Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant
Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar
2015-01-01
Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485
Safety and Performance Analysis of the Non-Radar Oceanic/Remote Airspace In-Trail Procedure
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Munoz, Cesar A.
2007-01-01
This document presents a safety and performance analysis of the nominal case for the In-Trail Procedure (ITP) in a non-radar oceanic/remote airspace. The analysis estimates the risk of collision between the aircraft performing the ITP and a reference aircraft. The risk of collision is only estimated for the ITP maneuver and it is based on nominal operating conditions. The analysis does not consider human error, communication error conditions, or the normal risk of flight present in current operations. The hazards associated with human error and communication errors are evaluated in an Operational Hazards Analysis presented elsewhere.
Accuracy of Noninvasive Estimation Techniques for the State of the Cochlear Amplifier
NASA Astrophysics Data System (ADS)
Dalhoff, Ernst; Gummer, Anthony W.
2011-11-01
Estimation of the function of the cochlea in human is possible only by deduction from indirect measurements, which may be subjective or objective. Therefore, for basic research as well as diagnostic purposes, it is important to develop methods to deduce and analyse error sources of cochlear-state estimation techniques. Here, we present a model of technical and physiologic error sources contributing to the estimation accuracy of hearing threshold and the state of the cochlear amplifier and deduce from measurements of human that the estimated standard deviation can be considerably below 6 dB. Experimental evidence is drawn from two partly independent objective estimation techniques for the auditory signal chain based on measurements of otoacoustic emissions.
Lee, Christina D; Chae, Junghoon; Schap, TusaRebecca E; Kerr, Deborah A; Delp, Edward J; Ebert, David S; Boushey, Carol J
2012-03-01
Diet is a critical element of diabetes self-management. An emerging area of research is the use of images for dietary records using mobile telephones with embedded cameras. These tools are being designed to reduce user burden and to improve accuracy of portion-size estimation through automation. The objectives of this study were to (1) assess the error of automatically determined portion weights compared to known portion weights of foods and (2) to compare the error between automation and human. Adolescents (n = 15) captured images of their eating occasions over a 24 h period. All foods and beverages served were weighed. Adolescents self-reported portion sizes for one meal. Image analysis was used to estimate portion weights. Data analysis compared known weights, automated weights, and self-reported portions. For the 19 foods, the mean ratio of automated weight estimate to known weight ranged from 0.89 to 4.61, and 9 foods were within 0.80 to 1.20. The largest error was for lettuce and the most accurate was strawberry jam. The children were fairly accurate with portion estimates for two foods (sausage links, toast) using one type of estimation aid and two foods (sausage links, scrambled eggs) using another aid. The automated method was fairly accurate for two foods (sausage links, jam); however, the 95% confidence intervals for the automated estimates were consistently narrower than human estimates. The ability of humans to estimate portion sizes of foods remains a problem and a perceived burden. Errors in automated portion-size estimation can be systematically addressed while minimizing the burden on people. Future applications that take over the burden of these processes may translate to better diabetes self-management. © 2012 Diabetes Technology Society.
Target Uncertainty Mediates Sensorimotor Error Correction
Vijayakumar, Sethu; Wolpert, Daniel M.
2017-01-01
Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323
Target Uncertainty Mediates Sensorimotor Error Correction.
Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M
2017-01-01
Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.
Reliability of drivers in urban intersections.
Gstalter, Herbert; Fastenmeier, Wolfgang
2010-01-01
The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-09-18
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-01-01
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606
Mapping the Origins of Time: Scalar Errors in Infant Time Estimation
ERIC Educational Resources Information Center
Addyman, Caspar; Rocha, Sinead; Mareschal, Denis
2014-01-01
Time is central to any understanding of the world. In adults, estimation errors grow linearly with the length of the interval, much faster than would be expected of a clock-like mechanism. Here we present the first direct demonstration that this is also true in human infants. Using an eye-tracking paradigm, we examined 4-, 6-, 10-, and…
Disruption of State Estimation in the Human Lateral Cerebellum
Miall, R. Chris; Christensen, Lars O. D; Cain, Owen; Stanley, James
2007-01-01
The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate. PMID:18044990
Liu, Xingguo; Niu, Jianwei; Ran, Linghua; Liu, Taijie
2017-08-01
This study aimed to develop estimation formulae for the total human body volume (BV) of adult males using anthropometric measurements based on a three-dimensional (3D) scanning technique. Noninvasive and reliable methods to predict the total BV from anthropometric measurements based on a 3D scan technique were addressed in detail. A regression analysis of BV based on four key measurements was conducted for approximately 160 adult male subjects. Eight total models of human BV show that the predicted results fitted by the regression models were highly correlated with the actual BV (p < 0.001). Two metrics, the mean value of the absolute difference between the actual and predicted BV (V error ) and the mean value of the ratio between V error and actual BV (RV error ), were calculated. The linear model based on human weight was recommended as the most optimal due to its simplicity and high efficiency. The proposed estimation formulae are valuable for estimating total body volume in circumstances in which traditional underwater weighing or air displacement plethysmography is not applicable or accessible. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
New methodology to reconstruct in 2-D the cuspal enamel of modern human lower molars.
Modesto-Mata, Mario; García-Campos, Cecilia; Martín-Francés, Laura; Martínez de Pinillos, Marina; García-González, Rebeca; Quintino, Yuliet; Canals, Antoni; Lozano, Marina; Dean, M Christopher; Martinón-Torres, María; Bermúdez de Castro, José María
2017-08-01
In the last years different methodologies have been developed to reconstruct worn teeth. In this article, we propose a new 2-D methodology to reconstruct the worn enamel of lower molars. Our main goals are to reconstruct molars with a high level of accuracy when measuring relevant histological variables and to validate the methodology calculating the errors associated with the measurements. This methodology is based on polynomial regression equations, and has been validated using two different dental variables: cuspal enamel thickness and crown height of the protoconid. In order to perform the validation process, simulated worn modern human molars were employed. The associated errors of the measurements were also estimated applying methodologies previously proposed by other authors. The mean percentage error estimated in reconstructed molars for these two variables in comparison with their own real values is -2.17% for the cuspal enamel thickness of the protoconid and -3.18% for the crown height of the protoconid. This error significantly improves the results of other methodologies, both in the interobserver error and in the accuracy of the measurements. The new methodology based on polynomial regressions can be confidently applied to the reconstruction of cuspal enamel of lower molars, as it improves the accuracy of the measurements and reduces the interobserver error. The present study shows that it is important to validate all methodologies in order to know the associated errors. This new methodology can be easily exportable to other modern human populations, the human fossil record and forensic sciences. © 2017 Wiley Periodicals, Inc.
Development of an errorable car-following driver model
NASA Astrophysics Data System (ADS)
Yang, H.-H.; Peng, H.
2010-06-01
An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.
Ge, Zhi-pu; Ma, Ruo-han; Li, Gang; Zhang, Ji-zong; Ma, Xu-chen
2015-08-01
To establish a method that can be used for human age estimation on the basis of pulp chamber volume of first molars and to identify whether the method is good enough for age estimation in real human cases. CBCT images of 373 maxillary first molars and 372 mandibular first molars were collected to establish the mathematical model from 190 female and 213 male patients whose age between 12 and 69 years old. The inclusion criteria of the first molars were: no caries, no excessive tooth wear, no dental restorations, no artifacts due to metal restorative materials present in adjacent teeth, and no pulpal calcification. All the CBCT images were acquired with a CBCT unit NewTom VG (Quantitative Radiology, Verona, Italy) and reconstructed with a voxel-size of 0.15mm. The images were subsequently exported as DICOM data sets and imported into an open source 3D image semi-automatic segmenting and voxel-counting software ITK-SNAP 2.4 for the calculation of pulp chamber volumes. A logarithmic regression analysis was conducted with age as dependent variable and pulp chamber volume as independent variables to establish a mathematical model for the human age estimation. To identify the precision and accuracy of the model for human age estimation, another 104 maxillary first molars and 103 mandibular first molars from 55 female and 57 male patients whose age between 12 and 67 years old were collected, too. Mean absolute error and root mean square error between the actual age and estimated age were used to determine the precision and accuracy of the mathematical model. The study was approved by the Institutional Review Board of Peking University School and Hospital of Stomatology. A mathematical model was suggested for: AGE=117.691-26.442×ln (pulp chamber volume). The regression was statistically significant (p=0.000<0.01). The coefficient of determination (R(2)) was 0.564. There is a mean absolute error of 8.122 and root mean square error of 5.603 between the actual age and estimated age for all the tested teeth. The pulp chamber volume of first molar is a useful index for the estimation of human age with reasonable precision and accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Understanding Risk Tolerance and Building an Effective Safety Culture
NASA Technical Reports Server (NTRS)
Loyd, David
2018-01-01
Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.
Rong, Hao; Tian, Jin; Zhao, Tingdi
2016-01-01
In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
#2 - An Empirical Assessment of Exposure Measurement Error ...
Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
Dealing with Big Numbers: Representation and Understanding of Magnitudes outside of Human Experience
ERIC Educational Resources Information Center
Resnick, Ilyse; Newcombe, Nora S.; Shipley, Thomas F.
2017-01-01
Being able to estimate quantity is important in everyday life and for success in the STEM disciplines. However, people have difficulty reasoning about magnitudes outside of human perception (e.g., nanoseconds, geologic time). This study examines patterns of estimation errors across temporal and spatial magnitudes at large scales. We evaluated the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lon N. Haney; David I. Gertman
2003-04-01
Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less
Some computational techniques for estimating human operator describing functions
NASA Technical Reports Server (NTRS)
Levison, W. H.
1986-01-01
Computational procedures for improving the reliability of human operator describing functions are described. Special attention is given to the estimation of standard errors associated with mean operator gain and phase shift as computed from an ensemble of experimental trials. This analysis pertains to experiments using sum-of-sines forcing functions. Both open-loop and closed-loop measurement environments are considered.
Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount
NASA Technical Reports Server (NTRS)
Stowe, L. L.
1982-01-01
Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.
Hierarchical information fusion for global displacement estimation in microsensor motion capture.
Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong
2013-07-01
This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.
Kalman filter estimation of human pilot-model parameters
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.
1975-01-01
The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.
Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans
Slatkin, Montgomery
2016-01-01
When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965
snpAD: An ancient DNA genotype caller.
Prüfer, Kay
2018-06-21
The study of ancient genomes can elucidate the evolutionary past. However, analyses are complicated by base-modifications in ancient DNA molecules that result in errors in DNA sequences. These errors are particularly common near the ends of sequences and pose a challenge for genotype calling. I describe an iterative method that estimates genotype frequencies and errors along sequences to allow for accurate genotype calling from ancient sequences. The implementation of this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity from several low-coverage Neandertals. These estimates show that low heterozygosity, compared to modern humans, was common among Neandertals. The C ++ code of snpAD is freely available at http://bioinf.eva.mpg.de/snpAD/. Supplementary data are available at Bioinformatics online.
Human leader and robot follower team: correcting leader's position from follower's heading
NASA Astrophysics Data System (ADS)
Borenstein, Johann; Thomas, David; Sights, Brandon; Ojeda, Lauro; Bankole, Peter; Fellars, Donald
2010-04-01
In multi-agent scenarios, there can be a disparity in the quality of position estimation amongst the various agents. Here, we consider the case of two agents - a leader and a follower - following the same path, in which the follower has a significantly better estimate of position and heading. This may be applicable to many situations, such as a robotic "mule" following a soldier. Another example is that of a convoy, in which only one vehicle (not necessarily the leading one) is instrumented with precision navigation instruments while all other vehicles use lower-precision instruments. We present an algorithm, called Follower-derived Heading Correction (FDHC), which substantially improves estimates of the leader's heading and, subsequently, position. Specifically, FHDC produces a very accurate estimate of heading errors caused by slow-changing errors (e.g., those caused by drift in gyros) of the leader's navigation system and corrects those errors.
Inertial and time-of-arrival ranging sensor fusion.
Vasilyev, Paul; Pearson, Sean; El-Gohary, Mahmoud; Aboy, Mateo; McNames, James
2017-05-01
Wearable devices with embedded kinematic sensors including triaxial accelerometers, gyroscopes, and magnetometers are becoming widely used in applications for tracking human movement in domains that include sports, motion gaming, medicine, and wellness. The kinematic sensors can be used to estimate orientation, but can only estimate changes in position over short periods of time. We developed a prototype sensor that includes ultra wideband ranging sensors and kinematic sensors to determine the feasibility of fusing the two sensor technologies to estimate both orientation and position. We used a state space model and applied the unscented Kalman filter to fuse the sensor information. Our results demonstrate that it is possible to estimate orientation and position with less error than is possible with either sensor technology alone. In our experiment we obtained a position root mean square error of 5.2cm and orientation error of 4.8° over a 15min recording. Copyright © 2017 Elsevier B.V. All rights reserved.
Fusion of magnetometer and gradiometer sensors of MEG in the presence of multiplicative error.
Mohseni, Hamid R; Woolrich, Mark W; Kringelbach, Morten L; Luckhoo, Henry; Smith, Penny Probert; Aziz, Tipu Z
2012-07-01
Novel neuroimaging techniques have provided unprecedented information on the structure and function of the living human brain. Multimodal fusion of data from different sensors promises to radically improve this understanding, yet optimal methods have not been developed. Here, we demonstrate a novel method for combining multichannel signals. We show how this method can be used to fuse signals from the magnetometer and gradiometer sensors used in magnetoencephalography (MEG), and through extensive experiments using simulation, head phantom and real MEG data, show that it is both robust and accurate. This new approach works by assuming that the lead fields have multiplicative error. The criterion to estimate the error is given within a spatial filter framework such that the estimated power is minimized in the worst case scenario. The method is compared to, and found better than, existing approaches. The closed-form solution and the conditions under which the multiplicative error can be optimally estimated are provided. This novel approach can also be employed for multimodal fusion of other multichannel signals such as MEG and EEG. Although the multiplicative error is estimated based on beamforming, other methods for source analysis can equally be used after the lead-field modification.
Lombardo, Franco; Berellini, Giuliano; Labonte, Laura R; Liang, Guiqing; Kim, Sean
2016-03-01
We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction. Copyright © 2016. Published by Elsevier Inc.
SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA
Fosdick, Bailey K.; Hoff, Peter D.
2014-01-01
Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353
Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.
2010-01-01
In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273
Associations between errors and contributing factors in aircraft maintenance
NASA Technical Reports Server (NTRS)
Hobbs, Alan; Williamson, Ann
2003-01-01
In recent years cognitive error models have provided insights into the unsafe acts that lead to many accidents in safety-critical environments. Most models of accident causation are based on the notion that human errors occur in the context of contributing factors. However, there is a lack of published information on possible links between specific errors and contributing factors. A total of 619 safety occurrences involving aircraft maintenance were reported using a self-completed questionnaire. Of these occurrences, 96% were related to the actions of maintenance personnel. The types of errors that were involved, and the contributing factors associated with those actions, were determined. Each type of error was associated with a particular set of contributing factors and with specific occurrence outcomes. Among the associations were links between memory lapses and fatigue and between rule violations and time pressure. Potential applications of this research include assisting with the design of accident prevention strategies, the estimation of human error probabilities, and the monitoring of organizational safety performance.
Yazmir, Boris; Reiner, Miriam
2018-05-15
Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Wedell, Douglas H; Moro, Rodrigo
2008-04-01
Two experiments used within-subject designs to examine how conjunction errors depend on the use of (1) choice versus estimation tasks, (2) probability versus frequency language, and (3) conjunctions of two likely events versus conjunctions of likely and unlikely events. All problems included a three-option format verified to minimize misinterpretation of the base event. In both experiments, conjunction errors were reduced when likely events were conjoined. Conjunction errors were also reduced for estimations compared with choices, with this reduction greater for likely conjuncts, an interaction effect. Shifting conceptual focus from probabilities to frequencies did not affect conjunction error rates. Analyses of numerical estimates for a subset of the problems provided support for the use of three general models by participants for generating estimates. Strikingly, the order in which the two tasks were carried out did not affect the pattern of results, supporting the idea that the mode of responding strongly determines the mode of thinking about conjunctions and hence the occurrence of the conjunction fallacy. These findings were evaluated in terms of implications for rationality of human judgment and reasoning.
NASA Technical Reports Server (NTRS)
Fields, J. M.
1980-01-01
The data from seven surveys of community response to environmental noise are reanalyzed to assess the relative influence of peak noise levels and the numbers of noise events on human response. The surveys do not agree on the value of the tradeoff between the effects of noise level and numbers of events. The value of the tradeoff cannot be confidently specified in any survey because the tradeoff estimate may have a large standard error of estimate and because the tradeoff estimate may be seriously biased by unknown noise measurement errors. Some evidence suggests a decrease in annoyance with very high numbers of noise events but this evidence is not strong enough to lead to the rejection of the conventionally accepted assumption that annoyance is related to a log transformation of the number of noise events.
Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles
Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián
2016-01-01
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Sobel, Michael E; Lindquist, Martin A
2014-07-01
Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.
Cawyer, Chase R; Anderson, Sarah B; Szychowski, Jeff M; Neely, Cherry; Owen, John
2018-03-01
To compare the accuracy of a new regression-derived formula developed from the National Fetal Growth Studies data to the common alternative method that uses the average of the gestational ages (GAs) calculated for each fetal biometric measurement (biparietal diameter, head circumference, abdominal circumference, and femur length). This retrospective cross-sectional study identified nonanomalous singleton pregnancies that had a crown-rump length plus at least 1 additional sonographic examination with complete fetal biometric measurements. With the use of the crown-rump length to establish the referent estimated date of delivery, each method's (National Institute of Child Health and Human Development regression versus Hadlock average [Radiology 1984; 152:497-501]), error at every examination was computed. Error, defined as the difference between the crown-rump length-derived GA and each method's predicted GA (weeks), was compared in 3 GA intervals: 1 (14 weeks-20 weeks 6 days), 2 (21 weeks-28 weeks 6 days), and 3 (≥29 weeks). In addition, the proportion of each method's examinations that had errors outside prespecified (±) day ranges was computed by using odds ratios. A total of 16,904 sonograms were identified. The overall and prespecified GA range subset mean errors were significantly smaller for the regression compared to the average (P < .01), and the regression had significantly lower odds of observing examinations outside the specified range of error in GA intervals 2 (odds ratio, 1.15; 95% confidence interval, 1.01-1.31) and 3 (odds ratio, 1.24; 95% confidence interval, 1.17-1.32) than the average method. In a contemporary unselected population of women dated by a crown-rump length-derived GA, the National Institute of Child Health and Human Development regression formula produced fewer estimates outside a prespecified margin of error than the commonly used Hadlock average; the differences were most pronounced for GA estimates at 29 weeks and later. © 2017 by the American Institute of Ultrasound in Medicine.
