institutions and help countries in stopping tobacco industry interference in health policies. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15...91L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15...91L"><span>Gross changes in forest area shape the future carbon balance of tropical forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Wei; Ciais, Philippe; Yue, Chao; Gasser, Thomas; Peng, Shushi; Bastos, Ana</p> <p>2018-01-01</p> <p>Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51H1923D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51H1923D"><span>Incorporation of Solar-Induced Chlorophyll Fluorescence into the Breathing Earth System Simulator (BESS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dechant, B.; Ryu, Y.; Jiang, C.; Yang, K.</p> <p>2017-12-01</p> <p>Solar-induced chlorophyll fluorescence (SIF) is rapidly becoming an important tool to remotely estimate terrestrial gross primary productivity (GPP) at large spatial scales. Many findings, however, are based on empirical relationships between SIF and GPP that have been found to be dependent on plant functional types. Therefore, combining model-based analysis with observations is crucial to improve our understanding of SIF-GPP relationships. So far, most model-based results were based on SCOPE, a complex ecophysiological model with explicit description of canopy layers and a large number of parameters that may not be easily obtained reliably on large scales. Here, we report on our efforts to incorporate SIF into a two-big leaf (sun and shade) process-based model that is suitable for obtaining its inputs entirely from satellite products. We examine if the SIF-GPP relationships are consistent with the findings from SCOPE simulations and investigate if incorporation of the SIF signal into BESS can help improve GPP estimation. A case study in a rice paddy is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BGD.....8.3051A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BGD.....8.3051A"><span>Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adachi, M.; Ito, A.; Ishida, A.; Kadir, W. R.; Ladpala, P.; Yamagata, Y.</p> <p>2011-03-01</p> <p>More reliable estimates of carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems, including the impacts of land-use conversion, in Southeast Asia. Observations and VISIT model simulations indicated that the primary forests had high photosynthetic uptake: gross primary production was estimated at 31.5-35.5 t C ha-1 yr-1. In the VISIT model simulation, the rainforest had a higher total C stock (plant biomass and soil organic matter, 301.5 t C ha-1) than that in the seasonal dry forest (266.5 t C ha-1) in 2008. The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis implied that the ratio of remaining residual debris was a key parameter determining the soil C budget after deforestation events. The C stock of the oil palm plantation was about 46% of the rainforest's C at 30 yr following initiation of the plantation, when the ratio of remaining residual debris was assumed to be about 33%. These results show that adequate forest management is important for reducing C emission from soil and C budget of each ecosystem must be evaluated over a long term using both the model simulations and observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112442C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112442C"><span>Integration of ground and satellite data to estimate the forest carbon fluxes of a Mediterranean region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S. W.</p> <p>2009-04-01</p> <p>The current paper reports on the development and testing of a methodology capable of simulating the main terms of forest carbon budget (gross primary production, GPP, net primary production, NPP, and net ecosystem exchange, NEE) in the Mediterranean environment. The study area is Tuscany, a region of Central Italy which is covered by forests over about half of its surface. It is peculiar for its extremely heterogeneous morphological and climatic features which ranges from typically Mediterranean to temperate warm or cool according to the altitudinal and latitudinal gradients and the distance from the sea (Rapetti and Vittorini, 1995). The simulation of forest carbon budget is based on the preliminary collection of several data layers to characterize the eco-climatic and forest features of the region (i.e. maps of forest type and volume, daily meteorological data and monthly NDVI-derived FAPAR - fraction of absorbed photosynthetically active radiation - estimates for the years 1999-2003). In particular, the 1:250.000 forest type map describes the distribution of 18 forest classes and was obtained by the Regional Cartographic Service. The volume map, with a 30 m spatial resolution and a mean accuracy of about 90 m3/ha, was produced by combining the available regional forest inventory data and Landsat TM images (Maselli and Chiesi, 2006). Daily meteorological data (minimum and maximum air temperatures and precipitation) were extrapolated by the use of the DAYMET algorithm (Thornton et al., 1997) from measurements taken at existing whether stations for the years 1996-2003 (calibration plus application periods); solar radiation was then estimated by the model MT-CLIM (Thornton et al., 2000). Monthly NDVI-derived FAPAR estimates were obtained using the Spot-VEGETATION satellite sensor data for the whole study period (1999-2003). After the collection of these data layers, a simplified, remote sensing based parametric model (C-Fix), is applied for the production of a reference series of monthly gross primary production (GPP) estimates. In particular this model estimates forest GPP as function of photosynthetically active radiation absorbed by vegetation (Veroustraete et al., 2002) combined with ground based estimates of incoming solar radiation and air temperature. These GPP values are used as reference data to both calibrate and integrate the functions of a more complex bio-geochemical model, BIOME-BGC, which is capable of simulating all main ecosystem processes. This model requires: daily climate data, information on the general environment (i.e. soil, vegetation and site conditions) and parameters describing the ecophysiological characteristics of vegetation. Both C-Fix and BIOME-BGC compute GPP as an expression of total, or potential, productivity of an ecosystem in equilibrium with the environment. This makes the GPP estimates of the two models practically inter-comparable and opens the possibility of using the more accurate GPP estimates of C-Fix to both calibrate BIOME-BGC and stabilize its outputs (Chiesi et al., 2007). In particular, by integrating BIOME-BGC respiration estimates to those of C-Fix, forest fluxes for the entire region are obtained, which are referable to ecosystems at equilibrium (climax) condition. These estimates are converted into NPP and NEE of real forests relying on a specifically developed conceptual framework which uses the ratio of actual over potential stand volume as indicator of ecosystem distance from climax. The accuracy of the estimated net carbon exchanges is finally evaluated against ground data derived from a recent forest inventory and from two eddy covariance flux towers located in Tuscany (San Rossore and Lecceto). The results of both these comparisons were quite positive, indicating the good capability of the method for forest carbon flux estimation in Mediterranean areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21436023-effect-radiotherapy-dose-volume-relapse-merkel-cell-cancer-skin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21436023-effect-radiotherapy-dose-volume-relapse-merkel-cell-cancer-skin"><span>Effect of Radiotherapy Dose and Volume on Relapse in Merkel Cell Cancer of the Skin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Foote, Matthew, E-mail: matthew_foote@health.qld.gov.a; Harvey, Jennifer; Porceddu, Sandro</p> <p></p> <p>Purpose: To assess the effect of radiotherapy (RT) dose and volume on relapse patterns in patients with Stage I-III Merkel cell carcinoma (MCC). Patients and Methods: This was a retrospective analysis of 112 patients diagnosed with MCC between January 2000 and December 2005 and treated with curative-intent RT. Results: Of the 112 evaluable patients, 88% had RT to the site of primary disease for gross (11%) or subclinical (78%) disease. Eighty-nine percent of patients had RT to the regional lymph nodes; in most cases (71%) this was for subclinical disease in the adjuvant or elective setting, whereas 21 patients (19%)more » were treated with RT to gross nodal disease. With a median follow-up of 3.7 years, the 2-year and 5-year overall survival rates were 72% and 53%, respectively, and the 2-year locoregional control rate was 75%. The in-field relapse rate was 3% for primary disease, and relapse was significantly lower for patients receiving {>=}50Gy (hazard ratio [HR] = 0.22; 95% confidence interval [CI], 0.06-0.86). Surgical margins did not affect the local relapse rate. The in-field relapse rate was 11% for RT to the nodes, with dose being significant for nodal gross disease (HR = 0.24; 95% CI, 0.07-0.87). Patients who did not receive elective nodal RT had a much higher rate of nodal relapse compared with those who did (HR = 6.03; 95% CI, 1.34-27.10). Conclusion: This study indicates a dose-response for subclinical and gross MCC. Doses of {>=}50Gy for subclinical disease and {>=}55Gy for gross disease should be considered. The draining nodal basin should be treated in all patients.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29858501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29858501"><span>The validity of the 4-Skills Scan: A double validation study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Kernebeek, W G; de Kroon, M L A; Savelsbergh, G J P; Toussaint, H M</p> <p>2018-06-01</p> <p>Adequate gross motor skills are an essential aspect of a child's healthy development. Where physical education (PE) is part of the primary school curriculum, a strong curriculum-based emphasis on evaluation and support of motor skill development in PE is apparent. Monitoring motor development is then a task for the PE teacher. In order to fulfil this task, teachers need adequate tools. The 4-Skills Scan is a quick and easily manageable gross motor skill instrument; however, its validity has never been assessed. Therefore, the purpose of this study is to assess the construct and concurrent validity of both 4-Skills Scans (version 2007 and version 2015). A total of 212 primary school children (6 - 12 years old), was requested to participate in both versions of the 4-Skills Scan. For assessing construct validity, children covered an obstacle course with video recordings for observation by an expert panel. For concurrent validity, a comparison was made with the MABC-2, by calculating Pearson correlations. Multivariable linear regression analyses were performed to determine the contribution of each subscale to the construct of gross motor skills, according to the MABC-2 and the expert panel. Correlations between the 4-Skills Scans and expert valuations were moderate, with coefficients of .47 (version 2007) and .46 (version 2015). Correlations between the 4-Skills Scans and the MABC-2 (gross) were moderate (.56) for version 2007 and high (.64) for version 2015. It is concluded that both versions of the 4-Skills Scans are satisfactory valid instruments for assessing gross motor skills during PE lessons. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1327848','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1327848"><span>Guia del Usuario para el Modelo Internacional de Impacto en Trabajos y Desarrollo Economico (in Spanish)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keyser, David; Flores-Espino, Francisco; Uriarte, Caroline</p> <p></p> <p>This is a Spanish translation of 'User Guide for the International Jobs and Economic Development Impacts Model.' The International Jobs and Economic Development Impacts (I-JEDI) model is a freely available economic model that estimates gross economic impacts from wind, solar, and geothermal energy projects for several different countries. Building on the original JEDI model, which was developed for the United States, I-JEDI was developed under the USAID Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support countries in assessing economic impacts of LEDS actions in the energy sector. I-JEDI estimates economic impacts by characterizing the construction and operationmore » of energy projects in terms of expenditures and the portion of these expenditures made within the country of analysis. These data are then used in a country-specific input-output (I-O) model to estimate employment, earnings, gross domestic product (GDP), and gross output impacts. Total economic impacts are presented as well as impacts by industry. This user guide presents general information about how to use I-JEDI and interpret results as well as detailed information about methodology and model limitations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012836','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012836"><span>Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.</p> <p>2013-01-01</p> <p>Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED560176.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED560176.pdf"><span>Projected Statewide Impact of "Opportunity Culture" School Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Holly, Christen; Dean, Stephanie; Hassel, Emily Ayscue; Hassel, Bryan C.</p> <p>2014-01-01</p> <p>This brief estimates the impact of a statewide implementation of Opportunity Culture models, using North Carolina as an example. Impacts estimated include student learning outcomes, gross state product, teacher pay, and other career characteristics, and state income tax revenue. Estimates indicate the potential for a statewide transition to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5720165','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5720165"><span>Disease Extent at Secondary Cytoreductive Surgery is Predictive of Progression-free and Overall Survival in Advanced Stage Ovarian Cancer: an NRG Oncology/Gynecologic Oncology Group study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rose, Peter G.; Java, James J.; Morgan, Mark A.; Secord, Angeles Alvarez; Kesterson, Joshua P.; Stehman, Frederick B.; Warshal, David P.; Creasman, William T.; Hanjani, Parviz; Morris, Robert T.; Copeland, Larry J.</p> <p>2017-01-01</p> <p>Purpose GOG 152 was a randomized trial of secondary cytoreductive surgery (SCS) in patients with suboptimal residual disease (residual tumor nodule >1 cm in greatest diameter) following primary cytoreductive surgery for advanced stage ovarian cancer. The current analysis was undertaken to evaluate the impact of disease findings at SCS on progression-free survival (PFS) and overall survival (OS). Methods Among the 550 patients enrolled on GOG-152, two-hundred-sixteen patients were randomly assigned following 3 cycles of cisplatin and paclitaxel to receive SCS. In 15 patients (7%) surgery was declined or contraindicated. In the remaining 201 patients the operative and pathology reports were utilized to classify their disease status at the beginning of SCS as; no gross disease/microscopically negative N= 40 (19.9%), no gross disease/microscopically positive N= 8 (4.0%), and gross disease N=153 (76.1%). Results The median PFS for patients with no gross disease/microscopically negative was 16.1 months, no gross disease/microscopically positive was 13.5 months and for gross disease was 11.7 months, p=0.002. The median OS for patients with no gross disease/microscopically negative was 51.5 months, no gross disease/microscopically positive was 42.6 months and for gross disease was 34.9 months, p=0.018. Conclusion Although as previously reported SCS did not change PFS or OS, for those who underwent the procedure, their operative and pathologic findings were predictive of PFS and OS. Surgical/pathological residual disease is a biomarker of response to chemotherapy and predictive of PFS and OS. PMID:27692669</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESD.....9..441F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESD.....9..441F"><span>A global assessment of gross and net land change dynamics for current conditions and future scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuchs, Richard; Prestele, Reinhard; Verburg, Peter H.</p> <p>2018-05-01</p> <p>The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth system models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30-100 m) remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5° grid cells was substantially larger than net changes in all parts of the world. As 0.5° grid cells are a standard resolution of Earth system models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as an empirical database for land change dynamics that can be applied in Earth system models and integrated assessment models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23125096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23125096"><span>Estimating the unit costs of public hospitals and primary healthcare centers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Younis, Mustafa Z; Jaber, Samer; Mawson, Anthony R; Hartmann, Michael</p> <p>2013-01-01</p> <p>Many factors have affected the rise of health expenditures, such as high-cost medical technologies, changes in disease patterns and increasing demand for health services. All countries allocate a significant portion of resources to the health sector. In 2008, the gross domestic product of Palestine was estimated to be at $6.108bn (current price) or about $1697 per capita. Health expenditures are estimated at 15.6% of the gross domestic product, almost as much as those of Germany, Japan and other developed countries. The numbers of hospitals, hospital beds and primary healthcare centers in the country have all increased. The Ministry of Health (MOH) currently operates 27 of 76 hospitals, with a total of 3074 beds, which represent 61% of total beds of all hospitals in the Palestinian Authorities area. Also, the MOH is operating 453 of 706 Primary Health Care facilities. By 2007, about 40 000 people were employed in different sectors of the health system, with 33% employed by the MOH. This purpose of this study was to develop a financing strategy to help cover some or all of the costs involved in operating such institutions and to estimate the unit cost of primary and secondary programs and departments. A retrospective study was carried out on data from government hospitals and primary healthcare centers to identify and analyze the costs and output (patient-related services) and to estimate the unit cost of health services provided by hospitals and PHCs during the year 2008. All operating costs are assigned and allocated to the departments at MOH hospitals and primary health care centers (PPHCs) and are identified as overhead departments, intermediate-service and final-service departments. Intermediate-service departments provide procedures and services to patients in the final-service departments. The costs of the overhead departments are distributed to the intermediate-service and final-service departments through a step-down method, according to allocation criteria devised to resemble as closely as possible the actual use of resources by each of the departments. The data were analyzed using spss. Data cleaning was carried out by cross-validating the results through conducting cross-tabulations between the hospital/center and section/program to identify errors from the data collection or entry process. Depreciation of assets and the consumption of capital costs are ignored in this study, as it is difficult to evaluate the MOH facilities owing to a lack of recording of depreciation of assets or other costs of servicing capital assets. Inpatient costs contributed about 75% of all costs, whereas outpatient services contributed the remaining 25% of total costs. The average cost per visit was $13.00 for outpatient departments, whereas the average cost per patient day for inpatient departments was $90.00. As for the unit cost for each department, intensive care unit and intermediate care unit services were the highest among all categories of daily hospital services ($208.00). This is in contrast to surgical operations ($124.00), specialized surgeries ($106.00), delivery department ($99.00), orthopedics ($98.50) and general surgery ($85.00). The lowest unit cost was found in the neonatology department ($72.00). In PHCs, the unit cost per visit was highest for psychiatry programs ($26.00), followed by other programs ($21.50), chronic diseases ($21.00), maternal and child health ($11.50), preventive programs ($9.00) and general medicine ($6.50). The exchange rate listed by The Wall Street Journal as of Wednesday August 25, 2010 is 1 US dollar = 3.82 new Israeli shekel (NIS). The findings have implications for policy and decision making in the health sector in Palestine concerning the cost of services provided by hospitals and PHCs. The availability of a standardized data set for cost assessment would greatly enhance and improve the quality of financial information as well as efficiency in the use of scarce resources. Copyright © 2012 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911556L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911556L"><span>Soil nitrogen biogeochemical cycles in karst ecosystems, southwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Dejun; Chen, Hao; Xiao, Kongcao; Wang, Kelin</p> <p>2017-04-01</p> <p>Soil nitrogen (N) status are crucial for ecosystem development and carbon sequestration. Although most terrestrial ecosystems are proposed to be limited by N, some tropical low-land forests have been found to be N saturated. Nevertheless, soil N status in the karst ecosystems of southwest China have not been well assessed so far. In the present study, N status in the karst ecosystems were evaluated based on several lines of evidence. Bulk N content increased rapidly along a post-agricultural succession sequence including cropland, grassland, shrubland, secondary forest and primary forest. Across the sequence, soil N accumulated with an average rate of 12.4 g N m-2 yr-1. Soil N stock recovered to the primary forest level in about 67 years following agricultural abandonment. Nitrate concentrations increased while ammonium concentrations decreased with years following agricultural abandonment. N release from bedrock weathering was likely a potential N source in addition to atmospheric N deposition and biological N fixation. Both gross N mineralization and nitrification (GN) rates decreased initially and then increased greatly following agricultural abandonment. The rate of dissimilatory nitrate reduction to ammonium (DNRA) was highest in the shrubland while lowest in the cropland and forest. Across the vegetation types, DNRA was lowest among the gross rates. Gross ammonium immobilization (GAI) tended to decrease while there was no clear variation pattern for gross nitrate immobilization during the post-agricultural succession. DNRA and nitrate assimilation combined only accounted for 22% to 57% of gross nitrification across the vegetation types. Due to the high nitrate production while low nitrate consumption, net nitrate production was found to vary following the pattern of gross nitrification and explained 69% of soil nitrate variance. Comparison of gross N transformations between a secondary karst forest and an adjacent non-karst forest showed that the gross rates of N mineralization, nitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation were significantly greater in the karst forest. Ammonium assimilation was comparable to gross N mineralization, so that ammonium could be efficiently conserved in the non-karst forest. Meanwhile, the produced nitrate was almost completely retained via DNRA and nitrate assimilation. This resulted in a negligible net nitrate production in the non-karst forest. In contrast, ammonium assimilation rate only accounted for half of gross N mineralization rate in the karst forest. DNRA and nitrate assimilation accounted for 21% and 51% of gross nitrification, respectively. Due to relatively low nitrate retention capacity, nitrate was accumulated in the karst forest. Our results indicate that 1) N would not be the limiting nutrient for secondary succession and ecological restoration in the karst region, 2) the decoupling of nitrate consumption with production results in the increase of soil nitrate level and hence nitrate leaching risk during post-agricultural succession in the karst region, and 3) the non-karst forest with red soil holds a very conservative N cycle, but the N cycle in the karst forest is leaky.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24273031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24273031"><span>Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barman, Rahul; Jain, Atul K; Liang, Miaoling</p> <p>2014-05-01</p> <p>We used a land surface model to quantify the causes and extents of biases in terrestrial gross primary production (GPP) due to the use of meteorological reanalysis datasets. We first calibrated the model using meteorology and eddy covariance data from 25 flux tower sites ranging from the tropics to the northern high latitudes and subsequently repeated the site simulations using two reanalysis datasets: NCEP/NCAR and CRUNCEP. The results show that at most sites, the reanalysis-driven GPP bias was significantly positive with respect to the observed meteorology-driven simulations. Notably, the absolute GPP bias was highest at the tropical evergreen tree sites, averaging up to ca. 0.45 kg C m(-2)  yr(-1) across sites (ca. 15% of site level GPP). At the northern mid-/high-latitude broadleaf deciduous and the needleleaf evergreen tree sites, the corresponding annual GPP biases were up to 20%. For the nontree sites, average annual biases of up to ca. 20-30% were simulated within savanna, grassland, and shrubland vegetation types. At the tree sites, the biases in short-wave radiation and humidity strongly influenced the GPP biases, while the nontree sites were more affected by biases in factors controlling water stress (precipitation, humidity, and air temperature). In this study, we also discuss the influence of seasonal patterns of meteorological biases on GPP. Finally, using model simulations for the global land surface, we discuss the potential impacts of site-level reanalysis-driven biases on the global estimates of GPP. In a broader context, our results can have important consequences on other terrestrial ecosystem fluxes (e.g., net primary production, net ecosystem production, energy/water fluxes) and reservoirs (e.g., soil carbon stocks). In a complementary study (Barman et al., ), we extend the present analysis for latent and sensible heat fluxes, thus consistently integrating the analysis of climate-driven uncertainties in carbon, energy, and water fluxes using a single modeling framework. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.3735F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.3735F"><span>Comprehensive description of the carbon cycle of an ancient temperate broadleaved woodland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fenn, K.; Malhi, Y.; Morecroft, M.; Lloyd, C.; Thomas, M.</p> <p>2010-05-01</p> <p>There exist very few comprehensive descriptions of the productivity and carbon cycling of forest ecosystems. Here we present a description of the components of annual Net Primary Productivity (NPP), Gross Primary Productivity (GPP), autotrophic and heterotrophic respiration, and ecosystem respiration (RECO) for a temperate mixed deciduous woodland at Wytham Woods in southern Britain, calculated using "bottom-up" biometric and chamber measurements (leaf and wood production and soil and stem respiration). These are compared with estimates of these parameters from eddy-covariance measurements made at the same site. NPP was estimated as 7.0±0.8 Mg C ha-1 yr-1, and GPP as 20.3+1.0 Mg C ha-1 yr-1, a value which closely matched to eddy covariance-derived GPP value of 21.1 Mg C ha-1 yr-1. Annual RECO was calculated as 18.9±1.7 Mg C ha-1 yr-1, close to the eddy covariance value of 19.8 Mg C ha-1 yr-1; the seasonal cycle of biometric and eddy covariance RECO estimates also closely matched. The consistency between eddy covariance and biometric measurements substantially strengthens the confidence we attach to each as alternative indicators of site carbon dynamics, and permits an integrated perspective of the ecosystem carbon cycle. 37% of NPP was allocated below ground, and the ecosystem carbon use efficiency (CUE, = NPP/GPP) calculated to be 0.35±0.05, lower than reported for many temperate broadleaved sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090027898','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090027898"><span>Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew</p> <p>2009-01-01</p> <p>Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43E0600S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43E0600S"><span>Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.</p> <p>2015-12-01</p> <p>Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51H1918L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51H1918L"><span>Evaluating the relationships between solar-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 and gross primary productivity from eddy covariance flux towers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Xiao, J.; He, B.</p> <p>2017-12-01</p> <p>Solar-induced chlorophyll fluorescence (SIF) opens a new perspective on the monitoring of vegetation photosynthesis from space, and has been recently used to estimate gross primary productivity (GPP). However, previous studies on SIF were mainly based on satellite observations from the Greenhouse Gases Observing Satellite (GOSAT) and Global Ozone Monitoring Experiment-2 (GOME-2), and the evaluation of these coarse-resolution SIF measurements using GPP derived from eddy covariance (EC) flux towers has been hindered by the scale mismatch between satellite and tower footprints. We use new far-red SIF observations from the Orbiting Carbon Observatory-2 (OCO-2) satellite with much finer spatial resolution and GPP data from EC flux towers from 2014 to 2016 to examine the relationship between GPP and SIF for temperate forests. The OCO-2 SIF tracked tower GPP fairly well, and had strong correlation with tower GPP at both retrieval bands (757nm and 771nm) and both instantaneous (mid-day) and daily timescales. Daily SIF at 757nm (SIF757) exhibited much stronger correlation with tower GPP compared to MODIS enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) derived from either Terra or Aqua and had a similarly strong relationship as EVI based on the bidirectional reflectance distribution function (BRDF) corrected reflectance product (Terra+Aqua). Absorbed photosynthetically active radiation (APAR) explained 85% of the variance in SIF757, while the product of APAR and two environmental scalars - fTmin and fVPD (representing minimum temperature stress and water stress) explained slightly higher variance (92%) in SIF757. This suggests that SIF mainly depends on APAR and also contains information on light use efficiency (LUE) reflecting environmental stresses and physiological or biochemical variations of vegetation. The hyperbolic model based on SIF757 estimated GPP well (R2=0.81, p<0.0001; RMSE=1.11 gC m-2 d-1), and its performance was comparable to or slightly better than that of a LUE-based GPP model - the MODSI GPP algorithm. Our findings demonstrate the strong predictive ability of OCO-2 SIF in estimating GPP for temperate forests and its potential in future ecosystem functioning and carbon cycling studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512747R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512747R"><span>Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico</p> <p>2013-04-01</p> <p>Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037166','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037166"><span>Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, Allen H.; Gianelle, D.; Rossi, F.; Suyker, A.E.; Verma, S.B.</p> <p>2010-01-01</p> <p>The simulation of gross primary production (GPP) at various spatial and temporal scales remains a major challenge for quantifying the global carbon cycle. We developed a light use efficiency model, called EC-LUE, driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux. The EC-LUE model may have the most potential to adequately address the spatial and temporal dynamics of GPP because its parameters (i.e., the potential light use efficiency and optimal plant growth temperature) are invariant across the various land cover types. However, the application of the previous EC-LUE model was hampered by poor prediction of Bowen ratio at the large spatial scale. In this study, we substituted the Bowen ratio with the ratio of evapotranspiration (ET) to net radiation, and revised the RS-PM (Remote Sensing-Penman Monteith) model for quantifying ET. Fifty-four eddy covariance towers, including various ecosystem types, were selected to calibrate and validate the revised RS-PM and EC-LUE models. The revised RS-PM model explained 82% and 68% of the observed variations of ET for all the calibration and validation sites, respectively. Using estimated ET as input, the EC-LUE model performed well in calibration and validation sites, explaining 75% and 61% of the observed GPP variation for calibration and validation sites respectively.Global patterns of ET and GPP at a spatial resolution of 0.5° latitude by 0.6° longitude during the years 2000–2003 were determined using the global MERRA dataset (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate Resolution Imaging Spectroradiometer). The global estimates of ET and GPP agreed well with the other global models from the literature, with the highest ET and GPP over tropical forests and the lowest values in dry and high latitude areas. However, comparisons with observed GPP at eddy flux towers showed significant underestimation of ET and GPP due to lower net radiation of MERRA dataset. Applying a procedure to correct the systematic errors of global meteorological data would improve global estimates of GPP and ET. The revised RS-PM and EC-LUE models will provide the alternative approaches making it possible to map ET and GPP over large areas because (1) the model parameters are invariant across various land cover types and (2) all driving forces of the models may be derived from remote sensing data or existing climate observation networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/897111','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/897111"><span>New geothermal site identification and qualification. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>2004-04-01</p> <p>This study identifies remaining undeveloped geothermal resources in California and western Nevada, and it estimates the development costs of each. It has relied on public-domain information and such additional data as geothermal developers have chosen to make available. Reserve estimation has been performed by volumetric analysis with a probabilistic approach to uncertain input parameters. Incremental geothermal reserves in the California/Nevada study area have a minimum value of 2,800 grosss MW and a most-likely value of 4,300 gross MW. For the state of California alone, these values are 2,000 and 3,000 gross MW, respectively. These estimates may be conservative to themore » extent that they do not take into account resources about which little or no public-domain information is available. The average capital cost of incremental generation capacity is estimated to average $3,100/kW for the California/Nevada study area, and $2,950/kW for the state of California alone. These cost estimates include exploration, confirmation drilling, development drilling, plant construction, and transmission-line costs. For the purposes of this study, a capital cost of $2,400/kW is considered competitive with other renewable resources. The amount of incremental geothermal capacity available at or below $2,400/kW is about 1,700 gross MW for the California/Nevada study area, and the same amount (within 50-MW rounding) for the state of California alone. The capital cost estimates are only approximate, because each developer would bring its own experience, bias, and opportunities to the development process. Nonetheless, the overall costs per project estimated in this study are believed to be reasonable.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://nevada.usgs.gov/polonium/ofr20071231.pdf','USGSPUBS'); return false;" href="http://nevada.usgs.gov/polonium/ofr20071231.pdf"><span>Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Seiler, Ralph L.</p> <p>2007-01-01</p> <p>Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28751057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28751057"><span>The role of surgical management in primary small bowel lymphoma: A single-center experience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Y-W; Kuo, I-M; Liu, Y-Y; Yeh, T-S</p> <p>2017-10-01</p> <p>Information on primary small intestinal lymphoma is more limited than for gastric lymphoma because most of the previous studies did not focus on the former. Few prognostic indicators in primary intestinal lymphoma have been reliably established because of limited patient numbers and variations in criteria for patient selection. In this study, we retrospectively reviewed the clinical and pathological characteristics of small intestinal lymphoma cases from our hospital, to determine prognostic factors and to clarify the effect of surgical resection on prognosis. Eighty-two patients were enrolled in this retrospective study between January 1997 and December 2012. Patients were divided into two groups based on whether or not they underwent surgical management. Gross resection was defined as complete removal of the primary lesion(s), as confirmed by the naked eye. Combined therapy refers to concurrent surgery and chemotherapy. The clinicopathological characteristics and long-term outcomes of patients were analyzed and compared between the two groups. Most of the patients had abdominal pain (75.6%), and some had loss of body weight (29.3%) and bowel perforation (22.0%). Sixty-two patients (75.6%) underwent surgical management. Patients in the surgery group presented with fewer B symptoms (fever, night sweats, and weight loss; P = 0.035) but more bulky disease (P = 0.009). The ileocecal region was the most common site of solitary involvement (34.1%). The most common reason for surgery was for tumor-related complications (61.3%). Seven patients (11.3%) developed major complications of surgery, but these were not related to the indication, timing, or type of surgery. Only major surgical complications were statistically significant in relation to early mortality (P = 0.004). The estimated 5-year progression-free survival (PFS) was 35.1% and 5-year overall survival (OS) was 43.2%. Univariate analysis revealed that patients in the surgery group had improved 5-year PFS (P = 0.028). T-cell lymphoma, involvement of multiple gastrointestinal regions and extranodal involvement, higher scores for International Prognostic Index (IPI), more advanced Ann Arbor stage, lactate dehydrogenase (LDH) levels above 215 U/L, and management without combined therapy were prognostic for shorter PFS and OS in univariate analyses. Individuals who received R0 resection or gross resection had improved 5-year PFS and OS. Cox regression analysis demonstrated that primary T-cell lymphoma was an independent negative prognostic factor for both OS and PFS. Combined therapy is an independent prognostic factor for long-term survival in small intestinal lymphoma. Gross resection is recommended in patients with small intestinal lymphoma and leads to improved PFS without significantly increasing the risk of complications. Emergency surgery does not lead to poor prognosis. However, caution is warranted in the management of all patients, because of the high risk of post-operative complications and potential for early mortality. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17605','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17605"><span>Unit costs of medium and heavy truck crashes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-03-01</p> <p>This study provides the latest estimates of unit costs for highway crashes involving medium/heavy trucks by severity. Based on the latest data available, the estimated cost of police-reported crashes involving trucks with a gross weight rating of mor...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25631737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25631737"><span>Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang</p> <p>2017-12-01</p> <p>The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2  day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2  day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45037','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45037"><span>Estimating forestland area change from inventory data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Paul Van Deusen; Francis Roesch; Thomas Wigley</p> <p>2013-01-01</p> <p>Simple methods for estimating the proportion of land changing from forest to nonforest are developed. Variance estimators are derived to facilitate significance tests. A power analysis indicates that 400 inventory plots are required to reliably detect small changes in net or gross forest loss. This is an important result because forest certification programs may...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4879','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4879"><span>International Energy Annual, 1999</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2001-02-01</p> <p>Presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities over 220 countries, dependencies, and areas of special sovereignty. Also included are populatin and gross domestic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23796234','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23796234"><span>Comparison of patient-specific internal gross tumor volume for radiation treatment of primary esophageal cancer based separately on three-dimensional and four-dimensional computed tomography images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, W; Li, J; Zhang, Y; Li, F; Xu, M; Fan, T; Shao, Q; Shang, D</p> <p>2014-01-01</p> <p>To compare the target volume, position and matching index of the patient-specific internal gross tumor volume (IGTV) based on three-dimensional (3D) and four-dimensional (4D) computed tomography (CT) images for primary esophageal cancer. Twenty-nine patients with primary thoracic esophageal cancer underwent 3DCT and 4DCT scans during free breathing. IGTVs were constructed using three approaches: combining the gross target volumes from the 10 respiratory phases of the 4DCT dataset to produce IGTV10 ; IGTV2 was acquired by combining the two extreme phases; and IGTV3D was created from the 3DCT-based gross target volume by enlarging the 95th percentile of motion in each direction measured by the 4DCT. 0.16 cm lateral (LR), 0.14 cm anteroposterior (AP) and 0.29 cm superoinferior (SI) in the upper; 0.18 cm LR, 0.10 cm AP and 0.63 cm SI in the middle; and 0.40 cm LR, 0.58 cm AP and 0.82 cm in the lower thoracic esophagus could account for 95% of respiratory-induced tumor motion. The centroid position shift between IGTV10 and IGTV2 was all below 0.10 cm, and less than 0.20 cm between IGTV10 and IGTV3D . IGTV10 was bigger than IGTV2 ; the mean value of matching index for IGTV2 to IGTV10 was 0.87 ± 0.05, 0.85 ± 0.06 and 0.83 ± 0.05 for upper, middle and distal thoracic esophageal tumors, respectively, and just 0.57 ± 0.11, 0.56 ± 0.13 and 0.40 ± 0.03 between IGTV3D and IGTV10 . 4DCT-based IGTV10 is a reasonable patient-specific IGTV for primary thoracic esophageal cancer, and IGTV2 is considered as an acceptable alternative to IGTV10 . However, it seems unreasonable to use IGTV3D substitute IGTV10 . © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=266691','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=266691"><span>The Potential of Carbonyl Sulfide as a Proxy for Gross Primary Production at Flux Tower Sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Regional and continental scale studies of the seasonal dynamics of atmospheric carbonyl sulfide (OCS) mole fractions and leaf-level studies of plant OCS exchange have shown a close relationship with those for CO2. CO2 has sinks and sources within terrestrial ecosystems, but the primary terrestrial e...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B44C..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B44C..08S"><span>Evidence of a robust relationship between solar-induced chlorophyll fluorescence and gross primary productivity across dryland ecosystems of southwestern North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, W. K.; Biederman, J. A.; Scott, R. L.; Moore, D. J.; Kimball, J. S.; He, M.; Yan, D.; Hudson, A.; Barnes, M.; MacBean, N.; Fox, A. M.; Litvak, M. E.</p> <p>2017-12-01</p> <p>Satellite remote sensing provides unmatched spatiotemporal information on multiple facets of vegetation dynamics including seasonal to interannual total photosynthesis, termed gross primary productivity (GPP). Yet, our understanding of the relationship between GPP and remote sensing observations - and how this relationship changes with scale, biophysical constraint, vegetation type, etc. - remains limited. This knowledge gap is especially apparent for dryland ecosystems, which have high spatial and temporal variability and are under-represented by long-term, continuous field measurements. Here, utilizing a new synthesis of eddy covariance flux tower data for southwestern North America, we present a first assessment of the ability of novel satellite remote sensing vegetation proxies to accurately capture seasonal to interannual GPP dynamics across the region. We evaluate the greenness-based Enhanced Vegetation Index (EVI) and emerging proxies linked to plant physiological function, Solar-Induced Fluorescence (SIF) and Photochemical Reflectivity Index (PRI). We find that SIF observations more consistently correlate with seasonal GPP dynamics (R = 0.90) compared to EVI (R = 0.85) and PRI (R = 0.78). More, we find that SIF observations are also more sensitive to interannual GPP variability (linear slope = 0.80) relative to EVI (linear slope = 0.63) and PRI (linear slope = 0.35). This is likely due to increased sensitivity of SIF to GPP during periods of decoupling between greenness and photosynthesis due to water-limitation / stomatal closure. Conversely, EVI and PRI observations better capture spatial GPP variability between flux tower sites. These results suggest that combinations of these independent vegetation growth proxies could yield synergistic improvements in satellite-based GPP estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B11E1712D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B11E1712D"><span>Sensitivity of gross primary production of irrigation-permitted and non-permitted grassland and croplands to drought and pluvial conditions during 2010-2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doughty, R.; Xiao, X.; Qin, Y.; Wu, X.; Zhang, Y.; Zou, Z.; Bajgain, R.; Zhou, Y.; Basara, J. B.; McCarthy, H. R.; Friedman, J. R.</p> <p>2017-12-01</p> <p>To accurately estimate carbon cycling and food production, it is essential to understand how gross primary production (GPP) of irrigated and non-irrigated grasslands and croplands respond to drought and pluvial conditions. Oklahoma experienced extreme drought in 2011 and record-breaking precipitation in 2015, thus providing an opportunity to study such changes in GPP of grasslands and croplands. This study analyzes annual GPP of irrigation-permitted and non-permitted grasslands, winter wheat, other C3 croplands, and C4 croplands in Caddo County of western Oklahoma from 2010 through 2016. For each land class, annual GPP from the 2011 drought and pluvial 2015 were compared with the combined, 5-year mean GPP from the other years of the study period. The results show that for the 2011 drought: 1) non-permitted C4 croplands had the largest percentage decrease (-41%) in GPP from the 5-year mean, but irrigation-permitted C4 croplands had no significant decrease; 2) GPP was significantly lower than the 5-year mean for all non-C4 vegetation types, regardless of water rights; 3) non-permitted lands were more sensitive to drought than irrigation-permitted lands, except for grasslands, which had similar percentage reductions in GPP (-35%). Results for the pluvial year 2015 indicate that: 1) GPP was significantly higher for grasslands, winter wheat, and non-permitted C3 croplands than the 5-year mean; 2) there was no significant difference in GPP for irrigation-permitted C3 croplands or non-permitted C4 croplands; 3) GPP for C4 irrigation-permitted croplands was 9% lower than the 5-year mean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029894','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029894"><span>Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.</p> <p>2007-01-01</p> <p>The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29030617','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29030617"><span>Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally</p> <p>2017-10-13</p> <p>The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29929291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29929291"><span>Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Jun; Xiao, Xiangming; Zhang, Yao; Doughty, Russell; Chen, Bangqian; Zhao, Bin</p> <p>2018-10-15</p> <p>Accurately estimating spatial-temporal patterns of gross primary production (GPP) is important for the global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatial-temporal dynamics of GPP. However, the accuracy assessment of GPP simulations from LUE models at both spatial and temporal scales remains a challenge. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images with 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPP VPM ) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPP VPM and SIF data over a single year (2010) and multiple years (2007-2014) in most areas of China. GPP VPM is also significantly positive correlated with GOME-2 SIF (R 2  > 0.43) spatially for seasonal scales. However, poor consistency was detected between GPP VPM and SIF data at yearly scale. GPP dynamic trends have high spatial-temporal variation in China during 2007-2014. Temperature, leaf area index (LAI), and precipitation are the most important factors influence GPP VPM in the regions of East Qinghai-Tibet Plateau, Loss Plateau, and Southwestern China, respectively. The results of this study indicate that GPP VPM is temporally and spatially in line with GOME-2 SIF data, and space-borne SIF data have great potential for evaluating LUE-based GPP models. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150012721','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150012721"><span>Impacts of Light Use Efficiency and fPAR Parameterization on Gross Primary Production Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, Yen-Ben; Zhang, Qingyuan; Lyapustin, Alexei I.; Wang, Yujie; Middleton, Elizabeth M.</p> <p>2014-01-01</p> <p>This study examines the impact of parameterization of two variables, light use efficiency (LUE) and the fraction of absorbed photosynthetically active radiation (fPAR or fAPAR), on gross primary production(GPP) modeling. Carbon sequestration by terrestrial plants is a key factor to a comprehensive under-standing of the carbon budget at global scale. In this context, accurate measurements and estimates of GPP will allow us to achieve improved carbon monitoring and to quantitatively assess impacts from cli-mate changes and human activities. Spaceborne remote sensing observations can provide a variety of land surface parameterizations for modeling photosynthetic activities at various spatial and temporal scales. This study utilizes a simple GPP model based on LUE concept and different land surface parameterizations to evaluate the model and monitor GPP. Two maize-soybean rotation fields in Nebraska, USA and the Bartlett Experimental Forest in New Hampshire, USA were selected for study. Tower-based eddy-covariance carbon exchange and PAR measurements were collected from the FLUXNET Synthesis Dataset. For the model parameterization, we utilized different values of LUE and the fPAR derived from various algorithms. We adapted the approach and parameters from the MODIS MOD17 Biome Properties Look-Up Table (BPLUT) to derive LUE. We also used a site-specific analytic approach with tower-based Net Ecosystem Exchange (NEE) and PAR to estimate maximum potential LUE (LUEmax) to derive LUE. For the fPAR parameter, the MODIS MOD15A2 fPAR product was used. We also utilized fAPAR chl, a parameter accounting for the fAPAR linked to the chlorophyll-containing canopy fraction. fAPAR chl was obtained by inversion of a radiative transfer model, which used the MODIS-based reflectances in bands 1-7 produced by Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. fAPAR chl exhibited seasonal dynamics more similar with the flux tower based GPP than MOD15A2 fPAR, especially in the spring and fall at the agricultural sites. When using the MODIS MOD17-based parameters to estimate LUE, fAPAR chl generated better agreements with GPP (r2= 0.79-0.91) than MOD15A2 fPAR (r2= 0.57-0.84).However, underestimations of GPP were also observed, especially for the crop fields. When applying the site-specific LUE max value to estimate in situ LUE, the magnitude of estimated GPP was closer to in situ GPP; this method produced a slight overestimation for the MOD15A2 fPAR at the Bartlett forest. This study highlights the importance of accurate land surface parameterizations to achieve reliable carbon monitoring capabilities from remote sensing information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9970A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9970A"><span>Monitoring of spatiotemporal patterns of Net and Gross Primary Productivity (NPP & GPP) and their ratios (NPP/GPP) derived from MODIS data: assessment natural drivers and their effects on NDVI anomalies in arid and semi-arid zones of Central Asia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aralova, Dildora; Jarihani, Ben; Khujanazarov, Timur; Toderich, Kristina; Gafurov, Dilshod; Gismatulina, Liliya</p> <p>2017-04-01</p> <p>Previous studies have shown that precipitation anomalies and raising of temperature trends were deteriorate affected on large-scale of vegetation surveys in Central Asia (CA). Nowadays, remote sensing techniques can provide estimation of Net and Gross Primary Productivity (NPP & GPP) for regional and global scales, and selected zones in CA (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) dominated by C4 plants (biomes) what it reveals more accurately simulate C4 carbon. The estimation of NPP & GPP from source (MOD17A2/A3) would be beneficial to determine natural driver factors, whether on rangeland ecosystem is a carbon sink or source, such as a vast area of the selected zones incorporates exacerbate regional drought-risk factors nowadays. Generally, we have combined last available NPP & GPP (2000-2015) with 1 km resolution from MODIS, with investigation of long-term vegetation patterns under Normalized Difference Vegetation Indices (NDVI) with 8 km resolution from AVHRR-GIMMS 3g sources (2001-2015) within aim to estimate potential values of rangeland ecosystems. Interaction ratios of NPP/GPP are integrating more accurately describe carbon sink process under natural or anthropogenic factors, specifically last results of NDVI trends were described as decreasing trends due to climate anomalies, besides the eastern and northern parts of CA (mostly boreal forest zones) where accumulated or indicated of raising trends of NDVI in last three years (2012-2015). Results revealed that, in CA were averaged annually value NDVI ranges from 0.19-0.21; (Kyrgyzstan: 0.23-0.26; Kazakhstan: 0.21-0.24; Tajikistan: 0.19-0.21); and resting countries as low NDVI accumulated areas were Turkmenistan and Uzbekistan ranges 0.13-0.16; Comparing datasets of GPP given the response dynamic change structures of NDVI values and explicit carbon uptake (CO2) in arid ecosystems and average GPPyearlyin CA ranges 2.42 kg C/m2; including to Tajikistan, Uzbekistan (3.09 kg C/m2) and Turkmenistan (3.59 kg C/m2); Kazakhstan and Kyrgyzstan 0.88 & 1.46 kg C /m2. The ratings of dynamical GPP & NPP were similar for each 5 years (2000-2005, 2005-2010 and 2010-2015) and ranges GPP ≈ 2.42 kg C/m2 and NPP ≈ 2.36 kg C/m2. NPP is more accuracy in desert zones, basically, the bare areas shown a high values. The results shown that meanwhile values of NPP/GPP is relatively illustrated same results as NDVI annual trends, and NPP/GPP average value of 1.03, and incorporating well for sparsely vegetated ecosystems of CA. MODIS derived primary production datasets could improve a better estimate ecosystem process and vegetation/carbon change anomalies during water-stressed conditions in the regional level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27487864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27487864"><span>Noninvasive microwave ablation zone radii estimation using x-ray CT image analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim</p> <p>2016-08-01</p> <p>The aims of this study were to noninvasively and automatically estimate both the radius of the ablated liver tissue and the radius encircling the treated zone, which also defines where the tissue is definitely untreated during a microwave (MW) thermal ablation procedure. Fourteen ex vivo bovine fresh liver specimens were ablated at 40 W using a 14 G microwave antenna, for durations of 3, 6, 8, and 10 min. The tissues were scanned every 5 s during the ablation using an x-ray CT scanner. In order to estimate the radius of the ablation zone, the acquired images were transformed into a polar presentation by displaying the Hounsfield units (HU) as a function of angle and radius. From this polar presentation, the average HU radial profile was analyzed at each time point and the ablation zone radius was estimated. In addition, textural analysis was applied to the original CT images. The proposed algorithm identified high entropy regions and estimated the treated zone radius per time. The estimated ablated zone radii as a function of treatment durations were compared, by means of correlation coefficient and root mean square error (RMSE) to gross pathology measurements taken immediately post-treatment from similarly ablated tissue. Both the estimated ablation radii and the treated zone radii demonstrated strong correlation with the measured gross pathology values (R(2) ≥ 0.89 and R(2) ≥ 0.86, respectively). The automated ablation radii estimation had an average discrepancy of less than 1 mm (RMSE = 0.65 mm) from the gross pathology measured values, while the treated zone radii showed a slight overestimation of approximately 1.5 mm (RMSE = 1.6 mm). Noninvasive monitoring of MW ablation using x-ray CT and image analysis is feasible. Automatic estimations of the ablation zone radius and the radius encompassing the treated zone that highly correlate with actual ablation measured values can be obtained. This technique can therefore potentially be used to obtain real time monitoring and improve the clinical outcome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27992952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27992952"><span>Gross primary production responses to warming, elevated CO2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ryan, Edmund M; Ogle, Kiona; Peltier, Drew; Walker, Anthony P; De Kauwe, Martin G; Medlyn, Belinda E; Williams, David G; Parton, William; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Lu, Xingjie; Luus, Kristina A; Zaehle, Sönke; Shu, Shijie; Werner, Christian; Xia, Jianyang; Pendall, Elise</p> <p>2017-08-01</p> <p>Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO 2 (eCO 2 ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO 2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (A max ) and light-use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R 2  = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year GPP by warming (29%, P = 0.02) and eCO 2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tair ant ) and vapor pressure deficit (VPD ant ) effects on A max (over the past 3-4 days and 1-3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPD ant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO 2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest that they could be useful semi-independent data streams for validating TBMs. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17604','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17604"><span>Revised costs of large truck-and bus-involved crashes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-11-01</p> <p>This study provides the latest estimates of the costs of highway crashes involving large trucks and buses by severity. Based on the latest data available, the estimated cost of police-reported crashes involving trucks with a gross weight rating of mo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24163614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24163614"><span>Total economic value of wetlands products and services in Uganda.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kakuru, Willy; Turyahabwe, Nelson; Mugisha, Johnny</p> <p>2013-01-01</p> <p>Wetlands provide food and non-food products that contribute to income and food security in Uganda. This study determined the economic value of wetland resources and their contribution to food security in the three agroecological zones of Uganda. The values of wetland resources were estimated using primary and secondary data. Market price, Productivity, and Contingent valuation methods were used to estimate the value of wetland resources. The per capita value of fish was approximately US$ 0.49 person⁻¹. Fish spawning was valued at approximately US$ 363,815 year⁻¹, livestock pastures at US$ 4.24 million, domestic water use at US$ 34 million year⁻¹, and the gross annual value added by wetlands to milk production at US$ 1.22 million. Flood control was valued at approximately US$ 1,702,934,880 hectare⁻¹ year⁻¹ and water regulation and recharge at US$ 7,056,360 hectare⁻¹ year⁻¹. Through provision of grass for mulching, wetlands were estimated to contribute to US$ 8.65 million annually. The annual contribution of non-use values was estimated in the range of US$ 7.1 million for water recharge and regulation and to US$ 1.7 billion for flood control. Thus, resource investment for wetlands conservation is economically justified to create incentives for continued benefits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3791690','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3791690"><span>Total Economic Value of Wetlands Products and Services in Uganda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kakuru, Willy; Turyahabwe, Nelson; Mugisha, Johnny</p> <p>2013-01-01</p> <p>Wetlands provide food and non-food products that contribute to income and food security in Uganda. This study determined the economic value of wetland resources and their contribution to food security in the three agroecological zones of Uganda. The values of wetland resources were estimated using primary and secondary data. Market price, Productivity, and Contingent valuation methods were used to estimate the value of wetland resources. The per capita value of fish was approximately US$ 0.49 person−1. Fish spawning was valued at approximately US$ 363,815 year−1, livestock pastures at US$ 4.24 million, domestic water use at US$ 34 million year−1, and the gross annual value added by wetlands to milk production at US$ 1.22 million. Flood control was valued at approximately US$ 1,702,934,880 hectare−1 year−1 and water regulation and recharge at US$ 7,056,360 hectare−1 year−1. Through provision of grass for mulching, wetlands were estimated to contribute to US$ 8.65 million annually. The annual contribution of non-use values was estimated in the range of US$ 7.1 million for water recharge and regulation and to US$ 1.7 billion for flood control. Thus, resource investment for wetlands conservation is economically justified to create incentives for continued benefits. PMID:24163614</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B21K..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B21K..03H"><span>Environmental controls of daytime leaf carbon exchange: Implications for estimates of ecosystem fluxes in a deciduous forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heskel, M.; Tang, J.</p> <p>2017-12-01</p> <p>Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21412071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21412071"><span>Mucosal colonization by metastatic carcinoma in the gastrointestinal tract: a potential mimic of primary neoplasia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Estrella, Jeannelyn S; Wu, Tsung-Teh; Rashid, Asif; Abraham, Susan C</p> <p>2011-04-01</p> <p>The gastrointestinal (GI) tract is a common site for both primary and metastatic carcinomas. Distinguishing the two can occasionally be difficult, particularly when metastatic tumor reaches the mucosal surface. Features that are typically used to make this distinction include the presence of an adenomatous precursor lesion, regional lymph node involvement, and gross configuration of the tumor. However, we recently encountered 2 index cases of metastatic carcinoma in the small intestine (1 from the colorectum and 1 of endocervical origin) that were initially misinterpreted as primary small bowel carcinomas because of apparent in situ growth in the mucosal surface resembling polypoid, adenomatous precursor lesions. We, therefore, studied 100 GI resections from 1987 to 2009 that were reported to show mucosal involvement by metastatic carcinoma, and compared the histologic features with a control group of 29 primary small bowel adenocarcinomas. Gross descriptions and histologic sections were evaluated for the following: (1) tumor spread along an intact basement membrane of villi/crypts (mucosal colonization), (2) resemblance to an adenoma/precursor lesion, (3) gross configuration of the tumor, (4) lymphovascular invasion, and (5) regional lymph node involvement in the metastatic site. Metastatic sites included the small intestine (n=74), colorectum (n=16), or both (n=10). Primary tumors were GI (n=55, with 47 from colorectum), gynecologic (n=28), pulmonary (n=8), genitourinary (n=6), head and neck (n=2), and breast (n=1). Overall, 42 (42%) of the metastases that reached the mucosal surface of the bowel showed at least focal mucosal colonization, 26% resembled a precursor adenoma, 62% had regional lymph node positivity, and only 24% cases showed a classic serosal-based configuration. In 4 cases (2 of GI origin and 2 of gynecologic origin), metastatic tumors were initially interpreted as new primaries by the pathologist (n=2) or clinicians (n=2). Metastatic carcinomas originating from the GI tract were significantly more likely to show mucosal colonization (60% vs. 20%, P<0.0001) and resemblance to a precursor lesion (45% vs. 2%, P<0.0001) than other primary tumors. In a comparison between 29 primary small bowel carcinomas and 41 metastatic colorectal carcinomas in the small bowel, metastatic tumors were distinguished by a higher prevalence of multiple lesions (0% vs. 39%, P<0.0001), whereas small bowel primaries were more likely to show high tumor grade (41% vs. 17%, P=0.03). There were no significant differences in the mean age (61.4 y vs. 60.9 y), number of male participants (69% vs. 56%), growth along basement membranes (62% vs. 63%), apparent precursor lesion (55% vs. 46%), lymphovascular invasion (69% vs. 73%), or lymph node positivity (68% vs. 37.5%, P=0.065). These results confirm that metastatic carcinomas involving the mucosal surface of the intestines frequently exhibit gross and histologic features, which mimic second primaries, especially when they originate from the GI tract. In situ growth and presence of an apparent adenoma cannot be taken as prima facie evidence of a primary neoplasm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1376330-impact-alternative-trait-scaling-hypotheses-maximum-photosynthetic-carboxylation-rate-cmax-global-gross-primary-production-impact-alternative-vcmax-trait-scaling-hypotheses-global-gross-primary-production','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1376330-impact-alternative-trait-scaling-hypotheses-maximum-photosynthetic-carboxylation-rate-cmax-global-gross-primary-production-impact-alternative-vcmax-trait-scaling-hypotheses-global-gross-primary-production"><span>The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate ( V cmax) on global gross primary production [The impact of alternative V cmax trait-scaling hypotheses on global gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.; ...</p> <p>2017-06-23</p> <p>Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376330','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376330"><span>The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate ( V cmax) on global gross primary production [The impact of alternative V cmax trait-scaling hypotheses on global gross primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.</p> <p></p> <p>Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4466V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4466V"><span>Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.</p> <p>2014-05-01</p> <p>Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references selection procedure on the retrieval product.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28949368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28949368"><span>Value of botulinum toxin injections preceding a comprehensive rehabilitation period for children with spastic cerebral palsy: A cost-effectiveness study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schasfoort, Fabienne; Dallmeijer, Annet; Pangalila, Robert; Catsman, Coriene; Stam, Henk; Becher, Jules; Steyerberg, Ewout; Polinder, Suzanne; Bussmann, Johannes</p> <p>2018-01-10</p> <p>Despite the widespread use of botulinum toxin in ambulatory children with spastic cerebral palsy, its value prior to intensive physiotherapy with adjunctive casting/orthoses remains unclear. A pragmatically designed, multi-centre trial, comparing the effectiveness of botulinum toxin + intensive physiotherapy with intensive physiotherapy alone, including economic evaluation. Children with spastic cerebral palsy, age range 4-12 years, cerebral palsy-severity Gross Motor Function Classification System levels I-III, received either botulinum toxin type A + intensive physiotherapy or intensive physiotherapy alone and, if necessary, ankle-foot orthoses and/or casting. Primary outcomes were gross motor func-tion, physical activity levels, and health-related quality-of-life, assessed at baseline, 12 (primary end-point) and 24 weeks (follow-up). Economic outcomes included healthcare and patient costs. Intention-to-treat analyses were performed with linear mixed models. There were 65 participants (37 males), with a mean age of 7.3 years (standard deviation 2.3 years), equally distributed across Gross Motor Function Classification System levels. Forty-one children received botulinum toxin type A plus intensive physio-therapy and 24 received intensive physiotherapy treatment only. At primary end-point, one statistically significant difference was found in favour of intensive physiotherapy alone: objectively measured percentage of sedentary behaviour (-3.42, 95% confidence interval 0.20-6.64, p=0.038). Treatment costs were significantly higher for botulinum toxin type A plus intensive physiotherapy (8,963 vs 6,182 euro, p=0.001). No statistically significant differences were found between groups at follow-up. The addition of botulinum toxin type A to intensive physiotherapy did not improve the effectiveness of rehabilitation for ambulatory children with spastic cerebral palsy and was also not cost-effective. Thus botulinum toxin is not recommended for use in improving gross motor function, activity levels or health-related quality-of-life in this cerebral palsy age- and severity-subgroup.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22473119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22473119"><span>Comparison of methods for estimating the cost of human immunodeficiency virus-testing interventions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shrestha, Ram K; Sansom, Stephanie L; Farnham, Paul G</p> <p>2012-01-01</p> <p>The Centers for Disease Control and Prevention (CDC), Division of HIV/AIDS Prevention, spends approximately 50% of its $325 million annual human immunodeficiency virus (HIV) prevention funds for HIV-testing services. An accurate estimate of the costs of HIV testing in various settings is essential for efficient allocation of HIV prevention resources. To assess the costs of HIV-testing interventions using different costing methods. We used the microcosting-direct measurement method to assess the costs of HIV-testing interventions in nonclinical settings, and we compared these results with those from 3 other costing methods: microcosting-staff allocation, where the labor cost was derived from the proportion of each staff person's time allocated to HIV testing interventions; gross costing, where the New York State Medicaid payment for HIV testing was used to estimate program costs, and program budget, where the program cost was assumed to be the total funding provided by Centers for Disease Control and Prevention. Total program cost, cost per person tested, and cost per person notified of new HIV diagnosis. The median costs per person notified of a new HIV diagnosis were $12 475, $15 018, $2697, and $20 144 based on microcosting-direct measurement, microcosting-staff allocation, gross costing, and program budget methods, respectively. Compared with the microcosting-direct measurement method, the cost was 78% lower with gross costing, and 20% and 61% higher using the microcosting-staff allocation and program budget methods, respectively. Our analysis showed that HIV-testing program cost estimates vary widely by costing methods. However, the choice of a particular costing method may depend on the research question being addressed. Although program budget and gross-costing methods may be attractive because of their simplicity, only the microcosting-direct measurement method can identify important determinants of the program costs and provide guidance to improve efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-05-25/pdf/2012-12698.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-05-25/pdf/2012-12698.pdf"><span>77 FR 31306 - Submission for OMB Review; Comment Request</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-05-25</p> <p>... understanding and higher quality estimates of economic growth, real output, prices, and productivity for our... compiling data on productivity, prices and gross domestic product (GDP). In addition, trade and professional... developing productivity measurements. The Centers for Medicare and Medicaid Services (CMS) use the estimates...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=105421&keyword=use+AND+color&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=105421&keyword=use+AND+color&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>COMPARISON OF TAXONOMIC, COLONY MORPHOTYPE AND PCR-RFLP METHODS TO CHARACTERIZE MICROFUNGAL DIVERSITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7772P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7772P"><span>Estimating gross primary productivity (GPP) of forests across southern England at high spatial and temporal resolution using the FLIGHT model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pankaew, Prasan; Milton, Edward; Dawson, Terry; Dash, Jadu</p> <p>2013-04-01</p> <p>Forests and woodlands play an important role in CO2 flux and in the storage of carbon, therefore it is important to be able to estimate gross primary productivity (GPP) and its change over time. The MODIS GPP product (MOD17) provides near-global GPP, but at relatively coarse spatial resolution (1km pixel size) and only every eight days. In order to study the dynamics of GPP over shorter time periods and over smaller areas it is necessary to make ground measurements or use a plant canopy model. The most reliable ground-based GPP data are those from the FLUXNET network, which comprises over 500 sites worldwide, each of which measures GPP using the eddy covariance method. Each FLUXNET measurement corresponds to GPP from an area around the sampling tower, the size and shape of which varies with weather conditions, notably wind speed and direction. The FLIGHT forest light simulation model (North, 1996) is a Monte Carlo based model to estimate the GPP from forest canopies, which does not take into account the spatial complexity of the site or the wind conditions at the time. Forests in southern England are small and embedded in a matrix of other land cover types (agriculture, urban etc.), so GPP estimated from FLIGHT needs to be adjusted to match that measured from a FLUXNET tower. The aim of this paper is to develop and test a method to adjust FLIGHT GPP so that it matches FLUXNET GPP. The advantage of this is that GPP can then be estimated over many other forests which do not possess FLUXNET sites. The study was based on data from two mixed broadleaf forests in southern England (Wytham Woods and Alice Holt forest), both of which have FLUXNET sites located within them. The FLUXNET meteorological data were prepared for use in the FLIGHT model by converting broadband irradiance to photosynthetically active radiance (PAR) and estimating diffuse PAR, using methods developed in previous work by the authors. The standard FLIGHT model tended to overestimate GPP in the winter and spring period and under-estimate GPP in the summer months. Correction factors were computed based on the midday GPP for each month of the year. The modified FLIGHT model was used to estimate GPP from each of the two forest sites at hourly intervals over a year. Both sites showed a strong linear relationship between GPP estimated from FLIGHT and GPP measured by FLUXNET (Alice Holt forest, R2=0.96, RMSE = 2.39 μmol m-2 s-1, MBE = 1.32 μmol m-2 s-1 , Wytham Wood R2 = 0.97, RMSE = 1.42 μmol m-2 s-1, MBE = 0.57 μmol m-2 s-1). The results suggest that the modified FLIGHT model could be used to estimate GPP at hourly intervals over non-instrumented forest sites across southern England, and thereby obtain regional estimates of GPP at high spatial and temporal resolution. Reference North, P. R. J. (1996). Three-Dimensional Forest Light Interaction Model Using a Monte Carlo Method. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 946-956.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000912','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000912"><span>Data Assimilation of Photosynthetic Light-use Efficiency using Multi-angular Satellite Data: II Model Implementation and Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hilker, Thomas; Hall, Forest G.; Tucker, J.; Coops, Nicholas C.; Black, T. Andrew; Nichol, Caroline J.; Sellers, Piers J.; Barr, Alan; Hollinger, David Y.; Munger, J. W.