Kang, Le; Carter, Randy; Darcy, Kathleen; Kauderer, James; Liao, Shu-Yuan
2013-01-01
In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis in women with atypical glandular cells of undetermined significance (AGC) to compare the diagnostic accuracy of a histology-based evaluation, a CA-IX biomarker-based test and a human papillomavirus (HPV) DNA test. PMID:24163493
The lawful imprecision of human surface tilt estimation in natural scenes
2018-01-01
Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477
The lawful imprecision of human surface tilt estimation in natural scenes.
Kim, Seha; Burge, Johannes
2018-01-31
Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.
Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.
2015-01-01
We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341
Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí
2013-12-18
Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.
An improved silhouette for human pose estimation
NASA Astrophysics Data System (ADS)
Hawes, Anthony H.; Iftekharuddin, Khan M.
2017-08-01
We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2014-12-01
Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater is a challenging task at present. One method that has been used recently is a model-data synthesis combining GRACE total water storage estimates with simulated water storage estimates from land surface models. In this method, water storage changes due to natural climate variations simulated by a model are removed from total water storage changes observed by GRACE; the residual is then interpreted as anthropogenic groundwater change. If the modeled water storage estimate contains systematic errors, these errors will also be present in the residual groundwater estimate. For example, simulations performed with the Community Land Model (CLM; the land component of the Community Earth System Model) generally show a weak (as much as 50% smaller) seasonal cycle of water storage in semi-arid regions when compared to GRACE satellite water storage estimates. This bias propagates into GRACE-CLM anthropogenic groundwater change estimates, which then exhibit unphysical seasonal variability. The CLM bias can be traced to the parameterization of soil evaporative resistance. Incorporating a new soil resistance parameterization in CLM greatly reduces the seasonal bias with respect to GRACE. In this study, we compare the improved CLM water storage estimates to GRACE and discuss the implications for estimates of anthropogenic groundwater withdrawal, showing examples for the Middle East and Southwestern United States.
Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.
1995-05-01
A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task.more » The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.« less
Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo
2014-05-01
Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.
Uncorrected refractive errors.
Naidoo, Kovin S; Jaggernath, Jyoti
2012-01-01
Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.
Wear, Keith A
2013-04-01
The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.
A method for automatic feature points extraction of human vertebrae three-dimensional model
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wu, Junsheng
2017-05-01
A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.
Effective force control by muscle synergies.
Berger, Denise J; d'Avella, Andrea
2014-01-01
Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.
Cloud-free resolution element statistics program
NASA Technical Reports Server (NTRS)
Liley, B.; Martin, C. D.
1971-01-01
Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.
This project summary highlights recent findings from research undertaken to develop improved methods to assess potential human health risks related to drinking water disinfection byproduct (DBP) exposures.
Utilization of electrical impedance imaging for estimation of in-vivo tissue resistivities
NASA Astrophysics Data System (ADS)
Eyuboglu, B. Murat; Pilkington, Theo C.
1993-08-01
In order to determine in vivo resistivity of tissues in the thorax, the possibility of combining electrical impedance imaging (EII) techniques with (1) anatomical data extracted from high resolution images, (2) a prior knowledge of tissue resistivities, and (3) a priori noise information was assessed in this study. A Least Square Error Estimator (LSEE) and a statistically constrained Minimum Mean Square Error Estimator (MiMSEE) were implemented to estimate regional electrical resistivities from potential measurements made on the body surface. A two dimensional boundary element model of the human thorax, which consists of four different conductivity regions (the skeletal muscle, the heart, the right lung, and the left lung) was adopted to simulate the measured EII torso potentials. The calculated potentials were then perturbed by simulated instrumentation noise. The signal information used to form the statistical constraint for the MiMSEE was obtained from a prior knowledge of the physiological range of tissue resistivities. The noise constraint was determined from a priori knowledge of errors due to linearization of the forward problem and to the instrumentation noise.
Error reduction in EMG signal decomposition
Kline, Joshua C.
2014-01-01
Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159
Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.
2018-01-01
The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.
Naidoo, Kovin S; Jaggernath, Jyoti
2012-01-01
Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship. PMID:22944755
Humans make efficient use of natural image statistics when performing spatial interpolation.
D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S
2013-12-16
Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.
Empirical evidence for resource-rational anchoring and adjustment.
Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D
2018-04-01
People's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people's knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.
An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.
Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes
2017-10-01
This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.
Self-calibration method without joint iteration for distributed small satellite SAR systems
NASA Astrophysics Data System (ADS)
Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan
2013-12-01
The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.
Ching, Joan M; Williams, Barbara L; Idemoto, Lori M; Blackmore, C Craig
2014-08-01
Virginia Mason Medical Center (Seattle) employed the Lean concept of Jidoka (automation with a human touch) to plan for and deploy bar code medication administration (BCMA) to hospitalized patients. Integrating BCMA technology into the nursing work flow with minimal disruption was accomplished using three steps ofJidoka: (1) assigning work to humans and machines on the basis of their differing abilities, (2) adapting machines to the human work flow, and (3) monitoring the human-machine interaction. Effectiveness of BCMA to both reinforce safe administration practices and reduce medication errors was measured using the Collaborative Alliance for Nursing Outcomes (CALNOC) Medication Administration Accuracy Quality Study methodology. Trained nurses observed a total of 16,149 medication doses for 3,617 patients in a three-year period. Following BCMA implementation, the number of safe practice violations decreased from 54.8 violations/100 doses (January 2010-September 2011) to 29.0 violations/100 doses (October 2011-December 2012), resulting in an absolute risk reduction of 25.8 violations/100 doses (95% confidence interval [CI]: 23.7, 27.9, p < .001). The number of medication errors decreased from 5.9 errors/100 doses at baseline to 3.0 errors/100 doses after BCMA implementation (absolute risk reduction: 2.9 errors/100 doses [95% CI: 2.2, 3.6,p < .001]). The number of unsafe administration practices (estimate, -5.481; standard error 1.133; p < .001; 95% CI: -7.702, -3.260) also decreased. As more hospitals respond to health information technology meaningful use incentives, thoughtful, methodical, and well-managed approaches to technology deployment are crucial. This work illustrates how Jidoka offers opportunities for a smooth transition to new technology.
Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood
NASA Astrophysics Data System (ADS)
Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami
1996-07-01
A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.
Cortical dipole imaging using truncated total least squares considering transfer matrix error.
Hori, Junichi; Takeuchi, Kosuke
2013-01-01
Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.
Field evaluation of distance-estimation error during wetland-dependent bird surveys
Nadeau, Christopher P.; Conway, Courtney J.
2012-01-01
Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.
Rumpf, R Wolfgang; Stewart, William C L; Martinez, Stephen K; Gerrard, Chandra Y; Adolphi, Natalie L; Thakkar, Rajan; Coleman, Alan; Rajab, Adrian; Ray, William C; Fabia, Renata
2018-01-01
Treating burns effectively requires accurately assessing the percentage of the total body surface area (%TBSA) affected by burns. Current methods for estimating %TBSA, such as Lund and Browder (L&B) tables, rely on historic body statistics. An increasingly obese population has been blamed for increasing errors in %TBSA estimates. However, this assumption has not been experimentally validated. We hypothesized that errors in %TBSA estimates using L&B were due to differences in the physical proportions of today's children compared with children in the early 1940s when the chart was developed and that these differences would appear as body mass index (BMI)-associated systematic errors in the L&B values versus actual body surface areas. We measured the TBSA of human pediatric cadavers using computed tomography scans. Subjects ranged from 9 mo to 15 y in age. We chose outliers of the BMI distribution (from the 31st percentile at the low through the 99th percentile at the high). We examined surface area proportions corresponding to L&B regions. Measured regional proportions based on computed tomography scans were in reasonable agreement with L&B, even with subjects in the tails of the BMI range. The largest deviation was 3.4%, significantly less than the error seen in real-world %TBSA estimates. While today's population is more obese than those studied by L&B, their body region proportions scale surprisingly well. The primary error in %TBSA estimation is not due to changing physical proportions of today's children and may instead lie in the application of the L&B table. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
How unrealistic optimism is maintained in the face of reality.
Sharot, Tali; Korn, Christoph W; Dolan, Raymond J
2011-10-09
Unrealistic optimism is a pervasive human trait that influences domains ranging from personal relationships to politics and finance. How people maintain unrealistic optimism, despite frequently encountering information that challenges those biased beliefs, is unknown. We examined this question and found a marked asymmetry in belief updating. Participants updated their beliefs more in response to information that was better than expected than to information that was worse. This selectivity was mediated by a relative failure to code for errors that should reduce optimism. Distinct regions of the prefrontal cortex tracked estimation errors when those called for positive update, both in individuals who scored high and low on trait optimism. However, highly optimistic individuals exhibited reduced tracking of estimation errors that called for negative update in right inferior prefrontal gyrus. These findings indicate that optimism is tied to a selective update failure and diminished neural coding of undesirable information regarding the future.
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
Welles, Alexander P; Buller, Mark J; Looney, David P; Rumpler, William V; Gribok, Andrei V; Hoyt, Reed W
2018-02-01
Human metabolic energy expenditure is critical to many scientific disciplines but can only be measured using expensive and/or restrictive equipment. The aim of this work is to determine whether the SCENARIO thermoregulatory model can be adapted to estimate metabolic rate (M) from core body temperature (T C ). To validate this method of M estimation, data were collected from fifteen test volunteers (age = 23 ± 3yr, height = 1.73 ± 0.07m, mass = 68.6 ± 8.7kg, body fat = 16.7 ± 7.3%; mean ± SD) who wore long sleeved nylon jackets and pants (I tot,clo = 1.22, I m = 0.41) during treadmill exercise tasks (32 trials; 7.8 ± 0.5km in 1h; air temp. = 22°C, 50% RH, wind speed = 0.35ms -1 ). Core body temperatures were recorded by ingested thermometer pill and M data were measured via whole room indirect calorimetry. Metabolic rate was estimated for 5min epochs in a two-step process. First, for a given epoch, a range of M values were input to the SCENARIO model and a corresponding range of T C values were output. Second, the output T C range value with the lowest absolute error relative to the observed T C for the given epoch was identified and its corresponding M range input was selected as the estimated M for that epoch. This process was then repeated for each subsequent remaining epoch. Root mean square error (RMSE), mean absolute error (MAE), and bias between observed and estimated M were 186W, 130 ± 174W, and 33 ± 183W, respectively. The RMSE for total energy expenditure by exercise period was 0.30 MJ. These results indicate that the SCENARIO model is useful for estimating M from T C when measurement is otherwise impractical. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Human Pose Estimation from Monocular Images: A Comprehensive Survey
Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi
2016-01-01
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003
Nature and Nurture: the complex genetics of myopia and refractive error
Wojciechowski, Robert
2010-01-01
The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have demonstrated that eye growth and refractive maturation during infancy are tightly regulated by visually-guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations. PMID:21155761
Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.
Wang, Yibin; Nedelman, Jerry
2002-04-01
To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.
Fröberg, Åsa; Mårtensson, Mattias; Larsson, Matilda; Janerot-Sjöberg, Birgitta; D'Hooge, Jan; Arndt, Anton
2016-10-01
Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 ± 0.08%). The absolute error in peak strain varied between 0.72 ± 0.65% and 10.64 ± 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4 Hz had lower errors than 78.6 Hz as was the case with a 22 mm compared to an 11 mm ROI. Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon. © The Foundation Acta Radiologica 2016.
A circadian rhythm in skill-based errors in aviation maintenance.
Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A
2010-07-01
In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day, and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended.
Haynie, Alan C.
2016-01-01
Time spent fishing is the effort metric often studied in fisheries but it may under-represent the effort actually expended by fishers. Entire fishing trips, from the time vessels leave port until they return, may prove more useful for examining trends in fleet dynamics, fisher behavior, and fishing costs. However, such trip information is often difficult to resolve. We identified ~30,000 trips made by vessels that targeted walleye pollock (Gadus chalcogrammus) in the Eastern Bering Sea from 2008–2014 by using vessel monitoring system (VMS) and landings data. We compared estimated trip durations to observer data, which were available for approximately half of trips. Total days at sea were estimated with < 1.5% error and 96.4% of trip durations were either estimated with < 5% error or they were within expected measurement error. With 99% accuracy, we classified trips as fishing for pollock, for another target species, or not fishing. This accuracy lends strong support to the use of our method with unobserved trips across North Pacific fisheries. With individual trips resolved, we examined potential errors in datasets which are often viewed as “the truth.” Despite having > 5 million VMS records (timestamps and vessel locations), this study was as much about understanding and managing data errors as it was about characterizing trips. Missing VMS records were pervasive and they strongly influenced our approach. To understand implications of missing data on inference, we simulated removal of VMS records from trips. Removal of records straightened (i.e., shortened) vessel trajectories, and travel distances were underestimated, on average, by 1.5–13.4% per trip. Despite this bias, VMS proved robust for trip characterization and for improved quality control of human-recorded data. Our scrutiny of human-reported and VMS data advanced our understanding of the potential utility and challenges facing VMS users globally. PMID:27788174
Watson, Jordan T; Haynie, Alan C
2016-01-01
Time spent fishing is the effort metric often studied in fisheries but it may under-represent the effort actually expended by fishers. Entire fishing trips, from the time vessels leave port until they return, may prove more useful for examining trends in fleet dynamics, fisher behavior, and fishing costs. However, such trip information is often difficult to resolve. We identified ~30,000 trips made by vessels that targeted walleye pollock (Gadus chalcogrammus) in the Eastern Bering Sea from 2008-2014 by using vessel monitoring system (VMS) and landings data. We compared estimated trip durations to observer data, which were available for approximately half of trips. Total days at sea were estimated with < 1.5% error and 96.4% of trip durations were either estimated with < 5% error or they were within expected measurement error. With 99% accuracy, we classified trips as fishing for pollock, for another target species, or not fishing. This accuracy lends strong support to the use of our method with unobserved trips across North Pacific fisheries. With individual trips resolved, we examined potential errors in datasets which are often viewed as "the truth." Despite having > 5 million VMS records (timestamps and vessel locations), this study was as much about understanding and managing data errors as it was about characterizing trips. Missing VMS records were pervasive and they strongly influenced our approach. To understand implications of missing data on inference, we simulated removal of VMS records from trips. Removal of records straightened (i.e., shortened) vessel trajectories, and travel distances were underestimated, on average, by 1.5-13.4% per trip. Despite this bias, VMS proved robust for trip characterization and for improved quality control of human-recorded data. Our scrutiny of human-reported and VMS data advanced our understanding of the potential utility and challenges facing VMS users globally.
Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
NASA Technical Reports Server (NTRS)
Adler, Robert; Gu, Guojun; Huffman, George
2012-01-01
A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.
Effective force control by muscle synergies
Berger, Denise J.; d'Avella, Andrea
2014-01-01
Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4–5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination. PMID:24860489
48 CFR 342.7101-2 - Procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 342.7101-2 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACT MANAGEMENT... for the increase (e.g., error in estimate, changed conditions). (6) The latest date by which funds... data received; (2) Request audit or cost advisory services, and technical support, as necessary, for...
Beam hardening correction in CT myocardial perfusion measurement
NASA Astrophysics Data System (ADS)
So, Aaron; Hsieh, Jiang; Li, Jian-Ying; Lee, Ting-Yim
2009-05-01
This paper presents a method for correcting beam hardening (BH) in cardiac CT perfusion imaging. The proposed algorithm works with reconstructed images instead of projection data. It applies thresholds to separate low (soft tissue) and high (bone and contrast) attenuating material in a CT image. The BH error in each projection is estimated by a polynomial function of the forward projection of the segmented image. The error image is reconstructed by back-projection of the estimated errors. A BH-corrected image is then obtained by subtracting a scaled error image from the original image. Phantoms were designed to simulate the BH artifacts encountered in cardiac CT perfusion studies of humans and animals that are most commonly used in cardiac research. These phantoms were used to investigate whether BH artifacts can be reduced with our approach and to determine the optimal settings, which depend upon the anatomy of the scanned subject, of the correction algorithm for patient and animal studies. The correction algorithm was also applied to correct BH in a clinical study to further demonstrate the effectiveness of our technique.
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-01-01
Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476
NASA Astrophysics Data System (ADS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
Body mass and stature estimation based on the first metatarsal in humans.
De Groote, Isabelle; Humphrey, Louise T
2011-04-01
Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages. Copyright © 2011 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1981-01-01
A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.
Model error estimation for distributed systems described by elliptic equations
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1983-01-01
A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.
Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2018-06-11
We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.
Cole, Stephen R.; Jacobson, Lisa P.; Tien, Phyllis C.; Kingsley, Lawrence; Chmiel, Joan S.; Anastos, Kathryn
2010-01-01
To estimate the net effect of imperfectly measured highly active antiretroviral therapy on incident acquired immunodeficiency syndrome or death, the authors combined inverse probability-of-treatment-and-censoring weighted estimation of a marginal structural Cox model with regression-calibration methods. Between 1995 and 2007, 950 human immunodeficiency virus–positive men and women were followed in 2 US cohort studies. During 4,054 person-years, 374 initiated highly active antiretroviral therapy, 211 developed acquired immunodeficiency syndrome or died, and 173 dropped out. Accounting for measured confounders and determinants of dropout, the weighted hazard ratio for acquired immunodeficiency syndrome or death comparing use of highly active antiretroviral therapy in the prior 2 years with no therapy was 0.36 (95% confidence limits: 0.21, 0.61). This association was relatively constant over follow-up (P = 0.19) and stronger than crude or adjusted hazard ratios of 0.75 and 0.95, respectively. Accounting for measurement error in reported exposure using external validation data on 331 men and women provided a hazard ratio of 0.17, with bias shifted from the hazard ratio to the estimate of precision as seen by the 2.5-fold wider confidence limits (95% confidence limits: 0.06, 0.43). Marginal structural measurement-error models can simultaneously account for 3 major sources of bias in epidemiologic research: validated exposure measurement error, measured selection bias, and measured time-fixed and time-varying confounding. PMID:19934191
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Parallel computers - Estimate errors caused by imprecise data
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne
1991-01-01
A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.
Humans Optimize Decision-Making by Delaying Decision Onset
Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack
2014-01-01
Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-11-01
Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Martinez-Enriquez, Eduardo; Sun, Mengchan; Velasco-Ocana, Miriam; Birkenfeld, Judith; Pérez-Merino, Pablo; Marcos, Susana
2016-07-01
Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). The method was validated ex vivo in 27 human donor (19-71 years of age) lenses, which were imaged in three-dimensions by OCT. In vivo conditions were simulated assuming that only the information within a given pupil size (PS) was available. A parametric model was used to estimate the whole lens shape from PS-limited data. The accuracy of the estimated lens VOL, DIA, and EPP was evaluated by comparing estimates from the whole lens data and PS-limited data ex vivo. The method was demonstrated in vivo using 2 young eyes during accommodation and 2 cataract eyes. Crystalline lens VOL was estimated within 96% accuracy (average estimation error across lenses ± standard deviation: 9.30 ± 7.49 mm3). Average estimation errors in EPP were below 40 ± 32 μm, and below 0.26 ± 0.22 mm in DIA. Changes in lens VOL with accommodation were not statistically significant (2-way ANOVA, P = 0.35). In young eyes, DIA decreased and EPP increased statistically significantly with accommodation (P < 0.001) by 0.14 mm and 0.13 mm, respectively, on average across subjects. In cataract eyes, VOL = 205.5 mm3, DIA = 9.57 mm, and EPP = 2.15 mm on average. Quantitative OCT with dedicated image processing algorithms allows estimation of human crystalline lens volume, diameter, and equatorial lens position, as validated from ex vivo measurements, where entire lens images are available.
An eye model for uncalibrated eye gaze estimation under variable head pose
NASA Astrophysics Data System (ADS)
Hnatow, Justin; Savakis, Andreas
2007-04-01
Gaze estimation is an important component of computer vision systems that monitor human activity for surveillance, human-computer interaction, and various other applications including iris recognition. Gaze estimation methods are particularly valuable when they are non-intrusive, do not require calibration, and generalize well across users. This paper presents a novel eye model that is employed for efficiently performing uncalibrated eye gaze estimation. The proposed eye model was constructed from a geometric simplification of the eye and anthropometric data about eye feature sizes in order to circumvent the requirement of calibration procedures for each individual user. The positions of the two eye corners and the midpupil, the distance between the two eye corners, and the radius of the eye sphere are required for gaze angle calculation. The locations of the eye corners and midpupil are estimated via processing following eye detection, and the remaining parameters are obtained from anthropometric data. This eye model is easily extended to estimating eye gaze under variable head pose. The eye model was tested on still images of subjects at frontal pose (0 °) and side pose (34 °). An upper bound of the model's performance was obtained by manually selecting the eye feature locations. The resulting average absolute error was 2.98 ° for frontal pose and 2.87 ° for side pose. The error was consistent across subjects, which indicates that good generalization was obtained. This level of performance compares well with other gaze estimation systems that utilize a calibration procedure to measure eye features.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Time estimates in a long-term time-free environment. [human performance
NASA Technical Reports Server (NTRS)
Lavie, P.; Webb, W. B.
1975-01-01
Subjects in a time-free environment for 14 days estimated the hour and day several times a day. Half of the subjects were under a heavy exercise regime. During the waking hours, the no-exercise group showed no difference between estimated and real time, whereas the exercise group showed significantly shorter estimated than real time. Neither group showed a difference after the sleeping periods. However, the mean accumulated error for the two groups was 48.73 hours and was strongly related to the displacements of sleep/waking behavior. It is concluded that behavioral cues are the primary determinants of time estimates in time-free environments.
In vivo estimation of target registration errors during augmented reality laparoscopic surgery.
Thompson, Stephen; Schneider, Crispin; Bosi, Michele; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J
2018-06-01
Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver image guidance system. The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features. We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data. The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving this reliably remains a significant challenge. We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for laparoscopic surgery.
Cantürk, İsmail; Özyılmaz, Lale
2018-07-01
This paper presents an approach to postmortem interval (PMI) estimation, which is a very debated and complicated area of forensic science. Most of the reported methods to determine PMI in the literature are not practical because of the need for skilled persons and significant amounts of time, and give unsatisfactory results. Additionally, the error margin of PMI estimation increases proportionally with elapsed time after death. It is crucial to develop practical PMI estimation methods for forensic science. In this study, a computational system is developed to determine the PMI of human subjects by investigating postmortem opacity development of the eye. Relevant features from the eye images were extracted using image processing techniques to reflect gradual opacity development. The features were then investigated to predict the time after death using machine learning methods. The experimental results prove that the development of opacity can be utilized as a practical computational tool to determine PMI for human subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Willem W.S. van Hees
2002-01-01
Comparisons of estimated standard error for a ratio-of-means (ROM) estimator are presented for forest resource inventories conducted in southeast Alaska between 1995 and 2000. Estimated standard errors for the ROM were generated by using a traditional variance estimator and also approximated by bootstrap methods. Estimates of standard error generated by both...
Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.
Frick, Eric; Rahmatalla, Salam
2018-04-04
The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.
A-posteriori error estimation for second order mechanical systems
NASA Astrophysics Data System (ADS)
Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter
2012-06-01
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
Optimal estimation of large structure model errors. [in Space Shuttle controller design
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1979-01-01
In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.
NASA Astrophysics Data System (ADS)
Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis
2018-04-01
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis
2018-04-11
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier
2017-01-01
Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178
Eppenhof, Koen A J; Pluim, Josien P W
2018-04-01
Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.
MEDICAL ERROR: CIVIL AND LEGAL ASPECT.
Buletsa, S; Drozd, O; Yunin, O; Mohilevskyi, L
2018-03-01
The scientific article is focused on the research of the notion of medical error, medical and legal aspects of this notion have been considered. The necessity of the legislative consolidation of the notion of «medical error» and criteria of its legal estimation have been grounded. In the process of writing a scientific article, we used the empirical method, general scientific and comparative legal methods. A comparison of the concept of medical error in civil and legal aspects was made from the point of view of Ukrainian, European and American scientists. It has been marked that the problem of medical errors is known since ancient times and in the whole world, in fact without regard to the level of development of medicine, there is no country, where doctors never make errors. According to the statistics, medical errors in the world are included in the first five reasons of death rate. At the same time the grant of medical services practically concerns all people. As a man and his life, health in Ukraine are acknowledged by a higher social value, medical services must be of high-quality and effective. The grant of not quality medical services causes harm to the health, and sometimes the lives of people; it may result in injury or even death. The right to the health protection is one of the fundamental human rights assured by the Constitution of Ukraine; therefore the issue of medical errors and liability for them is extremely relevant. The authors make conclusions, that the definition of the notion of «medical error» must get the legal consolidation. Besides, the legal estimation of medical errors must be based on the single principles enshrined in the legislation and confirmed by judicial practice.
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Dutch population specific sex estimation formulae using the proximal femur.
Colman, K L; Janssen, M C L; Stull, K E; van Rijn, R R; Oostra, R J; de Boer, H H; van der Merwe, A E
2018-05-01
Sex estimation techniques are frequently applied in forensic anthropological analyses of unidentified human skeletal remains. While morphological sex estimation methods are able to endure population differences, the classification accuracy of metric sex estimation methods are population-specific. No metric sex estimation method currently exists for the Dutch population. The purpose of this study is to create Dutch population specific sex estimation formulae by means of osteometric analyses of the proximal femur. Since the Netherlands lacks a representative contemporary skeletal reference population, 2D plane reconstructions, derived from clinical computed tomography (CT) data, were used as an alternative source for a representative reference sample. The first part of this study assesses the intra- and inter-observer error, or reliability, of twelve measurements of the proximal femur. The technical error of measurement (TEM) and relative TEM (%TEM) were calculated using 26 dry adult femora. In addition, the agreement, or accuracy, between the dry bone and CT-based measurements was determined by percent agreement. Only reliable and accurate measurements were retained for the logistic regression sex estimation formulae; a training set (n=86) was used to create the models while an independent testing set (n=28) was used to validate the models. Due to high levels of multicollinearity, only single variable models were created. Cross-validated classification accuracies ranged from 86% to 92%. The high cross-validated classification accuracies indicate that the developed formulae can contribute to the biological profile and specifically in sex estimation of unidentified human skeletal remains in the Netherlands. Furthermore, the results indicate that clinical CT data can be a valuable alternative source of data when representative skeletal collections are unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Taasti, Vicki T.; Michalak, Gregory J.; Hansen, David C.; Deisher, Amanda J.; Kruse, Jon J.; Krauss, Bernhard; Muren, Ludvig P.; Petersen, Jørgen B. B.; McCollough, Cynthia H.
2018-01-01
Dual energy CT (DECT) has been shown, in theoretical and phantom studies, to improve the stopping power ratio (SPR) determination used for proton treatment planning compared to the use of single energy CT (SECT). However, it has not been shown that this also extends to organic tissues. The purpose of this study was therefore to investigate the accuracy of SPR estimation for fresh pork and beef tissue samples used as surrogates of human tissues. The reference SPRs for fourteen tissue samples, which included fat, muscle and femur bone, were measured using proton pencil beams. The tissue samples were subsequently CT scanned using four different scanners with different dual energy acquisition modes, giving in total six DECT-based SPR estimations for each sample. The SPR was estimated using a proprietary algorithm (syngo.via DE Rho/Z Maps, Siemens Healthcare, Forchheim, Germany) for extracting the electron density and the effective atomic number. SECT images were also acquired and SECT-based SPR estimations were performed using a clinical Hounsfield look-up table. The mean and standard deviation of the SPR over large volume-of-interests were calculated. For the six different DECT acquisition methods, the root-mean-square errors (RMSEs) for the SPR estimates over all tissue samples were between 0.9% and 1.5%. For the SECT-based SPR estimation the RMSE was 2.8%. For one DECT acquisition method, a positive bias was seen in the SPR estimates, having a mean error of 1.3%. The largest errors were found in the very dense cortical bone from a beef femur. This study confirms the advantages of DECT-based SPR estimation although good results were also obtained using SECT for most tissues.
Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A
2009-01-05
Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.
Statistical models for estimating daily streamflow in Michigan
Holtschlag, D.J.; Salehi, Habib
1992-01-01
Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.
Technical note: estimating sex using cervical canine odontometrics: a test using a known sex sample.
Hassett, Brenna
2011-11-01
The size of the permanent human canine tooth is one of the few sexually dimorphic features to be present in childhood and as such offers the opportunity to assist in the identification of sex in remains where no other appropriate criteria exist, such as in subadults. However, canine odontometrics are often associated with high levels of interobserver error and can be difficult to access if dentition is in situ. Additionally, appropriate points of measurement can be difficult to identify if the tooth is worn. Alternate measurements of the cervical canine diameters have been proposed as solutions to these issues, but the utility of these measurements in estimating sex has not been conclusively demonstrated. This study uses the buccolingual and mesiodistal cervical diameter of the canines from a known-sex sample from St. Bride's Church, London and a partially known-sex sample from the Old Church, Chelsea, London to classify individuals as male or female. A discriminant function classification using these diameters successfully identifies sex in 93.8% of the known-sex assemblage and 95% of the partially osteologically estimated sex assemblage. It is suggested that cervical canine diameters are highly repeatable measurements with low interobserver error, can be obtained on worn and in situ teeth, and provide as good or better guidance on estimating sex in human remains as standard maximal diameters. Copyright © 2011 Wiley-Liss, Inc.
Royo Sánchez, Ana Cristina; Aguilar Martín, Juan José; Santolaria Mazo, Jorge
2014-12-01
Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1999-01-01
This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.
Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR
Reddy, Ashwan D.; Hawbaker, Todd J.; Wurster, F.; Zhu, Zhiliang; Ward, S.; Newcomb, Doug; Murray, R.
2015-01-01
Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. The fire burned an average of 47 cm deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total carbon loss. We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss under severe fire conditions with substantial peat consumption. However, uncertainties may be more substantial when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.
Stochastic goal-oriented error estimation with memory
NASA Astrophysics Data System (ADS)
Ackmann, Jan; Marotzke, Jochem; Korn, Peter
2017-11-01
We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
Decorrelation of the true and estimated classifier errors in high-dimensional settings.
Hanczar, Blaise; Hua, Jianping; Dougherty, Edward R
2007-01-01
The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. Given the huge number of features and the small number of examples, model validity which refers to the precision of error estimation is a critical issue. Previous studies have addressed this issue via the deviation distribution (estimated error minus true error), in particular, the deterioration of cross-validation precision in high-dimensional settings where feature selection is used to mitigate the peaking phenomenon (overfitting). Because classifier design is based upon random samples, both the true and estimated errors are sample-dependent random variables, and one would expect a loss of precision if the estimated and true errors are not well correlated, so that natural questions arise as to the degree of correlation and the manner in which lack of correlation impacts error estimation. We demonstrate the effect of correlation on error precision via a decomposition of the variance of the deviation distribution, observe that the correlation is often severely decreased in high-dimensional settings, and show that the effect of high dimensionality on error estimation tends to result more from its decorrelating effects than from its impact on the variance of the estimated error. We consider the correlation between the true and estimated errors under different experimental conditions using both synthetic and real data, several feature-selection methods, different classification rules, and three error estimators commonly used (leave-one-out cross-validation, k-fold cross-validation, and .632 bootstrap). Moreover, three scenarios are considered: (1) feature selection, (2) known-feature set, and (3) all features. Only the first is of practical interest; however, the other two are needed for comparison purposes. We will observe that the true and estimated errors tend to be much more correlated in the case of a known feature set than with either feature selection or using all features, with the better correlation between the latter two showing no general trend, but differing for different models.
Error estimates for ice discharge calculated using the flux gate approach
NASA Astrophysics Data System (ADS)
Navarro, F. J.; Sánchez Gámez, P.
2017-12-01
Ice discharge to the ocean is usually estimated using the flux gate approach, in which ice flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional area and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional area requires the availability of ground penetrating radar (GPR) profiles transverse to the ice-flow direction. In this contribution, we use IceBridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional areas estimated using various approaches with the cross-sections estimated from GPR ice-thickness data. These error estimates are combined with those for ice-velocities calculated from Sentinel-1 SAR data, to get the error in ice discharge. Our preliminary results suggest, regarding area, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional area for flight lines close to the central flowline. Furthermore, the results show that regional ice-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional area.
NASA Technical Reports Server (NTRS)
Deloach, R.
1981-01-01
The Fraction Impact Method (FIM), developed by the National Research Council (NRC) for assessing the amount and physiological effect of noise, is described. Here, the number of people exposed to a given level of noise is multiplied by a weighting factor that depends on noise level. It is pointed out that the Aircraft-noise Levels and Annoyance MOdel (ALAMO), recently developed at NASA Langley Research Center, can perform the NRC fractional impact calculations for given modes of operation at any U.S. airport. The sensitivity of these calculations to errors in estimates of population, noise level, and human subjective response is discussed. It is found that a change in source noise causes a substantially smaller change in contour area than would be predicted simply on the basis of inverse square law considerations. Another finding is that the impact calculations are generally less sensitive to source noise errors than to systematic errors in population or subjective response.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada
NASA Astrophysics Data System (ADS)
Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.
2015-08-01
Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.
Natural Language Techniques for Decision Support Based on Patient Complaints
ERIC Educational Resources Information Center
ElMessiry, Adel Magdi
2016-01-01
Complaining is a fundamental human characteristic that has prevailed throughout the ages. We normally complain about something that went wrong. Patient complaints are no exception; they focus on problems that occurred during the episode of care. The Institute of Medicine estimated that each year thousands of patients die due to medical errors. The…
Congenital Disorders of Glycosylation and Intellectual Disability
ERIC Educational Resources Information Center
Wolfe, Lynne A.; Krasnewich, Donna
2013-01-01
The congenital disorders of glycosylation (CDG) are a rapidly growing group of inborn errors of metabolism that result from defects in the synthesis of glycans. Glycosylation is a major post-translational protein modification and an estimated 2% of the human genome encodes proteins for glycosylation. The molecular bases for the current 60…
Forces associated with pneumatic power screwdriver operation: statics and dynamics.
Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G
2003-10-10
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.
A Markerless 3D Computerized Motion Capture System Incorporating a Skeleton Model for Monkeys.
Nakamura, Tomoya; Matsumoto, Jumpei; Nishimaru, Hiroshi; Bretas, Rafael Vieira; Takamura, Yusaku; Hori, Etsuro; Ono, Taketoshi; Nishijo, Hisao
2016-01-01
In this study, we propose a novel markerless motion capture system (MCS) for monkeys, in which 3D surface images of monkeys were reconstructed by integrating data from four depth cameras, and a skeleton model of the monkey was fitted onto 3D images of monkeys in each frame of the video. To validate the MCS, first, estimated 3D positions of body parts were compared between the 3D MCS-assisted estimation and manual estimation based on visual inspection when a monkey performed a shuttling behavior in which it had to avoid obstacles in various positions. The mean estimation error of the positions of body parts (3-14 cm) and of head rotation (35-43°) between the 3D MCS-assisted and manual estimation were comparable to the errors between two different experimenters performing manual estimation. Furthermore, the MCS could identify specific monkey actions, and there was no false positive nor false negative detection of actions compared with those in manual estimation. Second, to check the reproducibility of MCS-assisted estimation, the same analyses of the above experiments were repeated by a different user. The estimation errors of positions of most body parts between the two experimenters were significantly smaller in the MCS-assisted estimation than in the manual estimation. Third, effects of methamphetamine (MAP) administration on the spontaneous behaviors of four monkeys were analyzed using the MCS. MAP significantly increased head movements, tended to decrease locomotion speed, and had no significant effect on total path length. The results were comparable to previous human clinical data. Furthermore, estimated data following MAP injection (total path length, walking speed, and speed of head rotation) correlated significantly between the two experimenters in the MCS-assisted estimation (r = 0.863 to 0.999). The results suggest that the presented MCS in monkeys is useful in investigating neural mechanisms underlying various psychiatric disorders and developing pharmacological interventions.