</p> <p>2012-01-01</p> <p>Spatially explicit and temporally continuous estimates of photosynthesis will be of great importance for increasing our understanding of and ultimately closing the terrestrial carbon cycle. Current capabilities to model photosynthesis, however, are limited by accurate enough representations of the complexity of the underlying biochemical processes and the numerous environmental constraints imposed upon plant primary production. A potentially powerful alternative to model photosynthesis through these indirect observations is the use of multi-angular satellite data to infer light-use efficiency (e) directly from spectral reflectance properties in connection with canopy shadow fractions. Hall et al. (this issue) introduced a new approach for predicting gross ecosystem production that would allow the use of such observations in a data assimilation mode to obtain spatially explicit variations in e from infrequent polar-orbiting satellite observations, while meteorological data are used to account for the more dynamic responses of e to variations in environmental conditions caused by changes in weather and illumination. In this second part of the study we implement and validate the approach of Hall et al. (this issue) across an ecologically diverse array of eight flux-tower sites in North America using data acquired from the Compact High Resolution Imaging Spectroradiometer (CHRIS) and eddy-flux observations. Our results show significantly enhanced estimates of e and therefore cumulative gross ecosystem production (GEP) over the course of one year at all examined sites. We also demonstrate that e is greatly heterogeneous even across small study areas. Data assimilation and direct inference of GEP from space using a new, proposed sensor could therefore be a significant step towards closing the terrestrial carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28887765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28887765"><span>Heartbeat detection in multimodal physiological signals using signal quality assessment based on sample entropy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Omkar; Sunkaria, Ramesh Kumar</p> <p>2017-12-01</p> <p>This paper presents a novel technique to identify heartbeats in multimodal data using electrocardiogram (ECG) and arterial blood pressure (ABP) signals. Multiple physiological signals such as ECG, ABP, and Respiration are often recorded in parallel from the activity of heart. These signals generally possess related information as they are generated by the same physical system. The ECG and ABP correspond to the same phenomenon of contraction and relaxation activity of heart. Multiple signals acquired from various sensors are generally processed independently, thus discarding the information from other measurements. In the estimation of heart rate and heart rate variability, the R peaks are generally identified from ECG signal. Efficient detection of R-peaks in electrocardiogram (ECG) is a key component in the estimation of clinically relevant parameters from ECG. However, when the signal is severely affected by undesired artifacts, this becomes a challenging task. Sometimes in clinical environment, other physiological signals reflecting the cardiac activity such as ABP signal are also acquired simultaneously. Under the availability of such multimodal signals, the accuracy of R peak detection methods can be improved using sensor-fusion techniques. In the proposed method, the sample entropy (SampEn) is used as a metric for assessing the noise content in the physiological signal and the R peaks in ECG and the systolic peaks in ABP signals are fused together to enhance the efficiency of heartbeat detection. The proposed method was evaluated on the 100 records from the computing in cardiology challenge 2014 training data set. The performance parameters are: sensitivity (Se) and positive predictivity (PPV). The unimodal R peaks detector achieved: Se gross = 99.40%, PPV gross = 99.29%, Se average = 99.37%, PPV average = 99.29%. Similarly unimodal BP delineator achieved Se gross = 99.93%, PPV gross = 99.99%, Se average = 99.93%, PPV average = 99.99% whereas, the proposed multimodal beat detector achieved: Se gross = 99.65%, PPV gross = 99.91%, Se average = 99.68%, PPV average = 99.91%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7066006-liberian-macroeconomy-simulation-sectoral-energy-demand','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7066006-liberian-macroeconomy-simulation-sectoral-energy-demand"><span>Liberian macroeconomy and simulation of sectoral energy demand: 1981-2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hill, L.J.</p> <p>1984-06-01</p> <p>The primary purpose of this report is to document the results of a research effort on end-use, sector energy demand in Liberia, West Africa over the 1981-2000 time horizon. The research was undertaken as one component of a much broader integrated energy assessment of Liberia. Other components of the assessment, however, focused on current energy supply and consumption together with future energy supply options for Liberia. This particular report is devoted exclusively to a discussion of Liberian energy demand. The methodology utilized to simulate Liberian sectoral energy demand over the period 1981-2000 involved the recursive interaction of a macroeconomic modelmore » and individual, econometrically-estimated sectoral demand equations. That is, given the projections for gross output in the Liberian economy from the macroeconomic model, sectoral energy demand was simulated. The individual energy demand equations were estimated on the basis of economic variables that are theorized to influence energy consumption in the respective sectors (e.g., price, output). The primary conclusion drawn from the analysis is that, besides being sensitive to changes in international economic activity, the demand for energy in Liberia over the 1981 to 2000 horizon is highly sensitive to internal production of its two primary exports: iron ore and rubber. More specifically, as characterized in the four scenarios, future growth in Liberian energy demand is contingent on the output of three companies: the Liberian American Swedish Mining Company, the Bong Mining Company, and the Firestone Rubber Company. Therefore, expansion of Liberia's energy supply capacity in the future should proceed cautiously. 16 references, 6 figures, 15 tables.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170008817','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170008817"><span>Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei</p> <p>2017-01-01</p> <p>Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5785945','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5785945"><span>Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei</p> <p>2017-01-01</p> <p>Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics. PMID:29375895</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29375895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29375895"><span>Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei</p> <p>2017-01-01</p> <p>Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r 2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25903289','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25903289"><span>Comparison of a gross anatomy laboratory to online anatomy software for teaching anatomy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mathiowetz, Virgil; Yu, Chih-Huang; Quake-Rapp, Cindee</p> <p>2016-01-01</p> <p>This study was designed to assess the grades, self-perceived learning, and satisfaction between occupational therapy students who used a gross anatomy laboratory versus online anatomy software (AnatomyTV) as tools to learn anatomy at a large public university and a satellite campus in the mid-western United States. The goal was to determine if equivalent learning outcomes could be achieved regardless of learning tool used. In addition, it was important to determine why students chose the gross anatomy laboratory over online AnatomyTV. A two group, post-test only design was used with data gathered at the end of the course. Primary outcomes were students' grades, self-perceived learning, and satisfaction. In addition, a survey was used to collect descriptive data. One cadaver prosection was available for every four students in the gross anatomy laboratory. AnatomyTV was available online through the university library. At the conclusion of the course, the gross anatomy laboratory group had significantly higher grade percentage, self-perceived learning, and satisfaction than the AnatomyTV group. However, the practical significance of the difference is debatable. The significantly greater time spent in gross anatomy laboratory during the laboratory portion of the course may have affected the study outcomes. In addition, some students may find the difference in (B+) versus (A-) grade as not practically significant. Further research needs to be conducted to identify what specific anatomy teaching resources are most effective beyond prosection for students without access to a gross anatomy laboratory. © 2015 American Association of Anatomists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17296242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17296242"><span>The relevance of phylogeny to studies of global change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edwards, Erika J; Still, Christopher J; Donoghue, Michael J</p> <p>2007-05-01</p> <p>Phylogenetic thinking has infiltrated many areas of biological research, but has had little impact on studies of global ecology or climate change. Here, we illustrate how phylogenetic information can be relevant to understanding vegetation-atmosphere dynamics at ecosystem or global scales by re-analyzing a data set of carbonic anhydrase (CA) activity in leaves that was used to estimate terrestrial gross primary productivity. The original calculations relied on what appeared to be low CA activity exclusively in C4 grasses, but our analyses indicate that such activity might instead characterize the PACCAD grass lineage, which includes many widespread C3 species. We outline how phylogenetics can guide better taxon sampling of key physiological traits, and discuss how the emerging field of phyloinformatics presents a promising new framework for scaling from organism physiology to global processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhyA..406..214G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhyA..406..214G"><span>Random walk-percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganjeh-Ghazvini, Mostafa; Masihi, Mohsen; Ghaedi, Mojtaba</p> <p>2014-07-01</p> <p>Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The method is applied to a well-defined model reservoir in which the breakthrough time distributions are estimated. The results of this method and the conventional simulation are then compared. The effect of the net to gross ratio on the breakthrough time distribution is studied in terms of Shannon entropy. Use of the entropy plot allows one to assign the appropriate net to gross ratio to any porous medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8756874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8756874"><span>Economics of feeding pasteurized colostrum and pasteurized waste milk to dairy calves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jamaluddin, A A; Carpenter, T E; Hird, D W; Thurmond, M C</p> <p>1996-08-15</p> <p>To estimate the marginal contribution of pasteurization of waste milk and colostrum to gross margin per calf at weaning and to estimate the minimum number of cattle on a dairy farm for pasteurization to be profitable. Randomized, controlled, clinical trial. 300 Holstein calves. The performance of calves fed pasteurized colostrum and waste milk was compared with the performance of calves fed nonpasteurized colostrum and waste milk. Costs, revenues, and gross margins for the 2 groups were compared. Calves fed pasteurized colostrum and waste milk were worth an extra $8.13 in gross margin/calf, compared with calves fed nonpasteurized colostrum and waste milk. The minimum number of cattle for which feeding pasteurized colostrum and waste milk was calculated to be economically feasible was 315 calves/d (1,260-cow dairy farm). An economic benefit was associated with feeding pasteurized colostrum and waste milk. Additional benefits that may accrue include higher mean weight gain and lower mortality rate of calves as well as calves that have fewer days in which they are affected with diarrhea and pneumonia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1279968','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1279968"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.</p> <p></p> <p>This data set contain global gridded surfaces of Gross Primary Productivity (GPP) at 2 arc minute (approximately 4 km) spatial resolution monthly for the period of 2000-2014 derived from FLUXNET2015 (released July 12, 2016) observations using a representativeness based upscaling approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308366&Lab=NHEERL&keyword=evapotranspiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308366&Lab=NHEERL&keyword=evapotranspiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Water, bound and mobile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Resolving the global transpiration flux is critical to constraining global carbon cycle models because carbon uptake by photosynthesis in terrestrial plants (Gross Primary Productivity, GPP) is directly related to water lost through transpiration. Quantifying GPP globally is cha...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRG..116.2008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRG..116.2008M"><span>Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, Stephen; Beven, Keith; Freer, Jim; Law, Beverly</p> <p>2011-06-01</p> <p>Semiarid forests are very sensitive to climatic change and among the most difficult ecosystems to accurately model. We tested the performance of the Biome-BGC model against eddy flux data taken from young (years 2004-2008), mature (years 2002-2008), and old-growth (year 2000) ponderosa pine stands at Metolius, Oregon, and subsequently examined several potential causes for model-data mismatch. We used the Generalized Likelihood Uncertainty Estimation methodology, which involved 500,000 model runs for each stand (1,500,000 total). Each simulation was run with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in modeled estimates of net ecosystem CO2 exchange (NEE) that were compared to measured eddy flux data. Simulations for the young stand exhibited the highest level of performance, though they overestimated ecosystem C accumulation (-NEE) 99% of the time. Among the simulations for the mature and old-growth stands, 100% and 99% of the simulations underestimated ecosystem C accumulation. One obvious area of model-data mismatch is soil moisture, which was overestimated by the model in the young and old-growth stands yet underestimated in the mature stand. However, modeled estimates of soil water content and associated water deficits did not appear to be the primary cause of model-data mismatch; our analysis indicated that gross primary production can be accurately modeled even if soil moisture content is not. Instead, difficulties in adequately modeling ecosystem respiration, mainly autotrophic respiration, appeared to be the fundamental cause of model-data mismatch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18244943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18244943"><span>Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Hyun-Seok; Oren, Ram; Hinckley, Thomas M</p> <p>2008-04-01</p> <p>We examined the tradeoffs between stand-level water use and carbon uptake that result when biomass production of trees in plantations is maximized by removing nutrient and water limitations. A Populus trichocarpa Torr. x P. deltoides Bartr. & Marsh. plantation was irrigated and received frequent additions of nutrients to optimize biomass production. Sap flux density was measured continuously over four of the six growing-season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production based on allometric relationships. Sap flux was converted to canopy conductance and analyzed with an empirical model to isolate the effects of water limitation. Actual and soil-water-unlimited potential CO(2) uptakes were estimated with a canopy conductance constrained carbon assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity and maximum electron transport. Net primary production (NPP) was about 43% of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the NPP/GPP ratio, we found that current irrigation reduced growth by about 18% compared with growth with no water limitation. To achieve maximum growth, however, would require 70% more water for transpiration, and would reduce water-use efficiency by 27%, from 1.57 to 1.15 g stem wood C kg(-1) water. Given the economic and social values of water, plantation managers appear to have optimized water use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24376754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24376754"><span>Photorespiration and carbon limitation determine productivity in temperate seagrasses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buapet, Pimchanok; Rasmusson, Lina M; Gullström, Martin; Björk, Mats</p> <p>2013-01-01</p> <p>The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042785','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042785"><span>Accounting for non-photosynthetic vegetation in remote-sensing-based estimates of carbon flux in wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schile, Lisa M.; Byrd, Kristin B.; Windham-Myers, Lisamarie; Kelly, Maggi</p> <p>2013-01-01</p> <p>Monitoring productivity in coastal wetlands is important due to their high carbon sequestration rates and potential role in climate change mitigation. We tested agricultural- and forest-based methods for estimating the fraction of absorbed photosynthetically active radiation (f APAR), a key parameter for modelling gross primary productivity (GPP), in a restored, managed wetland with a dense litter layer of non-photosynthetic vegetation, and we compared the difference in canopy light transmission between a tidally influenced wetland and the managed wetland. The presence of litter reduced correlations between spectral vegetation indices and f APAR. In the managed wetland, a two-band vegetation index incorporating simulated World View-2 or Hyperion green and near-infrared bands, collected with a field spectroradiometer, significantly correlated with f APAR only when measured above the litter layer, not at the ground where measurements typically occur. Measures of GPP in these systems are difficult to capture via remote sensing, and require an investment of sampling effort, practical methods for measuring green leaf area and accounting for background effects of litter and water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A41I0196B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A41I0196B"><span>Using Chlorophyll Fluorescence to Assess the Impact of Agriculture on Northern Hemisphere CO2 Seasonality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butterfield, Z.; Keppel-Aleks, G.</p> <p>2015-12-01</p> <p>The seasonality of carbon dioxide (CO2) concentrations in the northern hemisphere (NH) has increased by up to 50% over the previous five decades. A significant portion of this increase may be explained by enhanced agricultural productivity. The impact that increased crop production has on CO­­2 seasonality is dependent on the fraction of the crop Gross Primary Product (GPP) that occurs during the natural carbon uptake period (CUP). Solar Induced Fluorescence (SIF), an artifact of photosynthesis, can be used to assess GPP directly via remote sensing. New methods for measuring SIF from space provide tools for obtaining GPP data at regional and global levels. We use SIF data from the GOSAT and OCO-2 satellites to obtain observational estimates of the fraction of GPP occurring within the CUP in NH agricultural regions. We compare these fractions with estimates made using crop calendars and inventories and, where available, with CO2 flux data from eddy covariance towers. Our results offer insight into the impact that increased agricultural productivity has on the seasonal amplitude of NH CO2 concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN51F0070W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN51F0070W"><span>Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.</p> <p>2017-12-01</p> <p>Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/56170','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/56170"><span>Carbon storage and carbon-to-organic matter relationships of three forested ecosystems of the Rocky Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Theresa B. Jain</p> <p>1994-01-01</p> <p>Fluctuations in atmospheric carbon dioxide is influenced by carbon storage and cycling in terrestrial forest ecosystems. Currently, only gross estimates are available for carbon content of these ecosystems and reliable estimates are lacking for Rocky Mountain forests. To improve carbon storage estimates more information is needed on the relationship between carbon and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cost+AND+accounting&pg=6&id=EJ604812','ERIC'); return false;" href="https://eric.ed.gov/?q=cost+AND+accounting&pg=6&id=EJ604812"><span>Estimating the Cost of Standardized Student Testing in the United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Phelps, Richard P.</p> <p>2000-01-01</p> <p>Describes and contrasts different methods of estimating costs of standardized testing. Using a cost-accounting approach, compares gross and marginal costs and considers testing objects (test materials and services, personnel and student time, and administrative/building overhead). Social marginal costs of replacing existing tests with a national…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=gross+AND+motor+AND+skills&pg=5&id=EJ897284','ERIC'); return false;" href="https://eric.ed.gov/?q=gross+AND+motor+AND+skills&pg=5&id=EJ897284"><span>Mothers' Estimates of Their Children with Disorders of Language Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Willinger, Ulrike; Eisenwort, Brigitte</p> <p>2005-01-01</p> <p>The authors' objective in this article was to explore the accuracy of mothers' estimates concerning their children's developmental functioning, especially with respect to vocabulary and gross motor development, by comparing the results of diagnostic tests administered to both the children and their mothers. The authors studied 55 children with…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol13/pdf/CFR-2010-title26-vol13-sec1-6654-5.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol13/pdf/CFR-2010-title26-vol13-sec1-6654-5.pdf"><span>26 CFR 1.6654-5 - Payments of estimated tax.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>....6654-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Additions to the Tax, Additional Amounts, and Assessable Penalties § 1.6654-5... on Form 1040-ES. For the purpose of determining the estimated tax, the amount of gross income which...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ957067.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ957067.pdf"><span>Overall Economy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Occupational Outlook Quarterly, 2012</p> <p>2012-01-01</p> <p>The economy's need for workers originates in the demand for the goods and services that these workers provide. So, to project employment, BLS starts by estimating the components of gross domestic product (GDP) for 2020. GDP is the value of the final goods produced and services provided in the United States. Then, BLS estimates the size--in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17029968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17029968"><span>Comparison between fluorimetry and oximetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lefebvre, Sébastien; Mouget, Jean-Luc; Loret, Pascale; Rosa, Philippe; Tremblin, Gérard</p> <p>2007-02-01</p> <p>This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20169411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20169411"><span>Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ito, Akihiko</p> <p>2010-07-01</p> <p>Using a process-based model, I assessed how ecophysiological processes would respond to near-future global changes predicted by coupled atmosphere-ocean climate models. An ecosystem model, Vegetation Integrative SImulator for Trace gases (VISIT), was applied to four sites in East Asia (different types of forest in Takayama, Tomakomai, and Fujiyoshida, Japan, and an Alpine grassland in Qinghai, China) where observational flux data are available for model calibration. The climate models predicted +1-3 degrees C warming and slight change in annual precipitation by 2050 as a result of an increase in atmospheric CO2. Gross primary production (GPP) was estimated to increase substantially at each site because of improved efficiency in the use of water and radiation. Although increased respiration partly offset the GPP increase, the simulation showed that these ecosystems would act as net carbon sinks independent of disturbance-induced uptake for recovery. However, the carbon budget response relied strongly on nitrogen availability, such that photosynthetic down-regulation resulting from leaf nitrogen dilution largely decreased GPP. In relation to long-term monitoring, these results indicate that the impacts of global warming may be more evident in gross fluxes (e.g., photosynthesis and respiration) than in the net CO2 budget, because changes in these fluxes offset each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185382','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185382"><span>Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Welch, Alan H.</p> <p>1995-01-01</p> <p>Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities < 1 pCi/L.The gross-beta technique does not measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their activities are expected to be low.Ingrowth of beta-emitting radionuclides during sample holding times can contribute to gross-beta activity, particularly in ground water with gross-beta activities > 10 pCi/L. Ingrowth of beta-emitting progeny of238U, specifically234Pa and234Th, contributes much of the measured gross-beta activity in ground water from 4 of the 5 areas studied. Consequently, gross-beta activity measurements commonly overestimate the abundance of beta-emitting radionuclides actually present in ground water. Differing sample holding times before analysis lead to differing amounts of ingrowth of the two progeny. Therefore, holding times can affect observed gross-beta measurements, particularly in ground water with238U activities that are moderate to high compared with the activity of40K plus228Ra. Uncertainties associated with counting efficiencies for beta particles with different energies further complicate the interpretation of gross-beta measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25916181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25916181"><span>Calcified Suprasellar Xanthogranuloma Presenting with Primary Amenorrhea in a 17-Year-Old Girl: Case Report and Literature Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ben Nsir, Atef; Thai, Quoc-Anh; Chaieb, Larbi; Jemel, Hafedh</p> <p>2015-09-01</p> <p>Xanthogranuloma, also known as cholesterol granuloma, is an extremely rare intracranial neoplasm most commonly located in the middle ear, petrous apex, or choroid plexus. Exclusively suprasellar xanthogranulomas are exceptional and this report presents a very rare case in the pediatric population, particularly unique due to the presence of calcification. A 17-year-old girl presented with primary amenorrhea with computed tomography and magnetic resonance imaging showing a large calcified enhancing suprasellar mass, which was presumptively diagnosed as a craniopharyngioma on the basis of its clinical and radiologic appearance. Gross total resection of a well-encapsulated, exclusively suprasellar tumor was achieved, without postoperative neurologic deficits. Histologic examination found fibrous tissue with abundant cholesterol clefts, multinucleated giant cells, and hemosiderin deposits but no epithelial cells. The final histologic diagnosis was a xanthogranuloma. Xanthogranuloma, although extremely rare in the pediatric population, may present as a calcified suprasellar mass and manifest with primary amenorrhea. The prognosis after gross total resection is likely favorable; however, long-term follow-up is indicated for these rare neoplasms. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4388705','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4388705"><span>Modeling Net Ecosystem Carbon Exchange of Alpine Grasslands with a Satellite-Driven Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian</p> <p>2015-01-01</p> <p>Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model. PMID:25849325</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25849325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25849325"><span>Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Wei; Hu, Zhongmin; Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian</p> <p>2015-01-01</p> <p>Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26709315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26709315"><span>The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eisenhauer, Philipp; Heckman, James J; Vytlacil, Edward</p> <p>2015-04-01</p> <p>The literature on treatment effects focuses on gross benefits from program participation. We extend this literature by developing conditions under which it is possible to identify parameters measuring the cost and net surplus from program participation. Using the generalized Roy model, we nonparametrically identify the cost, benefit, and net surplus of selection into treatment without requiring the analyst to have direct information on the cost. We apply our methodology to estimate the gross benefit and net surplus of attending college.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689211','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689211"><span>The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eisenhauer, Philipp; Heckman, James J.; Vytlacil, Edward</p> <p>2015-01-01</p> <p>The literature on treatment effects focuses on gross benefits from program participation. We extend this literature by developing conditions under which it is possible to identify parameters measuring the cost and net surplus from program participation. Using the generalized Roy model, we nonparametrically identify the cost, benefit, and net surplus of selection into treatment without requiring the analyst to have direct information on the cost. We apply our methodology to estimate the gross benefit and net surplus of attending college. PMID:26709315</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26296039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26296039"><span>Fine and gross motor skills: The effects on skill-focused dual-tasks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raisbeck, Louisa D; Diekfuss, Jed A</p> <p>2015-10-01</p> <p>Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616648M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616648M"><span>Copula Multivariate analysis of Gross primary production and its hydro-environmental driver; A BIOME-BGC model applied to the Antisana páramos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Galarraga, Remigio; Mynett, Arthur</p> <p>2014-05-01</p> <p>Simulations of carbon cycling are prone to uncertainties from different sources, which in general are related to input data, parameters and the model representation capacities itself. The gross carbon uptake in the cycle is represented by the gross primary production (GPP), which deals with the spatio-temporal variability of the precipitation and the soil moisture dynamics. This variability associated with uncertainty of the parameters can be modelled by multivariate probabilistic distributions. Our study presents a novel methodology that uses multivariate Copulas analysis to assess the GPP. Multi-species and elevations variables are included in a first scenario of the analysis. Hydro-meteorological conditions that might generate a change in the next 50 or more years are included in a second scenario of this analysis. The biogeochemical model BIOME-BGC was applied in the Ecuadorian Andean region in elevations greater than 4000 masl with the presence of typical vegetation of páramo. The change of GPP over time is crucial for climate scenarios of the carbon cycling in this type of ecosystem. The results help to improve our understanding of the ecosystem function and clarify the dynamics and the relationship with the change of climate variables. Keywords: multivariate analysis, Copula, BIOME-BGC, NPP, páramos</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46472','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46472"><span>Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram Oren</p> <p>2014-01-01</p> <p>Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13957','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13957"><span>The ratio of NPP to GPP: evidence of change over the course of stand development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Annikki Makela; Harry T. Valentine</p> <p>2001-01-01</p> <p>Using Scots pine (Pinus sylvestris L.) in Fenno-Scandia as a case study, we investigate whether net primary production (NPP) and maintenance respiration are constant fractions of gross primary production (GPP) as even-aged mono-specific stands progress from initiation to old age. A model of the ratio of NPP to GPP is developed based on (1) the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4853525','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4853525"><span>Adult and adolescent exposure to tobacco and alcohol content in contemporary YouTube music videos in Great Britain: a population estimate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cranwell, Jo; Opazo-Breton, Magdalena; Britton, John</p> <p>2016-01-01</p> <p>Background We estimate exposure of British adults and adolescents to tobacco and alcohol content from a sample of popular YouTube music videos. Methods British viewing figures were generated from 2 representative online national surveys of adult and adolescent viewing of the 32 most popular videos containing content. 2068 adolescents aged 11–18 years (1010 boys, 1058 girls), and 2232 adults aged 19+years (1052 male, 1180 female) completed the surveys. We used the number of 10 s intervals in the 32 most popular videos containing content to estimate the number of impressions. We extrapolated gross and per capita impressions for the British population from census data and estimated numbers of adults and adolescents who had ever watched the sampled videos. Results From video release to the point of survey, the videos delivered an estimated 1006 million gross impressions of alcohol (95% CI 748 to 1264 million), and 203 million of tobacco (95% CI 151 to 255 million), to the British population. Per capita exposure was around 5 times higher for alcohol than for tobacco, and nearly 4 times higher in adolescents, who were exposed to an average of 52.1 (95% CI 43.4 to 60.9) and 10.5 (95% CI 8.8 to 12.3) alcohol and tobacco impressions, respectively, than in adults (14.1 (95% CI 10.2 to 18.1) and 2.9 (95% CI 2.1 to 3.6)). Exposure rates were higher in girls than in boys. Conclusions YouTube music videos deliver millions of gross impressions of alcohol and tobacco content. Adolescents are exposed much more than adults. Music videos are a major global medium of exposure to such content. PMID:26767404</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035657','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035657"><span>Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chivers, M.R.; Turetsky, M.R.; Waddington, J.M.; Harden, J.W.; McGuire, A.D.</p> <p>2009-01-01</p> <p>Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth. ?? 2009 Springer Science+Business Media, LLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRG..116.4010D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRG..116.4010D"><span>Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.</p> <p>2011-12-01</p> <p>The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3419893','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3419893"><span>Costs of Addressing Heroin Addiction in Malaysia and 32 Comparable Countries Worldwide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ruger, Jennifer Prah; Chawarski, Marek; Mazlan, Mahmud; Luekens, Craig; Ng, Nora; Schottenfeld, Richard</p> <p>2012-01-01</p> <p>Objective Develop and apply new costing methodologies to estimate costs of opioid dependence treatment in countries worldwide. Data Sources/Study Setting Micro-costing methodology developed and data collected during randomized controlled trial (RCT) involving 126 patients (July 2003–May 2005) in Malaysia. Gross-costing methodology developed to estimate costs of treatment replication in 32 countries with data collected from publicly available sources. Study Design Fixed, variable, and societal cost components of Malaysian RCT micro-costed and analytical framework created and employed for gross-costing in 32 countries selected by three criteria relative to Malaysia: major heroin problem, geographic proximity, and comparable gross domestic product (GDP) per capita. Principal Findings Medication, and urine and blood testing accounted for the greatest percentage of total costs for both naltrexone (29–53 percent) and buprenorphine (33–72 percent) interventions. In 13 countries, buprenorphine treatment could be provided for under $2,000 per patient. For all countries except United Kingdom and Singapore, incremental costs per person were below $1,000 when comparing buprenorphine to naltrexone. An estimated 100 percent of opiate users in Cambodia and Lao People's Democratic Republic could be treated for $8 and $30 million, respectively. Conclusions Buprenorphine treatment can be provided at low cost in countries across the world. This study's new costing methodologies provide tools for health systems worldwide to determine the feasibility and cost of similar interventions. PMID:22091732</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22091732','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22091732"><span>Costs of addressing heroin addiction in Malaysia and 32 comparable countries worldwide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruger, Jennifer Prah; Chawarski, Marek; Mazlan, Mahmud; Luekens, Craig; Ng, Nora; Schottenfeld, Richard</p> <p>2012-04-01</p> <p>Develop and apply new costing methodologies to estimate costs of opioid dependence treatment in countries worldwide. Micro-costing methodology developed and data collected during randomized controlled trial (RCT) involving 126 patients (July 2003-May 2005) in Malaysia. Gross-costing methodology developed to estimate costs of treatment replication in 32 countries with data collected from publicly available sources. Fixed, variable, and societal cost components of Malaysian RCT micro-costed and analytical framework created and employed for gross-costing in 32 countries selected by three criteria relative to Malaysia: major heroin problem, geographic proximity, and comparable gross domestic product (GDP) per capita. Medication, and urine and blood testing accounted for the greatest percentage of total costs for both naltrexone (29-53 percent) and buprenorphine (33-72 percent) interventions. In 13 countries, buprenorphine treatment could be provided for under $2,000 per patient. For all countries except United Kingdom and Singapore, incremental costs per person were below $1,000 when comparing buprenorphine to naltrexone. An estimated 100 percent of opiate users in Cambodia and Lao People's Democratic Republic could be treated for $8 and $30 million, respectively. Buprenorphine treatment can be provided at low cost in countries across the world. This study's new costing methodologies provide tools for health systems worldwide to determine the feasibility and cost of similar interventions. © Health Research and Educational Trust.