A Satellite Mortality Study to Support Space Systems Lifetime Prediction
NASA Technical Reports Server (NTRS)
Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory
2013-01-01
Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.
Garcia, Tanya P; Ma, Yanyuan
2017-10-01
We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.
NASA Astrophysics Data System (ADS)
Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.
2005-01-01
Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).
Human Error: A Concept Analysis
NASA Technical Reports Server (NTRS)
Hansen, Frederick D.
2007-01-01
Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. JOe; Ronald L. Boring
Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understandmore » from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.« less
The SACADA database for human reliability and human performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. James Chang; Dennis Bley; Lawrence Criscione
2014-05-01
Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data wouldmore » support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance.« less
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-11-18
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
Smooth empirical Bayes estimation of observation error variances in linear systems
NASA Technical Reports Server (NTRS)
Martz, H. F., Jr.; Lian, M. W.
1972-01-01
A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.
Elimination of Emergency Department Medication Errors Due To Estimated Weights.
Greenwalt, Mary; Griffen, David; Wilkerson, Jim
2017-01-01
From 7/2014 through 6/2015, 10 emergency department (ED) medication dosing errors were reported through the electronic incident reporting system of an urban academic medical center. Analysis of these medication errors identified inaccurate estimated weight on patients as the root cause. The goal of this project was to reduce weight-based dosing medication errors due to inaccurate estimated weights on patients presenting to the ED. Chart review revealed that 13.8% of estimated weights documented on admitted ED patients varied more than 10% from subsequent actual admission weights recorded. A random sample of 100 charts containing estimated weights revealed 2 previously unreported significant medication dosage errors (.02 significant error rate). Key improvements included removing barriers to weighing ED patients, storytelling to engage staff and change culture, and removal of the estimated weight documentation field from the ED electronic health record (EHR) forms. With these improvements estimated weights on ED patients, and the resulting medication errors, were eliminated.
An error-based micro-sensor capture system for real-time motion estimation
NASA Astrophysics Data System (ADS)
Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li
2017-10-01
A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).
Christin, Sylvain; St-Laurent, Martin-Hugues; Berteaux, Dominique
2015-01-01
Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove “bad” locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada), with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements), the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location error needs additional research. PMID:26545245
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.
2015-01-01
Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
Pathak, Biswajit; Boruah, Bosanta R
2017-12-01
Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.
NASA Technical Reports Server (NTRS)
Chatterji, Gano
2011-01-01
Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-01-01
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581
Optimal interpolation schemes to constrain pmPM2.5 in regional modeling over the United States
NASA Astrophysics Data System (ADS)
Sousan, Sinan Dhia Jameel
This thesis presents the use of data assimilation with optimal interpolation (OI) to develop atmospheric aerosol concentration estimates for the United States at high spatial and temporal resolutions. Concentration estimates are highly desirable for a wide range of applications, including visibility, climate, and human health. OI is a viable data assimilation method that can be used to improve Community Multiscale Air Quality (CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and liquid particles with diameters less than or equal to 2.5 µm suspended in the gas phase. OI was employed by combining model estimates with satellite and surface measurements. The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ with aerosol optical depth (AOD) measured by MODIS and AERONET over the continental United States for 2002. Posterior model concentrations generated by the OI algorithm were compared with surface PM2.5 measurements to evaluate a number of possible data assimilation parameters, including model error, observation error, and temporal averaging assumptions. Evaluation was conducted separately for six geographic U.S. regions in 2002. Variability in model error and MODIS biases limited the effectiveness of a single data assimilation system for the entire continental domain. The best combinations of four settings and three averaging schemes led to a domain-averaged improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the forward model skill due to biases and outliers in MODIS AOD. Surface data assimilation combined 36 × 36 km aerosol concentrations from the CMAQ model with surface PM2.5 measurements over the continental United States for 2002. The model error covariance matrix was constructed by using the observational method. The observation error covariance matrix included site representation that scaled the observation error by land use (i.e. urban or rural locations). In theory, urban locations should have less effect on surrounding areas than rural sites, which can be controlled using site representation error. The annual evaluations showed substantial improvements in model performance with increases in the correlation coefficient from 0.36 (prior) to 0.76 (posterior), and decreases in the fractional error from 0.43 (prior) to 0.15 (posterior). In addition, the normalized mean error decreased from 0.36 (prior) to 0.13 (posterior), and the RMSE decreased from 5.39 µg m-3 (prior) to 2.32 µg m-3 (posterior). OI decreased model bias for both large spatial areas and point locations, and could be extended to more advanced data assimilation methods. The current work will be applied to a five year (2000-2004) CMAQ simulation aimed at improving aerosol model estimates. The posterior model concentrations will be used to inform exposure studies over the U.S. that relate aerosol exposure to mortality and morbidity rates. Future improvements for the OI techniques used in the current study will include combining both surface and satellite data to improve posterior model estimates. Satellite data have high spatial and temporal resolutions in comparison to surface measurements, which are scarce but more accurate than model estimates. The satellite data are subject to noise affected by location and season of retrieval. The implementation of OI to combine satellite and surface data sets has the potential to improve posterior model estimates for locations that have no direct measurements.
Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals
Hodgkins, Glenn A.; Martin, Gary R.
2003-01-01
This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.
Gao, Nuo; Zhu, S A; He, Bin
2005-06-07
We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
Estimating Gestational Age From Ultrasound Fetal Biometrics.
Skupski, Daniel W; Owen, John; Kim, Sungduk; Fuchs, Karin M; Albert, Paul S; Grantz, Katherine L
2017-08-01
To compare the accuracy of a new formula with one developed in 1984 (and still in common use) and to develop and compare racial and ethnic-specific and racial and ethnic-neutral formulas. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singletons was a prospective cohort study that recruited women in four self-reported racial-ethnic groups-non-Hispanic black, Hispanic, non-Hispanic white, and Asian-with singleton gestations from 12 U.S. centers (2009-2013). Women with a certain last menstrual period confirmed by first-trimester ultrasonogram had longitudinal fetal measurements by credentialed study ultrasonographers blinded to the gestational age at their five follow-up visits. Regression analyses were performed with linear mixed models to develop gestational age estimating formulas. Repeated cross-validation was used for validation. The estimation error was defined as the mean squared difference between the estimated and observed gestational age and was used to compare the formulas' accuracy. The new formula estimated the gestational age (±2 SD) within ±7 days from 14 to 20 weeks of gestation, ±10 days from 21 to 27 weeks of gestation, and ±17 days from 28 to 40 weeks of gestation. The new formula performed significantly better than a formula developed in 1984 with an estimation error of 10.4 compared with 11.2 days from 21 to 27 weeks of gestation and 17.0 compared with 19.8 days at 28-40 weeks of gestation, respectively. Racial and ethnic-specific formulas did not outperform the racial and ethnic-neutral formula. The NICHD gestational age estimation formula is associated with smaller errors than a well-established historical formula. Racial and ethnic-specific formulas are not superior to a racial-ethnic-neutral one.
Why GPS makes distances bigger than they are
Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried
2016-01-01
ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610
NASA Technical Reports Server (NTRS)
Vanlunteren, A.
1977-01-01
A previously described parameter estimation program was applied to a number of control tasks, each involving a human operator model consisting of more than one describing function. One of these experiments is treated in more detail. It consisted of a two dimensional tracking task with identical controlled elements. The tracking errors were presented on one display as two vertically moving horizontal lines. Each loop had its own manipulator. The two forcing functions were mutually independent and consisted each of 9 sine waves. A human operator model was chosen consisting of 4 describing functions, thus taking into account possible linear cross couplings. From the Fourier coefficients of the relevant signals the model parameters were estimated after alignment, averaging over a number of runs and decoupling. The results show that for the elements in the main loops the crossover model applies. A weak linear cross coupling existed with the same dynamics as the elements in the main loops but with a negative sign.
An error taxonomy system for analysis of haemodialysis incidents.
Gu, Xiuzhu; Itoh, Kenji; Suzuki, Satoshi
2014-12-01
This paper describes the development of a haemodialysis error taxonomy system for analysing incidents and predicting the safety status of a dialysis organisation. The error taxonomy system was developed by adapting an error taxonomy system which assumed no specific specialty to haemodialysis situations. Its application was conducted with 1,909 incident reports collected from two dialysis facilities in Japan. Over 70% of haemodialysis incidents were reported as problems or complications related to dialyser, circuit, medication and setting of dialysis condition. Approximately 70% of errors took place immediately before and after the four hours of haemodialysis therapy. Error types most frequently made in the dialysis unit were omission and qualitative errors. Failures or complications classified to staff human factors, communication, task and organisational factors were found in most dialysis incidents. Device/equipment/materials, medicine and clinical documents were most likely to be involved in errors. Haemodialysis nurses were involved in more incidents related to medicine and documents, whereas dialysis technologists made more errors with device/equipment/materials. This error taxonomy system is able to investigate incidents and adverse events occurring in the dialysis setting but is also able to estimate safety-related status of an organisation, such as reporting culture. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Estimation of the center of rotation using wearable magneto-inertial sensors.
Crabolu, M; Pani, D; Raffo, L; Cereatti, A
2016-12-08
Determining the center of rotation (CoR) of joints is fundamental to the field of human movement analysis. CoR can be determined using a magneto-inertial measurement unit (MIMU) using a functional approach requiring a calibration exercise. We systematically investigated the influence of different experimental conditions that can affect precision and accuracy while estimating the CoR, such as (a) angular joint velocity, (b) distance between the MIMU and the CoR, (c) type of the joint motion implemented, (d) amplitude of the angular range of motion, (e) model of the MIMU used for data recording, (f) amplitude of additive noise on inertial signals, and (g) amplitude of the errors in the MIMU orientation. The evaluation process was articulated at three levels: assessment through experiments using a mechanical device, mathematical simulation, and an analytical propagation model of the noise. The results reveal that joint angular velocity significantly impacted CoR identification, and hence, slow joint movement should be avoided. An accurate estimation of the MIMU orientation is also fundamental for accurately subtracting the contribution owing to gravity to obtain the coordinate acceleration. The unit should be preferably attached close to the CoR, but both type and range of motion do not appear to be critical. When the proposed methodology is correctly implemented, error in the CoR estimates is expected to be <3mm (best estimates=2±0.5mm). The findings of the present study foster the need to further investigate this methodology for application in human subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
A mathematical model of diurnal variations in human plasma melatonin levels
NASA Technical Reports Server (NTRS)
Brown, E. N.; Choe, Y.; Shanahan, T. L.; Czeisler, C. A.
1997-01-01
Studies in animals and humans suggest that the diurnal pattern in plasma melatonin levels is due to the hormone's rates of synthesis, circulatory infusion and clearance, circadian control of synthesis onset and offset, environmental lighting conditions, and error in the melatonin immunoassay. A two-dimensional linear differential equation model of the hormone is formulated and is used to analyze plasma melatonin levels in 18 normal healthy male subjects during a constant routine. Recently developed Bayesian statistical procedures are used to incorporate correctly the magnitude of the immunoassay error into the analysis. The estimated parameters [median (range)] were clearance half-life of 23.67 (14.79-59.93) min, synthesis onset time of 2206 (1940-0029), synthesis offset time of 0621 (0246-0817), and maximum N-acetyltransferase activity of 7.17(2.34-17.93) pmol x l(-1) x min(-1). All were in good agreement with values from previous reports. The difference between synthesis offset time and the phase of the core temperature minimum was 1 h 15 min (-4 h 38 min-2 h 43 min). The correlation between synthesis onset and the dim light melatonin onset was 0.93. Our model provides a more physiologically plausible estimate of the melatonin synthesis onset time than that given by the dim light melatonin onset and the first reliable means of estimating the phase of synthesis offset. Our analysis shows that the circadian and pharmacokinetics parameters of melatonin can be reliably estimated from a single model.
Body mass prediction from skeletal frame size in elite athletes.
Ruff, C B
2000-12-01
Body mass can be estimated from measures of skeletal frame size (stature and bi-iliac (maximum pelvic) breadth) fairly accurately in modern human populations. However, it is not clear whether such a technique will lead to systematic biases in body mass estimation when applied to earlier hominins. Here the stature/bi-iliac method is tested, using data available for modern Olympic and Olympic-caliber athletes, with the rationale that these individuals may be more representative of the general physique and degree of physical conditioning characteristic of earlier populations. The average percent prediction error of body mass among both male and female athletes is less than 3%, with males slightly underestimated and females slightly overestimated. Among males, the ratio of shoulder to hip (biacromial/bi-iliac) breadth is correlated with prediction error, while lower limb/trunk length has only a weak inconsistent effect. In both sexes, athletes in "weight" events (e.g. , shot put, weight-lifting), which emphasize strength, are underestimated, while those in more endurance-related events (e.g., long distance running) are overestimated. It is likely that the environmental pressures facing earlier hominins would have favored more generalized physiques adapted for a combination of strength, speed, agility, and endurance. The events most closely approximating these requirements in Olympic athletes are the decathlon, pentathlon, and wrestling, all of which have average percent prediction errors of body mass of 5% or less. Thus, "morphometric" estimation of body mass from skeletal frame size appears to work reasonably well in both "normal" and highly athletic modern humans, increasing confidence that the technique will also be applicable to earlier hominins. Copyright 2000 Wiley-Liss, Inc.
Adjusting for radiotelemetry error to improve estimates of habitat use.
Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant
2002-01-01
Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Two ultraviolet radiation datasets that cover China
NASA Astrophysics Data System (ADS)
Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo
2017-07-01
Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
Using satellite radiotelemetry data to delineate and manage wildlife populations
Amstrup, Steven C.; McDonald, T.L.; Durner, George M.
2004-01-01
The greatest promise of radiotelemetry always has been a better understanding of animal movements. Telemetry has helped us know when animals are active, how active they are, how far and how fast they move, the geographic areas they occupy, and whether individuals vary in these traits. Unfortunately, the inability to estimate the error in animals utilization distributions (UDs), has prevented probabilistic linkage of movements data, which are always retrospective, with future management actions. We used the example of the harvested population of polar bears (Ursus maritimus) in the Southern Beaufort Sea to illustrate a method that provides that linkage. We employed a 2-dimensional Gaussian kernel density estimator to smooth and scale frequencies of polar bear radio locations within cells of a grid overlying our study area. True 2-dimensional smoothing allowed us to create accurate descriptions of the UDs of individuals and groups of bears. We used a new method of clustering, based upon the relative use collared bears made of each cell in our grid, to assign individual animals to populations. We applied the fast Fourier transform to make bootstrapped estimates of the error in UDs computationally feasible. Clustering and kernel smoothing identified 3 populations of polar bears in the region between Wrangel Island, Russia, and Banks Island, Canada. The relative probability of occurrence of animals from each population varied significantly among grid cells distributed across the study area. We displayed occurrence probabilities as contour maps wherein each contour line corresponded with a change in relative probability. Only at the edges of our study area and in some offshore regions were bootstrapped estimates of error in occurrence probabilities too high to allow prediction. Error estimates, which also were displayed as contours, allowed us to show that occurrence probabilities did not vary by season. Near Barrow, Alaska, 50% of bears observed are predicted to be from the Chukchi Sea population and 50% from the Southern Beaufort Sea population. At Tuktoyaktuk, Northwest Territories, Canada, 50% are from the Southern Beaufort Sea and 50% from the Northern Beaufort Sea population. The methods described here will aid managers of all wildlife that can be studied by telemetry to allocate harvests and other human perturbations to the appropriate populations, make risk assessments, and predict impacts of human activities. They will aid researchers by providing the refined descriptions of study populations that are necessary for population estimation and other investigative tasks. Arctic, Beaufort Sea, boundaries, clustering, Fourier transform, kernel, management, polar bears, population delineation, radiotelemetry, satellite, smoothing, Ursus maritimus
2000-01-01
Material for Amour System SORs Humaruystems Incorporated • Clothing and Equipment level Estimated contracting cost- $15K 2. Construct and distribute...for Amour System SORs Huma~stems Incorporated • vehicle level • Troop leader level • Squadron OC level 1. Tasks to identifY the human error...During the period 1994 to 1999 a number of activities conducted by the Defence Research and Development Branch (DRDB) focused on the level ofHSI
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Software for Quantifying and Simulating Microsatellite Genotyping Error
Johnson, Paul C.D.; Haydon, Daniel T.
2007-01-01
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
Obstetric Neuraxial Drug Administration Errors: A Quantitative and Qualitative Analytical Review.
Patel, Santosh; Loveridge, Robert
2015-12-01
Drug administration errors in obstetric neuraxial anesthesia can have devastating consequences. Although fully recognizing that they represent "only the tip of the iceberg," published case reports/series of these errors were reviewed in detail with the aim of estimating the frequency and the nature of these errors. We identified case reports and case series from MEDLINE and performed a quantitative analysis of the involved drugs, error setting, source of error, the observed complications, and any therapeutic interventions. We subsequently performed a qualitative analysis of the human factors involved and proposed modifications to practice. Twenty-nine cases were identified. Various drugs were given in error, but no direct effects on the course of labor, mode of delivery, or neonatal outcome were reported. Four maternal deaths from the accidental intrathecal administration of tranexamic acid were reported, all occurring after delivery of the fetus. A range of hemodynamic and neurologic signs and symptoms were noted, but the most commonly reported complication was the failure of the intended neuraxial anesthetic technique. Several human factors were present; most common factors were drug storage issues and similar drug appearance. Four practice recommendations were identified as being likely to have prevented the errors. The reported errors exposed latent conditions within health care systems. We suggest that the implementation of the following processes may decrease the risk of these types of drug errors: (1) Careful reading of the label on any drug ampule or syringe before the drug is drawn up or injected; (2) labeling all syringes; (3) checking labels with a second person or a device (such as a barcode reader linked to a computer) before the drug is drawn up or administered; and (4) use of non-Luer lock connectors on all epidural/spinal/combined spinal-epidural devices. Further study is required to determine whether routine use of these processes will reduce drug error.
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
On modeling human reliability in space flights - Redundancy and recovery operations
NASA Astrophysics Data System (ADS)
Aarset, M.; Wright, J. F.
The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.
Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2016-09-01
An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, X. G.; Wang, J. Q.; Zhou, H. Y.
2013-05-01
The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.
Probabilistic models in human sensorimotor control
Wolpert, Daniel M.
2009-01-01
Sensory and motor uncertainty form a fundamental constraint on human sensorimotor control. Bayesian decision theory (BDT) has emerged as a unifying framework to understand how the central nervous system performs optimal estimation and control in the face of such uncertainty. BDT has two components: Bayesian statistics and decision theory. Here we review Bayesian statistics and show how it applies to estimating the state of the world and our own body. Recent results suggest that when learning novel tasks we are able to learn the statistical properties of both the world and our own sensory apparatus so as to perform estimation using Bayesian statistics. We review studies which suggest that humans can combine multiple sources of information to form maximum likelihood estimates, can incorporate prior beliefs about possible states of the world so as to generate maximum a posteriori estimates and can use Kalman filter-based processes to estimate time-varying states. Finally, we review Bayesian decision theory in motor control and how the central nervous system processes errors to determine loss functions and optimal actions. We review results that suggest we plan movements based on statistics of our actions that result from signal-dependent noise on our motor outputs. Taken together these studies provide a statistical framework for how the motor system performs in the presence of uncertainty. PMID:17628731
A Simple Noise Correction Scheme for Diffusional Kurtosis Imaging
Glenn, G. Russell; Tabesh, Ali; Jensen, Jens H.
2014-01-01
Purpose Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is proposed to remove the majority of the noise bias in the estimated diffusional kurtosis. Methods Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived parameter estimates. Results As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise correction is also shown to improve diffusional kurtosis estimates derived from measurements made with low SNR. Conclusion The proposed correction technique removes the majority of noise bias from diffusional kurtosis estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms. PMID:25172990
Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2014-01-01
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
The economics of health care quality and medical errors.
Andel, Charles; Davidow, Stephen L; Hollander, Mark; Moreno, David A
2012-01-01
Hospitals have been looking for ways to improve quality and operational efficiency and cut costs for nearly three decades, using a variety of quality improvement strategies. However, based on recent reports, approximately 200,000 Americans die from preventable medical errors including facility-acquired conditions and millions may experience errors. In 2008, medical errors cost the United States $19.5 billion. About 87 percent or $17 billion were directly associated with additional medical cost, including: ancillary services, prescription drug services, and inpatient and outpatient care, according to a study sponsored by the Society for Actuaries and conducted by Milliman in 2010. Additional costs of $1.4 billion were attributed to increased mortality rates with $1.1 billion or 10 million days of lost productivity from missed work based on short-term disability claims. The authors estimate that the economic impact is much higher, perhaps nearly $1 trillion annually when quality-adjusted life years (QALYs) are applied to those that die. Using the Institute of Medicine's (IOM) estimate of 98,000 deaths due to preventable medical errors annually in its 1998 report, To Err Is Human, and an average of ten lost years of life at $75,000 to $100,000 per year, there is a loss of $73.5 billion to $98 billion in QALYs for those deaths--conservatively. These numbers are much greater than those we cite from studies that explore the direct costs of medical errors. And if the estimate of a recent Health Affairs article is correct-preventable death being ten times the IOM estimate-the cost is $735 billion to $980 billion. Quality care is less expensive care. It is better, more efficient, and by definition, less wasteful. It is the right care, at the right time, every time. It should mean that far fewer patients are harmed or injured. Obviously, quality care is not being delivered consistently throughout U.S. hospitals. Whatever the measure, poor quality is costing payers and society a great deal. However, health care leaders and professionals are focusing on quality and patient safety in ways they never have before because the economics of quality have changed substantially.
NASA Technical Reports Server (NTRS)
Fisher, Brad; Wolff, David B.
2010-01-01
Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.
Human Error In Complex Systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1991-01-01
Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.
Calibration of remotely sensed proportion or area estimates for misclassification error
Raymond L. Czaplewski; Glenn P. Catts
1992-01-01
Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...
Challenges in leveraging existing human performance data for quantifying the IDHEAS HRA method
Liao, Huafei N.; Groth, Katrina; Stevens-Adams, Susan
2015-07-29
Our article documents an exploratory study for collecting and using human performance data to inform human error probability (HEP) estimates for a new human reliability analysis (HRA) method, the IntegrateD Human Event Analysis System (IDHEAS). The method was based on cognitive models and mechanisms underlying human behaviour and employs a framework of 14 crew failure modes (CFMs) to represent human failures typical for human performance in nuclear power plant (NPP) internal, at-power events [1]. A decision tree (DT) was constructed for each CFM to assess the probability of the CFM occurring in different contexts. Data needs for IDHEAS quantification aremore » discussed. Then, the data collection framework and process is described and how the collected data were used to inform HEP estimation is illustrated with two examples. Next, five major technical challenges are identified for leveraging human performance data for IDHEAS quantification. Furthermore, these challenges reflect the data needs specific to IDHEAS. More importantly, they also represent the general issues with current human performance data and can provide insight for a path forward to support HRA data collection, use, and exchange for HRA method development, implementation, and validation.« less
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Astrophysics Data System (ADS)
Wu, Heng
2000-10-01
In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2016-01-01
This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.
Mejia, Amanda F; Nebel, Mary Beth; Barber, Anita D; Choe, Ann S; Pekar, James J; Caffo, Brian S; Lindquist, Martin A
2018-05-15
Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Eppenhof, Koen A. J.; Pluim, Josien P. W.
2017-02-01
Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
Quantifying light exposure patterns in young adult students
NASA Astrophysics Data System (ADS)
Alvarez, Amanda A.; Wildsoet, Christine F.
2013-08-01
Exposure to bright light appears to be protective against myopia in both animals (chicks, monkeys) and children, but quantitative data on human light exposure are limited. In this study, we report on a technique for quantifying light exposure using wearable sensors. Twenty-seven young adult subjects wore a light sensor continuously for two weeks during one of three seasons, and also completed questionnaires about their visual activities. Light data were analyzed with respect to refractive error and season, and the objective sensor data were compared with subjects' estimates of time spent indoors and outdoors. Subjects' estimates of time spent indoors and outdoors were in poor agreement with durations reported by the sensor data. The results of questionnaire-based studies of light exposure should thus be interpreted with caution. The role of light in refractive error development should be investigated using multiple methods such as sensors to complement questionnaires.
Quantifying light exposure patterns in young adult students
Alvarez, Amanda A.; Wildsoet, Christine F.
2014-01-01
Exposure to bright light appears to be protective against myopia in both animals (chicks, monkeys) and children, but quantitative data on human light exposure are limited. In this study, we report on a technique for quantifying light exposure using wearable sensors. Twenty-seven young adult subjects wore a light sensor continuously for two weeks during one of three seasons, and also completed questionnaires about their visual activities. Light data were analyzed with respect to refractive error and season, and the objective sensor data were compared with subjects’ estimates of time spent indoors and outdoors. Subjects’ estimates of time spent indoors and outdoors were in poor agreement with durations reported by the sensor data. The results of questionnaire-based studies of light exposure should thus be interpreted with caution. The role of light in refractive error development should be investigated using multiple methods such as sensors to complement questionnaires. PMID:25342873
Real-time recognition of feedback error-related potentials during a time-estimation task.
Lopez-Larraz, Eduardo; Iturrate, Iñaki; Montesano, Luis; Minguez, Javier
2010-01-01
Feedback error-related potentials are a promising brain process in the field of rehabilitation since they are related to human learning. Due to the fact that many therapeutic strategies rely on the presentation of feedback stimuli, potentials generated by these stimuli could be used to ameliorate the patient's progress. In this paper we propose a method that can identify, in real-time, feedback evoked potentials in a time-estimation task. We have tested our system with five participants in two different days with a separation of three weeks between them, achieving a mean single-trial detection performance of 71.62% for real-time recognition, and 78.08% in offline classification. Additionally, an analysis of the stability of the signal between the two days is performed, suggesting that the feedback responses are stable enough to be used without the needing of training again the user.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Regression-assisted deconvolution.
McIntyre, Julie; Stefanski, Leonard A
2011-06-30
We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.
Understanding human management of automation errors
McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.
2013-01-01
Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042
Understanding human management of automation errors.
McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D
2014-01-01
Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance.
Determination of the refractive index of dehydrated cells by means of digital holographic microscopy
NASA Astrophysics Data System (ADS)
Belashov, A. V.; Zhikhoreva, A. A.; Bespalov, V. G.; Vasyutinskii, O. S.; Zhilinskaya, N. T.; Novik, V. I.; Semenova, I. V.
2017-10-01
Spatial distributions of the integral refractive index in dehydrated cells of human oral cavity epithelium are obtained by means of digital holographic microscopy, and mean refractive index of the cells is determined. The statistical analysis of the data obtained is carried out, and absolute errors of the method are estimated for different experimental conditions.
NASA Astrophysics Data System (ADS)
Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun
2018-03-01
Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.
Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
Wouda, Frank J.; Giuberti, Matteo; Bellusci, Giovanni; Veltink, Peter H.
2016-01-01
Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors. In this work, we contribute to this field by analyzing the capabilities of using either artificial neural networks (eager learning) or nearest neighbor search (lazy learning) for such a problem. Sparse orientation features, resulting from sensor fusion of only five inertial measurement units with magnetometers, are mapped to full-body poses. Both eager and lazy learning algorithms are shown to be capable of constructing this mapping. The full-body output poses are visually plausible with an average joint position error of approximately 7 cm, and average joint angle error of 7∘. Additionally, the effects of magnetic disturbances typical in orientation tracking on the estimation of full-body poses was also investigated, where nearest neighbor search showed better performance for such disturbances. PMID:27983676
Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
Wouda, Frank J; Giuberti, Matteo; Bellusci, Giovanni; Veltink, Peter H
2016-12-15
Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors. In this work, we contribute to this field by analyzing the capabilities of using either artificial neural networks (eager learning) or nearest neighbor search (lazy learning) for such a problem. Sparse orientation features, resulting from sensor fusion of only five inertial measurement units with magnetometers, are mapped to full-body poses. Both eager and lazy learning algorithms are shown to be capable of constructing this mapping. The full-body output poses are visually plausible with an average joint position error of approximately 7 cm, and average joint angle error of 7 ∘ . Additionally, the effects of magnetic disturbances typical in orientation tracking on the estimation of full-body poses was also investigated, where nearest neighbor search showed better performance for such disturbances.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
The Sensitivity of Adverse Event Cost Estimates to Diagnostic Coding Error
Wardle, Gavin; Wodchis, Walter P; Laporte, Audrey; Anderson, Geoffrey M; Baker, Ross G
2012-01-01
Objective To examine the impact of diagnostic coding error on estimates of hospital costs attributable to adverse events. Data Sources Original and reabstracted medical records of 9,670 complex medical and surgical admissions at 11 hospital corporations in Ontario from 2002 to 2004. Patient specific costs, not including physician payments, were retrieved from the Ontario Case Costing Initiative database. Study Design Adverse events were identified among the original and reabstracted records using ICD10-CA (Canadian adaptation of ICD10) codes flagged as postadmission complications. Propensity score matching and multivariate regression analysis were used to estimate the cost of the adverse events and to determine the sensitivity of cost estimates to diagnostic coding error. Principal Findings Estimates of the cost of the adverse events ranged from $16,008 (metabolic derangement) to $30,176 (upper gastrointestinal bleeding). Coding errors caused the total cost attributable to the adverse events to be underestimated by 16 percent. The impact of coding error on adverse event cost estimates was highly variable at the organizational level. Conclusions Estimates of adverse event costs are highly sensitive to coding error. Adverse event costs may be significantly underestimated if the likelihood of error is ignored. PMID:22091908
NASA Astrophysics Data System (ADS)
Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu
2018-02-01
Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.
Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios
2017-03-01
Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.
Heritability analyses of IQ scores: science or numerology?
Layzer, D
1974-03-29
Estimates of IQ heritability are subject to a variety of systematic errors. The IQ scores themselves contain uncontrollable, systematic errors of unknown magnitude. These arise because IQ scores, unlike conventional physical and biological measurements, have a purely instrumental definition. The effects of these errors are apparent in the very large discrepancies among IQ correlations measured by different investigators. Genotype-environment correlations, whose effects can sometimes be minimized, if not wholly eliminated, in experiments with plants and animals, are nearly always important in human populations. The absence of significant effects arising from genotype-environment correlations is a necessary condition for the applicability of conventional heritability analysis to phenotypically plastic traits. When this condition fails, no quantitative inferences about heritability can be drawn from measured phenotypic variances and covariances, except under special conditions that are unlikely to be satisfied by phenotypically plastic traits in human populations. Inadequate understanding of the precise environmental factors relevant to the development of specific behavioral traits is an important source of systematic errors, as is the inability to allow adequately for the effects of assortative mating and gene-gene interaction. Systematic cultural differences and differences in psychological environment among races and among sociocco-nomic groups vitiate any attempt to draw from IQ data meaningful inferences about genetic differences. Estimates based on phenotypic correlations between separated monozygotic twins-usually considered to be the most reliable kind of estimates-are vitiated by systematic errors inherent in IQ tests, by the presence of genotype-environment correlation, and by the lack of detailed understanding of environmental factors relevant to the development of behavioral traits. Other kinds of estimates are beset, in addition, by systematic errors arising from incomplete allowance for the effects of assortative mating and from gene-gene interactions. The only potentially useful data are phenotypic correlations between unrelated foster children reared together, which could, in principle, yield lower limits for e(2). Available data indicate that, for unrelated foster children reared together, the broad heritability (h(2)) may lie between 0.0 and 0.5. This estimate does not apply to populations composed of children reared by their biological parents or by near relatives. For such populations the heritability of IQ remains undefined. The only data that might yield meaningful estimates ot narrow heritability are phenotypic correlations between half-sibs reared in statistically independent environments. No useful data of this kind are available. Intervention studies like Heber's Milwaukee Project afford an alternative and comparatively direct way of studying the plasticity of cognitive and other behavioral traits in human populations. Results obtained so far strongly suggest that the development of cognitive skills is highly sensitive to variations in environmental factors. These conclusions have three obvious implications for the broader issues mentioned at the beginning of this article. 1) Published analyses of IQ data provide no support whatever for Jensen's thesis that inequalities in cognitive performance are due largely to genetic differences. As Lewontin (8) has clearly shown, the value of the broad heritability of IQ is in any case only marginally relevant to this question. I have argued that conventional estimates of the broad heritability of IQ are invalid and that the only data on which potentially valid estimates might be based are consistent with a broad heritability of less than 0.5. On the other hand, intervention studies, if their findings prove to be replicable, would directly establish that, under suitable conditions, the offspring of parents whose cognitive skills are so poorly developed as to exclude them from all but the most menial occupations can achieve what are regarded as distinctly high levels of cognitive performance. Thus, despite the fact that children differ suibstantially in cognitive aptitudes and appetites, and despite the very high probability that these differences have a substantial genetic component, available scientific evidence strongly suggests that environmental factors are responsible for the failure of children not suffering from specific neurological disorders to achieve adequate levels of cognitive performance. 2) Under prevailing social conditions, no valid inferences can be drawn from IQ data concerning systematic genetic differences among races or socioeconomic groups. Research along present lines directed toward this end-whatever its ethical status-is scientifically worthless. 3) Since there are no suitable data for estimating the narrow heritability of IQ, it seems pointless to speculate about the prospects for a hereditary meritocracy based on IQ.
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
NASA Technical Reports Server (NTRS)
Todling, Ricardo
2015-01-01
Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.
The effect of saccade metrics on the corollary discharge contribution to perceived eye location
Bansal, Sonia; Jayet Bray, Laurence C.; Peterson, Matthew S.
2015-01-01
Corollary discharge (CD) is hypothesized to provide the movement information (direction and amplitude) required to compensate for the saccade-induced disruptions to visual input. Here, we investigated to what extent these conveyed metrics influence perceptual stability in human subjects with a target-displacement detection task. Subjects made saccades to targets located at different amplitudes (4°, 6°, or 8°) and directions (horizontal or vertical). During the saccade, the target disappeared and then reappeared at a shifted location either in the same direction or opposite to the movement vector. Subjects reported the target displacement direction, and from these reports we determined the perceptual threshold for shift detection and estimate of target location. Our results indicate that the thresholds for all amplitudes and directions generally scaled with saccade amplitude. Additionally, subjects on average produced hypometric saccades with an estimated CD gain <1. Finally, we examined the contribution of different error signals to perceptual performance, the saccade error (movement-to-movement variability in saccade amplitude) and visual error (distance between the fovea and the shifted target location). Perceptual judgment was not influenced by the fluctuations in movement amplitude, and performance was largely the same across movement directions for different magnitudes of visual error. Importantly, subjects reported the correct direction of target displacement above chance level for very small visual errors (<0.75°), even when these errors were opposite the target-shift direction. Collectively, these results suggest that the CD-based compensatory mechanisms for visual disruptions are highly accurate and comparable for saccades with different metrics. PMID:25761955
A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors.
Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Tognetti, Alessandro
2016-04-23
Patient-specific performance assessment of arm movements in daily life activities is fundamental for neurological rehabilitation therapy. In most applications, the shoulder movement is simplified through a socket-ball joint, neglecting the movement of the scapular-thoracic complex. This may lead to significant errors. We propose an innovative bi-articular model of the human shoulder for estimating the position of the hand in relation to the sternum. The model takes into account both the scapular-toracic and gleno-humeral movements and their ratio governed by the scapular-humeral rhythm, fusing the information of inertial and textile-based strain sensors. To feed the reconstruction algorithm based on the bi-articular model, an ad-hoc sensing shirt was developed. The shirt was equipped with two inertial measurement units (IMUs) and an integrated textile strain sensor. We built the bi-articular model starting from the data obtained in two planar movements (arm abduction and flexion in the sagittal plane) and analysing the error between the reference data - measured through an optical reference system - and the socket-ball approximation of the shoulder. The 3D model was developed by extending the behaviour of the kinematic chain revealed in the planar trajectories through a parameter identification that takes into account the body structure of the subject. The bi-articular model was evaluated in five subjects in comparison with the optical reference system. The errors were computed in terms of distance between the reference position of the trochlea (end-effector) and the correspondent model estimation. The introduced method remarkably improved the estimation of the position of the trochlea (and consequently the estimation of the hand position during reaching activities) reducing position errors from 11.5 cm to 1.8 cm. Thanks to the developed bi-articular model, we demonstrated a reliable estimation of the upper arm kinematics with a minimal sensing system suitable for daily life monitoring of recovery.