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1940b0009A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1940b0009A"><span>Determination of gross alpha and gross beta in soil around repository facility at Bukit Kledang, Perak, Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adziz, Mohd Izwan Abdul; Siong, Khoo Kok</p> <p>2018-04-01</p> <p>Recently, the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak, Malaysia, has been upgraded to repository facility upon the completion of decontamination and decommissioning (D&D) process. Thorium waste and contaminated material that may contain some minor amounts of thorium hydroxide were disposed in this facility. This study is conducted to determine the concentrations of gross alpha and gross beta radioactivities in soil samples collected around the repository facility. A total of 12 soil samples were collected consisting 10 samples from around the facility and 2 samples from selected residential area near the facility. In addition, the respective dose rates were measured 5 cm and 1 m above the ground by using survey meter with Geiger Muller (GM) detector and Sodium Iodide (NaI) detector. Soil samples were collected using hand auger and then were taken back to the laboratory for further analysis. Samples were cleaned, dried, pulverized and sieved prior to analysis. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Canberra Series 5 XLB - Automatic Low Background Alpha and Beta Counting System. The obtained results show that, the gross alpha and gross beta activity concentration ranged from 1.55 to 5.34 Bq/g with a mean value of 3.47 ± 0.09 Bq/g and 1.64 to 5.78 Bq/g with a mean value of 3.49 ± 0.09 Bq/g, respectively. These results can be used as an additional data to represent terrestrial radioactivity baseline data for Malaysia environment. This estimation will also serve as baseline for detection of any future related activities of contamination especially around the repository facility area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160011396&hterms=USDA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DUSDA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160011396&hterms=USDA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DUSDA"><span>Integrating Chlorophyll fapar and Nadir Photochemical Reflectance Index from EO-1/Hyperion to Predict Cornfield Daily Gross Primary Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben; Huemmrich, K. Fred; Cook, Bruce D.; Corp, Lawrence A.; Kustas, William P.; Russ, Andrew L.; Prueger, John H.; Yao, Tian</p> <p>2016-01-01</p> <p>The concept of light use efficiency (Epsilon) and the concept of fraction of photosynthetically active ration (PAR) absorbed for vegetation photosynthesis (PSN), i.e., fAPAR (sub PSN), have been widely utilized to estimate vegetation gross primary productivity (GPP). It has been demonstrated that the photochemical reflectance index (PRI) is empirically related to e. An experimental US Department of Agriculture (USDA) cornfield in Maryland was selected as our study field. We explored the potential of integrating fAPAR(sub chl) (defined as the fraction of PAR absorbed by chlorophyll) and nadir PRI (PRI(sub nadir)) to predict cornfield daily GPP. We acquired nadir or near-nadir EO-1/Hyperion satellite images that covered the cornfield and took nadir in-situ field spectral measurements. Those data were used to derive the PRI(sub nadir) and fAPAR (sub chl). The fAPAR (sub chl) is retrieved with the advanced radiative transfer model PROSAIL2 and the Metropolis approach, a type of Markov Chain Monte Carlo (MCMC) estimation procedure. We define chlorophyll light use efficiency Epsilon (sub chl) as the ratio of vegetation GPP as measured by eddy covariance techniques to PAR absorbed by chlorophyll (Epsilon(sub chl) = GPP/APAR (sub chl). Daily Epsilon (sub chl) retrieved with the EO-1 Hyperion images was regressed with a linear equation of PRI (sub nadir) Epsilon (sub chl) = Alpha × PRI (sub nadir) + Beta). The satellite Epsilon(sub chl- PRI (sub nadir) linear relationship for the cornfield was implemented to develop an integrated daily GPP model [GPP = (Alpha × PRI(sub nadir) + Beta) × fAPAR (sub chl) × PAR], which was evaluated with fAPAR (sub chl) and PRI (sub nadir) retrieved from field measurements. Daily GPP estimated with this fAPAR (sub chl-) PRI (nadir) integration model was strongly correlated with the observed tower in-situ daily GPP (R(sup 2) = 0.93); with a root mean square error (RMSE) of 1.71 g C mol-(sup -1) PPFD and coefficient of variation (CV) of 16.57%. Both seasonal Epsilon (sub chl) and PRI (sub nadir) were strongly correlated with fAPAR (sub chl ) retrieved from field measurements, which indicates that chlorophyll content strongly affects seasonal epsilon (sub chl) and PRI (sub nadir). We demonstrate the potential capacity to monitor GPP with space-based visible through shortwave infrared (VSWIR) imaging spectrometers such as NASA's soon to be decommissioned EO- 1/Hyperion and the future Hyperspectral Infrared Imager (HyspIRI).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1987/0206/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1987/0206/report.pdf"><span>Distribution of radionuclide and trace-elements in ground water, grasses, and surficial sediments associated with the alluvial aquifer along the Puerco River, northeastern Arizona; a reconnaissance sampling program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Webb, R.H.; Rink, G.R.; Favor, B.O.</p> <p>1987-01-01</p> <p>The concentrations of gross alpha radioactivity minus uranium equaled or exceeded 15 picoCuries/L (pCi/L) in five of 14 wells sampled. The concentration of radium-226 plus radium-228 exceeded the primary water quality standard of 5 pCi/L in one well. The concentration of uranium exceeded a recommended limit of 0.035 mg/L in two wells. Perennial grass and sediment samples had low concentrations of radionuclides. The concentration of trace elements in the sediment samples was not unusual. Water quality of surface water in the Puerco River at Chambers varied as a function of the suspended sediment concentration. Concentrations of total gross alpha radiation fluctuated from 12 to 11,200 pCi/L. Concentrations of total gross beta radiation fluctuated from 45 to 4,500 pCi/L. (Author 's abstract)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037108','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037108"><span>Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.</p> <p>2009-01-01</p> <p>Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17636293','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17636293"><span>The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niemistö, Juha P; Horppila, Jukka</p> <p>2007-01-01</p> <p>The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24789','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24789"><span>Estimating photosynthetic 13C discrimination in terrestrial CO2 exchange from canopy to regional scales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Chun-Ta Lai; James R. Ehleringer; Pieter Tans; Steven C. Wofsy; Shawn P. Urbanski; David Y. Hollinger</p> <p>2004-01-01</p> <p>We determined δ13C values associated with canopy gross and net C02 fluxes from four U.S. sites sampled between 2001 and 2002. Annual mean, flux-weighted δ13C values of net ecosystem C02 exchange (NEE) were estimated for four contrasting ecosystems (three...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28566032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28566032"><span>Estimation of construction and demolition waste using waste generation rates in Chennai, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ram, V G; Kalidindi, Satyanarayana N</p> <p>2017-06-01</p> <p>A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25311042','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25311042"><span>Ectopic recurrence of craniopharyngioma: Reporting three new cases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Yang; Shrestha, David; Shi, Xiang-En; Zhou, Zhongqing; Qi, Xueling; Qian, Hai</p> <p>2015-04-01</p> <p>Ectopic recurrence of craniopharyngioma is extremely rare following transcranial procedures of primary tumour. Here we describe 3 new cases of ectopic recurrence along the surgical route after transcranial gross total resection of primary tumour. All 3 cases are male adults--2 of them had papillary-type tumour with the other being adamantinomatous. All ectopic tumours were safely resected via repeated craniotomy. Long-term surveillance of patients with resected craniopharyngioma is essential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=koda&pg=3&id=ED476507','ERIC'); return false;" href="https://eric.ed.gov/?q=koda&pg=3&id=ED476507"><span>The Impact of Adult Mortality on Primary School Enrollment in Northwestern Tanzania. Africa Region Human Development Working Paper Series.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ainsworth, Martha; Beegle, Kathleen; Koda, Godlike</p> <p></p> <p>The AIDS epidemic is making orphans out of many African children and threatens to reverse hard-won gains in raising school enrollments. The average gross primary enrollment ration (GPER) the number of children enrolled as a percent of the total number of children of school age was only 77% for Sub-Saharan Africa in 1996. The countries are hard-hit…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28690803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28690803"><span>Deriving a light use efficiency estimation algorithm using in situ hyperspectral and eddy covariance measurements for a maize canopy in Northeast China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Feng; Zhou, Guangsheng</p> <p>2017-07-01</p> <p>We estimated the light use efficiency ( LUE ) via vegetation canopy chlorophyll content ( CCC canopy ) based on in situ measurements of spectral reflectance, biophysical characteristics, ecosystem CO 2 fluxes and micrometeorological factors over a maize canopy in Northeast China. The results showed that among the common chlorophyll-related vegetation indices (VIs), CCC canopy had the most obviously exponential relationships with the red edge position (REP) ( R 2  = .97, p  <   .001) and normalized difference vegetation index (NDVI) ( R 2  = .91, p  <   .001). In a comparison of the indicating performances of NDVI, ratio vegetation index (RVI), wide dynamic range vegetation index (WDRVI), and 2-band enhanced vegetation index (EVI2) when estimating CCC canopy using all of the possible combinations of two separate wavelengths in the range 400-1300 nm, EVI2 [1214, 1259] and EVI2 [726, 1248] were better indicators, with R 2 values of .92 and .90 ( p  <   .001). Remotely monitoring LUE through estimating CCC canopy derived from field spectrometry data provided accurate prediction of midday gross primary productivity ( GPP ) in a rainfed maize agro-ecosystem ( R 2  = .95, p  <   .001). This study provides a new paradigm for monitoring vegetation GPP based on the combination of LUE models with plant physiological properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14612003K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14612003K"><span>Improvement of gross theory of beta-decay for application to nuclear data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koura, Hiroyuki; Yoshida, Tadashi; Tachibana, Takahiro; Chiba, Satoshi</p> <p>2017-09-01</p> <p>A theoretical study of β decay and delayed neutron has been carried out with a global β-decay model, the gross theory. The gross theory is based on a consideration of the sum rule of the β-strength function, and gives reasonable results of β-decay rates and delayed neutron in the entire nuclear mass region. In a fissioning nucleus, neutrons are produced by β decay of neutron-rich fission fragments from actinides known as delayed neutrons. The average number of delayed neutrons is estimated based on the sum of the β-delayed neutron-emission probabilities multiplied by the cumulative fission yield for each nucleus. Such a behavior is important to manipulate nuclear reactors, and when we adopt some new high-burn-up reactors, properties of minor actinides will play an important roll in the system, but these data have not been sufficient. We re-analyze and improve the gross theory. For example, we considered the parity of neutrons and protons at the Fermi surface, and treat a suppression for the allowed transitions in the framework of the gross theory. By using the improved gross theory, underestimated half-lives in the neutron-rich indium isotopes and neighboring region increase, and consequently follow experimental trend. The ability of reproduction (and also prediction) of the β-decay rates, delayed-neutron emission probabilities is discussed. With this work, we have described the development of a programming code of the gross theory of β-decay including the improved parts. After preparation finished, this code can be released for the nuclear data community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4885R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4885R"><span>Testing the effect of increased temperature and river water input on benthic and pelagic metabolism using a large scale experimental pond ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez, Patricia; Geibrink, Erik; Vasconcelos, Francisco; Hedström, Per; Byström, Pär; Karlsson, Jan</p> <p>2013-04-01</p> <p>We performed a large scale experimental study to test the effect of increased temperatures and concentration of allochthonous dissolved organic carbon (DOC) on benthic and pelagic primary production and respiration. The experiment was carried out during one ice-free season (May-October 2012) in a clear-water pond ecosystem divided into 16 enclosures (each 120 m3 and 1.6 m deep) including natural benthic and pelagic habitats and fish as top consumers (40 adult three-spine sticklebacks were introduced at the beginning of the experiment). Treatments included input of brown river water (23 mg/L in DOC) and heating (3° C above ambient temperature) in a factorial design: 4 enclosures were kept as controls (clear-cold), 4 enclosures were heated (clear-hot), 4 received river water (dark-cold) and 4 were both heated and received river water (dark-hot). Physical and chemical variables were monitored weekly meanwhile benthic, pelagic and ecosystems metabolism were estimated from free-water oxygen data and incubation studies. The 3° C difference in temperature between hot and cold enclosures was consistent during the study and DOC concentrations averaged 4 and 8 mg/L in clear water and dark enclosures, respectively; without any interaction effect between temperature and DOC concentration. Vertical light attenuation coefficient (Kd) showed significant differences between treatments with (0.62±0.40 m-1) and without river water (0.24±0.13 m-1). Total nitrogen concentrations ranged between 187 and 300 μg/L, with higher values in the dark-cold enclosures. The same pattern of higher values in dark-cold enclosures was found in phytoplankton chlorophyll a and primary production. Preliminary results show that gross benthic primary production (higher in clear-cold enclosures) largely exceeded phytoplankton production at the beginning of the experiment. Due to high respiration compared to gross primary production the net ecosystem production was in general negative in the pelagic habitat and did not show any effect of temperature or river water treatment. Our results suggest that input of river water may affect relatively shallow lake ecosystems differently compared to what is generally assumed based on studies of deeper systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1160002-impact-mesophyll-diffusion-estimated-global-land-co2-fertilization','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1160002-impact-mesophyll-diffusion-estimated-global-land-co2-fertilization"><span>Impact of mesophyll diffusion on estimated global land CO 2 fertilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; ...</p> <p>2014-10-13</p> <p>In C 3 plants, CO 2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO 2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO 2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO 2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO 2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth ratesmore » of historical atmospheric CO 2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr -1ppm -1. This finding implies that the contemporary terrestrial biosphere is more CO 2-limited than previously thought.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29760089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29760089"><span>Uncertainty in forecasts of long-run economic growth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christensen, P; Gillingham, K; Nordhaus, W</p> <p>2018-05-22</p> <p>Forecasts of long-run economic growth are critical inputs into policy decisions being made today on the economy and the environment. Despite its importance, there is a sparse literature on long-run forecasts of economic growth and the uncertainty in such forecasts. This study presents comprehensive probabilistic long-run projections of global and regional per-capita economic growth rates, comparing estimates from an expert survey and a low-frequency econometric approach. Our primary results suggest a median 2010-2100 global growth rate in per-capita gross domestic product of 2.1% per year, with a standard deviation (SD) of 1.1 percentage points, indicating substantially higher uncertainty than is implied in existing forecasts. The larger range of growth rates implies a greater likelihood of extreme climate change outcomes than is currently assumed and has important implications for social insurance programs in the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191264','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191264"><span>Estimating carbon and showing impacts of drought using satellite data in regression-tree models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.</p> <p>2018-01-01</p> <p>Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B11B0437S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B11B0437S"><span>A New Approach to Extract Forest Water Use Efficiency from Eddy Covariance Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scanlon, T. M.; Sulman, B. N.</p> <p>2016-12-01</p> <p>Determination of forest water use efficiency (WUE) from eddy covariance data typically involves the following steps: (a) estimating gross primary productivity (GPP) from direct measurements of net ecosystem exchange (NEE) by extrapolating nighttime ecosystem respiration (ER) to daytime conditions, and (b) assuming direct evaporation (E) is minimal several days after rainfall, meaning that direct measurements of evapotranspiration (ET) are identical to transpiration (T). Both of these steps could lead to errors in the estimation of forest WUE. Here, we present a theoretical approach for estimating WUE through the analysis of standard eddy covariance data, which circumvents these steps. Only five statistics are needed from the high-frequency time series to extract WUE: CO2 flux, water vapor flux, standard deviation in CO2 concentration, standard deviation in water vapor concentration, and the correlation coefficient between CO2 and water vapor concentration for each half-hour period. The approach is based on the assumption that stomatal fluxes (i.e. photosynthesis and transpiration) lead to perfectly negative correlations and non-stomatal fluxes (i.e. ecosystem respiration and direct evaporation) lead to perfectly positive correlations within the CO2 and water vapor high frequency time series measured above forest canopies. A mathematical framework is presented, followed by a proof of concept using eddy covariance data and leaf-level measurements of WUE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648651-outcomes-sinonasal-cancer-treated-proton-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648651-outcomes-sinonasal-cancer-treated-proton-therapy"><span>Outcomes of Sinonasal Cancer Treated With Proton Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dagan, Roi, E-mail: rdagan@floridaproton.org; Department of Radiation Oncology, University of Florida, Jacksonville, Florida; Bryant, Curtis</p> <p></p> <p>Purpose: To report disease outcomes after proton therapy (PT) for sinonasal cancer. Methods and Materials: Eighty-four adult patients without metastases received primary (13%) or adjuvant (87%) PT for sinonasal cancers (excluding melanoma, sarcoma, and lymphoma). Common histologies were olfactory neuroblastoma (23%), squamous cell carcinoma (22%), and adenoid cystic carcinoma (17%). Advanced stage (T3 in 25% and T4 in 69%) and high-grade histology (51%) were common. Surgical procedures included endoscopic resection alone (45%), endoscopic resection with craniotomy (12%), or open resection (30%). Gross residual disease was present in 26% of patients. Most patients received hyperfractionated PT (1.2 Gy [relative biological effectiveness (RBE)] twicemore » daily, 99%) and chemotherapy (75%). The median PT dose was 73.8 Gy (RBE), with 85% of patients receiving more than 70 Gy (RBE). Prognostic factors were analyzed using Kaplan-Meier analysis and proportional hazards regression for multiple regression. Dosimetric parameters were evaluated using logistic regression. Serious, late grade 3 or higher toxicity was reported using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4. The median follow-up was 2.4 years for all patients and 2.7 years among living patients. Results: The local control (LC), neck control, freedom from distant metastasis, disease-free survival, cause-specific survival, and overall survival rates were 83%, 94%, 73%, 63%, 70%, and 68%, respectively, at 3 years. Gross total resection and PT resulted in a 90% 3-year LC rate. The 3-year LC rate was 61% for primary radiation therapy and 59% for patients with gross disease. Gross disease was the only significant factor for LC on multivariate analysis, whereas grade and continuous LC were prognostic for overall survival. Six of 12 local recurrences were marginal. Dural dissemination represented 26% of distant recurrences. Late toxicity occurred in 24% of patients (with grade 3 or higher unilateral vision loss in 2%). Conclusions: Dose-intensified, hyperfractionated PT with or without concurrent chemotherapy results in excellent LC after gross total resection, and results in patients with gross disease are encouraging. Patients with high-grade histology are at greater risk of death from distant dissemination. Continuous LC is a major determinant of survival justifying aggressive local therapy in nearly all cases.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.B41B0188R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.B41B0188R"><span>Estimating Per-Pixel GPP of the Contiguous USA Directly from MODIS EVI Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahman, A. F.; Sims, D. A.; El-Masri, B. Z.; Cordova, V. D.</p> <p>2005-12-01</p> <p>We estimated gross primary production (GPP) of the contiguous USA using enhanced vegetation index (EVI) data from NASA's moderate resolution imaging spectroradiometer (MODIS). Based on recently published values of correlation coefficients between EVI and GPP of North American vegetations, we derived GPP maps of the contiguous USA for 2001-2004, which included one La Nina year and three moderately El Nino years. The product was a truly per-pixel GPP estimate (named E-GPP), in contrast to the pseudo-continuous MOD17, the standard MODIS GPP product. We compared E-GPP with fine-scale experimental GPP data and MOD17 estimates from three Bigfoot experimental sites, and also with MOD17 estimates from the whole contiguous USA for the above-mentioned four years. For each of the '7 by 7' km Bigfoot experimental sites, E-GPP was able to track the primary production activity during the green-up period while MOD17 failed to do so. The E-GPP estimates during peak production season were similar to those from Bigfoot and MOD17 for most vegetation types except for the deciduous types, where it was lower. Annual E-GPP of the Bigfoot sites compared well with Bigfoot experimental GPP (r = 0.71) and MOD17 (r = 0.78). But for the contiguous USA for 2001-2004, annual E-GPP showed disagreement with MOD17 in both magnitude and seasonal trends for deciduous forests and grass lands. In this study we explored the reasons for this mismatch between E-GPP and MOD17 and also analyzed the uncertainties in E-GPP across multiple spatial scales. Our results show that the E-GPP, based on a simple regression model, can work as a robust alternative to MOD17 for large-area annual GPP estimation. The relative advantages of E-GPP are that it is truly per-pixel, solely dependent on remotely sensed data that is routinely available from NASA, easy to compute and has the potential of being used as an operational product.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28805245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28805245"><span>Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cavaleri, Molly A; Coble, Adam P; Ryan, Michael G; Bauerle, William L; Loescher, Henry W; Oberbauer, Steven F</p> <p>2017-10-01</p> <p>Changes in tropical forest carbon sink strength during El Niño Southern Oscillation (ENSO) events can indicate future behavior under climate change. Previous studies revealed ˜6 Mg C ha -1  yr -1 lower net ecosystem production (NEP) during ENSO year 1998 compared with non-ENSO year 2000 in a Costa Rican tropical rainforest. We explored environmental drivers of this change and examined the contributions of ecosystem respiration (RE) and gross primary production (GPP) to this weakened carbon sink. For 1998-2000, we estimated RE using chamber-based respiration measurements, and we estimated GPP in two ways: using (1) the canopy process model MAESTRA, and (2) combined eddy covariance and chamber respiration data. MAESTRA-estimated GPP did not statistically differ from GPP estimated using approach 2, but was ˜ 28% greater than published GPP estimates for the same site and years using eddy covariance data only. A 7% increase in RE (primarily increased soil respiration) and a 10% reduction in GPP contributed equally to the difference in NEP between ENSO year 1998 and non-ENSO year 2000. A warming and drying climate for tropical forests may yield a weakened carbon sink from both decreased GPP and increased RE. Understanding physiological acclimation will be critical for the large carbon stores in these ecosystems. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760003003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760003003"><span>Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 6: MARS System - A Sample Problem (Gross Weight of Subsonic Transports)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hague, D. S.; Woodbury, N. W.</p> <p>1975-01-01</p> <p>The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930093029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930093029"><span>Resistance Tests of a 1/16 Size Model of the Hughes-kaiser Flying Boat, NACA Model 183</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Posner, Jack; Woodward, David R.; Olson, Roland E.</p> <p>1944-01-01</p> <p>Tank tests were made of a hull model of the Hughes-Kaiser cargo airplane for estimates of take-off performance and maximum gross load for take-off. At hump speeds, with the model free to trim, the trim and resistance were high, which resulted in a load-resistance ratio of approximately 4.0 for a gross load coefficient of 0.75. With a 4000,000-lb load, the full size craft may take off in 69 sec over a distance of 5600 ft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4191468','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4191468"><span>National health expenditures, 1983</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gibson, Robert M.; Levit, Katharine R.; Lazenby, Helen; Waldo, Daniel R.</p> <p>1984-01-01</p> <p>Although growing more slowly than in recent years, spending for health continued to account for an increasing share of the Nation's gross national product. In 1983, spending for health amounted to 10.8 percent of the gross national product, or $1,459 per person. Public programs financed 40 percent of all personal health care spending. Medicare and Medicaid expended $91 billion in benefits, 29 percent of all spending for personal health. New estimates of spending in calendar year 1983, along with revised measures of the benefits paid by private health insurers, are presented here. PMID:10310949</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=243270&keyword=respiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=243270&keyword=respiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Ecosystem metabolism is an important mechanism for nutrient retention in streams, yet few high studies have investigated temporal patterns in gross primary production (GPP) and ecosystem respiration (ER) using high frequency measurements. This is a potentially important oversig...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/382711-expected-effects-residual-chlorine-nitrogen-sewage-effluent-estuarine-pelagic-ecosystem','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/382711-expected-effects-residual-chlorine-nitrogen-sewage-effluent-estuarine-pelagic-ecosystem"><span>Expected effects of residual chlorine and nitrogen in sewage effluent on an estuarine pelagic ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hattis, D.; Lemerise, A.; Ratick, S.</p> <p>1995-12-31</p> <p>The authors used physical, toxicological, and system dynamic modeling tools to estimate the probable ecological effects caused by residual chlorine and nitrogen in sewage effluent discharged into Greenwich Cove, RI, USA. An energy systems model of the pelagic ecosystem in Narragansett Bay was developed and adapted for use in Greenwich Cove. This model allowed them to assess the indirect effects on organisms in the food web that result from a direct toxic effect on a given organism. Indirect food web mediated effects were the primary mode of loss for bluefish, but not for menhaden. The authors chose gross primary production,more » the flux of carbon to the benthos, fish out-migration, and fish harvest as outcome variables indicative of different valuable ecosystem functions. Organism responses were modeled using an assumption that lethal toxic responses occur as individual organism thresholds are exceeded, and that in general thresholds are lognormally distributed in a population of mixed individuals. They performed sensitivity analyses to assess the implications of different plausible values for the probit slopes used in the model. The putative toxic damage repair rate, combined with estimates of the exposure variability for each species, determined the averaging time that was likely to be most important in producing toxicity. Temperature was an important external factor in the physical, toxicological, and ecological models. These three models can be integrated into a single model applicable to other locations and stressors given the availability of appropriate data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012654"><span>Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140012654'); toggleEditAbsImage('author_20140012654_show'); toggleEditAbsImage('author_20140012654_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140012654_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140012654_hide"></p> <p>2014-01-01</p> <p>Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3986187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3986187"><span>Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.</p> <p>2014-01-01</p> <p>Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27428044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27428044"><span>A global country-level comparison of the financial burden of surgery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shrime, M G; Dare, A; Alkire, B C; Meara, J G</p> <p>2016-10-01</p> <p>Approximately 30 per cent of the global burden of disease is surgical, and nearly one-quarter of individuals who undergo surgery each year face financial hardship because of its cost. The Lancet Commission on Global Surgery has proposed the elimination of impoverishment due to surgery by 2030, but no country-level estimates exist of the financial burden of surgical access. Using publicly available data, the incidence and risk of financial hardship owing to surgery was estimated for each country. Four measures of financial catastrophe were examined: catastrophic expenditure, and impoverishment at the national poverty line, at 2 international dollars (I$) per day and at I$1·25 per day. Stochastic models of income and surgical costs were built for each country. Results were validated against available primary data. Direct medical costs of surgery put 43·9 (95 per cent posterior credible interval 2·2 to 87·1) per cent of the examined population at risk of catastrophic expenditure, and 57·0 (21·8 to 85·1) per cent at risk of being pushed below I$2 per day. The risk of financial hardship from surgery was highest in sub-Saharan Africa. Correlations were found between the risk of financial catastrophe and external financing of healthcare (positive correlation), national measures of well-being (negative correlation) and the percentage of a country's gross domestic product spent on healthcare (negative correlation). The model performed well against primary data on the costs of surgery. Country-specific estimates of financial catastrophe owing to surgical care are presented. The economic benefits projected to occur with the scale-up of surgery are placed at risk if the financial burden of accessing surgery is not addressed in national policies. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22149477-prognostic-impact-radiation-therapy-primary-tumor-patients-non-small-cell-lung-cancer-oligometastasis-diagnosis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22149477-prognostic-impact-radiation-therapy-primary-tumor-patients-non-small-cell-lung-cancer-oligometastasis-diagnosis"><span>Prognostic Impact of Radiation Therapy to the Primary Tumor in Patients With Non-small Cell Lung Cancer and Oligometastasis at Diagnosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lopez Guerra, Jose Luis; Department of Radiation Oncology, Instituto Madrileno de Oncologia/Grupo IMO, Madrid; Gomez, Daniel, E-mail: dgomez@mdanderson.org</p> <p>2012-09-01</p> <p>Purpose: We investigated prognostic factors associated with survival in patients with non-small cell lung cancer (NSCLC) and oligometastatic disease at diagnosis, particularly the influence of local treatment to the primary site on prognosis. Methods and Materials: From January 2000 through June 2011, 78 consecutive patients with oligometastatic NSCLC (<5 metastases) at diagnosis underwent definitive chemoradiation therapy ({>=}45 Gy) to the primary site. Forty-four of these patients also received definitive local treatment for the oligometastases. Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Results: Univariate Cox proportional hazard analysis revealed bettermore » overall survival (OS) for those patients who received at least 63 Gy of radiation to the primary site (P=.002), received definitive local treatment for oligometastasis (P=.041), had a Karnofsky performance status (KPS) score >80 (P=.007), had a gross tumor volume {<=}124 cm{sup 3} (P=.002), had adenocarcinoma histology (P=.002), or had no history of respiratory disease (P=.016). On multivariate analysis, radiation dose, performance status, and tumor volume retained significance (P=.004, P=.006, and P<.001, respectively). The radiation dose also maintained significance when patients with and without brain metastases were analyzed separately. Conclusions: Tumor volume, KPS, and receipt of at least 63 Gy to the primary tumor are associated with improved OS in patients with oligometastatic NSCLC at diagnosis. Our results suggest that a subset of such patients may benefit from definitive local therapy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22224448-impact-preradiation-residual-disease-volume-time-locoregional-failure-cutaneous-merkel-cell-carcinomaa-trog-substudy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22224448-impact-preradiation-residual-disease-volume-time-locoregional-failure-cutaneous-merkel-cell-carcinomaa-trog-substudy"><span>The Impact of Preradiation Residual Disease Volume on Time to Locoregional Failure in Cutaneous Merkel Cell Carcinoma—A TROG Substudy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Finnigan, Renee; Hruby, George; Wratten, Chris</p> <p>2013-05-01</p> <p>Purpose: This study evaluated the impact of margin status and gross residual disease in patients treated with chemoradiation therapy for high-risk stage I and II Merkel cell cancer (MCC). Methods and Materials: Data were pooled from 3 prospective trials in which patients were treated with 50 Gy in 25 fractions to the primary lesion and draining lymph nodes and 2 schedules of carboplatin based chemotherapy. Time to locoregional failure was analyzed according to the burden of disease at the time of radiation therapy, comparing patients with negative margins, involved margins, or macroscopic disease. Results: Analysis was performed on 88 patients,more » of whom 9 had microscopically positive resection margins and 26 had macroscopic residual disease. The majority of gross disease was confined to nodal regions. The 5-year time to locoregional failure, time to distant failure, time to progression, and disease-specific survival rates for the whole group were 73%, 69%, 62%, and 66% respectively. The hazard ratio for macroscopic disease at the primary site or the nodes was 1.25 (95% confidence interval 0.57-2.77), P=.58. Conclusions: No statistically significant differences in time to locoregional failure were identified between patients with negative margins and those with microscopic or gross residual disease. These results must, however, be interpreted with caution because of the limited sample size.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...744415W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...744415W"><span>Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xue; Tan, Kun; Chen, Baozhang; Du, Peijun</p> <p>2017-03-01</p> <p>In this study, the net primary productivity (NPP) in China from 2001 to 2012 was estimated based on the Carnegie-Ames-Stanford Approach (CASA) model using Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets, and the accuracy was verified by a ChinaFLUX dataset. It was found that the spatiotemporal variations in NPP present a downward trend with the increase of latitude and longitude. Moreover, the influence of climate change on the evolution of NPP shows that NPP has had different impact factors in different regions and periods over the 12 years. The eastern region has shown the largest increase in gross regional product (GRP) and a significant fluctuation in NPP over the 12 years. Meanwhile, NPP in the eastern and central regions is significantly positively correlated with annual solar radiation, while NPP in these two regions is significantly negatively correlated with the growth rate of GRP. It is concluded that both the development of the economy and climate change have influenced NPP evolution in China. In addition, NPP has shown a steadily rising trend over the 12 years as a result of the great importance attributed to ecological issues when developing the economy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037475','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037475"><span>The relative influence of nutrients and habitat on stream metabolism in agricultural streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.</p> <p>2010-01-01</p> <p>Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25226','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25226"><span>Estimators and characteristics of logging residue in Montana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James. O Howard; Carl E. Fiedler</p> <p>1984-01-01</p> <p>Ratios are presented for estimating volume and characteristics of logging residue in Montana. They relate cubic-foot volume of residue to thousand board feet of timber harvested and to acres harvested. Tables show gross and net volume of residue, with and without bark, by diameter and length classes; by number of pieces per acre; by percent soundness; by product...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://coweeta.uga.edu/publications/10305.pdf','USGSPUBS'); return false;" href="http://coweeta.uga.edu/publications/10305.pdf"><span>Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.