Human operator response to error-likely situations in complex engineering systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1988-01-01
The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.
An error analysis perspective for patient alignment systems.
Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann
2013-09-01
This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.
Development and Evaluation of Algorithms for Breath Alcohol Screening.
Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael
2016-04-01
Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
Spatial calibration of an optical see-through head mounted display
Gilson, Stuart J.; Fitzgibbon, Andrew W.; Glennerster, Andrew
2010-01-01
We present here a method for calibrating an optical see-through Head Mounted Display (HMD) using techniques usually applied to camera calibration (photogrammetry). Using a camera placed inside the HMD to take pictures simultaneously of a tracked object and features in the HMD display, we could exploit established camera calibration techniques to recover both the intrinsic and extrinsic properties of the HMD (width, height, focal length, optic centre and principal ray of the display). Our method gives low re-projection errors and, unlike existing methods, involves no time-consuming and error-prone human measurements, nor any prior estimates about the HMD geometry. PMID:18599125
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2015-03-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2014-11-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations
NASA Astrophysics Data System (ADS)
Loseille, A.; Dervieux, A.; Alauzet, F.
2010-04-01
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.
Human error and human factors engineering in health care.
Welch, D L
1997-01-01
Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach
NASA Astrophysics Data System (ADS)
Bähr, Hermann; Hanssen, Ramon F.
2012-12-01
An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.
Kinnamon, Daniel D; Lipsitz, Stuart R; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L
2010-04-01
The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not.
Cheng, Ching-Min; Hwang, Sheue-Ling
2015-03-01
This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Optimal post-experiment estimation of poorly modeled dynamic systems
NASA Technical Reports Server (NTRS)
Mook, D. Joseph
1988-01-01
Recently, a novel strategy for post-experiment state estimation of discretely-measured dynamic systems has been developed. The method accounts for errors in the system dynamic model equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic model error terms do not require the usual process noise assumptions of zero-mean, symmetrically distributed random disturbances. Instead, the model error terms require no prior assumptions other than piecewise continuity. The resulting state estimates are more accurate than filters for applications in which the dynamic model error clearly violates the typical process noise assumptions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model error, in addition to the states, are obtained as part of the solution of a two-point boundary value problem, and may be exploited for numerous reasons. In this paper, the basic technique is explained, and several example applications are given. Included among the examples are both state estimation and exploitation of the model error estimates.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug
2011-05-01
Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.
Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan
2014-01-01
Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880
Photos provide information on age, but not kinship, of Andean bear
Zug, Becky; Appleton, Robyn D.; Velez-Liendo, Ximena; Paisley, Susanna; LaCombe, Corrin
2015-01-01
Using photos of captive Andean bears of known age and pedigree, and photos of wild Andean bear cubs <6 months old, we evaluated the degree to which visual information may be used to estimate bears’ ages and assess their kinship. We demonstrate that the ages of Andean bear cubs ≤6 months old may be estimated from their size relative to their mothers with an average error of <0.01 ± 13.2 days (SD; n = 14), and that ages of adults ≥10 years old may be estimated from the proportion of their nose that is pink with an average error of <0.01 ± 3.5 years (n = 41). We also show that similarity among the bears’ natural markings, as perceived by humans, is not associated with pedigree kinship among the bears (R2 < 0.001, N = 1,043, p = 0.499). Thus, researchers may use photos of wild Andean bears to estimate the ages of young cubs and older adults, but not to infer their kinship. Given that camera trap photos are one of the most readily available sources of information on large cryptic mammals, we suggest that similar methods be tested for use in other poorly understood species. PMID:26213647
Huang, Kuo-Chen; Wang, Hsiu-Feng; Chen, Chun-Ching
2010-06-01
Effects of shape, size, and chromaticity of stimuli on participants' errors when estimating the size of simultaneously presented standard and comparison stimuli were examined. 48 Taiwanese college students ages 20 to 24 years old (M = 22.3, SD = 1.3) participated. Analysis showed that the error for estimated size was significantly greater for those in the low-vision group than for those in the normal-vision and severe-myopia groups. The errors were significantly greater with green and blue stimuli than with red stimuli. Circular stimuli produced smaller mean errors than did square stimuli. The actual size of the standard stimulus significantly affected the error for estimated size. Errors for estimations using smaller sizes were significantly higher than when the sizes were larger. Implications of the results for graphics-based interface design, particularly when taking account of visually impaired users, are discussed.
Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error
NASA Astrophysics Data System (ADS)
Miller, Austin
In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.
Optimized tuner selection for engine performance estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)
2013-01-01
A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface
NASA Astrophysics Data System (ADS)
Kim, Hyunchul; Kim, Jungsuk
2017-04-01
This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Jonsen, Ian
2016-02-08
State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.
Economic measurement of medical errors using a hospital claims database.
David, Guy; Gunnarsson, Candace L; Waters, Heidi C; Horblyuk, Ruslan; Kaplan, Harold S
2013-01-01
The primary objective of this study was to estimate the occurrence and costs of medical errors from the hospital perspective. Methods from a recent actuarial study of medical errors were used to identify medical injuries. A visit qualified as an injury visit if at least 1 of 97 injury groupings occurred at that visit, and the percentage of injuries caused by medical error was estimated. Visits with more than four injuries were removed from the population to avoid overestimation of cost. Population estimates were extrapolated from the Premier hospital database to all US acute care hospitals. There were an estimated 161,655 medical errors in 2008 and 170,201 medical errors in 2009. Extrapolated to the entire US population, there were more than 4 million unique injury visits containing more than 1 million unique medical errors each year. This analysis estimated that the total annual cost of measurable medical errors in the United States was $985 million in 2008 and just over $1 billion in 2009. The median cost per error to hospitals was $892 for 2008 and rose to $939 in 2009. Nearly one third of all medical injuries were due to error in each year. Medical errors directly impact patient outcomes and hospitals' profitability, especially since 2008 when Medicare stopped reimbursing hospitals for care related to certain preventable medical errors. Hospitals must rigorously analyze causes of medical errors and implement comprehensive preventative programs to reduce their occurrence as the financial burden of medical errors shifts to hospitals. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)
2000-01-01
Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.
Generating Accurate Urban Area Maps from Nighttime Satellite (DMSP/OLS) Data
NASA Technical Reports Server (NTRS)
Imhoff, Marc; Lawrence, William; Elvidge, Christopher
2000-01-01
There has been an increasing interest by the international research community to use the nighttime acquired "city-lights" data sets collected by the US Defense Meteorological Satellite Program's Operational Linescan system to study issues relative to urbanization. Many researchers are interested in using these data to estimate human demographic parameters over large areas and then characterize the interactions between urban development , natural ecosystems, and other aspects of the human enterprise. Many of these attempts rely on an ability to accurately identify urbanized area. However, beyond the simple determination of the loci of human activity, using these data to generate accurate estimates of urbanized area can be problematic. Sensor blooming and registration error can cause large overestimates of urban land based on a simple measure of lit area from the raw data. We discuss these issues, show results of an attempt to do a historical urban growth model in Egypt, and then describe a few basic processing techniques that use geo-spatial analysis to threshold the DMSP data to accurately estimate urbanized areas. Algorithm results are shown for the United States and an application to use the data to estimate the impact of urban sprawl on sustainable agriculture in the US and China is described.
Human error in airway facilities.
DOT National Transportation Integrated Search
2001-01-01
This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...
Chiu, Ming-Chuan; Hsieh, Min-Chih
2016-05-01
The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Mihm, F G; Feeley, T W; Jamieson, S W
1987-01-01
The thermal dye double indicator dilution technique for estimating lung water was compared with gravimetric analyses in nine human subjects who were organ donors. As observed in animal studies, the thermal dye measurement of extravascular thermal volume (EVTV) consistently overestimated gravimetric extravascular lung water (EVLW), the mean (SEM) difference being 3.43 (0.59) ml/kg. In eight of the nine subjects the EVTV -3.43 ml/kg would yield an estimate of EVLW that would be from 3.23 ml/kg under to 3.37 ml/kg over the actual value EVLW at the 95% confidence limits. Reproducibility, assessed with the standard error of the mean percentage, suggested that a 15% change in EVTV can be reliably detected with repeated measurements. One subject was excluded from analysis because the EVTV measurement grossly underestimated its actual EVLW. This error was associated with regional injury observed on gross examination of the lung. Experimental and clinical evidence suggest that the thermal dye measurement provides a reliable estimate of lung water in diffuse pulmonary oedema states. PMID:3616974
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
ERIC Educational Resources Information Center
Jennrich, Robert I.
2008-01-01
The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.
2017-01-01
SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018
NASA Astrophysics Data System (ADS)
Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.
2018-02-01
To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
Anderson, N G; Jolley, I J; Wells, J E
2007-08-01
To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
A stopping criterion for the iterative solution of partial differential equations
NASA Astrophysics Data System (ADS)
Rao, Kaustubh; Malan, Paul; Perot, J. Blair
2018-01-01
A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.
Consequences of Secondary Calibrations on Divergence Time Estimates.
Schenk, John J
2016-01-01
Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod
NASA Astrophysics Data System (ADS)
Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.
1991-07-01
Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.
Space-Time Error Representation and Estimation in Navier-Stokes Calculations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2006-01-01
The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.
ERIC Educational Resources Information Center
Espinoza, Kelly Etcheberry
2016-01-01
Strong communication skills are essential in establishing a foundation for safe delivery of care. A report from the Institute of Medicine (IOM) titled: "To Err is Human: Building a Safer Health System" estimated 44,000 to 98,000 deaths occur due to medical errors annually. Communication failure was found to be the root cause in 70% of…
Method of estimating natural recharge to the Edwards Aquifer in the San Antonio area, Texas
Puente, Celso
1978-01-01
The principal errors in the estimates of annual recharge are related to errors in estimating runoff in ungaged areas, which represent about 30 percent of the infiltration area. The estimated long-term average annual recharge in each basin, however, is probably representative of the actual recharge because the averaging procedure tends to cancel out the major errors.
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
Eisele, Thomas P; Rhoda, Dale A; Cutts, Felicity T; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J D; Arnold, Fred
2013-01-01
Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used.
Eisele, Thomas P.; Rhoda, Dale A.; Cutts, Felicity T.; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J. D.; Arnold, Fred
2013-01-01
Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used. PMID:23667331
New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
Shariat, Mohammad Hassan; Gazor, Saeed; Redfearn, Damian
2016-08-01
In this paper, we study the problem of the cardiac conduction velocity (CCV) estimation for the sequential intracardiac mapping. We assume that the intracardiac electrograms of several cardiac sites are sequentially recorded, their activation times (ATs) are extracted, and the corresponding wavefronts are specified. The locations of the mapping catheter's electrodes and the ATs of the wavefronts are used here for the CCV estimation. We assume that the extracted ATs include some estimation errors, which we model with zero-mean white Gaussian noise values with known variances. Assuming stable planar wavefront propagation, we derive the maximum likelihood CCV estimator, when the synchronization times between various recording sites are unknown. We analytically evaluate the performance of the CCV estimator and provide its mean square estimation error. Our simulation results confirm the accuracy of the proposed method and the error analysis of the proposed CCV estimator.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
Decay in blood loss estimation skills after web-based didactic training.
Toledo, Paloma; Eosakul, Stanley T; Goetz, Kristopher; Wong, Cynthia A; Grobman, William A
2012-02-01
Accuracy in blood loss estimation has been shown to improve immediately after didactic training. The objective of this study was to evaluate retention of blood loss estimation skills 9 months after a didactic web-based training. Forty-four participants were recruited from a cohort that had undergone web-based training and testing in blood loss estimation. The web-based posttraining test, consisting of pictures of simulated blood loss, was repeated 9 months after the initial training and testing. The primary outcome was the difference in accuracy of estimated blood loss (percent error) at 9 months compared with immediately posttraining. At the 9-month follow-up, the median error in estimation worsened to -34.6%. Although better than the pretraining error of -47.8% (P = 0.003), the 9-month error was significantly less accurate than the immediate posttraining error of -13.5% (P = 0.01). Decay in blood loss estimation skills occurs by 9 months after didactic training.
Information systems and human error in the lab.
Bissell, Michael G
2004-01-01
Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.
Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe
2014-01-01
This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378
NASA Technical Reports Server (NTRS)
Berg, Wesley; Avery, Susan K.
1995-01-01
Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.
Williams, Robert C; Elston, Robert C; Kumar, Pankaj; Knowler, William C; Abboud, Hanna E; Adler, Sharon; Bowden, Donald W; Divers, Jasmin; Freedman, Barry I; Igo, Robert P; Ipp, Eli; Iyengar, Sudha K; Kimmel, Paul L; Klag, Michael J; Kohn, Orly; Langefeld, Carl D; Leehey, David J; Nelson, Robert G; Nicholas, Susanne B; Pahl, Madeleine V; Parekh, Rulan S; Rotter, Jerome I; Schelling, Jeffrey R; Sedor, John R; Shah, Vallabh O; Smith, Michael W; Taylor, Kent D; Thameem, Farook; Thornley-Brown, Denyse; Winkler, Cheryl A; Guo, Xiuqing; Zager, Phillip; Hanson, Robert L
2016-05-04
The presence of population structure in a sample may confound the search for important genetic loci associated with disease. Our four samples in the Family Investigation of Nephropathy and Diabetes (FIND), European Americans, Mexican Americans, African Americans, and American Indians are part of a genome- wide association study in which population structure might be particularly important. We therefore decided to study in detail one component of this, individual genetic ancestry (IGA). From SNPs present on the Affymetrix 6.0 Human SNP array, we identified 3 sets of ancestry informative markers (AIMs), each maximized for the information in one the three contrasts among ancestral populations: Europeans (HAPMAP, CEU), Africans (HAPMAP, YRI and LWK), and Native Americans (full heritage Pima Indians). We estimate IGA and present an algorithm for their standard errors, compare IGA to principal components, emphasize the importance of balancing information in the ancestry informative markers (AIMs), and test the association of IGA with diabetic nephropathy in the combined sample. A fixed parental allele maximum likelihood algorithm was applied to the FIND to estimate IGA in four samples: 869 American Indians; 1385 African Americans; 1451 Mexican Americans; and 826 European Americans. When the information in the AIMs is unbalanced, the estimates are incorrect with large error. Individual genetic admixture is highly correlated with principle components for capturing population structure. It takes ~700 SNPs to reduce the average standard error of individual admixture below 0.01. When the samples are combined, the resulting population structure creates associations between IGA and diabetic nephropathy. The identified set of AIMs, which include American Indian parental allele frequencies, may be particularly useful for estimating genetic admixture in populations from the Americas. Failure to balance information in maximum likelihood, poly-ancestry models creates biased estimates of individual admixture with large error. This also occurs when estimating IGA using the Bayesian clustering method as implemented in the program STRUCTURE. Odds ratios for the associations of IGA with disease are consistent with what is known about the incidence and prevalence of diabetic nephropathy in these populations.
Impact and quantification of the sources of error in DNA pooling designs.
Jawaid, A; Sham, P
2009-01-01
The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.
Bayes Error Rate Estimation Using Classifier Ensembles
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2003-01-01
The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.
Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
2013-01-01
Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560
NASA Astrophysics Data System (ADS)
Pichardo, Samuel; Moreno-Hernández, Carlos; Drainville, Robert Andrew; Sin, Vivian; Curiel, Laura; Hynynen, Kullervo
2017-09-01
A better understanding of ultrasound transmission through the human skull is fundamental to develop optimal imaging and therapeutic applications. In this study, we present global attenuation values and functions that correlate apparent density calculated from computed tomography scans to shear speed of sound. For this purpose, we used a model for sound propagation based on the viscoelastic wave equation (VWE) assuming isotropic conditions. The model was validated using a series of measurements with plates of different plastic materials and angles of incidence of 0°, 15° and 50°. The optimal functions for transcranial ultrasound propagation were established using the VWE, scan measurements of transcranial propagation with an angle of incidence of 40° and a genetic optimization algorithm. Ten (10) locations over three (3) skulls were used for ultrasound frequencies of 270 kHz and 836 kHz. Results with plastic materials demonstrated that the viscoelastic modeling predicted both longitudinal and shear propagation with an average (±s.d.) error of 9(±7)% of the wavelength in the predicted delay and an error of 6.7(±5)% in the estimation of transmitted power. Using the new optimal functions of speed of sound and global attenuation for the human skull, the proposed model predicted the transcranial ultrasound transmission for a frequency of 270 kHz with an expected error in the predicted delay of 5(±2.7)% of the wavelength. The sound propagation model predicted accurately the sound propagation regardless of either shear or longitudinal sound transmission dominated. For 836 kHz, the model predicted accurately in average with an error in the predicted delay of 17(±16)% of the wavelength. Results indicated the importance of the specificity of the information at a voxel level to better understand ultrasound transmission through the skull. These results and new model will be very valuable tools for the future development of transcranial applications of ultrasound therapy and imaging.
NASA Astrophysics Data System (ADS)
Cao, Lu; Li, Hengnian
2016-10-01
For the satellite attitude estimation problem, the serious model errors always exist and hider the estimation performance of the Attitude Determination and Control System (ACDS), especially for a small satellite with low precision sensors. To deal with this problem, a new algorithm for the attitude estimation, referred to as the unscented predictive variable structure filter (UPVSF) is presented. This strategy is proposed based on the variable structure control concept and unscented transform (UT) sampling method. It can be implemented in real time with an ability to estimate the model errors on-line, in order to improve the state estimation precision. In addition, the model errors in this filter are not restricted only to the Gaussian noises; therefore, it has the advantages to deal with the various kinds of model errors or noises. It is anticipated that the UT sampling strategy can further enhance the robustness and accuracy of the novel UPVSF. Numerical simulations show that the proposed UPVSF is more effective and robustness in dealing with the model errors and low precision sensors compared with the traditional unscented Kalman filter (UKF).
Tissue resistivity estimation in the presence of positional and geometrical uncertainties.
Baysal, U; Eyüboğlu, B M
2000-08-01
Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.
Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E
2016-01-01
Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.
Stress free configuration of the human eye.
Elsheikh, Ahmed; Whitford, Charles; Hamarashid, Rosti; Kassem, Wael; Joda, Akram; Büchler, Philippe
2013-02-01
Numerical simulations of eye globes often rely on topographies that have been measured in vivo using devices such as the Pentacam or OCT. The topographies, which represent the form of the already stressed eye under the existing intraocular pressure, introduce approximations in the analysis. The accuracy of the simulations could be improved if either the stress state of the eye under the effect of intraocular pressure is determined, or the stress-free form of the eye estimated prior to conducting the analysis. This study reviews earlier attempts to address this problem and assesses the performance of an iterative technique proposed by Pandolfi and Holzapfel [1], which is both simple to implement and promises high accuracy in estimating the eye's stress-free form. A parametric study has been conducted and demonstrated reliance of the error level on the level of flexibility of the eye model, especially in the cornea region. However, in all cases considered 3-4 analysis iterations were sufficient to produce a stress-free form with average errors in node location <10(-6)mm and a maximal error <10(-4)mm. This error level, which is similar to what has been achieved with other methods and orders of magnitude lower than the accuracy of current clinical topography systems, justifies the use of the technique as a pre-processing step in ocular numerical simulations. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction
NASA Astrophysics Data System (ADS)
Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.
2017-12-01
Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin
2011-01-01
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030
NASA Astrophysics Data System (ADS)
Debchoudhury, Shantanab; Earle, Gregory
2017-04-01
Retarding Potential Analyzers (RPA) have a rich flight heritage. Standard curve-fitting analysis techniques exist that can infer state variables in the ionospheric plasma environment from RPA data, but the estimation process is prone to errors arising from a number of sources. Previous work has focused on the effects of grid geometry on uncertainties in estimation; however, no prior study has quantified the estimation errors due to additive noise. In this study, we characterize the errors in estimation of thermal plasma parameters by adding noise to the simulated data derived from the existing ionospheric models. We concentrate on low-altitude, mid-inclination orbits since a number of nano-satellite missions are focused on this region of the ionosphere. The errors are quantified and cross-correlated for varying geomagnetic conditions.
Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials
Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.
2013-01-01
Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072
NASA Technical Reports Server (NTRS)
Pavlis, Nikolaos K.
1991-01-01
An error analysis study was conducted in order to assess the current accuracies and the future anticipated improvements in the estimation of geopotential differences over intercontinental locations. An observation/estimation scheme was proposed and studied, whereby gravity disturbance measurements on the Earth's surface, in caps surrounding the estimation points, are combined with corresponding data in caps directly over these points at the altitude of a low orbiting satellite, for the estimation of the geopotential difference between the terrestrial stations. The mathematical modeling required to relate the primary observables to the parameters to be estimated, was studied for the terrestrial data and the data at altitude. Emphasis was placed on the examination of systematic effects and on the corresponding reductions that need to be applied to the measurements to avoid systematic errors. The error estimation for the geopotential differences was performed using both truncation theory and least squares collocation with ring averages, in case observations on the Earth's surface only are used. The error analysis indicated that with the currently available global geopotential model OSU89B and with gravity disturbance data in 2 deg caps surrounding the estimation points, the error of the geopotential difference arising from errors in the reference model and the cap data is about 23 kgal cm, for 30 deg station separation.
Drach-Zahavy, A; Somech, A; Admi, H; Peterfreund, I; Peker, H; Priente, O
2014-03-01
Attention in the ward should shift from preventing medication administration errors to managing them. Nevertheless, little is known in regard with the practices nursing wards apply to learn from medication administration errors as a means of limiting them. To test the effectiveness of four types of learning practices, namely, non-integrated, integrated, supervisory and patchy learning practices in limiting medication administration errors. Data were collected from a convenient sample of 4 hospitals in Israel by multiple methods (observations and self-report questionnaires) at two time points. The sample included 76 wards (360 nurses). Medication administration error was defined as any deviation from prescribed medication processes and measured by a validated structured observation sheet. Wards' use of medication administration technologies, location of the medication station, and workload were observed; learning practices and demographics were measured by validated questionnaires. Results of the mixed linear model analysis indicated that the use of technology and quiet location of the medication cabinet were significantly associated with reduced medication administration errors (estimate=.03, p<.05 and estimate=-.17, p<.01 correspondingly), while workload was significantly linked to inflated medication administration errors (estimate=.04, p<.05). Of the learning practices, supervisory learning was the only practice significantly linked to reduced medication administration errors (estimate=-.04, p<.05). Integrated and patchy learning were significantly linked to higher levels of medication administration errors (estimate=-.03, p<.05 and estimate=-.04, p<.01 correspondingly). Non-integrated learning was not associated with it (p>.05). How wards manage errors might have implications for medication administration errors beyond the effects of typical individual, organizational and technology risk factors. Head nurse can facilitate learning from errors by "management by walking around" and monitoring nurses' medication administration behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sliding mode output feedback control based on tracking error observer with disturbance estimator.
Xiao, Lingfei; Zhu, Yue
2014-07-01
For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Morrell, Glen; Rusinek, Henry; Warner, Lizette; Vivier, Pierre-Hugues; Cheung, Alfred K.; Lerman, Lilach O.; Lee, Vivian S.
2014-01-01
Blood oxygen level-dependent (BOLD) MRI data of kidney, while indicative of tissue oxygenation level (Po2), is in fact influenced by multiple confounding factors, such as R2, perfusion, oxygen permeability, and hematocrit. We aim to explore the feasibility of extracting tissue Po2 from renal BOLD data. A method of two steps was proposed: first, a Monte Carlo simulation to estimate blood oxygen saturation (SHb) from BOLD signals, and second, an oxygen transit model to convert SHb to tissue Po2. The proposed method was calibrated and validated with 20 pigs (12 before and after furosemide injection) in which BOLD-derived tissue Po2 was compared with microprobe-measured values. The method was then applied to nine healthy human subjects (age: 25.7 ± 3.0 yr) in whom BOLD was performed before and after furosemide. For the 12 pigs before furosemide injection, the proposed model estimated renal tissue Po2 with errors of 2.3 ± 5.2 mmHg (5.8 ± 13.4%) in cortex and −0.1 ± 4.5 mmHg (1.7 ± 18.1%) in medulla, compared with microprobe measurements. After injection of furosemide, the estimation errors were 6.9 ± 3.9 mmHg (14.2 ± 8.4%) for cortex and 2.6 ± 4.0 mmHg (7.7 ± 11.5%) for medulla. In the human subjects, BOLD-derived medullary Po2 increased from 16.0 ± 4.9 mmHg (SHb: 31 ± 11%) at baseline to 26.2 ± 3.1 mmHg (SHb: 53 ± 6%) at 5 min after furosemide injection, while cortical Po2 did not change significantly at ∼58 mmHg (SHb: 92 ± 1%). Our proposed method, validated with a porcine model, appears promising for estimating tissue Po2 from renal BOLD MRI data in human subjects. PMID:24452640
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
Operational Interventions to Maintenance Error
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki
1997-01-01
A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Reduction of Maintenance Error Through Focused Interventions
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)
1997-01-01
It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.
CIDER: Enabling Robustness-Power Tradeoffs on a Computational Eyeglass
Mayberry, Addison; Tun, Yamin; Hu, Pan; Smith-Freedman, Duncan; Ganesan, Deepak; Marlin, Benjamin; Salthouse, Christopher
2016-01-01
The human eye offers a fascinating window into an individual’s health, cognitive attention, and decision making, but we lack the ability to continually measure these parameters in the natural environment. The challenges lie in: a) handling the complexity of continuous high-rate sensing from a camera and processing the image stream to estimate eye parameters, and b) dealing with the wide variability in illumination conditions in the natural environment. This paper explores the power–robustness tradeoffs inherent in the design of a wearable eye tracker, and proposes a novel staged architecture that enables graceful adaptation across the spectrum of real-world illumination. We propose CIDER, a system that operates in a highly optimized low-power mode under indoor settings by using a fast Search-Refine controller to track the eye, but detects when the environment switches to more challenging outdoor sunlight and switches models to operate robustly under this condition. Our design is holistic and tackles a) power consumption in digitizing pixels, estimating pupillary parameters, and illuminating the eye via near-infrared, b) error in estimating pupil center and pupil dilation, and c) model training procedures that involve zero effort from a user. We demonstrate that CIDER can estimate pupil center with error less than two pixels (0.6°), and pupil diameter with error of one pixel (0.22mm). Our end-to-end results show that we can operate at power levels of roughly 7mW at a 4Hz eye tracking rate, or roughly 32mW at rates upwards of 250Hz. PMID:27042165
Wu, Yifei; Thibos, Larry N; Candy, T Rowan
2018-05-07
Eccentric photorefraction and Purkinje image tracking are used to estimate refractive state and eye position simultaneously. Beyond vision screening, they provide insight into typical and atypical visual development. Systematic analysis of the effect of refractive error and spectacles on photorefraction data is needed to gauge the accuracy and precision of the technique. Simulation of two-dimensional, double-pass eccentric photorefraction was performed (Zemax). The inward pass included appropriate light sources, lenses and a single surface pupil plane eye model to create an extended retinal image that served as the source for the outward pass. Refractive state, as computed from the luminance gradient in the image of the pupil captured by the model's camera, was evaluated for a range of refractive errors (-15D to +15D), pupil sizes (3 mm to 7 mm) and two sets of higher-order monochromatic aberrations. Instrument calibration was simulated using -8D to +8D trial lenses at the spectacle plane for: (1) vertex distances from 3 mm to 23 mm, (2) uncorrected and corrected hyperopic refractive errors of +4D and +7D, and (3) uncorrected and corrected astigmatism of 4D at four different axes. Empirical calibration of a commercial photorefractor was also compared with a wavefront aberrometer for human eyes. The pupil luminance gradient varied linearly with refractive state for defocus less than approximately 4D (5 mm pupil). For larger errors, the gradient magnitude saturated and then reduced, leading to under-estimation of refractive state. Additional inaccuracy (up to 1D for 8D of defocus) resulted from spectacle magnification in the pupil image, which would reduce precision in situations where vertex distance is variable. The empirical calibration revealed a constant offset between the two clinical instruments. Computational modelling demonstrates the principles and limitations of photorefraction to help users avoid potential measurement errors. Factors that could cause clinically significant errors in photorefraction estimates include high refractive error, vertex distance and magnification effects of a spectacle lens, increased higher-order monochromatic aberrations, and changes in primary spherical aberration with accommodation. The impact of these errors increases with increasing defocus. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Meier, Walter Neil
This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an innovative method of combining a new data set of SSM/I-derived ice motions with three different sea ice models via two data assimilation methods. The work described here is the first example of assimilating remotely-sensed data within high-resolution and detailed dynamic-thermodynamic sea ice models. The results demonstrate that assimilation is a valuable resource for determining accurate ice motion in the Arctic.
Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report
2016-01-01
This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.
NASA Technical Reports Server (NTRS)
Diorio, Kimberly A.; Voska, Ned (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1981-01-01
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Fisher classifier and its probability of error estimation
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.
The contributions of human factors on human error in Malaysia aviation maintenance industries
NASA Astrophysics Data System (ADS)
Padil, H.; Said, M. N.; Azizan, A.
2018-05-01
Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1980-01-01
Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.
Xiaopeng, Q I; Liang, Wei; Barker, Laurie; Lekiachvili, Akaki; Xingyou, Zhang
Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly-or 30-day-basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R 2 , mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R 2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects.
Measurement System Characterization in the Presence of Measurement Errors
NASA Technical Reports Server (NTRS)
Commo, Sean A.
2012-01-01
In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.
Brown, Judith A.; Bishop, Joseph E.
2016-07-20
An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne
2014-01-01
Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
NASA Astrophysics Data System (ADS)
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
NASA Technical Reports Server (NTRS)
Rosch, E.
1975-01-01
The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
Error Rates in Users of Automatic Face Recognition Software
White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.
2015-01-01
In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631
Effect of correlated observation error on parameters, predictions, and uncertainty
Tiedeman, Claire; Green, Christopher T.
2013-01-01
Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2014-01-01
Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.
A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2015-01-01
A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
An automated calibration method for non-see-through head mounted displays.
Gilson, Stuart J; Fitzgibbon, Andrew W; Glennerster, Andrew
2011-08-15
Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone, and are often limited to optical see-through HMDs. Building on our existing approach to HMD calibration Gilson et al. (2008), we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside a HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in multiple positions. The centroids of the markers on the calibration object are recovered and their locations re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the HMD display's intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors without the need for error-prone human judgements. Copyright © 2011 Elsevier B.V. All rights reserved.
Dzubak, Allison L.; Krogel, Jaron T.; Reboredo, Fernando A.
2017-07-10
The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. In this paper, we estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc–Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range ofmore » fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc–Zn. The recently generated pseudopotentials of Krogel et al. reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. Finally, for the Sc–Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.« less
1993-04-01
determining effective group functioning, leader-group interaction , and decision making; (2) factors that determine effective, low error human performance...infectious disease and biological defense vaccines and drugs , vision, neurotxins, neurochemistry, molecular neurobiology, neurodegenrative diseases...Potential Rotor/Comprehensive Analysis Model for Rotor Aerodynamics-Johnson Aeronautics (FPR/CAMRAD-JA) code to predict Blade Vortex Interaction (BVI
Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S
2013-06-01
Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.
Bonicelli, Andrea; Xhemali, Bledar; Kranioti, Elena F.
2017-01-01
Age estimation remains one of the most challenging tasks in forensic practice when establishing a biological profile of unknown skeletonised remains. Morphological methods based on developmental markers of bones can provide accurate age estimates at a young age, but become highly unreliable for ages over 35 when all developmental markers disappear. This study explores the changes in the biomechanical properties of bone tissue and matrix, which continue to change with age even after skeletal maturity, and their potential value for age estimation. As a proof of concept we investigated the relationship of 28 variables at the macroscopic and microscopic level in rib autopsy samples from 24 individuals. Stepwise regression analysis produced a number of equations one of which with seven variables showed an R2 = 0.949; a mean residual error of 2.13 yrs ±0.4 (SD) and a maximum residual error value of 2.88 yrs. For forensic purposes, by using only bench top machines in tests which can be carried out within 36 hrs, a set of just 3 variables produced an equation with an R2 = 0.902 a mean residual error of 3.38 yrs ±2.6 (SD) and a maximum observed residual error 9.26yrs. This method outstrips all existing age-at-death methods based on ribs, thus providing a novel lab based accurate tool in the forensic investigation of human remains. The present application is optimised for fresh (uncompromised by taphonomic conditions) remains, but the potential of the principle and method is vast once the trends of the biomechanical variables are established for other environmental conditions and circumstances. PMID:28520764
de Almeida, Maurício Liberal; Saatkamp, Cassiano Junior; Fernandes, Adriana Barrinha; Pinheiro, Antonio Luiz Barbosa; Silveira, Landulfo
2016-09-01
Urea and creatinine are commonly used as biomarkers of renal function. Abnormal concentrations of these biomarkers are indicative of pathological processes such as renal failure. This study aimed to develop a model based on Raman spectroscopy to estimate the concentration values of urea and creatinine in human serum. Blood sera from 55 clinically normal subjects and 47 patients with chronic kidney disease undergoing dialysis were collected, and concentrations of urea and creatinine were determined by spectrophotometric methods. A Raman spectrum was obtained with a high-resolution dispersive Raman spectrometer (830 nm). A spectral model was developed based on partial least squares (PLS), where the concentrations of urea and creatinine were correlated with the Raman features. Principal components analysis (PCA) was used to discriminate dialysis patients from normal subjects. The PLS model showed r = 0.97 and r = 0.93 for urea and creatinine, respectively. The root mean square errors of cross-validation (RMSECV) for the model were 17.6 and 1.94 mg/dL, respectively. PCA showed high discrimination between dialysis and normality (95 % accuracy). The Raman technique was able to determine the concentrations with low error and to discriminate dialysis from normal subjects, consistent with a rapid and low-cost test.
NASA Technical Reports Server (NTRS)
Robinson, Peter; Shirley, Mark; Fletcher, Daryl; Alena, Rick; Duncavage, Dan; Lee, Charles
2003-01-01
All of the International Space Station (ISS) systems which require computer control depend upon the hardware and software of the Command and Data Handling System (C&DH) system, currently a network of over 30 386-class computers called Multiplexor/Dimultiplexors (MDMs)[18]. The Caution and Warning System (C&W)[7], a set of software tasks that runs on the MDMs, is responsible for detecting, classifying, and reporting errors in all ISS subsystems including the C&DH. Fault Detection, Isolation and Recovery (FDIR) of these errors is typically handled with a combination of automatic and human effort. We are developing an Advanced Diagnostic System (ADS) to augment the C&W system with decision support tools to aid in root cause analysis as well as resolve differing human and machine C&DH state estimates. These tools which draw from sources in model-based reasoning[ 16,291, will improve the speed and accuracy of flight controllers by reducing the uncertainty in C&DH state estimation, allowing for a more complete assessment of risk. We have run tests with ISS telemetry and focus on those C&W events which relate to the C&DH system itself. This paper describes our initial results and subsequent plans.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows
NASA Astrophysics Data System (ADS)
McClure, Jeffrey; Yarusevych, Serhiy
2015-11-01
The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.
A common visual metric for approximate number and density
Dakin, Steven C.; Tibber, Marc S.; Greenwood, John A.; Kingdom, Frederick A. A.; Morgan, Michael J.
2011-01-01
There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density. PMID:22106276
ERIC Educational Resources Information Center
Kim, ChangHwan; Tamborini, Christopher R.
2012-01-01
Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…
A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint
NASA Technical Reports Server (NTRS)
Barth, Timothy
2004-01-01
This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.
Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B
2000-12-01
Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum
2016-03-01
Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
Managing human fallibility in critical aerospace situations
NASA Astrophysics Data System (ADS)
Tew, Larry
2014-11-01
Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.
Wu, Jibo
2016-01-01
In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.
Prediction of human errors by maladaptive changes in event-related brain networks.
Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus
2008-04-22
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.
Prediction of human errors by maladaptive changes in event-related brain networks
Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus
2008-01-01
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123
Defining the Relationship Between Human Error Classes and Technology Intervention Strategies
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.; Rantanen, Eas M.
2003-01-01
The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.
Causal inference with measurement error in outcomes: Bias analysis and estimation methods.