</p> <p>2009-01-01</p> <p>We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29373204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29373204"><span>Trends in physical activity, health-related fitness, and gross motor skills in children during a two-year comprehensive school physical activity program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brusseau, Timothy A; Hannon, James C; Fu, You; Fang, Yi; Nam, Kahyun; Goodrum, Sara; Burns, Ryan D</p> <p>2018-01-06</p> <p>The purpose of this study was to examine the trends in school-day step counts, health-related fitness, and gross motor skills during a two-year Comprehensive School Physical Activity Program (CSPAP) in children. Longitudinal trend analysis. Participants were a sample of children (N=240; mean age=7.9±1.2 years; 125 girls, 115 boys) enrolled in five low-income schools. Outcome variables consisted of school day step counts, Body Mass Index (BMI), estimated VO 2 Peak , and gross motor skill scores assessed using the Test of Gross Motor Development-3rd Edition (TGMD-3). Measures were collected over a two-year CSPAP including a baseline and several follow-up time-points. Multi-level mixed effects models were employed to examine time trends on each continuous outcome variable. Markov-chain transition models were employed to examine time trends for derived binary variables for school day steps, BMI, and estimated VO 2 Peak . There were statistically significant time coefficients for estimated VO 2 Peak (b=1.10mL/kg/min, 95% C.I. [0.35mL/kg/min-2.53mL/kg/min], p=0.009) and TGMD-3 scores (b=7.8, 95% C.I. [6.2-9.3], p<0.001). There were no significant changes over time for school-day step counts or BMI. Boys had greater change in odds of achieving a step count associating with 30min of school day MVPA (OR=1.25, 95% C.I. [1.02-1.48], p=0.044). A two-year CSPAP related to increases in cardio-respiratory endurance and TGMD-3 scores. School day steps and BMI were primarily stable across the two-year intervention. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34924','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34924"><span>Industry Snapshots: Uses of Transportation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-09-14</p> <p>The Bureau of Transportation Statistics (BTS) estimates that transportation directly created $659.1 billion of economic activity by moving goods in 2012. BTS measures this contribution to the gross domestic product in the Transportation Satellite Acc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53B0524H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53B0524H"><span>Constraining gross primary production and ecosystem respiration estimates for North America using atmospheric observations of carbonyl sulfide (OCS) and CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, W.; Ju, W.; Chen, H.; Peters, W.; van der Velde, I.; Baker, I. T.; Andrews, A. E.; Zhang, Y.; Launois, T.; Campbell, J. E.; Suntharalingam, P.; Montzka, S. A.</p> <p>2016-12-01</p> <p>Carbonyl sulfide (OCS) is a promising novel atmospheric tracer for studying carbon cycle processes. OCS shares a similar pathway as CO2 during photosynthesis but not released through a respiration-like process, thus could be used to partition Gross Primary Production (GPP) from Net Ecosystem-atmosphere CO2 Exchange (NEE). This study uses joint atmospheric observations of OCS and CO2 to constrain GPP and ecosystem respiration (Re). Flask data from tower and aircraft sites over North America are collected. We employ our recently developed CarbonTracker (CT)-Lagrange carbon assimilation system, which is based on the CT framework and the Weather Research and Forecasting - Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, and the Simple Biosphere model with simulated OCS (SiB3-OCS) that provides prior GPP, Re and plant uptake fluxes of OCS. Derived plant OCS fluxes from both process model and GPP-scaled model are tested in our inversion. To investigate the ability of OCS to constrain GPP and understand the uncertainty propagated from OCS modeling errors to constrained fluxes in a dual-tracer system including OCS and CO2, two inversion schemes are implemented and compared: (1) a two-step scheme, which firstly optimizes GPP using OCS observations, and then simultaneously optimizes GPP and Re using CO2 observations with OCS-constrained GPP in the first step as prior; (2) a joint scheme, which simultaneously optimizes GPP and Re using OCS and CO2 observations. We will evaluate the result using an estimated GPP from space-borne solar-induced fluorescence observations and a data-driven GPP upscaled from FLUXNET data with a statistical model (Jung et al., 2011). Preliminary result for the year 2010 shows the joint inversion makes simulated mole fractions more consistent with observations for both OCS and CO2. However, the uncertainty of OCS simulation is larger than that of CO2. The two-step and joint schemes perform similarly in improving the consistence with observations for OCS, implicating that OCS could provide independent constraint in joint inversion. Optimization makes less total GPP and Re but more NEE, when testing with prior CO2 fluxes from two biosphere models. This study gives an in-depth insight into the role of joint atmospheric OCS and CO2 observations in constraining CO2 fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25438150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25438150"><span>Estimating cost of road traffic injuries in Iran using willingness to pay (WTP) method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ainy, Elaheh; Soori, Hamid; Ganjali, Mojtaba; Le, Henry; Baghfalaki, Taban</p> <p>2014-01-01</p> <p>We aimed to use the willingness to pay (WTP) method to calculate the cost of traffic injuries in Iran in 2013. We conducted a cross-sectional questionnaire-based study of 846 randomly selected road users. WTP data was collected for four scenarios for vehicle occupants, pedestrians, vehicle drivers, and motorcyclists. Final analysis was carried out using Weibull and maximum likelihood method. Mean WTP was 2,612,050 Iranian rials (IRR). Statistical value of life was estimated according to 20,408 fatalities 402,314,106,073,648 IRR (US$13,410,470,202 based on purchasing power parity at (February 27th, 2014). Injury cost was US$25,637,870,872 (based on 318,802 injured people in 2013, multiple daily traffic volume of 311, and multiple daily payment of 31,030 IRR for 250 working days). The total estimated cost of injury and death cases was 39,048,341,074$. Gross national income of Iran was, US$604,300,000,000 in 2013 and the costs of traffic injuries constituted 6·46% of gross national income. WTP was significantly associated with age, gender, monthly income, daily payment, more payment for time reduction, trip mileage, drivers and occupants from road users. The costs of traffic injuries in Iran in 2013 accounted for 6.64% of gross national income, much higher than the global average. Policymaking and resource allocation to reduce traffic-related death and injury rates have the potential to deliver a huge economic benefit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4249801','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4249801"><span>Estimating Cost of Road Traffic Injuries in Iran Using Willingness to Pay (WTP) Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ainy, Elaheh; Soori, Hamid; Ganjali, Mojtaba; Le, Henry; Baghfalaki, Taban</p> <p>2014-01-01</p> <p>We aimed to use the willingness to pay (WTP) method to calculate the cost of traffic injuries in Iran in 2013. We conducted a cross-sectional questionnaire-based study of 846 randomly selected road users. WTP data was collected for four scenarios for vehicle occupants, pedestrians, vehicle drivers, and motorcyclists. Final analysis was carried out using Weibull and maximum likelihood method. Mean WTP was 2,612,050 Iranian rials (IRR). Statistical value of life was estimated according to 20,408 fatalities 402,314,106,073,648 IRR (US$13,410,470,202 based on purchasing power parity at (February 27th, 2014). Injury cost was US$25,637,870,872 (based on 318,802 injured people in 2013, multiple daily traffic volume of 311, and multiple daily payment of 31,030 IRR for 250 working days). The total estimated cost of injury and death cases was 39,048,341,074$. Gross national income of Iran was, US$604,300,000,000 in 2013 and the costs of traffic injuries constituted 6·46% of gross national income. WTP was significantly associated with age, gender, monthly income, daily payment, more payment for time reduction, trip mileage, drivers and occupants from road users. The costs of traffic injuries in Iran in 2013 accounted for 6.64% of gross national income, much higher than the global average. Policymaking and resource allocation to reduce traffic-related death and injury rates have the potential to deliver a huge economic benefit. PMID:25438150</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122..767I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122..767I"><span>New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichii, Kazuhito; Ueyama, Masahito; Kondo, Masayuki; Saigusa, Nobuko; Kim, Joon; Alberto, Ma. Carmelita; Ardö, Jonas; Euskirchen, Eugénie S.; Kang, Minseok; Hirano, Takashi; Joiner, Joanna; Kobayashi, Hideki; Marchesini, Luca Belelli; Merbold, Lutz; Miyata, Akira; Saitoh, Taku M.; Takagi, Kentaro; Varlagin, Andrej; Bret-Harte, M. Syndonia; Kitamura, Kenzo; Kosugi, Yoshiko; Kotani, Ayumi; Kumar, Kireet; Li, Sheng-Gong; Machimura, Takashi; Matsuura, Yojiro; Mizoguchi, Yasuko; Ohta, Takeshi; Mukherjee, Sandipan; Yanagi, Yuji; Yasuda, Yukio; Zhang, Yiping; Zhao, Fenghua</p> <p>2017-04-01</p> <p>The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192253','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192253"><span>A coupled metabolic-hydraulic model and calibration scheme for estimating of whole-river metabolism during dynamic flow conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.</p> <p>2017-01-01</p> <p>Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26924683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26924683"><span>Financial Impacts of Priority Swine Diseases to Pig Farmers in Red River and Mekong River Delta, Vietnam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pham, H T T; Antoine-Moussiaux, N; Grosbois, V; Moula, N; Truong, B D; Phan, T D; Vu, T D; Trinh, T Q; Vu, C C; Rukkwamsuk, T; Peyre, M</p> <p>2017-08-01</p> <p>A study was conducted between May 2013 and August 2014 in three provinces of Vietnam to investigate financial impacts of swine diseases in pig holdings in 2010-2013. The aim of the study was to quantify the costs of swine diseases at producer level in order to understand swine disease priority for monitoring at local level. Financial impacts of porcine reproductive and respiratory syndrome (PRRS), foot and mouth disease (FMD), and epidemic diarrhoea were assessed for 162 pig holders in two Red River Delta provinces and in one Mekong River Delta province, using data on pig production and swine disease outbreaks at farms. Losses incurred by swine diseases were estimated, including direct losses due to mortality (100% market value of pig before disease onset) and morbidity (abortion, delay of finishing stage), and indirect losses due to control costs (treatment, improving biosecurity and emergency vaccination) and revenue foregone (lower price in case of emergency selling). Financial impacts of swine diseases were expressed as percentage of gross margin of pig holding. The gross margin varied between pig farming groups (P < 0.0001) in the following order: large farm (USD 18 846), fattening farm (USD 7014) and smallholder (USD 2350). The losses per pig holding due to PRRS were the highest: 41% of gross margin for large farm, 38% for fattening farm and 63% for smallholder. Cost incurred by FMD was lower with 19%, 25% and 32% of gross margin of pig holding in large farm, fattening farm and smallholder, respectively. The cost of epidemic diarrhoea was the lowest compared to losses due to PRRS and FMD and accounted for around 10% of gross margin of pig holding in the three pig farming groups. These estimates provided critical elements on swine disease priorities to better inform surveillance and control at both national and local level. © 2016 Blackwell Verlag GmbH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=328523','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=328523"><span>Are methane production and cattle performance related?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Methane is a product of fermentation of feed in ruminant animals. Approximately 2 -12% of the gross energy consumed by cattle is released through enteric methane production. There are three primary components that contribute to the enteric methane footprint of an animal. Those components are dry ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED069079.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED069079.pdf"><span>Curriculum for the Intellectually Disabled Trainable.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Magnolia Special Education Center, Orlando, FL.</p> <p></p> <p>The curriculum guide presents a developmental sequence of learning activities to achieve specific goals for primary, intermediate, and secondary age level trainable mentally retarded students. Six major areas of learning are covered: self care (bathroom, grooming, food, clothing, safety), body usage (gross motor, health, fitness, eye-hand…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol24/pdf/CFR-2013-title40-vol24-sec141-55.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol24/pdf/CFR-2013-title40-vol24-sec141-55.pdf"><span>40 CFR 141.55 - Maximum contaminant level goals for radionuclides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol24/pdf/CFR-2012-title40-vol24-sec141-55.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol24/pdf/CFR-2012-title40-vol24-sec141-55.pdf"><span>40 CFR 141.55 - Maximum contaminant level goals for radionuclides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol23/pdf/CFR-2014-title40-vol23-sec141-55.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol23/pdf/CFR-2014-title40-vol23-sec141-55.pdf"><span>40 CFR 141.55 - Maximum contaminant level goals for radionuclides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=268366&Lab=NRMRL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=268366&Lab=NRMRL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Agricultural land use alters the seasonality and magnitude of stream metabolism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Streams are active processors of organic carbon; however, spatial and temporal variation in the rates and controls on metabolism are not well quantified in streams draining intensively-farmed landscapes. We present a comprehensive dataset of gross primary production (GPP) and ec...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=269141','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=269141"><span>Thermal adaptation of net ecosystem exchange</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we const...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/21721','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/21721"><span>Structural evaluation of the John A. Roebling Suspension Bridge : element level analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-07-01</p> <p>The primary objective of the structural evaluation of the John A. Roebling Bridge is to determine the maximum allowable gross vehicle weight (GVW) that can be carried by the bridge deck structural elements such as the open steel grid deck, channels, ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=323954','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=323954"><span>Defoliation effects on pasture photosynthesis and respiration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Ecosystem C gain or loss from managed grasslands can depend on the type and intensity of management practices that are employed. However, limited information is available at the field scale on how the type of defoliation, specifically grazing vs. cutting, affects gross primary productivity (GPP) an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ClinicalTrials.gov/ct2/show/study/NCT01480440','CLINICALTRIALS'); return false;" href="https://ClinicalTrials.gov/ct2/show/study/NCT01480440"><span>Outcomes Study of the TM Reverse Shoulder System Used in Primary or Revision Reverse Total Shoulder Arthroplasty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.clinicaltrials.gov/ct/screen/SimpleSearch">ClinicalTrials.gov</a></p> <p></p> <p>2018-02-13</p> <p>Osteoarthritis; Rheumatoid Arthritis; Post-traumatic Arthritis; Ununited Humeral Head Fracture; Irreducible 3-and 4-part Proximal Humeral Fractures; Avascular Necrosis; Gross Rotator Cuff Deficiency; Failed Total Shoulder Arthroplasty (Both Glenoid and Humeral Components Require Revision</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1208712-atmospheric-carbonyl-sulfide-sources-from-anthropogenic-activity-implications-carbon-cycle-constraints','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1208712-atmospheric-carbonyl-sulfide-sources-from-anthropogenic-activity-implications-carbon-cycle-constraints"><span>Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Campbell, J. E.; Whelan, Mary; Seibt, U.; ...</p> <p>2015-04-16</p> <p>Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21..295M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21..295M"><span>Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mo, Xingguo; Chen, Xuejuan; Hu, Shi; Liu, Suxia; Xia, Jun</p> <p>2017-01-01</p> <p>Attributing changes in evapotranspiration (ET) and gross primary productivity (GPP) is crucial for impact and adaptation assessment of the agro-ecosystems to climate change. Simulations with the VIP model revealed that annual ET and GPP slightly increased from 1981 to 2013 over the North China Plain. The tendencies of both ET and GPP were upward in the spring season, while they were weak and downward in the summer season. A complete factor analysis illustrated that the relative contributions of climatic change, CO2 fertilization, and management to the ET (GPP) trend were 56 (-32) %, -28 (25) %, and 68 (108) %, respectively. The decline of global radiation resulted from deteriorated aerosol and air pollution was the principal cause of GPP decline in summer, while air warming intensified the water cycle and advanced the plant productivity in the spring season. Generally, agronomic improvements were the principal drivers of crop productivity enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999GMS...110..217B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999GMS...110..217B"><span>Periphyton metabolism: A chamber approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brock, James T.; Royer, Todd V.; Snyder, Eric B.; Thomas, Steven A.</p> <p></p> <p>In lotic ecosystems, the metabolism of periphyton is influenced strongly by natural and anthropogenic disturbances such as floods. Using recirculating metabolism chambers, we measured the metabolic activity of the Cladophora glomerata-dominated periphyton community in the Glen Canyon Dam tailwater, in relation to the 1996 controlled flood. Because scouring removes senescent plant material and detritus from periphyton, we hypothesized that productivity rates and the gross productivity/respiration (P/R) ratio of the periphyton community would be greater after the flood. Gross and net primary production (as chlorophyll-a) increased significantly after the flood and an approximately 2-fold increase was observed in net daily metabolism. Mean P/R ratio increased significantly from 1.3 in the pre-flood community to 2.6 in the post-flood community. Following the flood, periphyton on the rocks exhibited increased photosynthetic efficiency relative to measurements made before the flood. Given the importance of primary producers in desert rivers, such changes have implications for ecologically sound management of the Colorado and other rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190190','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190190"><span>High sensitivity of gross primary production in the Rocky Mountains to summer rain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berkelhammer, M.; Stefanescu, I.C.; Joiner, J.; Anderson, Lesleigh</p> <p>2017-01-01</p> <p>In the catchments of the Rocky Mountains, peak snowpack is declining in response to warmer spring temperatures. To understand how this will influence terrestrial gross primary production (GPP), we compared precipitation data across the intermountain west with satellite retrievals of solar-induced fluorescence (SIF), a proxy for GPP. Annual precipitation patterns explained most of the spatial and temporal variability of SIF, but the slope of the response was dependent on site to site differences in the proportion of snowpack to summer rain. We separated the response of SIF to different seasonal precipitation amounts and found that SIF was approximately twice as sensitive to variations in summer rain than snowpack. The response of peak GPP to a secular decline in snowpack will likely be subtle, whereas a change in summer rain amount will have precipitous effects on GPP. The study suggests that the rain use efficiency of Rocky Mountain ecosystems is strongly dependent on precipitation form and timing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GBioC..26.1019C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GBioC..26.1019C"><span>Effects of foliage clumping on the estimation of global terrestrial gross primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas</p> <p>2012-03-01</p> <p>Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B41C0293I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B41C0293I"><span>Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.</p> <p>2012-12-01</p> <p>Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20850308-intensity-modulated-radiation-therapy-malignancies-nasal-cavity-paranasal-sinuses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20850308-intensity-modulated-radiation-therapy-malignancies-nasal-cavity-paranasal-sinuses"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Daly, Megan E.; Chen, Allen M.; Bucci, M. Kara</p> <p></p> <p>Purpose: To report the clinical outcome of patients treated with intensity-modulated radiation therapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 1998 and 2004, 36 patients with malignancies of the sinonasal region were treated with IMRT. Thirty-two patients (89%) were treated in the postoperative setting after gross total resection. Treatment plans were designed to provide a dose of 70 Gy to 95% or more of the gross tumor volume (GTV) and 60 Gy to 95% or more of the clinical tumor volume (CTV) while sparing neighboring critical structures including the optic chiasm, optic nerves,more » eyes, and brainstem. The primary sites were: 13 ethmoid sinus, 10 maxillary sinus, 7 nasal cavity, and 6 other. Histology was: 12 squamous cell, 7 esthesioneuroblastoma, 5 adenoid cystic, 5 undifferentiated, 5 adenocarcinoma, and 2 other. Median follow-up was 51 months among surviving patients (range, 9-82 months). Results: The 2-year and 5-year estimates of local control were 62% and 58%, respectively. One patient developed isolated distant metastasis, and none developed isolated regional failure. The 5-year rates of disease-free and overall survival were 55% and 45%, respectively. The incidence of ocular toxicity was minimal with no patients reporting decreased vision. Late complications included xerophthalmia (1 patient), lacrimal stenosis (1 patient), and cataract (1 patient). Conclusion: Although IMRT for malignancies of the sinonasal region does not appear to lead to significant improvements in disease control, the low incidence of complications is encouraging.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34925','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34925"><span>Industry Snapshots: Uses of Transportation: 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-10-24</p> <p>The Bureau of Transportation Statistics (BTS) estimates that transportation directly created $692.0 billion of economic activity by moving goods in 2014. BTS measures this contribution to the gross domestic product in the Transportation Satellite Acc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710383Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710383Y"><span>Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yebra, Marta; van Dijk, Albert</p> <p>2015-04-01</p> <p>Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically active radiation (PAR), calculated as the product of the fraction of absorbed PAR (fPAR) and PAR flux. The proposed algorithm performs well when evaluated against flux tower GPP (R2=0.79, RMSE= 1.93 µmol m2 s-1). Here we use GPP and T estimates previously derived at the same 16 Fluxnet sites to analyse WUE. Satellite-derived WUE explained variation in (long-term average) WUE among plant functional types but evergreen needleleaf had higher WUE than predicted. The benefit of our approach is that it uses mutually consistent estimates of GPP and T to derive canopy-level WUE without any land cover classification artefacts. References Baldocchi, D. (2008). Turner Review No. 15: 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56, 26 Kelliher, F.M., Leuning, R., Raupach, M.R., & Schulze, E.D. (1995). Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73, 1-16 Yebra, M., Van Dijk, A., Leuning, R., Huete, A., & Guerschman, J.P. (2013). Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sensing of Environment, 129, 250-261</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1287021-oil-dependence-energy-independence-sight','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1287021-oil-dependence-energy-independence-sight"><span>U.S. oil dependence 2014: Is energy independence in sight?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Greene, David L.; Liu, Changzheng</p> <p>2015-06-10</p> <p>The importance of reducing U.S. oil dependence may have changed in light of developments in the world oil market over the past two decades. Since 2005, increased domestic production and decreased oil use have cut U.S. import dependence in half. The direct costs of oil dependence to the U.S. economy are estimated under four U.S. Energy Information Administration Scenarios to 2040. The key premises of the analysis are that the primary oil market failure is the use of market power by OPEC and that U.S. economic vulnerability is a result of the quantity of oil consumed, the lack of readilymore » available, economical substitutes and the quantity of oil imported. Monte Carlo simulations of future oil market conditions indicate that the costs of U.S. oil dependence are likely to increase in constant dollars but decrease relative to U.S. gross domestic product unless oil resources are larger than estimated by the U.S. Energy Information Administration. In conclusion, reducing oil dependence therefore remains a valuable goal for U.S. energy policy and an important co-benefit of mitigating greenhouse gas emissions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B31F0077J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B31F0077J"><span>Seasonal decoupling between vegetation greenness and function over northern high latitude forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeong, S. J.; Schimel, D.; Frankenberg, C.; Drewry, D.; Fisher, J. B.; Verma, M.; Berry, J. A.; Lee, J. E.; Joiner, J.; Guanter, L.</p> <p>2014-12-01</p> <p>It is still unclear how seasonal variations in vegetation greenness relate to vegetation function (i.e., photosynthesis). Currently, normalized difference vegetation index (NDVI) is a widely used proxy for the period of terrestrial carbon uptake. However, new complementary measures are now available. In this study, we compare the seasonal cycle of NDVI with remote sensing of solar-induced chlorophyll fluorescence (SIF) and data-driven gross primary productivity (GPP) over the Northern Hemisphere high latitude forests (40°-55°N). Comparison of the seasonal cycle between these three datasets shows that the NDVI-based phenology has a longer estimated growing season than the growing season estimated using SIF/GPP. The differences are largely explained by a slower decrease in NDVI in the fall relative to SIF/GPP. In the transition seasons, NDVI is linearly related to temperature, while SIF/GPP show nonlinear relationships with respect to temperature. These results imply that autumn greening related to warming found in recent studies may not result in enhanced photosynthesis. Our method of combining remote sensing of NDVI and SIF can help improve our understanding of the large-scale vegetation structural and functional changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042069','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042069"><span>Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.</p> <p>2012-01-01</p> <p>Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110006384&hterms=plants&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplants','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110006384&hterms=plants&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplants"><span>Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.</p> <p>2009-01-01</p> <p>Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=267471','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=267471"><span>Seasonal and interannual patterns in primary production ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS, Weeks Bay AL and Apalachicola Bay FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER) and net ecosystem metabolism (NEM) using Odum's open water method. The three systems present a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as 2 orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, gross primary production (GPP) and ecosystem respiration (ER) displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2 m-2 d-1 52 in all three estuaries. To our knowledge, this is the only study examining long term trends in rates of GPP, ER and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was high</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28537510','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28537510"><span>Remote autopsy services: A feasibility study on nine cases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vodovnik, Aleksandar; Aghdam, Mohammad Reza F; Espedal, Dan Gøran</p> <p>2017-01-01</p> <p>Introduction We have conducted a feasibility study on remote autopsy services in order to increase the flexibility of the service with benefits for teaching and interdepartmental collaboration. Methods Three senior staff pathologists, one senior autopsy technician and one junior resident participated in the study. Nine autopsies were performed by the autopsy technician or resident, supervised by the primary pathologist, through the secure, double encrypted video link using Jabber Video (Cisco) with a high-speed broadband connection. The primary pathologist and autopsy room each connected to the secure virtual meeting room using 14″ laptops with in-built cameras (Hewlett-Packard). A portable high-definition web camera (Cisco) was used in the autopsy room. Primary and secondary pathologists independently interpreted and later compared gross findings for the purpose of quality assurance. The video was streamed live only during consultations and interpretation. A satisfaction survey on technical and professional aspects of the study was conducted. Results Independent interpretations of gross findings between primary and secondary pathologists yielded full agreement. A definite cause of death in one complex autopsy was determined following discussions between pathologists and reviews of the clinical notes. Our satisfaction level with the technical and professional aspects of the study was 87% and 97%, respectively. Discussion Remote autopsy services are found to be feasible in the hands of experienced staff, with increased flexibility and interest of autopsy technicians in the service as a result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-01-21/pdf/2010-1084.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-01-21/pdf/2010-1084.pdf"><span>75 FR 3434 - Fisheries of the Northeastern United States; Northeast Skate Complex Fishery; Amendment 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-01-21</p> <p>... analysis of dependency on the skate fishery indicates that almost 75 percent of the vessels included in the analysis have less than a 5-percent dependency on the skate fishery. The estimated impact on gross sales increases markedly in relation to dependency on the skate fishery among the 127 vessels estimated to be...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25353','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25353"><span>Estimators and characteristics of logging residue in California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James O. Howard; Julianne K. Bulgrin</p> <p>1986-01-01</p> <p>Ratios are presented for estimating volume and characteristics of logging residue in California. The ratios relate cubic-foot volume of residue to thousand board feet of timber harvested and to acres harvested. Tables show gross and net volume of residue, with and without bark, by diameter and length classes, by number of pieces per acre, by softwoods and hardwoods, by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol13/pdf/CFR-2010-title26-vol13-sec1-6654-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol13/pdf/CFR-2010-title26-vol13-sec1-6654-4.pdf"><span>26 CFR 1.6654-4 - Waiver of penalty for underpayment of 1971 estimated tax by an individual.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>..., DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Additions to the Tax, Additional..., for example, even if the aggregate gross income of a husband and wife (entitled under section 6013 to... underpayment of estimated tax shall not apply if the husband and wife have, in the aggregate, income from...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26318','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26318"><span>Can a sample of Landsat sensor scenes reliably estimate the global extent of tropical deforestation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. L. Czaplewski</p> <p>2003-01-01</p> <p>Tucker and Townshend (2000) conclude that wall-to-wall coverage is needed to avoid gross errors in estimations of deforestation rates' because tropical deforestation is concentrated along roads and rivers. They specifically question the reliability of the 10% sample of Landsat sensor scenes used in the global remote sensing survey conducted by the Food and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=380794','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=380794"><span>Cryptococcus neoformans of Unusual Morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cruickshank, J. G.; Cavill, R.; Jelbert, M.</p> <p>1973-01-01</p> <p>A case of primary cryptococcosis of the lungs was caused by an isolate of Cryptococcus neoformans that assumes a giant form in tissue but which has a normal appearance on artificial culture. Electron microscopy revealed gross enlargement of the capsule and plasma membranes in the tissue form. Images PMID:4121033</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=353149','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=353149"><span>Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Recent development of sun-induced chlorophyll fluorescence (SIF) technology is stimulating studies to remotely approximate canopy photosynthesis (measured as gross primary production, GPP). While multiple applications have advanced the empirical relationship between GPP and SIF, mechanistic understa...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26767404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26767404"><span>Adult and adolescent exposure to tobacco and alcohol content in contemporary YouTube music videos in Great Britain: a population estimate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cranwell, Jo; Opazo-Breton, Magdalena; Britton, John</p> <p>2016-05-01</p> <p>We estimate exposure of British adults and adolescents to tobacco and alcohol content from a sample of popular YouTube music videos. British viewing figures were generated from 2 representative online national surveys of adult and adolescent viewing of the 32 most popular videos containing content. 2068 adolescents aged 11-18 years (1010 boys, 1058 girls), and 2232 adults aged 19+years (1052 male, 1180 female) completed the surveys. We used the number of 10 s intervals in the 32 most popular videos containing content to estimate the number of impressions. We extrapolated gross and per capita impressions for the British population from census data and estimated numbers of adults and adolescents who had ever watched the sampled videos. From video release to the point of survey, the videos delivered an estimated 1006 million gross impressions of alcohol (95% CI 748 to 1264 million), and 203 million of tobacco (95% CI 151 to 255 million), to the British population. Per capita exposure was around 5 times higher for alcohol than for tobacco, and nearly 4 times higher in adolescents, who were exposed to an average of 52.1 (95% CI 43.4 to 60.9) and 10.5 (95% CI 8.8 to 12.3) alcohol and tobacco impressions, respectively, than in adults (14.1 (95% CI 10.2 to 18.1) and 2.9 (95% CI 2.1 to 3.6)). Exposure rates were higher in girls than in boys. YouTube music videos deliver millions of gross impressions of alcohol and tobacco content. Adolescents are exposed much more than adults. Music videos are a major global medium of exposure to such content. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006615','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006615"><span>Diagnostic modeling of dimethylsulfide production in coastal water west of the Antarctic Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hermann, Maria; Najjar, Raymond G.; Neeley, Aimee R.; Vila-Costa, Maria; Dacey, John W. H.; DiTullio, Giacomo, R.; Kieber, David J.; Kiene, Ronald P.; Matrai, Patricia A.; Simo, Rafel; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140006615'); toggleEditAbsImage('author_20140006615_show'); toggleEditAbsImage('author_20140006615_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140006615_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140006615_hide"></p> <p>2012-01-01</p> <p>The rate of gross biological dimethylsulfide (DMS) production at two coastal sites west of the Antarctic Peninsula, off Anvers Island, near Palmer Station, was estimated using a diagnostic approach that combined field measurements from 1 January 2006 through 1 March 2006 and a one-dimensional physical model of ocean mixing. The average DMS production rate in the upper water column (0-60 m) was estimated to be 3.1 +/- 0.6 nM/d at station B (closer to shore) and 2.7 +/- 0.6 nM/d1 at station E (further from shore). The estimated DMS replacement time was on the order of 1 d at both stations. DMS production was greater in the mixed layer than it was below the mixed layer. The average DMS production normalized to chlorophyll was 0.5 +/- nM/d)/(mg cubic m) at station B and 0.7 +/- 0.2 (nM/d)/(mg/cubic m3) at station E. When the diagnosed production rates were normalized to the observed concentrations of total dimethylsulfoniopropionate (DMSPt, the biogenic precursor of DMS), we found a remarkable similarity between our estimates at stations B and E (0.06 +/- 0.02 and 0.04 +/- 0.01 (nM DMS / d1)/(nM DMSP), respectively) and the results obtained in a previous study from a contrasting biogeochemical environment in the North Atlantic subtropical gyre (0.047 =/- 0.006 and 0.087 +/- 0.014 (nM DMS d1)/(nM DMSP) in a cyclonic and anticyclonic eddy, respectively).We propose that gross biological DMS production normalized to DMSPt might be relatively independent of the biogeochemical environment, and place our average estimate at 0.06 +/- 0.01 (nM DMS / d)/(nM DMSPt). The significance of this finding is that it can provide a means to use DMSPt measurements to extrapolate gross biological DMS production, which is extremely difficult to measure experimentally under realistic in situ conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51B0410S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51B0410S"><span>Constraining the SIF - GPP relationship via estimation of NPQ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, C. E.; Yang, X.; Tang, J.; Lee, J. E.; Cushman, K.; Toh Yuan Kun, L.; Kellner, J. R.</p> <p>2016-12-01</p> <p>Airborne and satellite measurements of solar-induced fluorescence (SIF) have the potential to improve estimates of gross primary production (GPP). Plants dissipate absorbed photosynthetically active radiation (APAR) among three de-excitation pathways: SIF, photochemical quenching (PQ), which results in electron transport and the production of ATP and NADPH consumed during carbon fixation (i.e., GPP), and heat dissipation via conversion of xanthophyll pigments (non-photochemical quenching: NPQ). As a result, the relationship between SIF and GPP is a function of NPQ and may vary temporally and spatially with environmental conditions (e.g., light and water availability) and plant traits (e.g., leaf N content). Accurate estimates of any one of the de-excitation pathways require measurement of the other two. Here we combine half-hourly measurements of canopy APAR and SIF with eddy covariance estimates of GPP at Harvard Forest to close the canopy radiation budget and infer canopy NPQ throughout the 2013 growing season. We use molecular-level photosynthesis equations to compute PQ (umol photons m-2s-1) from GPP (umol CO2 m-2s-1) and invert an integrated canopy radiative transfer and leaf-level photosynthesis/fluorescence model (SCOPE) to quantify hemispherically and spectrally-integrated SIF emission (umol photons m-2s-1) from single band (760 nm) top-of-canopy SIF measurements. We estimate half-hourly NPQ as the residual required to close the radiation budget (NPQ = APAR - SIF - PQ). Our future work will test estimated NPQ against simultaneously acquired measurements of the photochemical reflectance index (PRI), a spectral index sensitive to xanthopyll pigments. By constraining two of the three de-excitation pathways, simultaneous SIF and PRI measurements are likely to improve GPP estimates, which are crucial to the study of climate - carbon cycle interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026351','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026351"><span>Intra-seasonal mapping of CO2 flux in rangelands of northern Kazakhstan at one-kilometer resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wylie, B.K.; Gilmanov, T.G.; Johnson, D.A.; Saliendra, Nicanor Z.; Akshalov, K.; Tieszen, L.L.; Reed, B.C.; Laca, Emilio</p> <p>2004-01-01</p> <p>Algorithms that establish relationships between variables obtained through remote sensing and geographic information system (GIS) technologies are needed to allow the scaling up of site-specific CO2 flux measurements to regional levels. We obtained Bowen ratio-energy balance (BREB) flux tower measurements during the growing seasons of 1998-2000 above a grassland steppe in Kazakhstan. These BREB data were analyzed using ecosystem light-curve equations to quantify 10-day CO2 fluxes associated with gross primary production (GPP) and total respiration (R). Remotely sensed, temporally smoothed normalized difference vegetation index (NDVIsm) and environmental variables were used to develop multiple regression models for the mapping of 10-day CO2 fluxes for the Kazakh steppe. Ten-day GPP was estimated (R 2 = 0.72) by day of year (DOY) and NDVIsm, and 10-day R was estimated (R2 = 0.48) with the estimated GPP and estimated 10-day photosynthetically active radiation (PAR). Regression tree analysis estimated 10-day PAR from latitude, NDVIsm, DOY, and precipitation (R2 = 0.81). Fivefold cross-validation indicated that these algorithms were reasonably robust. GPP, R, and resulting net ecosystem exchange (NEE) were mapped for the Kazakh steppe grassland every 10 days and summed to produce regional growing season estimates of GPP, R, and NEE. Estimates of 10-day NEE agreed well with BREB observations in 2000, showing a slight underestimation in the late summer. Growing season (May to October) mean NEE for Kazakh steppe grasslands was 1.27 Mg C/ha in 2000. Winter flux data were collected during the winter of 2001-2002 and are being analyzed to close the annual carbon budget for the Kazakh steppe. ?? 2004 Springer-Verlag New York, LLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29197500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29197500"><span>Dengue endemic and its impact on the gross national product of BRAZILIAN'S economy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Montibeler, Everlam Elias; Oliveira, Daniel Ribeiro de</p> <p>2018-02-01</p> <p>In history disease has caused social and economic damage. Dengue is an illness typically found in the tropics that has affected more and more people. In Brazil, according to the Brazilian Institute of Geography and Statistics (IBGE), in 2013 at least 12.9% of the population (25.8 million) reported already having had dengue in their life. So, how wide are the economic impacts that dengue's contagion has on the gross national product? Using Leontief's method, it became possible to estimate the direct and indirect impact on the workforce and output by one country. Workforce absenteeism reduced the national productiveness and welfare state where we found maximum inoperability of 0.027% and a minimum of 0.002%. This paper develops a methodology for estimation of the impact dengue has incurred in each sector of an economy; designing a ranking with sectors that have been more affected and forecasting the propagation of the endemic throughout a region. This research measures the impact of dengue on economy, the result was that the total loss of the Brazilian economy in 2013 was around BRL 1,023,174,876.83; the importance of 0.02% of the Gross Domestic Product. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13703','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13703"><span>A method of estimating cubic volume in felled trees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frederick E. Hampf; C. Allen Bickford</p> <p>1959-01-01</p> <p>This paper describes a new method of computing the gross volume of felled trees or sections of trees. The method has many applications, but most are limited to forest research and management, especially in making surveys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3384','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3384"><span>Weather delay costs to trucking.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-11-01</p> <p>Estimates of the nations freight sector of transportation range to upwards of $600 billion of total gross domestic product with 70 percent of total value and 60 percent of total weight moving by truck. Weather-related delays can add significantly ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32184','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32184"><span>Case study guidelines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-03-01</p> <p>In TxDOT project 0-6817, Review and Evaluation of Current Gross Vehicle Weights and Axle : Load Limits, the project team reviewed the estimated costs imposed by use of overweight (OW) : vehicles and ways to allocate costs to different vehicle classes...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4832634','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4832634"><span>Tobacco imagery in Bollywood films: 2006–2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nazar, Gaurang P; Gupta, Vinay K; Millett, Christopher; Arora, Monika</p> <p>2013-01-01</p> <p>Objective To estimate exposure to tobacco imagery in youth-rated Bollywood films, and examine the results in light of recent developments in India's film rating system. Methods Content coding of 44 top grossing Bollywood films (including 38 youth-rated films) released during 2006–2008 was undertaken to estimate tobacco occurrences and impressions. Results Out of the 38 youth-rated (U and U/A) films coded, 50% contained tobacco imagery. Mean tobacco occurrences were 1.9, 2.9 and 13.7 per U, U/A and adult (A) rated films, respectively. Top grossing youth-rated films delivered 1.91 billion tobacco impressions to Indian cinema audiences. Conclusions Half the youth-rated Bollywood films contain tobacco imagery resulting in large population level exposure in India, relative to other countries. Measures to reduce youth exposure to tobacco imagery through films, such as restricting access through the rating system, will complement other tobacco control measures. PMID:27326073</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.3495K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.3495K"><span>Accelerated deforestation in the humid tropics from the 1990s to the 2000s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Do-Hyung; Sexton, Joseph O.; Townshend, John R.</p> <p>2015-05-01</p> <p>Using a consistent, 20 year series of high- (30 m) resolution, satellite-based maps of forest cover, we estimate forest area and its changes from 1990 to 2010 in 34 tropical countries that account for the majority of the global area of humid tropical forests. Our estimates indicate a 62% acceleration in net deforestation in the humid tropics from the 1990s to the 2000s, contradicting a 25% reduction reported by the United Nations Food and Agriculture Organization Forest Resource Assessment. Net loss of forest cover peaked from 2000 to 2005. Gross gains accelerated slowly and uniformly between 1990-2000, 2000-2005, and 2005-2010. However, the gains were overwhelmed by gross losses, which peaked from 2000 to 2005 and decelerated afterward. The acceleration of humid tropical deforestation we report contradicts the assertion that losses decelerated from the 1990s to the 2000s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770009468','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770009468"><span>Engineering analysis of LANDSAT 1 data for Southeast Asian agriculture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcnair, A. J.; Heydt, H. L.; Liang, T.; Levine, G. (Principal Investigator)</p> <p>1976-01-01</p> <p>The author has identified the following significant results. LANDSAT spatial resolution was estimated to be adequate, but barely so, for the purpose of detailed assessment of rice or site status. This was due to the spatially fine grain, heterogenous nature of most rice areas. Use of two spectral bands of digital data (MSS 5 and MSS 6 or 7) appeared to be adequate for site recognition and gross site status assessment. Spectral/temporal signatures were found to be more powerful than spectra signatures alone and virtually essential for most analyses of rice growth and rice sites in the Philippine environment. Two band, two date signatures were estimated to be adequate for most purposes, although good results were achieved using one band two- or four-date signatures. A radiometric resolution of 64 levels in each band was found adequate for the analyses of LANDSAT digital data for site recognition and gross site or rice growth assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11187362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11187362"><span>Creation and implementation of an effective physician compensation methodology for a nonprofit medical foundation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferch, A W</p> <p>2000-01-01</p> <p>The foundation has determined that the adjusted gross billing methodology is a viable method to be considered for a nonprofit medical foundation in compensating physicians. The foundation continues to experiment with the margin formula and is exploring other potential formulas, but believes with certain modifications the percentage of adjusted gross billing methodology can be effective and useful because of its simplicity, ease of administration, and motivational effect on the physicians. The primary improvement to the model needed would be the ability to adjust the formula on a frequent basis for individual practice variations. Modifications will continue to be made as circumstances change, but the basic principles will remain constant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=300855','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=300855"><span>Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide. It infests crops in most coffee producing countries, and is of particular concern in developing countries where coffee comprises a significant component of gross domestic product. Of more than 850 i...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=private+AND+sector+AND+public+AND+sector+AND+differences&pg=3&id=EJ1111829','ERIC'); return false;" href="https://eric.ed.gov/?q=private+AND+sector+AND+public+AND+sector+AND+differences&pg=3&id=EJ1111829"><span>The Gross and Net Effects of Primary School Denomination on Pupil Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Driessen, Geert; Agirdag, Orhan; Merry, Michael S.</p> <p>2016-01-01</p> <p>Notwithstanding dramatically low levels of professed religiosity in Western Europe, the religious school sector continues to thrive. One explanation for this paradox is that nowadays parents choose religious schools primarily for their higher academic reputation. Empirical evidence for this presumed denominational advantage is mixed. We examine…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27843743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27843743"><span>Comparison of a robotic-assisted gait training program with a program of functional gait training for children with cerebral palsy: design and methods of a two group randomized controlled cross-over trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hilderley, Alicia J; Fehlings, Darcy; Lee, Gloria W; Wright, F Virginia</p> <p>2016-01-01</p> <p>Enhancement of functional ambulation is a key goal of rehabilitation for children with cerebral palsy (CP) who experience gross motor impairment. Physiotherapy (PT) approaches often involve overground and treadmill-based gait training to promote motor learning, typically as free walking or with body-weight support. Robotic-assisted gait training (RAGT), using a device such as the Lokomat ® Pro, may permit longer training duration, faster and more variable gait speeds, and support walking pattern guidance more than overground/treadmill training to further capitalize on motor learning principles. Single group pre-/post-test studies have demonstrated an association between RAGT and moderate to large improvements in gross motor skills, gait velocity and endurance. A single published randomized controlled trial (RCT) comparing RAGT to a PT-only intervention showed no difference in gait kinematics. However, gross motor function and walking endurance were not evaluated and conclusions were limited by a large PT group drop-out rate. In this two-group cross-over RCT, children are randomly allocated to the RAGT or PT arm (each with twice weekly sessions for eight weeks), with cross-over to the other intervention arm following a six-week break. Both interventions are grounded in motor learning principles with incorporation of individualized mobility-based goals. Sessions are fully operationalized through manualized, menu-based protocols and post-session documentation to enhance internal and external validity. Assessments occur pre/post each intervention arm (four time points total) by an independent assessor. The co-primary outcomes are gross motor functional ability (Gross Motor Function Measure (GMFM-66) and 6-minute walk test), with secondary outcome measures assessing: (a) individualized goals; (b) gait variables and daily walking amounts; and (c) functional abilities, participation and quality of life. Investigators and statisticians are blinded to study group allocation in the analyses, and assessors are blinded to treatment group. The primary analysis will be the pre- to post-test differences (change scores) of the GMFM-66 and 6MWT between RAGT and PT groups. This study is the first RCT comparing RAGT to an active gait-related PT intervention in paediatric CP that addresses gait-related gross motor, participation and individualized outcomes, and as such, is expected to provide comprehensive information as to the potential role of RAGT in clinical practice. Trial registration ClinicalTrials.gov NCT02196298.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC13N..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC13N..01N"><span>Carbon Fluxes at the AmazonFACE Research Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.</p> <p>2017-12-01</p> <p>The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE experiment. Although carbon fluxes on small plots cannot be expected to represent the fluxes across the wider and more diverse region, our integrated measurements, coupled with a model framework, provide a strong foundation for understanding the mechanistic basis of responses and for extending results of experimental CO2 fertilization to the wider region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24333806','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24333806"><span>A longitudinal study on gross motor development in children with learning disorders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Huijgen, Barbara C H; Smith, Joanne; Visscher, Chris</p> <p>2014-02-01</p> <p>This longitudinal study examined the development of gross motor skills, and sex-differences therein, in 7- to 11-years-old children with learning disorders (LD) and compared the results with typically developing children to determine the performance level of children with LD. In children with LD (n=56; 39 boys, 17 girls), gross motor skills were assessed with the Test of Gross Motor Development-2 and measured annually during a 3-year period. Motor scores of 253 typically developing children (125 boys, 112 girls) were collected for references values. The multilevel analyses showed that the ball skills of children with LD improved with age (p<.001), especially between 7 and 9 years, but the locomotor skills did not (p=.50). Boys had higher ball skill scores than girls (p=.002) and these differences were constant over time. Typically developing children outperformed the children with LD on the locomotor skills and ball skills at all ages, except the locomotor skills at age 7. Children with LD develop their ball skills later in the primary school-period compared to typically developing peers. However, 11 year-old children with LD had a lag in locomotor skills and ball skills of at least four and three years, respectively, compared to their peers. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27538041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27538041"><span>Productivity losses associated with Fetal Alcohol Spectrum Disorder in New Zealand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Easton, Brian; Burd, Larry; Rehm, Jürgen; Popova, Svetlana</p> <p>2016-08-19</p> <p>To estimate the productivity losses due to morbidity and premature mortality of individuals with Fetal Alcohol Spectrum Disorder (FASD) in New Zealand (NZ). A demographic approach with a counterfactual scenario in which nobody in NZ is born with FASD was used. Estimates were calculated using (Census Year) 2013 data for the NZ population, the labour force, unemployment rate and average weekly wage, all of which were obtained from Statistics NZ. In order to estimate the number of FASD cases in 2013 and the related morbidity, the prevalence of FASD, obtained from the available epidemiological literature, was applied to the general population of NZ. Assumptions made on the level of impairment that would affect the ability of individuals with FASD to participate in the workforce or would reduce their productivity were based on data obtained from the current epidemiological literature. In 2013, approximately 0.03% of the NZ workforce experienced a loss of productivity due to FASD-attributable morbidity and premature mortality, which translated to aggregate losses ranging from $NZ49 million to $NZ200 million - that is, 0.03% to 0.09% of the annual gross domestic product in NZ. These costs represent estimates for lost productivity attributable to FASD and do not include additional costs incurred by governmental and private entities including social costs, such as both higher costs and or less effective spending by the education, health and justice systems. The estimated productivity losses associated with FASD further reinforces that effective FASD prevention as a primary public health strategy may be of significant value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118976','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118976"><span>Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.</p> <p>2014-01-01</p> <p>Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3526073','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3526073"><span>Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fan, Jianqing; Li, Yingying; Yu, Ke</p> <p>2012-01-01</p> <p>Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations among vast number of assets and to increase significantly the sample size for estimating the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of “pairwise-refresh time” and “all-refresh time” methods based on the concept of “refresh time” proposed by Barndorff-Nielsen et al. (2008) for estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross exposure constraints. Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low frequency daily data, our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index. PMID:23264708</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043177','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043177"><span>Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.</p> <p>2013-01-01</p> <p>This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol13/pdf/CFR-2010-title26-vol13-sec1-6073-1.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title26-vol13/pdf/CFR-2010-title26-vol13-sec1-6073-1.pdf"><span>26 CFR 1.6073-1 - Time and place for filing declarations of estimated income tax by individuals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... individual on the fiscal year basis, see § 1.6073-2. A special rule applies to nonresident aliens who do not... section 6013 (g) or (h) of the code. For taxable years beginning after December 31, 1976, these aliens are..., seaweeds, or other aquatic forms of animal and vegetable life. The estimated gross income from fishing...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=anglo+AND+saxon&pg=5&id=ED504066','ERIC'); return false;" href="https://eric.ed.gov/?q=anglo+AND+saxon&pg=5&id=ED504066"><span>The Wage Premium on Tertiary Education: New Estimates for 21 OECD Countries Countries. OECD Economics Department Working Papers, No. 589</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Strauss, Hubert; de la Maisonneuve, Christine</p> <p>2007-01-01</p> <p>This paper presents cross-section estimates of gross hourly wage premia on tertiary education. They are based on a unified framework for 21 OECD countries from the 1990s to the early 2000s and use international household surveys to maximise international comparability. The results of the "augmented" Mincerian wage equations point to an…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/21376','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/21376"><span>Ratios for estimating logging residue in the Pacific Northwest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James O. Howard</p> <p>1981-01-01</p> <p>Ratios are presented for estimating the volume of logging residue for any location in Idaho, Washington, and Oregon. They show cubic-foot volume of logging residue per 1,000 board feet of timber harvested and per acre harvested. Tables show gross and net volumes, with and without bark. The volumes of live and dead and cull residue at the time of harvest are also given...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1243059','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1243059"><span>Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Booras, George; Powers, J.; Riley, C.</p> <p>2015-09-01</p> <p>This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO 2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO 2/MWh (gross) or 1100 lb-CO 2/MWh (gross), but modified in August 2015 tomore » 635 kg-CO 2/MWh (gross) or 1400 lb-CO 2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29732838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29732838"><span>[Collaborative application of BEPS at different time steps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Wei; Fan, Wen Yi; Tian, Tian</p> <p>2016-09-01</p> <p>BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28002477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28002477"><span>Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar</p> <p>2016-01-01</p> <p>Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1416691-quantifying-reducing-differences-forest-co2-fluxes-estimated-eddy-covariance-biometric-chamber-methods-global-synthesis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1416691-quantifying-reducing-differences-forest-co2-fluxes-estimated-eddy-covariance-biometric-chamber-methods-global-synthesis"><span>Quantifying and reducing the differences in forest CO 2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Xingchang; Wang, Chuankuan; Bond-Lamberty, Benjamin</p> <p></p> <p>Carbon dioxide (CO 2) fluxes between terrestrial ecosystems and the atmosphere are primarily measured with eddy covariance (EC), biometric, and chamber methods. However, it is unclear why the estimates of CO 2-fluxes, when measured using these different methods, converge at some sites but diverge at others. We synthesized a novel global dataset of forest CO 2-fluxes to evaluate the consistency between EC and biometric or chamber methods for quantifying CO 2 budget in forests. The EC approach, comparing with the other two methods, tended to produce 25% higher estimate of net ecosystem production (NEP, 0.52Mg C ha-1 yr-1), mainly resultingmore » from lower EC-estimated Re; 10% lower ecosystem respiration (Re, 1.39Mg C ha-1 yr-1); and 3% lower gross primary production (0.48 Mg C ha-1 yr-1) The discrepancies between EC and the other methods were higher at sites with complex topography and dense canopies versus those with flat topography and open canopies. Forest age also influenced the discrepancy through the change of leaf area index. The open-path EC system induced >50% of the discrepancy in NEP, presumably due to its surface heating effect. These results provided strong evidence that EC produces biased estimates of NEP and Re in forest ecosystems. A global extrapolation suggested that the discrepancies in CO 2 fluxes between methods were consistent with a global underestimation of Re, and overestimation of NEP, by the EC method. Accounting for these discrepancies would substantially improve the our estimates of the terrestrial carbon budget .« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5176309','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5176309"><span>Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar</p> <p>2016-01-01</p> <p>Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer. PMID:28002477</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B13H..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B13H..07S"><span>Baseline and Projected Future Carbon Stocks and Fluxes in the Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selmants, P. C.; Sleeter, B. M.; Giardina, C. P.; Zhu, Z.; Asner, G. P.</p> <p>2016-12-01</p> <p>Hawaii is characterized by steep climatic gradients and heterogeneous land cover within a small geographic area, presenting a model tropical system to capture ecosystem carbon dynamics across a wide range of climate, soil, and land use conditions. However, ecosystem carbon balance is poorly understood on a statewide level, and the potential for climate and land use change to affect carbon dynamics in Hawaii has not been formally assessed. We estimated current baseline and projected future ecosystem carbon stocks and fluxes on the seven main Hawaiian Islands using a combination of remote sensing, published plot-level data, and simulation modeling. Total ecosystem carbon storage during the baseline period was estimated at 258 TgC, with 70% stored as soil organic carbon, 25% as live biomass and 5% as surface detritus, and gross primary production was estimated at 20 TgC y-1. Net ecosystem carbon balance, which incorporated carbon losses from freshwater aquatic fluxes to nearshore waters and wildland fire emissions, was estimated as 0.34 TgC y-1 during the baseline period, offsetting 7% of anthropogenic emissions. We used a state and transition simulation model to estimate the response of ecosystem carbon stocks and fluxes to potential changes in climate, land use, and wildfire over a 50-year projection period (2012-2061). Total ecosystem carbon storage was projected to increase by 5% by the year 2061, but net ecosystem carbon balance was projected to decline by 35% due to climate change induced reductions in statewide net primary production and increased carbon losses from land use and land cover change. Our analysis indicates that the State of Hawaii would remain a net carbon sink overall, primarily because of ecosystem carbon sequestration on Hawaii Island, but predicted changes in climate and land use on Kauai and Oahu would convert these islands to net carbon sources. The Hawaii carbon assessment is part of a larger effort by the U.S. Geological Survey to assess the carbon sequestration potential of ecosystems across the United States and should provide valuable information for setting research and policy priorities for sustainable carbon management strategies aimed at offsetting anthropogenic carbon emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3179K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3179K"><span>Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi</p> <p>2014-05-01</p> <p>Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for the large trees accounted for 30% of total, which can lead high GPP. These results suggest that large trees play considerable role in carbon cycling and make a distinctive carbon allocation in the Bornean tropical rainforest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/10902','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/10902"><span>Computer program (POWREQ) for power requirements of mass transit vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1977-08-01</p> <p>This project was performed to develop a computer program suitable for use in systematic analyses requiring estimates of the energy requirements of mass transit vehicles as a function of driving schedules and vehicle size, shape, and gross weight. The...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=4288','SCIGOVWS'); return false;" href="https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=4288"><span>Concentrating Solar Power Projects - Rende-CSP Plant | Concentrating Solar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>: Linear Fresnel reflector Turbine Capacity: Net: 1.0 MW Gross: 1.0 MW Status: Operational <em>Start</em> Year: 2014 Generation: 3,000 MWh/yr (Estimated) Contact(s): Webmaster Break Ground: June 2013 <em>Start</em> Production: May 30</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26752298','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26752298"><span>Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Griscom, Bronson W; Ellis, Peter W; Baccini, Alessandro; Marthinus, Delon; Evans, Jeffrey S; Ruslandi</p> <p>2016-01-01</p> <p>Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale. We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000-2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau's original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate-which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B43J..03X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B43J..03X"><span>Terrestrial ecosystem model performance for net primary productivity and its vulnerability to climate change in permafrost regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, J.; McGuire, A. D.; Lawrence, D. M.; Burke, E.; Chen, X.; Delire, C. L.; Koven, C. D.; MacDougall, A. H.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P. A.; Moore, J. C.; Smith, B.; Sueyoshi, T.; Shi, Z.; Yan, L.; Liang, J.; Jiang, L.; Luo, Y.</p> <p>2014-12-01</p> <p>A more accurate prediction of future climate-carbon (C) cycle feedbacks requires better understanding and improved representation of the carbon cycle in permafrost regions within current earth system models. Here, we evaluated 10 terrestrial ecosystem models for their estimated net primary productivity (NPP) and its vulnerability to climate change in permafrost regions in the Northern Hemisphere. Those models were run retrospectively between 1960 and 2009. In comparison with MODIS satellite estimates, most models produce higher NPP (310 ± 12 g C m-2 yr-1) than MODIS (240 ± 20 g C m-2 yr-1) over the permafrost regions during 2000‒2009. The modeled NPP was then decomposed into gross primary productivity (GPP) and the NPP/GPP ratio (i.e., C use efficiency; CUE). By comparing the simulated GPP with a flux-tower-based database [Jung et al. Journal of Geophysical Research 116 (2011) G00J07] (JU11), we found although models only produce 10.6% higher mean GPP than JU11 over 1982‒2009, there was a two-fold disparity among models (397 to 830 g C m-2 yr-1). The model-to-model variation in GPP mainly resulted from the seasonal peak GPP and in low-latitudinal permafrost regions such as the Tibetan Plateau. Most models overestimate the CUE in permafrost regions in comparison to calculated CUE from the MODIS NPP and JU11 GPP products and observation-based estimates at 8 forest sites. The models vary in their sensitivities of NPP, GPP and CUE to historical changes in air temperature, atmospheric CO2 concentration and precipitation. For example, climate warming enhanced NPP in four models via increasing GPP but reduced NPP in two other models by decreasing both GPP and CUE. The results indicate that the model predictability of C cycle in permafrost regions can be improved by better representation of those processes controlling the seasonal maximum GPP and the CUE as well as their sensitivity to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......148L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......148L"><span>An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Tsungpo</p> <p></p> <p>Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cp+AND+sex&id=EJ973281','ERIC'); return false;" href="https://eric.ed.gov/?q=cp+AND+sex&id=EJ973281"><span>Understanding Participation of Preschool-Age Children with Cerebral Palsy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chiarello, Lisa Ann; Palisano, Robert J.; Orlin, Margo N.; Chang, Hui-Ju; Begnoche, Denise; An, Mihee</p> <p>2012-01-01</p> <p>Participation in home, school, and community activities is a primary outcome of early intervention services for children with disabilities and their families. The objectives of this study were to (a) describe participation of preschool-age children with cerebral palsy (CP); (b) determine effects of sex, age, and gross motor function on intensity…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Key+AND+West&pg=7&id=EJ1061541','ERIC'); return false;" href="https://eric.ed.gov/?q=Key+AND+West&pg=7&id=EJ1061541"><span>Using Folktales to Strengthen Literacy in Papua</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Yektiningtyas-Modouw, Wigati; Karna, Sri R. W.</p> <p>2013-01-01</p> <p>Rural and remote Papua and West Papua are among the most important regions for Indonesia to achieve the second MDG on primary education with equity. Both provinces have gross, net enrolment and literacy rates which barely touch the national averages. Given the distinct political, socio-cultural, and geographical aspects of Papua and West Papua…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54144','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54144"><span>Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Anthony P. Walker; Kelsey R. Carter; Lianhong Gu; Paul J. Hanson; Avni Malhotra; Richard J. Norby; Stephen D. Sebestyen; Stan D. Wullschleger; David J. Weston</p> <p>2017-01-01</p> <p>Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46228','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46228"><span>Forest ecosystem changes from annual methane source to sink depending on late summer water balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Julie K. Shoemaker; Trevor F. Keenan; David Y. Hollinger; Andrew D. Richardson</p> <p>2014-01-01</p> <p>Forests dominate the global carbon cycle, but their role in methane (CH4) biogeochemistry remains uncertain. We analyzed whole-ecosystem CH4 fluxes from 2 years, obtained over a lowland evergreen forest in Maine, USA. Gross primary productivity provided the strongest correlation with the CH4 flux in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29474','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29474"><span>Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jose Luiz Stape; Dan Binkley; Michael G. Ryan</p> <p>2008-01-01</p> <p>We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41518','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41518"><span>Short-term carbon partitioning fertilizer responses vary among two full-sib loblolly pine clones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jeremy P. Stovall; John R. Seiler; Thomas R. Fox</p> <p>2012-01-01</p> <p>We investigated the effects of fertilizer application on the partitioning of gross primary productivity (GPP) between contrasting full-sib clones of Pinus taeda (L.). Our objective was to determine if fertilizer growth responses resulted from similar short-term changes to partitioning. A modeling approach incorporating respiratory carbon (C) fluxes,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=gdp&pg=4&id=EJ738202','ERIC'); return false;" href="https://eric.ed.gov/?q=gdp&pg=4&id=EJ738202"><span>Income and Education in Turkey: A Multivariate Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sari, Ramazan; Soytas, Ugur</p> <p>2006-01-01</p> <p>Although the role of education in an economy is emphasized in theoretical studies, empirical literature finds mixed results for the relationship between growth and education. We examine the relationship between Gross Domestic Product (GDP) and enrollments in primary, secondary, and high schools, as well as universities in Turkey for 1937-1996, in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...89a2024S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...89a2024S"><span>Efficiency and economic benefits of skipjack pole and line (huhate) in central Moluccas, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siahainenia, Stevanus M.; Hiariey, Johanis; Baskoro, Mulyono S.; Waeleruny, Wellem</p> <p>2017-10-01</p> <p>Excess fishing capacity is a crucial problem in marine capture fisheries. This phenomenon needed to be investigated regarding sustainability and development of the fishery. This research was aimed at analyzing technical efficiency (TE) and computing financial aspects of the skipjack pole and line. Primary data were collected from the owners of the fishing units at the different size of gross boat tonnage (GT), while secondary data were gathered from official publications relating to this research. Data envelopment analysis (DEA) approach was applied to estimate technical efficiency whereas a selected financial analysis was utilized to calculate economic benefits of the skipjack pole and line business. The fishing units with a size of 26-30 GT provided a higher TE value, and also achieved larger economic benefit values than that of the other fishing units. The empirical results indicate that skipjack pole and line in the size of 26-30 GT is a good fishing gear for the business development in central Moluccas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10466E..4ZP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10466E..4ZP"><span>Diurnal dynamics of the CO2 concentration in water of the coastal zone of lake Baikal in the ice period (testing of the DIEL - CO2 method for assessment of lake metabolic rate)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panchenko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Ivanov, V. G.; Shamrin, A. M.</p> <p>2017-11-01</p> <p>Results of three long cycles of 24-hour measurements of the carbon dioxide content in the surface and bottom water in the ice period of 2014-2016 in the Baikal coastal zone are analyzed. The diurnal dynamics of the CO2 concentration in the subglacial water, in which photosynthesis plays the leading role, is described. It is found that, in comparison with the surface subglacial water (that is, directly adjacent to the ice bottom), the more pronounced diurnal rhythm of CO2 is observed in the bottom layer in all realizations. This rhythm is well correlated with pyranometer readings. The data on the diurnal dynamics of CO2 are used to estimate the gross primary production in the bottom water with the DIEL method based on the analysis of temporal variability of the carbon dioxide concentration in water in situ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44..542C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44..542C"><span>Interannual variability in ozone removal by a temperate deciduous forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.</p> <p>2017-01-01</p> <p>The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009785','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009785"><span>Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga</p> <p>2016-01-01</p> <p>Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B41C0042T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B41C0042T"><span>Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang Che Ing, A.; Stoy, P. C.; Melling, L.</p> <p>2014-12-01</p> <p>Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DPPGI2001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DPPGI2001S"><span>Reduction of Net Erosion of High-Z Divertor Surface by Local Redeposition in DIII-D</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stangeby, P. C.</p> <p>2012-10-01</p> <p>Utilizing the unique capability to expose material samples to well characterized diverted plasmas, recent DIII-D measurements have confirmed theoretical expectations of the relative net and gross erosion rates of molybdenum in the divertor region. Knowledge of these erosion rates is important for predicting first wall lifetime in future fusion devices. Theory suggests that the net erosion rate will be much less than gross erosion due to prompt local deposition of eroded ions by gyro-orbit motion, the strong E-field toward the target and friction with the fast plasma flow toward the target. However, experimental evidence to date has been contradictory. The results here, which are the most definitive to date, are consistent with the basic theoretical predictions. The net and gross erosion rates were measured utilizing 1-cm and 1-mm diameter Mo samples that are mounted on the DIII-D Divertor Material Evaluation System (DiMES) system and simultaneously exposed near the attached outer strike point of an L-mode plasma for 4 s. Due to the spatial extent of the re-deposition, the larger sample gives the net erosion while the smaller sample is indicative of the gross erosion. Post-mortem ion beam analysis (RBS) of the larger sample, indicates a 2.9 nm film thickness reduction (or 0.72 nm/s net erosion rate). Similar analysis of the smaller sample yields a 1.3 nm/s gross erosion rate, consistent with spectroscopic measurements of Mo I emission. The net to gross erosion ratio of 0.56 is consistent with calculations using a modeling package including REDEP/WBS and OEDGE codes. Using as input the measured plasma density and temperature profiles from divertor Langmuir probes, these codes estimate a net to gross erosion ratio of 0.46. Details of the modeling and implications for future devices will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27088356','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27088356"><span>Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei</p> <p>2016-01-01</p> <p>Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m(-2) d(-1) and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m(-2) d(-1) and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling results. This research suggested that the utilization of multi-source data with various scales would help to the establishment of an appropriate model for calculating GPP and NPP at regional scales with relatively high spatial and temporal resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4835106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4835106"><span>Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cui, Tianxiang; Wang, Yujie; Sun, Rui; Qiao, Chen; Fan, Wenjie; Jiang, Guoqing; Hao, Lvyuan; Zhang, Lei</p> <p>2016-01-01</p> <p>Estimating gross primary production (GPP) and net primary production (NPP) are significant important in studying carbon cycles. Using models driven by multi-source and multi-scale data is a promising approach to estimate GPP and NPP at regional and global scales. With a focus on data that are openly accessible, this paper presents a GPP and NPP model driven by remotely sensed data and meteorological data with spatial resolutions varying from 30 m to 0.25 degree and temporal resolutions ranging from 3 hours to 1 month, by integrating remote sensing techniques and eco-physiological process theories. Our model is also designed as part of the Multi-source data Synergized Quantitative (MuSyQ) Remote Sensing Production System. In the presented MuSyQ-NPP algorithm, daily GPP for a 10-day period was calculated as a product of incident photosynthetically active radiation (PAR) and its fraction absorbed by vegetation (FPAR) using a light use efficiency (LUE) model. The autotrophic respiration (Ra) was determined using eco-physiological process theories and the daily NPP was obtained as the balance between GPP and Ra. To test its feasibility at regional scales, our model was performed in an arid and semi-arid region of Heihe River Basin, China to generate daily GPP and NPP during the growing season of 2012. The results indicated that both GPP and NPP exhibit clear spatial and temporal patterns in their distribution over Heihe River Basin during the growing season due to the temperature, water and solar influx conditions. After validated against ground-based measurements, MODIS GPP product (MOD17A2H) and results reported in recent literature, we found the MuSyQ-NPP algorithm could yield an RMSE of 2.973 gC m-2 d-1 and an R of 0.842 when compared with ground-based GPP while an RMSE of 8.010 gC m-2 d-1 and an R of 0.682 can be achieved for MODIS GPP, the estimated NPP values were also well within the range of previous literature, which proved the reliability of our modelling results. This research suggested that the utilization of multi-source data with various scales would help to the establishment of an appropriate model for calculating GPP and NPP at regional scales with relatively high spatial and temporal resolution. PMID:27088356</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...746286E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...746286E"><span>Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ehtesham, Emad; Bengtson, Per</p> <p>2017-04-01</p> <p>During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha-1 day-1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22882366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22882366"><span>Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wright, J K; Williams, M; Starr, G; McGee, J; Mitchell, R J</p> <p>2013-02-01</p> <p>Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil-plant-atmosphere (SPA) model to leaf and stand-scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. V(cmax) and J(max)) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ∼23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co-limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought-tolerant behaviour that contrasted with mesic trees' drought-avoidance behaviour. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED025258.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED025258.pdf"><span>A Preliminary Appraisal of the Needs for and Means of Obtaining the Necessary College Facilities at a Minimal Cost to the Taxpayer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bortolazzo, Julio L.</p> <p></p> <p>San Joaquin Delta College (California), planning on an enrollment increase of more than 10% annually, has estimated its minimum facility needs for an enrollment of approximately 7500 students by 1972. The gross cost per square foot is expected to be $25.00 for general construction and $38.50 for special construction. For an estimated total of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1994/4171/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1994/4171/report.pdf"><span>Sources and cycling of major ions and nutrients in Devils Lake, North Dakota</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lent, R.M.</p> <p>1994-01-01</p> <p>Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major-ion and nutrient chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7,1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic data from Devils Lake and with data from other eutrophic lakes.The average flux of organic carbon for the study period was 12 grams per square meter per day. The calculated carbon to nitrogen to phosphorus ratio (317:25:1) is similar to the Redfield ratio (106:16:1); therefore, most organic matter probably is derived from lacustrine phytoplankton.Calculated benthic-flux rates indicated that bottom sediments are important sources of majorions and nutrients to Devils Lake. Only one of the cores collected during this study indicated a net sulfate flux from the lake into the sediments. Seasonal variations in major-ion and nutrient benthic fluxes generally were small. However, there were important differences between the calculated benthic fluxes for this study and the calculated benthic fluxes for 1990. Calculated benthic fluxes of bicarbonate, ammonia, and phosphorus for this study were smaller than calculated benthic fluxes for 1990. The large differences between fluxes for 1990 and 1991 were attributed to calm, stratified water-column conditions in 1990 and well-mixed water-column conditions in 1991.The role of benthic fluxes in the chemical mass balances in Devils Lake was evaluated by calculating response times for major ions and nutrients in Devils Lake. The calculated response times for major ions in Devils Lake ranged from 6.7 years for bicarbonate to 34 years for sulfur (as 804). The response times for major ions are significantly shorter than previous estimates that did not include benthic fluxes. In addition, the relatively short response times for nitrogen (4.2 years) and phosphorus (0.95 year) indicate that nutrients are recycled rapidly between bottom sediments and the lake. During the study period, benthic fluxes were the dominant source of major ions and nutrients to Devils Lake and greatly reduced the response times of all major ions and nutrients for Devils Lake. As a result, bottom-sediment processes appear to buffer major-ion and nutrient concentrations in the lake. Any future attempt to evaluate water quality in Devils Lake should include the effects of bottom-sediment processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28453147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28453147"><span>[Economic assessment in health and environment from control of persistent organic pollutants in Colombia].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Ubaque, César A; García-Ubaque, Juan C; Vaca-Bohórquez, Martha L</p> <p>2015-12-01</p> <p>Objective To estimate the economic benefits related to environment and health in the context of the implementation of the Stockholm Convention for the control of Persistent Organic Pollutants in the country. The estimation was conducted based on two scenarios: non-compliance with the agreement and compliance with the Convention. Gross profit was derived from the difference in present value between the health and environmental costs that are assumed in each scenario. Results Gross profit by decreasing health costs arising from the implementation of the Convention was estimated at USD $ 511 and USD $ 501 million. By introducing variables such as management costs and agreement on potential benefits for access to international markets, the benefits to the country were estimated at between USD $1 631 and USD $ 3 118 million. Discussion Despite the economic benefits generated by lower expenditure on health for the Convention implementation, the costs associated with reducing pollutant emissions generated a negative balance, compensated only by the expectation of higher revenues for international market access. We consider this initial economic assessment an important contribution, but it should be reviewed to include valuation methodologies involving other social profitability variables and different scenarios for emerging technologies, new scientific knowledge about these pollutants, changes in legislation and / or changes in trade agreement conditions, among others.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008TellB..60..167K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008TellB..60..167K"><span>H2O and CO2 fluxes at the floor of a boreal pine forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulmala, Liisa; Launiainen, Samuli; Pumpanen, Jukka; Lankreijer, Harry; Lindroth, Anders; Hari, Pertti; Vesala, Timo</p> <p>2008-04-01</p> <p>We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0mmol m-2 s-1 while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2μmol m-2 s-1) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7μmol m-2 s-1 and with EC from ~4 to ~5μmol m-2 s-1 when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (Pmax) to range from 0.008 (mosses) to 0.184μmol g-1 s-1 (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3μmol m-2 s-1. At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7μmol m-2 s-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21039737-patterns-failure-after-combined-modality-approaches-incorporating-radiotherapy-sinonasal-undifferentiated-carcinoma-head-neck','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21039737-patterns-failure-after-combined-modality-approaches-incorporating-radiotherapy-sinonasal-undifferentiated-carcinoma-head-neck"><span>Patterns of Failure After Combined-Modality Approaches Incorporating Radiotherapy for Sinonasal Undifferentiated Carcinoma of the Head and Neck</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Allen M.; Daly, Megan E.; El-Sayed, Ivan</p> <p>2008-02-01</p> <p>Purpose: To report the clinical outcome of patients treated with combined-modality approaches for sinonasal undifferentiated carcinoma (SNUC) of the head and neck. Methods and Materials: The records of 21 patients with SNUC treated with curative intent at University of California, San Francisco between 1990 and 2004 were analyzed. Patient age ranged from 33 to 71 years (median, 47 years). Primary tumor sites included the nasal cavity (11 patients), maxillary sinus (5 patients), and ethmoid sinus (5 patients). All patients had T3 (4 patients) or T4 (17 patients) tumors. Local-regional treatment included surgery followed by postoperative radiotherapy (PORT) with or withoutmore » adjuvant chemotherapy for 17 patients; neoadjuvant chemoradiotherapy followed by surgery for 2 patients; and definitive chemoradiotherapy for 2 patients. Median follow-up among surviving patients was 58 months (range, 12-70 months). Results: The 2- and 5-year estimates of local control were 60% and 56%, respectively. There was no difference in local control according to initial treatment approach, but among the 19 patients who underwent surgery the 5-year local control rate was 74% for those with gross tumor resection, compared with 24% for those with subtotal tumor resection (p = 0.001). The 5-year rates of overall and distant metastasis-free survival were 43% and 64%, respectively. Late complications included cataracts (2 patients), lacrimal stenosis (1 patient), and sino-cutaneous fistula (1 patient). Conclusion: The suboptimal outcomes suggest a need for more effective therapies. Gross total resection should be the goal of all treatments whenever possible.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17234327','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17234327"><span>Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W</p> <p>2007-11-01</p> <p>The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14432','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14432"><span>The Oregon DOT Slow-Speed Weigh-in-Motion (SWIM) Project : final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1998-12-01</p> <p>Weigh-in-motion (WIM) systems have been increasingly used to screen potentially overweight vehicles. However, under slow speed conditions (less than 10 mph), WIM scales appear to be capable of estimating static gross vehicle weight to within 110% wit...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/29517','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/29517"><span>Measuring the economic contribution of the freight industry to the Maryland economy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-05-01</p> <p>Economic impacts of freight movement to Marylands economy were estimated by input-output analysis : using the 2010 IMPLAN data. A freight economic output (FECO) index was also developed based on the : historical payroll data and gross domestic pro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChJOL..34..740W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChJOL..34..740W"><span>Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei</p> <p>2016-07-01</p> <p>An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow ( Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23436693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23436693"><span>Treadmill training with partial body weight support compared with conventional gait training for low-functioning children and adolescents with nonspastic cerebral palsy: a two-period crossover study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Ivan Y W; Chung, Kenny K Y; Chow, Daniel H K</p> <p>2013-12-01</p> <p>Partial body weight-supported treadmill training has been shown to be effective in gait training for patients with neurological disorders such as spinal cord injuries and stroke. Recent applications on children with cerebral palsy were reported, mostly on spastic cerebral palsy with single subject design. There is lack of evidence on the effectiveness of such training for nonspastic cerebral palsy, particularly those who are low functioning with limited intellectual capacity. This study evaluated the effectiveness of partial body weight-supported treadmill training for improving gross motor skills among these clients. A two-period randomized crossover design with repeated measures. A crossover design following an A-B versus a B-A pattern was adopted. The two training periods consisted of 12-week partial body weight-supported treadmill training (Training A) and 12-week conventional gait training (Training B) with a 10-week washout in between. Ten school-age participants with nonspastic cerebral palsy and severe mental retardation were recruited. The Gross Motor Function Measure-66 was administered immediately before and after each training period. Significant improvements in dimensions D and E of the Gross Motor Function Measure-66 and the Gross Motor Ability Estimator were obtained. Our findings revealed that the partial body weight-supported treadmill training was effective in improving gross motor skills for low-functioning children and adolescents with nonspastic cerebral palsy. .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DNP.MB007K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DNP.MB007K"><span>Beta-decay rate and beta-delayed neutron emission probability of improved gross theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koura, Hiroyuki</p> <p>2014-09-01</p> <p>A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16625951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16625951"><span>Colonic injuries (primary repair and proximal colostomy).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tripathi, Munishwar D; Mishra, Brijesh</p> <p>2005-01-01</p> <p>This paper compares the outcome of colonic injuries (primary repair and proximal colostomy) in 94 cases. It concludes that certain risk factors are of predictive value in case of colon injuries (eg, gross fecal contamination, more than two visceral injuries, more than four units of blood transfusion, and extensive colonic injuries) irrespective of type of operation performed. Primary repair is debatable; however, in the present antibiotic era, it is safe and less costly than the two-stage procedure of proximal colostomy with repair. Primary repair can be performed in almost all cases except in certain selected cases that are decided on the table, taking into account the above risks factors. Mortality in cases of colonic injuries is associated with risk factors rather than colonic injury itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29325143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29325143"><span>Associations of Gross Motor Delay, Behavior, and Quality of Life in Young Children With Autism Spectrum Disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry</p> <p>2018-04-01</p> <p>Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross motor delay modified the association between Problem daytime behavior and QoL. Children with ASD and co-occurring internalizing Problem daytime behavior had greater Gross motor delays than children without internalizing Problem daytime behavior; therefore, these children may be most appropriate for early physical therapist evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23650643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23650643"><span>Measurements of natural radioactivity concentration in drinking water samples of Shiraz city and springs of the Fars province, Iran, and dose estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehdizadeh, Simin; Faghihi, Reza; Sina, Sedigheh; Derakhshan, Shahrzad</p> <p>2013-11-01</p> <p>The Fars province is located in the south-west region of Iran where different nuclear sites has been established, such as Bushehr Nuclear Power Plant. In this research, 92 water samples from the water supplies of Shiraz city and springs of the Fars province were investigated with regard to the concentrations of natural radioactive elements, total uranium, (226)Ra, gross alpha and gross beta. (226)Ra concentration was determined by the (222)Rn emanation method. To measure the total uranium concentration, a laser fluorimetry analyzer (UA-3) was used. The mean concentration of (226)Ra in Shiraz's water resources was 23.9 mBq l(-1), while 93 % of spring waters have a concentration <2 mBq l(-1). The results of uranium concentration measurements show the mean concentrations of 7.6 and 6 μg l(-1) in the water of Shiraz and springs of Fars, respectively. The gross alpha and beta concentrations measured by the evaporation method were lower than the limit of detection of the measuring instruments used in this survey. The mean annual effective doses of infants, children and adults from (238)U and (226)Ra content of Shiraz's water and spring waters were estimated. According to the results of this study, the activity concentration in water samples were below the maximum permissible concentrations determined by the World Health Organization and the US Environmental Protection Agency. Finally, the correlation between (226)Ra and total U activity concentrations and geochemical properties of water samples, i.e. pH, total dissolve solids and SO4(-2), were estimated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29437828','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29437828"><span>Population exposure to smoking and tobacco branding in the UK reality show 'Love Island'.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barker, Alexander B; Opazo Breton, Magdalena; Cranwell, Jo; Britton, John; Murray, Rachael L</p> <p>2018-02-05</p> <p>Reality television shows are popular with children and young adults; inclusion of tobacco imagery in these programmes is likely to cause smoking in these groups. Series 3 of the UK reality show Love Island, broadcast in 2017, attracted widespread media criticism for high levels of smoking depicted. We have quantified this tobacco content and estimated the UK population exposure to generic and branded tobacco imagery generated by the show. We used 1-min interval coding to quantify actual or implied tobacco use, tobacco paraphernalia or branding, in alternate episodes of series 3 of Love Island, and Census data and viewing figures from Kantar Media to estimate gross and per capita tobacco impressions. We coded 21 episodes comprising 1001 min of content. Tobacco imagery occurred in 204 (20%) intervals; the frequency of appearances fell significantly after media criticism. An identifiable cigarette brand, Lucky Strike Double Click, appeared in 16 intervals. The 21 episodes delivered an estimated 559 million gross tobacco impressions to the UK population, predominantly to women, including 47 million to children aged <16 and 44 million gross impressions of Lucky Strike branding, including 4 million to children <16. Despite advertising legislation and broadcasting regulations intended to protect children from smoking imagery in UK television, series 3 of Love Island delivered millions of general and branded tobacco impressions both to children and adults in the UK. More stringent controls on tobacco content in television programmes are urgently needed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5857688','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5857688"><span>Macroeconomic costs of the unmet burden of surgical disease in Sierra Leone: a retrospective economic analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kamara, Thaim B; Lavy, Christopher B D; Leather, Andy J M; Bolkan, Håkon A</p> <p>2018-01-01</p> <p>Objectives The Lancet Commission on Global Surgery estimated that low/middle-income countries will lose an estimated cumulative loss of US$12.3 trillion from gross domestic product (GDP) due to the unmet burden of surgical disease. However, no country-specific data currently exist. We aimed to estimate the costs to the Sierra Leone economy from death and disability which may have been averted by surgical care. Design We used estimates of total, met and unmet need from two main sources—a cluster randomised, cross-sectional, countrywide survey and a retrospective, nationwide study on surgery in Sierra Leone. We calculated estimated disability-adjusted life years from morbidity and mortality for the estimated unmet burden and modelled the likely economic impact using three different methods—gross national income per capita, lifetime earnings foregone and value of a statistical life. Results In 2012, estimated, discounted lifetime losses to the Sierra Leone economy from the unmet burden of surgical disease was between US$1.1 and US$3.8 billion, depending on the economic method used. These lifetime losses equate to between 23% and 100% of the annual GDP for Sierra Leone. 80% of economic losses were due to mortality. The incremental losses averted by scale up of surgical provision to the Lancet Commission target of 80% were calculated to be between US$360 million and US$2.9 billion. Conclusion There is a large economic loss from the unmet need for surgical care in Sierra Leone. There is an immediate need for massive investment to counteract ongoing economic losses. PMID:29540407</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25774214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25774214"><span>The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacDonald, Megan; Lord, Catherine; Ulrich, Dale</p> <p>2013-11-01</p> <p>To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29637118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29637118"><span>Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Toovey, Rachel; Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J</p> <p>2017-01-01</p> <p>The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Systematic review. Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. PROSPERO ID42016036727.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5862184','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5862184"><span>Task-specific gross motor skills training for ambulant school-aged children with cerebral palsy: a systematic review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bernie, Charmaine; Harvey, Adrienne R; McGinley, Jennifer L; Spittle, Alicia J</p> <p>2017-01-01</p> <p>Objectives The primary objective is to systematically evaluate the evidence for the effectiveness of task-specific training (TST) of gross motor skills for improving activity and/or participation outcomes in ambulant school-aged children with cerebral palsy (CP). The secondary objective is to identify motor learning strategies reported within TST and assess relationship to outcome. Design Systematic review. Method Relevant databases were searched for studies including: children with CP (mean age >4 years and >60% of the sample ambulant); TST targeting gross motor skills and activity (skill performance, gross motor function and functional skills) and/or participation-related outcomes. Quality of included studies was assessed using standardised tools for risk of bias, study design and quality of evidence across outcomes. Continuous data were summarised for each study using standardised mean difference (SMD) and 95% CIs. Results Thirteen studies met inclusion criteria: eight randomised controlled trials (RCTs), three comparative studies, one repeated-measures study and one single-subject design study. Risk of bias was moderate across studies. Components of TST varied and were often poorly reported. Within-group effects of TST were positive across all outcomes of interest in 11 studies. In RCTs, between-group effects were conflicting for skill performance and functional skills, positive for participation-related outcomes (one study: Life-HABITS performance SMD=1.19, 95% CI 0.3 to 2.07, p<0.001; Life-HABITS satisfaction SMD=1.29, 95% CI 0.40 to 2.18, p=0.001), while no difference or negative effects were found for gross motor function. The quality of evidence was low-to-moderate overall. Variability and poor reporting of motor learning strategies limited assessment of relationship to outcome. Conclusions Limited evidence for TST for gross motor skills in ambulant children with CP exists for improving activity and participation-related outcomes and recommendations for use over other interventions are limited by poor study methodology and heterogeneous interventions. Registration PROSPERO ID42016036727 PMID:29637118</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1994/4114/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1994/4114/report.pdf"><span>Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1986-92</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tadayon, Saeid; Smith, C.F.</p> <p>1994-01-01</p> <p>Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3742785','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3742785"><span>Patterns of Ecosystem Metabolism in the Tonle Sap Lake, Cambodia with Links to Capture Fisheries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Holtgrieve, Gordon W.; Arias, Mauricio E.; Irvine, Kim N.; Lamberts, Dirk; Ward, Eric J.; Kummu, Matti; Koponen, Jorma; Sarkkula, Juha; Richey, Jeffrey E.</p> <p>2013-01-01</p> <p>The Tonle Sap Lake in Cambodia is a dynamic flood-pulsed ecosystem that annually increases its surface area from roughly 2,500 km2 to over 12,500 km2 driven by seasonal flooding from the Mekong River. This flooding is thought to structure many of the critical ecological processes, including aquatic primary and secondary productivity. The lake also has a large fishery that supports the livelihoods of nearly 2 million people. We used a state-space oxygen mass balance model and continuous dissolved oxygen measurements from four locations to provide the first estimates of gross primary productivity (GPP) and ecosystem respiration (ER) for the Tonle Sap. GPP averaged 4.1±2.3 g O2 m−3 d−1 with minimal differences among sites. There was a negative correlation between monthly GPP and lake level (r = 0.45) and positive correlation with turbidity (r = 0.65). ER averaged 24.9±20.0 g O2 m−3 d−1 but had greater than six-fold variation among sites and minimal seasonal change. Repeated hypoxia was observed at most sampling sites along with persistent net heterotrophy (GPP<ER), indicating significant bacterial metabolism of organic matter that is likely incorporated into the larger food web. Using our measurements of GPP, we calibrated a hydrodynamic-productivity model and predicted aquatic net primary production (aNPP) of 2.0±0.2 g C m−2 d−1 (2.4±0.2 million tonnes C y−1). Considering a range of plausible values for the total fisheries catch, we estimate that fisheries harvest is an equivalent of 7–69% of total aNPP, which is substantially larger than global average for marine and freshwater systems. This is likely due to relatively efficient carbon transfer through the food web and support of fish production from terrestrial NPP. These analyses are an important first-step in quantifying the resource pathways that support this important ecosystem. PMID:23967203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23967203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23967203"><span>Patterns of ecosystem metabolism in the Tonle Sap Lake, Cambodia with links to capture fisheries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holtgrieve, Gordon W; Arias, Mauricio E; Irvine, Kim N; Lamberts, Dirk; Ward, Eric J; Kummu, Matti; Koponen, Jorma; Sarkkula, Juha; Richey, Jeffrey E</p> <p>2013-01-01</p> <p>The Tonle Sap Lake in Cambodia is a dynamic flood-pulsed ecosystem that annually increases its surface area from roughly 2,500 km(2) to over 12,500 km(2) driven by seasonal flooding from the Mekong River. This flooding is thought to structure many of the critical ecological processes, including aquatic primary and secondary productivity. The lake also has a large fishery that supports the livelihoods of nearly 2 million people. We used a state-space oxygen mass balance model and continuous dissolved oxygen measurements from four locations to provide the first estimates of gross primary productivity (GPP) and ecosystem respiration (ER) for the Tonle Sap. GPP averaged 4.1±2.3 g O2 m(-3) d(-1) with minimal differences among sites. There was a negative correlation between monthly GPP and lake level (r = 0.45) and positive correlation with turbidity (r = 0.65). ER averaged 24.9±20.0 g O2 m(-3) d(-1) but had greater than six-fold variation among sites and minimal seasonal change. Repeated hypoxia was observed at most sampling sites along with persistent net heterotrophy (GPP<ER), indicating significant bacterial metabolism of organic matter that is likely incorporated into the larger food web. Using our measurements of GPP, we calibrated a hydrodynamic-productivity model and predicted aquatic net primary production (aNPP) of 2.0±0.2 g C m(-2) d(-1) (2.4±0.2 million tonnes C y(-1)). Considering a range of plausible values for the total fisheries catch, we estimate that fisheries harvest is an equivalent of 7-69% of total aNPP, which is substantially larger than global average for marine and freshwater systems. This is likely due to relatively efficient carbon transfer through the food web and support of fish production from terrestrial NPP. These analyses are an important first-step in quantifying the resource pathways that support this important ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27048305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27048305"><span>Texas hospitals with higher health information technology expenditures have higher revenue: A longitudinal data analysis using a generalized estimating equation model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jinhyung; Choi, Jae-Young</p> <p>2016-04-05</p> <p>The benefits of health information technology (IT) adoption have been reported in the literature, but whether health IT investment increases revenue generation remains an important research question. Texas hospital data obtained from the American Hospital Association (AHA) for 2007-2010 were used to investigate the association of health IT expenses and hospital revenue. The generalized estimation equation (GEE) with an independent error component was used to model the data controlling for cluster error within hospitals. We found that health IT expenses were significantly and positively associated with hospital revenue. Our model predicted that a 100% increase in health IT expenditure would result in an 8% increase in total revenue. The effect of health IT was more associated with gross outpatient revenue than gross inpatient revenue. Increased health IT expenses were associated with greater hospital revenue. Future research needs to confirm our findings with a national sample of hospitals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18376766','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18376766"><span>Carcinoid tumor of the small intestine: MDCT findings with pathologic correlation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coulier, B; Pringot, J; Gielen, I; Maldague, P; Broze, B; Ramboux, A; Clausse, M</p> <p>2007-01-01</p> <p>MDCT currently frequently represents the first choice modality for imaging in acute or subacute abdominal conditions implicating the small bowel. As a consequence, the MDCT features of intestinal carcinoid tumors and of their peculiar metastatic spread have to be known by abdominal radiologists. These features are described and illustrated in the retrospective review of seven proven cases of small intestine carcinoids diagnosed and treated in our institution. The findings are described and correlated with gross anatomy specimens. The primary tumour clearly appeared as a contrast-enhancing intraluminal lesion in all cases except in one case in which the primary lesion remained unlocalized and in another in which the primary tumour finally appeared infracted at gross anatomy. The maximal tumoral enhancement was obtained in 3 patients imaged during the acute arterial phase. The diameter of the primary tumour ranged from 1 to 3 cm and all masses were ileal comprising one lesion in the proximal ileum, two in the medium ileum and three in the distal ileum. 6/7 patients had multiple prominent mesenteric nodal metastases, all also appearing as hypervascularised enhancing masses. In 4/7 patients the nodal metastases represented the major finding being much prominent and larger than the primary tumour. Signs of retractile mesenteritis with soft tissue stranding, retraction and stellate pattern of the mesentery were found around the mesenteric metastases in 5/7 patients and direct incarceration of vessels were found in 3 cases. The analysis of the arterial phase of MDCT study appears primordial to detect the sometimes very small but intensively enhancing primary tumor and to delineate encasement or direct obstruction of mesenteric vessels frequently caused by enhancing nodal metastases which volume often exceeds that of the primary tumor. Secondary retractile mesenteritis, deformation or ischemia of bowel loops, and hypervascular hepatic metastases are typical associated findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4228288','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4228288"><span>Contribution of clinical trials to gross domestic product in Hungary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kaló, Zoltán; Antal, János; Pénzes, Miklós; Pozsgay, Csilla; Szepezdi, Zsuzsanna; Nagyjánosi, László</p> <p>2014-01-01</p> <p>Aim To determine the contribution of clinical trials to the gross domestic product (GDP) in Hungary. Methods An anonymous survey of pharmaceutical companies and clinical research organizations (CROs) was conducted to estimate their clinical trial-related employment and revenues. Clinical trial documents at the National Institute of Pharmacy (NIP) were analyzed to estimate trial-related revenues at health care institutions and the value of investigational medical products (IMPs) based on avoided drug costs. Financial benefits were calculated as 2010 US $ purchasing power parity (PPP) values. Results Clinical trials increased the revenue of Hungarian health care providers by US $165.6 million. The value of IMPs was US $67.0 million. Clinical trial operation and management activities generated 900 jobs and US $166.9 million in revenue among CROs and pharmaceutical companies. Conclusions The contribution of clinical trials to the Hungarian GDP in 2010 amounted to 0.2%. Participation in international clinical trials may result in health, financial, and intangible benefits that contribute to the sustainability of health care systems, especially in countries with severe resource constraints. Although a conservative approach was employed to estimate the economic benefits of clinical trials, further research is necessary to improve the generalizability of our findings. PMID:25358877</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1517N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1517N"><span>Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Norton, Alexander J.; Rayner, Peter J.; Koffi, Ernest N.; Scholze, Marko</p> <p>2018-04-01</p> <p>The synthesis of model and observational information using data assimilation can improve our understanding of the terrestrial carbon cycle, a key component of the Earth's climate-carbon system. Here we provide a data assimilation framework for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates of terrestrial carbon uptake or gross primary production (GPP). We then quantify and assess the constraint SIF provides on the uncertainty in global GPP through model process parameters in an error propagation study. By incorporating 1 year of SIF observations from the GOSAT satellite, we find that the parametric uncertainty in global annual GPP is reduced by 73 % from ±19.0 to ±5.2 Pg C yr-1. This improvement is achieved through strong constraint of leaf growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty in shortwave down-radiation forcing has a net-zero effect on uncertainty in GPP when incorporated into the SIF assimilation framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of GPP and the potential for improving our predictive capability of this uncertain carbon flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H21C1056G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H21C1056G"><span>Resazurin as a Proxy for Estimating Stream Respiration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez Pinzon, R. A.; Haggerty, R.; Argerich, A.; Briggs, M.; Lautz, L. K.; Lemke, D.; Hare, D. K.</p> <p>2010-12-01</p> <p>Hydrologic retention in stream ecosystems favors the reactions of solutes and nutrients in metabolically active transient storage (MATS) zones. These zones are hot spots where metabolic activity is expected to contribute significantly to ecosystem respiration. We compare the results of a series of coinjections of resazurin (Raz) as a redox sensitive tracer, and NaCl as a conservative tracer to investigate the function of MATS zones. Raz is a dye that undergoes an irreversible reduction to resorufin (Rru) when exposed to aerobic respiration. To characterize the transformation of Raz we measured the BTC of the tracers at the boundary conditions, and during plateau concentrations we sampled the longitudinal profile of surface water. We also used the two-station diel technique to quantify gross primary production (GPP) and community respiration (CR) within the reaches. Injections have been performed in streams with different morphology, streambed composition, and riparian vegetation in Oregon-USA (WS 1 and WS 3 in the HJ Andrews Forest LTER, and Drift Creek), Spain (Riera de Santa Fe del Montseny, Catalonia) and Wyoming-USA (Cherry Creek). The results support the idea that under different ranges of community respiration, the transformation of Raz to Rru is a proxy for quantifying MATS, characterizing spatial heterogeneity in respiration rates, and ultimately, could be used to estimate ecosystem respiration in environments where direct measurement is challenging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1637R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1637R"><span>Seasonal carbon fluxes for an old-growth temperate forest inferred from carbonyl sulphide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rastogi, Bharat; Jiang, Yueyang; Berkelhammer, Maxwell; Wharton, Sonia; Noone, David; Still, Christopher</p> <p>2017-04-01</p> <p>Characterizing and quantifying the processes that control terrestrial ecosystem exchanges of carbon and water are critical for understanding how forested ecosystems respond to a changing climate. A small but increasing number of studies has identified carbonyl sulfide (OCS) as a potential tracer of canopy photosynthesis and stomatal function. Here we present seasonal fluxes of OCS from a 60m tall old-growth temperate forest. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W) in 2014 and 2015. GPP (Gross Primary Production) is inferred from OCS fluxes and compared with estimates derived from measurements of NEE (Net Ecosystem Exchange) from eddy flux data as well as GPP predictions using a process based model. Our findings seek to resolve scientific questions regarding ecosystem carbon exchange from tall old growth forests, which have a complicated vertical leaf area structure, high above ground biomass and amount and aerial cover of epiphytic vegetation. Estimates of canopy conductance calculated using tower flux data are also combined with measurements of stable isotopologues of CO2 to infer emergent ecosystem properties such as canopy ci/ca and water use efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B33B0388L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B33B0388L"><span>Landscape Level Carbon and Water Balances and Agricultural Production in Mountainous Terrain of the Haean Basin, South Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, B.; Geyer, R.; Seo, B.; Lindner, S.; Walther, G.; Tenhunen, J. D.</p> <p>2009-12-01</p> <p>The process-based spatial simulation model PIXGRO was used to estimate gross primary production, ecosystem respiration, net ecosystem CO2 exchange and water use by forest and crop fields of Haean Basin, South Korea at landscape scale. Simulations are run for individual years from early spring to late fall, providing estimates for dry land crops and rice paddies with respect to carbon gain, biomass and leaf area development, allocation of photoproducts to the belowground ecosystem compartment, and harvest yields. In the case of deciduous oak forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for forest and cropland fluxes via eddy covariance and chamber studies, for soil characteristics by generalization from spatial surveys, for climate drivers by generalizing observations at ca. 20 monitoring stations distributed throughout the basin and along the elevation gradient from 500 to 1000 m, and for incident radiation via modelling of the radiation components in complex terrain. Validation of the model is being carried out at point scale based on comparison of model output at selected locations with observations as well as with known trends in ecosystem response documented in the literature. The resulting modelling tool is useful for estimation of ecosystem services at landscape scale, first expressed as kg ha-1 crop yield, but via future cooperative studies also in terms of monetary gain to individual farms and farming cooperatives applying particular management strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030348','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030348"><span>Northern Florida reef tract benthic metabolism scaled by remote sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brock, J.C.; Yates, K.K.; Halley, R.B.; Kuffner, I.B.; Wright, C.W.; Hatcher, B.G.</p> <p>2006-01-01</p> <p>Holistic rates of excess organic carbon production (E) and calcification for a 0.5 km2 segment of the backreef platform of the northern Florida reef tract (NFRT) were estimated by combining biotope mapping using remote sensing with community metabolic rates determined with a benthic incubation system. The use of ASTER multispectral satellite imaging for the spatial scaling of benthic metabolic processes resulted in errors in E and net calcification (G) of 48 and 431% respectively, relative to estimates obtained using AISA hyperspectral airborne scanning. At 19 and 125%, the E and G errors relative to the AISA-based estimates were less pronounced for an analysis that used IKONOS multispectral satellite imagery to spatially extrapolate the chamber process measurements. Our scaling analysis indicates that the holistic calcification rate of the backreef platform of the northern Florida reef tract is negligible at 0.07 g CaCO3 m-2 d-1. All of the mapped biotopes in this reef zone are net heterotrophic, resulting in an estimated holistic excess production rate of -0.56 g C m-2 d-1, and an overall gross primary production to respiration ratio of 0.85. Based on our finding of ubiquitous heterotrophy, we infer that the backreef platform of the NFRT is a sink for external inputs of suspended particulate organic matter. Further, our results suggest that the inward advection of inorganic nutrients is not a dominant forcing mechanism for benthic biogeochemical function in the NFRT. We suggest that the degradation of the northern Florida reef tract may parallel the community phase shifts documented within other reef systems polluted by organic detritus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121..266C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121..266C"><span>Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chirici, Gherardo; Chiesi, Marta; Corona, Piermaria; Salvati, Riccardo; Papale, Dario; Fibbi, Luca; Sirca, Costantino; Spano, Donatella; Duce, Pierpaolo; Marras, Serena; Matteucci, Giorgio; Cescatti, Alessandro; Maselli, Fabio</p> <p>2016-02-01</p> <p>Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1265743','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1265743"><span>The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wohlfahrt, Georg; Gu, Lianhong</p> <p>2015-06-25</p> <p>different meanings by different communities. We review the history of this term and associated concepts to clarify the terminology and make recommendations about a consistent use of terms in accordance with photosynthetic theory. We show that a widely used eddy covariance CO2 flux partitioning approach yields estimates which are quantitatively closer to the definition of true photosynthesis despite aiming at estimating apparent photosynthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA236140','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA236140"><span>Software Metrics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-12-01</p> <p>software development scene is often charac- c. SPQR Model-Jones terized by: * schedule and cost estimates that are gross-d. COPMO-Thebaut ly inaccurate, SEI...time c. SPQR Model-Jones (in seconds) is simply derived from E by dividing T. Capers Jones has developed a software cost by the Stroud number, S...estimation model called the Software Produc- T=E/S tivity, Quality, and Reliability ( SPQR ) model. The basic approach is similar to that of Boehm’s The value</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA580636','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA580636"><span>An Analysis of the President’s 2014 Budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-05-01</p> <p>Administration’s, and incorporates estimates by the staff of the Joint Committee on Taxation (JCT) for the President’s tax proposals.1 In conjunction...consequences for the budget: 1. For more details about the President’s tax proposals, see Joint Committee on Taxation , Estimated Budget Effects of the Revenue...Congressional Budget Office; staff of the Joint Committee on Taxation . Note: n.a. = not applicable; GDP = gross domestic product. a. Negative numbers</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26960287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26960287"><span>Prognostic Factors in Patients with Primary Hemangiopericytomas of the Central Nervous System: A Series of 103 Cases at a Single Institution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Hongda; Duran, Daniel; Hua, Lingyang; Tang, Hailiang; Chen, Hong; Zhong, Ping; Zheng, Kang; Wang, Yongfei; Che, Xiaoming; Bao, Weimin; Wang, Yin; Xie, Qing; Gong, Ye</p> <p>2016-06-01</p> <p>Hemangiopericytoma (HPC) is a rare mesenchymal tumor that tends to affect the central nervous system and is associated with distant metastasis and a high recurrence rate. The purpose of this study was to analyze the prognostic factors in patients with primary HPC who received surgical treatment. This retrospective study reviewed all adult patients with primary HPC of the central nervous system treated from 2001 to 2009 at our institution. Clinical information, adjuvant radiation, and expression levels of Ki-67 and p53 were correlated with patient outcomes. The final analysis included 103 patients. The mean follow-up period was 75.9 months ± 36.5 (range, 1-165 months). There was a significant difference in progression-free survival (PFS) (P < 0.001) and overall survival (P = 0.014) between patients who underwent gross total resection versus subtotal resection. Expression of p53 was found in 48.5% of patients and showed utility as an independent unfavorable prognostic factor for PFS (P = 0.006). Multivariate analysis revealed that only extent of tumor resection (P = 0.004) and p53 expression (P = 0.024) were independent prognostic factors for PFS. Adjuvant radiation was found to extend PFS only in the p53-negative expression group (P = 0.044). Gross total resection significantly improves the outcome of patients with primary HPCs, whereas adjuvant radiation contributes significantly to PFS only in patients with negative p53 expression and in patients with incomplete resections. Extent of resection and p53 expression may serve as prognostic markers for the outcome of patients with primary HPC. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53283','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53283"><span>Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Benjamin N. Sulman; Daniel Tyler Roman; Todd M. Scanlon; Lixin Wang; Kimberly A. Novick</p> <p>2016-01-01</p> <p>The eddy covariance (EC) method is routinely used to measure net ecosystem fluxes of carbon dioxide (CO2) and evapotranspiration (ET) in terrestrial ecosystems. It is often desirable to partition CO2 flux into gross primary production (GPP) and ecosystem respiration (RE), and to partition ET into evaporation and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34696','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34696"><span>A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jingfeng Xiao; Qianlai Zhuang; Beverly E. Law; Jiquan Chen; Dennis D. Baldocchi; David R. Cook; Ram Oren; Andrew D. Richardson; Sonia Wharton; Siyan Ma; Tomothy A. Martin; Shashi B. Verma; Andrew E. Suyker; Russel L. Scott; Russel K. Monson; Marcy Litvak; David Y. Hollinger; Ge Sun; Kenneth J. Davis; Paul V. Bolstad; Sean P. Burns; Peter S. Curtis; BErt G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; Gabriel G. Katul; Roser Matamala; Steve McNulty; Tilden P. Meyers; J. William Munger; Asko Noormets; Walter C. Oechel; Kyaw Tha U Paw; Hans Peter Schmid; Gregory Starr; Margaret S. Torn; Steven C. Wofsy</p> <p>2010-01-01</p> <p>The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED574362.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED574362.pdf"><span>Girls' Education and Gender in Education Sector Plans and GPE-Funded Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Global Partnership for Education, 2017</p> <p>2017-01-01</p> <p>Since the World Education Forum in Dakar in 2000, efforts and commitments at both national and international levels have brought significant progress in education systems with a view to reducing inequity between girls and boys. Among the Global Partnership for Education (GPE) partner developing countries, the primary Gross Enrollment Rate (GER)…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=temperature+AND+classes&pg=5&id=ED169695','ERIC'); return false;" href="https://eric.ed.gov/?q=temperature+AND+classes&pg=5&id=ED169695"><span>The Special Education Core Curriculum Manual, Basic Level. Learning Skills, Oral Language, Reading, Mathematics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Margolis, Leonard</p> <p></p> <p>The manual is designed to serve as a guideline for teachers and child study teams who have the primary responsibility for the education of handicapped children in four areas--learning skills, oral language, reading, and mathematics. Sections for each of the above areas are subdivided into the following objectives and activities: gross motor…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=infrared&pg=2&id=EJ926546','ERIC'); return false;" href="https://eric.ed.gov/?q=infrared&pg=2&id=EJ926546"><span>Body Functions and Structures Pertinent to Infrared Thermography-Based Access for Clients with Severe Motor Disabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Memarian, Negar; Venetsanopoulos, Anastasios N.; Chau, Tom</p> <p>2011-01-01</p> <p>Infrared thermography has been recently proposed as an access technology for individuals with disabilities, but body functions and structures pertinent to its use have not been documented. Seven clients (2 adults, 5 youth) with severe disabilities and their primary caregivers participated in this study. All clients had a Gross Motor Functional…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=jerusalem&pg=5&id=EJ891320','ERIC'); return false;" href="https://eric.ed.gov/?q=jerusalem&pg=5&id=EJ891320"><span>Holocaust Education in Jewish Schools in Israel: Goals, Dilemmas, Challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gross, Zehavit</p> <p>2010-01-01</p> <p>Research has shown the Holocaust to be the primary component of Jewish identity (Farago in Yahadut Zmanenu 5:259-285, 1989; Gross in Influence of the trip to Poland within the framework of the Ministry of Education on the working through of the Holocaust. Unpublished M.A. thesis, Ben-Gurion University, Beer Sheva, 2000; "Herman in Jewish…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B44C..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B44C..03L"><span>Wavelength-dependent ability of solar-induced chlorophyll fluorescence to estimate GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, L.</p> <p>2017-12-01</p> <p>Recent studies have demonstrated that solar-induced chlorophyll fluorescence (SIF) can offer a new way for directly estimating the terrestrial gross primary production (GPP). In this paper, the wavelength-dependent ability of SIF to estimate GPP was investigated using both simulations by SCOPE model (Soil Canopy Observation, Photochemistry and Energy fluxes) and observations at the canopy level. Firstly, the response of the remotely sensed SIF at the canopy level to the absorbed photosynthetically active radiation (APAR ) was investigated. Both the simulations and observations confirm a linear relationship between canopy SIF and APAR, while it is species-specific and affected by biochemical components and canopy structure. The ratio of SIF to APAR varies greatly for different vegetation types, which is significant larger for canopy with horizontal structure than it with vertical structure. At red band, the ratio also decreases noticeable when chlorophyll content increases. Then, the performance of SIF to estimate GPP was investigated using diurnal observations of winter wheat at different grow stages. The results showed that the diurnal GPP could be robustly estimated from the SIF spectra for winter wheat at each growth stage, while the correlation weakened greatly at red band if all the observations made at different growth stages or all simulations with different LAI values were pooled together - a situation which did not occur at the far-red band. Finally, the SIF-based GPP models derived from the 2016 observations on winter wheat were well validated using the dataset from 2015, which give better performance for SIF at far-red band than that at red band. Therefore, it is very important to correct for reabsorption and scattering of the SIF radiative transfer from the photosystem to the canopy level before the remotely sensed SIF is linked to the GPP, especially at red band.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23061498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23061498"><span>Míranos! Look at us, we are healthy! An environmental approach to early childhood obesity prevention.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Zenong; Parra-Medina, Deborah; Cordova, Alberto; He, Meizi; Trummer, Virginia; Sosa, Erica; Gallion, Kipling J; Sintes-Yallen, Amanda; Huang, Yaling; Wu, Xuelian; Acosta, Desiree; Kibbe, Debra; Ramirez, Amelie</p> <p>2012-10-01</p> <p>Obesity prevention research is sparse in young children at risk for obesity. This study tested the effectiveness of a culturally tailored, multicomponent prevention intervention to promote healthy weight gain and gross motor development in low-income preschool age children. Study participants were predominantly Mexican-American children (n = 423; mean age = 4.1; 62% in normal weight range) enrolled in Head Start. The study was conducted using a quasi-experimental pretest/posttest design with two treatment groups and a comparison group. A center-based intervention included an age-appropriate gross motor program with structured outdoor play, supplemental classroom activities, and staff development. A combined center- and home-based intervention added peer-led parent education to create a broad supportive environment in the center and at home. Primary outcomes were weight-based z-scores and raw scores of gross motor skills of the Learning Achievement Profile Version 3. Favorable changes occurred in z-scores for weight (one-tailed p < 0.04) for age and gender among children in the combined center- and home-based intervention compared to comparison children at posttest. Higher gains of gross motor skills were found in children in the combined center- and home-based (p < 0.001) and the center-based intervention (p < 0.01). Children in both intervention groups showed increases in outdoor physical activity and consumption of healthy food. Process evaluation data showed high levels of protocol implementation fidelity and program participation of children, Head Start staff, and parents. The study demonstrated great promise in creating a health-conducive environment that positively impacts weight and gross motor skill development in children at risk for obesity. Program efficacy should be tested in a randomized trial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22265344','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22265344"><span>Relationship between gross motor and intellectual function in children with cerebral palsy: a cross-sectional study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dalvand, Hamid; Dehghan, Leila; Hadian, Mohammad Reza; Feizy, Awat; Hosseini, Seyed Ali</p> <p>2012-03-01</p> <p>To explore the relationship between gross motor and intellectual function in children with cerebral palsy (CP). A cross-sectional study. Occupational therapy clinic. Children with CP (N=662; 281 girls, 381 boys; age range, 3-14y). Not applicable. Intelligence testing was carried out by means of the Wechsler Preschool and Primary Scale of Intelligence and the Wechsler Intelligence Scale for Children-Revised. Gross motor function level was determined by the Gross Motor Function Classification System Expanded and Revised (GMFCS E&R). Of the children, 10.4% were at level I of the GMFCS E&R, 38% at levels II and III, and 51.5% at levels IV and V. The lowest level of intelligence or profound intellectual disability was found in children with spastic quadriplegia (n=28, 62.2%). Children at the lowest levels (I-IV, GMFCS E&R) obtained higher ratings in terms of intelligence in comparison with children at level V. Based on the present results, the diagnosis was statistically related to the intellectual level as dependent variable (P<.01); accordingly, hypotonic, quadriplegic, and hemiplegic patients had the highest odds to assign higher ratings in abnormal intelligence, respectively. Sex and age were not statistically related to the dependent variable. The study results demonstrated a significant association between GMFCS E&R and intellectual function. Therefore, we suggest that particular attention should be paid to the intellectual level in terms of evaluations of gross motor function. These results, in respect, might be interested for occupational and physical therapists who are involved in rehabilitation programs for these children. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253118-estimation-economic-impacts-cellulosic-biofuel-production-comparative-analysis-three-biofuel-pathways','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253118-estimation-economic-impacts-cellulosic-biofuel-production-comparative-analysis-three-biofuel-pathways"><span>Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Yimin; Goldberg, Marshall; Tan, Eric; ...</p> <p>2016-03-07</p> <p>The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the constructionmore » of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. In conclusion, our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3236288','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3236288"><span>Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.</p> <p>2011-01-01</p> <p>There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply. PMID:22211004</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1253118','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1253118"><span>Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yimin; Goldberg, Marshall; Tan, Eric</p> <p></p> <p>The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the constructionmore » of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. In conclusion, our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122..930C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122..930C"><span>Disturbance impacts on land surface temperature and gross primary productivity in the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, L. Annie; Ballantyne, Ashley P.; Holden, Zachary A.; Landguth, Erin L.</p> <p>2017-04-01</p> <p>Forest disturbances influence forest structure, composition, and function and may impact climate through changes in net radiation or through shifts in carbon exchange. Climate impacts vary depending on environmental variables and disturbance characteristics, yet few studies have investigated disturbance impacts over large, environmentally heterogeneous, regions. We used satellite data to objectively determine the impacts of fire, bark beetles, defoliators, and "unidentified disturbances" (UDs) on land surface temperature (LST) and gross primary productivity (GPP) across the western United States (U.S.). We investigated immediate disturbance impacts, the drivers of those impacts, and long-term postdisturbance LST and GPP recovery patterns. All disturbance types caused LST increases (°C; fire: 3.45 ± 3.02, bark beetles: 0.76 ± 3.04, defoliators: 0.49 ± 3.12, and UD: 0.76 ± 3.03). Fire and insects resulted in GPP declines (%; fire: -25.05 ± 21.67, bark beetles: -2.84 ± 21.06, defoliators: -0.23 ± 15.40), while UDs resulted in slightly enhanced GPP (1.89 ± 24.20%). Disturbance responses also varied between ecoregions. Severity and interannual changes in air temperature were the primary drivers of short-term disturbance responses, and severity also had a strong impact on long-term recovery patterns. These results suggest a potential climate feedback due to disturbance-induced biophysical changes that may strengthen as disturbance regimes shift due to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.1457B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.1457B"><span>Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beringer, Jason; McHugh, Ian; Hutley, Lindsay B.; Isaac, Peter; Kljun, Natascha</p> <p>2017-03-01</p> <p>Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools necessary to support the management of natural resources, including water, carbon and nutrients for environmental and production benefits. The Australian regional flux network (OzFlux) currently has 23 active sites and aims to provide a continental-scale national research facility to monitor and assess Australia's terrestrial biosphere and climate for improved predictions. Given the need for standardised and effective data processing of flux data, we have developed a software suite, called the Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), that enables gap-filling and partitioning of the primary fluxes into ecosystem respiration (Fre) and gross primary productivity (GPP) and subsequently provides diagnostics and results. We outline the processing pathways and methodologies that are applied in DINGO (v13) to OzFlux data, including (1) gap-filling of meteorological and other drivers; (2) gap-filling of fluxes using artificial neural networks; (3) the u* threshold determination; (4) partitioning into ecosystem respiration and gross primary productivity; (5) random, model and u* uncertainties; and (6) diagnostic, footprint calculation, summary and results outputs. DINGO was developed for Australian data, but the framework is applicable to any flux data or regional network. Quality data from robust systems like DINGO ensure the utility and uptake of the flux data and facilitates synergies between flux, remote sensing and modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43H0649M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43H0649M"><span>A Model-Data Fusion Approach for Constraining Modeled GPP at Global Scales Using GOME2 SIF Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacBean, N.; Maignan, F.; Lewis, P.; Guanter, L.; Koehler, P.; Bacour, C.; Peylin, P.; Gomez-Dans, J.; Disney, M.; Chevallier, F.</p> <p>2015-12-01</p> <p>Predicting the fate of the ecosystem carbon, C, stocks and their sensitivity to climate change relies heavily on our ability to accurately model the gross carbon fluxes, i.e. photosynthesis and respiration. However, there are large differences in the Gross Primary Productivity (GPP) simulated by different land surface models (LSMs), not only in terms of mean value, but also in terms of phase and amplitude when compared to independent data-based estimates. This strongly limits our ability to provide accurate predictions of carbon-climate feedbacks. One possible source of this uncertainty is from inaccurate parameter values resulting from incomplete model calibration. Solar Induced Fluorescence (SIF) has been shown to have a linear relationship with GPP at the typical spatio-temporal scales used in LSMs (Guanter et al., 2011). New satellite-derived SIF datasets have the potential to constrain LSM parameters related to C uptake at global scales due to their coverage. Here we use SIF data derived from the GOME2 instrument (Köhler et al., 2014) to optimize parameters related to photosynthesis and leaf phenology of the ORCHIDEE LSM, as well as the linear relationship between SIF and GPP. We use a multi-site approach that combines many model grid cells covering a wide spatial distribution within the same optimization (e.g. Kuppel et al., 2014). The parameters are constrained per Plant Functional type as the linear relationship described above varies depending on vegetation structural properties. The relative skill of the optimization is compared to a case where only satellite-derived vegetation index data are used to constrain the model, and to a case where both data streams are used. We evaluate the results using an independent data-driven estimate derived from FLUXNET data (Jung et al., 2011) and with a new atmospheric tracer, Carbonyl sulphide (OCS) following the approach of Launois et al. (ACPD, in review). We show that the optimization reduces the strong positive bias of the ORCHIDEE model and increases the correlation compared to independent estimates. Differences in spatial patterns and gradients between simulated GPP and observed SIF remain largely unchanged however, suggesting that the underlying representation of vegetation type and/or structure and functioning in the model requires further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13277','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13277"><span>Cubic-foot tree volumes and product recoveries for eastern redcedar in the Ozarks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Leland F. Hanks</p> <p>1979-01-01</p> <p>Tree volume tables and equations for eastern redcedar are presented for gross volume, cant volume, and volume of sawmill residue. These volumes, when multiplied by the average value per cubic foot of cants and residue, provide a way to estimate tree value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-29/pdf/2011-22029.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-29/pdf/2011-22029.pdf"><span>76 FR 53691 - Notice of Submission of Proposed Information Collection to OMB Section 8 Random Digit Dialing...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-29</p> <p>... specific areas in a relatively fast and accurate way that may be used to estimate and update Section 8 Fair... survey methodologies to collect gross rent data for specific areas in a relatively fast and accurate way...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29219128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29219128"><span>Economic burden of managing Type 2 diabetes mellitus: Analysis from a Teaching Hospital in Malaysia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ismail, Aniza; Suddin, Leny Suzana; Sulong, Saperi; Ahmed, Zafar; Kamaruddin, Nor Azmi; Sukor, Norlela</p> <p>2017-01-01</p> <p>Type 2 diabetes mellitus (T2DM) is a chronic disease that consumes a large amount of health-care resources. It is essential to estimate the cost of managing T2DM to the society, especially in developing countries. Economic studies of T2DM as a primary diagnosis would assist efficient health-care resource allocation for disease management. This study aims to measure the economic burden of T2DM as the primary diagnosis for hospitalization from provider's perspective. A retrospective prevalence-based costing study was conducted in a teaching hospital. Financial administrative data and inpatient medical records of patients with primary diagnosis (International Classification Disease-10 coding) E11 in the year 2013 were included in costing analysis. Average cost per episode of care and average cost per outpatient visit were calculated using gross direct costing allocation approach. Total admissions for T2DM as primary diagnosis in 2013 were 217 with total outpatient visits of 3214. Average cost per episode of care was RM 901.51 (US$ 286.20) and the average cost per outpatient visit was RM 641.02 (US$ 203.50) from provider's perspective. The annual economic burden of T2DM for hospitalized patients was RM 195,627.67 (US$ 62,104) and RM 2,061,520.32 (US$ 654,450) for those being treated in the outpatient setting. Economic burden to provide T2DM care was higher in the outpatient setting due to the higher utilization of the health-care service in this setting. Thus, more focus toward improving T2DM outpatient service could mitigate further increase in health-care cost from this chronic disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ERL....10i4019L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ERL....10i4019L"><span>Greenhouse gas balance of a semi-natural peatbog in northern Scotland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, P. E.; Gray, A.</p> <p>2015-09-01</p> <p>Northern peatlands have been accumulating organic matter since the start of the Holocene, and are now a substantial store of terrestrial carbon. However, their current status as carbon sinks is less clear, because of the possible effects of climate change, air pollution, grazing and drainage etc., and the difficulties of accurate measurement with suitable time resolution. Such measurements are particularly lacking in the UK. Here, we present multi-year eddy covariance measurements of the carbon fluxes at a relatively undisturbed ombrotrophic blanket bog in the Flow Country of northern Scotland. The site consistently acted as a moderate sink for CO2 over all the measurement years (mean net ecosystem exchange (NEE) of -114 g C m-2 y-1), similar in magnitude to other measurements in the boreal and tundra zones, and rather higher than the existing measurements at other sites in the UK and Ireland. Generally, the NEE of CO2 was relatively insensitive to moderate inter-annual variations in weather. Non-CO2 losses comprised 11% of gross primary production, mainly from methane emissions. Accounting for these terms, the net ecosystem carbon balance was -50 g C-CO2 eq m-2 y-1. The contemporary carbon sink was larger than estimates from local peat cores, based on peat accumulation over the last several thousand years, but in the middle of the range of estimates which used spheroidal carbonaceous particles to estimate peat accumulation rates over the last century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B31E..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B31E..07L"><span>How tropical cyclone inter-annual timing and trajectory control gross primary productivity in the SE US at seasonal and annual timescales and impacts on mountain forest eco-hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowman, L.; Barros, A.</p> <p>2015-12-01</p> <p>Tropical cyclones (TCs) are an important source of freshwater input to the SE US eco-hydrologic function. Soil moisture, a temporal integral of precipitation, is critical to plant photosynthesis and carbon assimilation. In this study, we investigate the impact TCs have on gross primary productivity (GPP) in the SE US using the physically-based Duke Coupled Hydrology Model with Vegetation (DCHM-V) which includes coupled water and energy cycles and a biochemical representation of photosynthesis. A parsimonious evaluation of model-estimated GPP against all available AmeriFlux data in the SE US is presented. We characterize the seasonality of vegetation activity in the SE US by simulating water, energy, and carbon fluxes using the DCHM-V at high spatial (4 km) and temporal (30-min) resolution over the period 2002 - 2012. The model is run offline using atmospheric forcing data from NLDAS-2, precipitation from StageIV, and phenology indices from MODIS FPAR/LAI. Analysis of model results show the tendency for low GPP to occur in the Appalachian Mountains during peak summer months when water stress limits stomatal function. We contrast these simulations with model runs where periods of TC activity are replaced with the monthly climatological diurnal cycle from NARR. Results show that the timing and trajectory of TCs are key to understanding their impact on GPP across the SE US. Specifically: 1) Timing of moisture input from TCs greatly influences the vegetation response. TCs during peak summer months increase GPP and years with TCs falling in peak summer months see much higher annual GPP averages; 2) Years of drought and low plant productivity (2006-2007, 2011-2012) in the SE US tend to have TCs that fall later in the year when the additional moisture input does not have a significant impact on vegetation activity; and 3) TC path impacts regional GPP averages. The mountain region shows large inter- and intra-annual variability in plant productivity and high sensitivity to water stress. The Appalachian mountain region tends to have higher GPP when TC trajectories are closer in proximity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>