Shu, Di; Yi, Grace Y
2017-01-01
Inverse probability weighting estimation has been popularly used to consistently estimate the average treatment effect. Its validity, however, is challenged by the presence of error-prone variables. In this paper, we explore the inverse probability weighting estimation with mismeasured outcome variables. We study the impact of measurement error for both continuous and discrete outcome variables and reveal interesting consequences of the naive analysis which ignores measurement error. When a continuous outcome variable is mismeasured under an additive measurement error model, the naive analysis may still yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias in a closed-form. Furthermore, we develop consistent estimation procedures for practical scenarios where either validation data or replicates are available. With validation data, we propose an efficient method for estimation of average treatment effect; the efficiency gain is substantial relative to usual methods of using validation data. To provide protection against model misspecification, we further propose a doubly robust estimator which is consistent even when either the treatment model or the outcome model is misspecified. Simulation studies are reported to assess the performance of the proposed methods. An application to a smoking cessation dataset is presented.
Bilateral step length estimation using a single inertial measurement unit attached to the pelvis
2012-01-01
Background The estimation of the spatio-temporal gait parameters is of primary importance in both physical activity monitoring and clinical contexts. A method for estimating step length bilaterally, during level walking, using a single inertial measurement unit (IMU) attached to the pelvis is proposed. In contrast to previous studies, based either on a simplified representation of the human gait mechanics or on a general linear regressive model, the proposed method estimates the step length directly from the integration of the acceleration along the direction of progression. Methods The IMU was placed at pelvis level fixed to the subject's belt on the right side. The method was validated using measurements from a stereo-photogrammetric system as a gold standard on nine subjects walking ten laps along a closed loop track of about 25 m, varying their speed. For each loop, only the IMU data recorded in a 4 m long portion of the track included in the calibrated volume of the SP system, were used for the analysis. The method takes advantage of the cyclic nature of gait and it requires an accurate determination of the foot contact instances. A combination of a Kalman filter and of an optimally filtered direct and reverse integration applied to the IMU signals formed a single novel method (Kalman and Optimally filtered Step length Estimation - KOSE method). A correction of the IMU displacement due to the pelvic rotation occurring in gait was implemented to estimate the step length and the traversed distance. Results The step length was estimated for all subjects with less than 3% error. Traversed distance was assessed with less than 2% error. Conclusions The proposed method provided estimates of step length and traversed distance more accurate than any other method applied to measurements obtained from a single IMU that can be found in the literature. In healthy subjects, it is reasonable to expect that, errors in traversed distance estimation during daily monitoring activity would be of the same order of magnitude of those presented. PMID:22316235
Vanishing Point Extraction and Refinement for Robust Camera Calibration
Tsai, Fuan
2017-01-01
This paper describes a flexible camera calibration method using refined vanishing points without prior information. Vanishing points are estimated from human-made features like parallel lines and repeated patterns. With the vanishing points extracted from the three mutually orthogonal directions, the interior and exterior orientation parameters can be further calculated using collinearity condition equations. A vanishing point refinement process is proposed to reduce the uncertainty caused by vanishing point localization errors. The fine-tuning algorithm is based on the divergence of grouped feature points projected onto the reference plane, minimizing the standard deviation of each of the grouped collinear points with an O(1) computational complexity. This paper also presents an automated vanishing point estimation approach based on the cascade Hough transform. The experiment results indicate that the vanishing point refinement process can significantly improve camera calibration parameters and the root mean square error (RMSE) of the constructed 3D model can be reduced by about 30%. PMID:29280966
Estimating False Positive Contamination in Crater Annotations from Citizen Science Data
NASA Astrophysics Data System (ADS)
Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.
2017-01-01
Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.
A Longitudinal Study on Human Outdoor Decomposition in Central Texas.
Suckling, Joanna K; Spradley, M Katherine; Godde, Kanya
2016-01-01
The development of a methodology that estimates the postmortem interval (PMI) from stages of decomposition is a goal for which forensic practitioners strive. A proposed equation (Megyesi et al. 2005) that utilizes total body score (TBS) and accumulated degree days (ADD) was tested using longitudinal data collected from human remains donated to the Forensic Anthropology Research Facility (FARF) at Texas State University-San Marcos. Exact binomial tests examined the rate of the equation to successfully predict ADD. Statistically significant differences were found between ADD estimated by the equation and the observed value for decomposition stage. Differences remained significant after carnivore scavenged donations were removed from analysis. Low success rates for the equation to predict ADD from TBS and the wide standard errors demonstrate the need to re-evaluate the use of this equation and methodology for PMI estimation in different environments; rather, multivariate methods and equations should be derived that are environmentally specific. © 2015 American Academy of Forensic Sciences.
Sex determination from the frontal bone: a geometric morphometric study.
Perlaza, Néstor A
2014-09-01
Sex estimation in human skeletal remains when using the cranium through traditional methods is a fundamental pillar in human identification; however, it may be possible to incur in a margin of error due because of the state of preservation in incomplete or fragmented remains. The aim of this investigation was sex estimation through the geometric morphometric analysis of the frontal bone. The sample employed 60 lateral radiographs of adult subjects of both sexes (30 males and 30 females), aged between 18 and 40 years, with mean age for males of 28 ± 4 and 30 ± 6 years for females. Thin-plate splines evidenced strong expansion of the glabellar region in males and contraction in females. No significant differences were found between sexes with respect to size. The findings suggest differences in shape and size in the glabellar region, besides reaffirming the use of geometric morphometrics as a quantitative method in sex estimation. © 2014 American Academy of Forensic Sciences.
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1999-01-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1998-09-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less
Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis
NASA Technical Reports Server (NTRS)
Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.
2017-01-01
This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.
NASA Astrophysics Data System (ADS)
He, Bin; Frey, Eric C.
2010-06-01
Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were linear in the shift for both the QSPECT and QPlanar methods. QPlanar was less sensitive to object definition perturbations than QSPECT, especially for dilation and erosion cases. Up to 1 voxel misregistration or misdefinition resulted in up to 8% error in organ activity estimates, with the largest errors for small or low uptake organs. Both types of VOI definition errors produced larger errors in activity estimates for a small and low uptake organs (i.e. -7.5% to 5.3% for the left kidney) than for a large and high uptake organ (i.e. -2.9% to 2.1% for the liver). We observed that misregistration generally had larger effects than misdefinition, with errors ranging from -7.2% to 8.4%. The different imaging methods evaluated responded differently to the errors from misregistration and misdefinition. We found that QSPECT was more sensitive to misdefinition errors, but less sensitive to misregistration errors, as compared to the QPlanar method. Thus, sensitivity to VOI definition errors should be an important criterion in evaluating quantitative imaging methods.
Structured methods for identifying and correcting potential human errors in aviation operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1997-10-01
Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less
Validity of Three-Dimensional Photonic Scanning Technique for Estimating Percent Body Fat.
Shitara, K; Kanehisa, H; Fukunaga, T; Yanai, T; Kawakami, Y
2013-01-01
Three-dimensional photonic scanning (3DPS) was recently developed to measure dimensions of a human body surface. The purpose of this study was to explore the validity of body volume measured by 3DPS for estimating the percent body fat (%fat). Design, setting, participants, and measurement: The body volumes were determined by 3DPS in 52 women. The body volume was corrected for residual lung volume. The %fat was estimated from body density and compared with the corresponding reference value determined by the dual-energy x-ray absorptiometry (DXA). No significant difference was found for the mean values of %fat obtained by 3DPS (22.2 ± 7.6%) and DXA (23.5 ± 4.9%). The root mean square error of %fat between 3DPS and reference technique was 6.0%. For each body segment, there was a significant positive correlation between 3DPS- and DXA-values, although the corresponding value for the head was slightly larger in 3DPS than in DXA. Residual lung volume was negatively correlated with the estimated error in %fat. The body volume determined with 3DPS is potentially useful for estimating %fat. A possible strategy for enhancing the measurement accuracy of %fat might be to refine the protocol for preparing the subject's hair prior to scanning and to improve the accuracy in the measurement of residual lung volume.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.
1990-01-01
Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.
Kraemer, Sara; Carayon, Pascale
2007-03-01
This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.
Intervention strategies for the management of human error
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1993-01-01
This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.
Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi
2015-10-08
In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control.
Locatelli, R.; Bousquet, P.; Chevallier, F.; ...
2013-10-08
A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less
The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo
2018-05-01
The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.
Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.
Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A
2004-12-01
Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments
2010-01-01
Background The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Results Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Conclusions Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/. PMID:20482791
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments.
Ma, Jingming; Dykes, Carrie; Wu, Tao; Huang, Yangxin; Demeter, Lisa; Wu, Hulin
2010-05-18
The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/.
Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M
2018-05-07
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.
Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.
2014-01-01
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390
Modified fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor)
1992-01-01
A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.
Attard, Catherine R M; Beheregaray, Luciano B; Möller, Luciana M
2018-05-01
There has been remarkably little attention to using the high resolution provided by genotyping-by-sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward-biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping-by-sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation-based approach used here can be easily implemented by others on their own genotyping-by-sequencing data sets to confirm the most appropriate and powerful estimator for their data. © 2017 John Wiley & Sons Ltd.
Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics.
Lucchetti, L; Cappozzo, A; Cappello, A; Della Croce, U
1998-11-01
In three dimensional (3-D) human movement analysis using close-range photogrammetry, surface marker clusters deform and rigidly move relative to the underlying bone. This introduces an important artefact (skin movement artefact) which propagates to bone position and orientation and joint kinematics estimates. This occurs to the extent that those joint attitude components that undergo small variations result in totally unreliable values. This paper presents an experimental and analytical procedure, to be included in a subject-specific movement analysis protocol, which allows for the assessment of skin movement artefacts and, based on this knowledge, for their compensation. The effectiveness of this procedure was verified with reference to knee-joint kinematics and to the artefacts caused by the hip movements on markers located on the thigh surface. Quantitative validation was achieved through experimental paradigms whereby prior reliable information on the target joint kinematics was available. When position and orientation of bones were determined during the execution of a motor task, using a least-squares optimal estimator, but the rigid artefactual marker cluster movement was not dealt with, then knee joint translations and rotations were affected by root mean square errors (r.m.s.) up to 14 mm and 6 degrees, respectively. When the rigid artefactual movement was also compensated for, then r.m.s errors were reduced to less than 4 mm and 3 degrees, respectively. In addition, errors originally strongly correlated with hip rotations, after compensation, lost this correlation.
Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate.
Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J; Sun, Mingui
2014-10-01
It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-based blood pressure estimation may not be sufficiently accurate because the regulation of blood pressure within the human body is a complex, multivariate physiological process. Considering the negative feedback mechanism in the blood pressure control, we introduce the heart rate (HR) and the blood pressure estimate in the previous step to obtain the current estimate. We validate this method using a clinical database. Our results show that the PTT, HR and previous estimate reduce the estimated error significantly when compared to the conventional PTT estimation approach (p<0.05).
Relative-Error-Covariance Algorithms
NASA Technical Reports Server (NTRS)
Bierman, Gerald J.; Wolff, Peter J.
1991-01-01
Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.
Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens Schadauer
2014-01-01
National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...
ERIC Educational Resources Information Center
Boedigheimer, Dan
2010-01-01
Approximately 70% of aviation accidents are attributable to human error. The greatest opportunity for further improving aviation safety is found in reducing human errors in the cockpit. The purpose of this quasi-experimental, mixed-method research was to evaluate whether there was a difference in pilot attitudes toward reducing human error in the…
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
Discrimination of winter wheat on irrigated land in southern Finney County, Kansas
NASA Technical Reports Server (NTRS)
Morain, S. A. (Principal Investigator); Williams, D. L.; Barker, B.; Coiner, J. C.
1973-01-01
The author has identified the following significant results. Winter wheat in the large field irrigated landscape of southern Finney County, Kansas was successfully discriminated by use of 4 ERTS-1 images. These images were acquired 16 August 1972, 21 September 1972, and 2 December 1972. MSS-5 images from each date and the MSS-7 image from 2 December 1972 were used. Human interpretation of the four images resulted in a classification scheme which produced 98% correct estimation of the number of wheat fields in the training sample and 100% correct estimation in the test sample. Overall correct separation of wheat from non-wheat fields was 93% and 86%, respectively. Offsetting errors resulted in the estimation accuracy for wheat.
Evaluating a medical error taxonomy.
Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie
2002-01-01
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.
Bernard R. Parresol
1993-01-01
In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu; Harris, Kendra M.; Ford, Eric
Purpose: Systems to ensure patient safety are of critical importance. The electronic incident reporting systems (IRS) of 2 large academic radiation oncology departments were evaluated for events that may be suitable for submission to a national reporting system (NRS). Methods and Materials: All events recorded in the combined IRS were evaluated from 2007 through 2010. Incidents were graded for potential severity using the validated French Nuclear Safety Authority (ASN) 5-point scale. These incidents were categorized into 7 groups: (1) human error, (2) software error, (3) hardware error, (4) error in communication between 2 humans, (5) error at the human-software interface,more » (6) error at the software-hardware interface, and (7) error at the human-hardware interface. Results: Between the 2 systems, 4407 incidents were reported. Of these events, 1507 (34%) were considered to have the potential for clinical consequences. Of these 1507 events, 149 (10%) were rated as having a potential severity of ≥2. Of these 149 events, the committee determined that 79 (53%) of these events would be submittable to a NRS of which the majority was related to human error or to the human-software interface. Conclusions: A significant number of incidents were identified in this analysis. The majority of events in this study were related to human error and to the human-software interface, further supporting the need for a NRS to facilitate field-wide learning and system improvement.« less
Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo
2014-12-01
Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...
2017-01-07
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Radial orbit error reduction and sea surface topography determination using satellite altimetry
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.
Hao, Jie; Astle, William; De Iorio, Maria; Ebbels, Timothy M D
2012-08-01
Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.
Bootstrap Estimates of Standard Errors in Generalizability Theory
ERIC Educational Resources Information Center
Tong, Ye; Brennan, Robert L.
2007-01-01
Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…
Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.
Gelbrich, Bianca; Frerking, Carolin; Weiss, Sandra; Schwerdt, Sebastian; Stellzig-Eisenhauer, Angelika; Tausche, Eve; Gelbrich, Götz
2015-01-01
Forensic age estimation in living adolescents is based on several methods, e.g. the assessment of skeletal and dental maturation. Combination of several methods is mandatory, since age estimates from a single method are too imprecise due to biological variability. The correlation of the errors of the methods being combined must be known to calculate the precision of combined age estimates. To examine the correlation of the errors of the hand and the third molar method and to demonstrate how to calculate the combined age estimate. Clinical routine radiographs of the hand and dental panoramic images of 383 patients (aged 7.8-19.1 years, 56% female) were assessed. Lack of correlation (r = -0.024, 95% CI = -0.124 to + 0.076, p = 0.64) allows calculating the combined age estimate as the weighted average of the estimates from hand bones and third molars. Combination improved the standard deviations of errors (hand = 0.97, teeth = 1.35 years) to 0.79 years. Uncorrelated errors of the age estimates obtained from both methods allow straightforward determination of the common estimate and its variance. This is also possible when reference data for the hand and the third molar method are established independently from each other, using different samples.
Network Model-Assisted Inference from Respondent-Driven Sampling Data
Gile, Krista J.; Handcock, Mark S.
2015-01-01
Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328
Network Model-Assisted Inference from Respondent-Driven Sampling Data.
Gile, Krista J; Handcock, Mark S
2015-06-01
Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.
Heart rate estimation from FBG sensors using cepstrum analysis and sensor fusion.
Zhu, Yongwei; Fook, Victor Foo Siang; Jianzhong, Emily Hao; Maniyeri, Jayachandran; Guan, Cuntai; Zhang, Haihong; Jiliang, Eugene Phua; Biswas, Jit
2014-01-01
This paper presents a method of estimating heart rate from arrays of fiber Bragg grating (FBG) sensors embedded in a mat. A cepstral domain signal analysis technique is proposed to characterize Ballistocardiogram (BCG) signals. With this technique, the average heart beat intervals can be estimated by detecting the dominant peaks in the cepstrum, and the signals of multiple sensors can be fused together to obtain higher signal to noise ratio than each individual sensor. Experiments were conducted with 10 human subjects lying on 2 different postures on a bed. The estimated heart rate from BCG was compared with heart rate ground truth from ECG, and the mean error of estimation obtained is below 1 beat per minute (BPM). The results show that the proposed fusion method can achieve promising heart rate measurement accuracy and robustness against various sensor contact conditions.
Simultaneous estimation of human and exoskeleton motion: A simplified protocol.
Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L
2017-07-01
Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.
Adaptive control of theophylline therapy: importance of blood sampling times.
D'Argenio, D Z; Khakmahd, K
1983-10-01
A two-observation protocol for estimating theophylline clearance during a constant-rate intravenous infusion is used to examine the importance of blood sampling schedules with regard to the information content of resulting concentration data. Guided by a theory for calculating maximally informative sample times, population simulations are used to assess the effect of specific sampling times on the precision of resulting clearance estimates and subsequent predictions of theophylline plasma concentrations. The simulations incorporated noise terms for intersubject variability, dosing errors, sample collection errors, and assay error. Clearance was estimated using Chiou's method, least squares, and a Bayesian estimation procedure. The results of these simulations suggest that clinically significant estimation and prediction errors may result when using the above two-point protocol for estimating theophylline clearance if the time separating the two blood samples is less than one population mean elimination half-life.
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
2017-02-05
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
National suicide rates a century after Durkheim: do we know enough to estimate error?
Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W
2010-06-01
Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.
View Estimation Based on Value System
NASA Astrophysics Data System (ADS)
Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru
Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.
Reference-free error estimation for multiple measurement methods.
Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga
2018-01-01
We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.
Improving estimation of flight altitude in wildlife telemetry studies
Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd
2018-01-01
Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.
Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.
Weaver, Bruce; Black, Ryan A
2015-06-01
Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.
Lee, Min Su; Ju, Hojin; Song, Jin Woo; Park, Chan Gook
2015-11-06
In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT)-based pedestrian dead reckoning (PDR) and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF) on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE) with respect to walking distance is achieved.
Identification of dynamic systems, theory and formulation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1985-01-01
The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.
Representation of deformable motion for compression of dynamic cardiac image data
NASA Astrophysics Data System (ADS)
Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André
2012-02-01
We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Analyzing human errors in flight mission operations
NASA Technical Reports Server (NTRS)
Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef
1993-01-01
A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.
Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)
NASA Technical Reports Server (NTRS)
Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.
2006-01-01
Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.
Dionisio, Kathie L; Chang, Howard H; Baxter, Lisa K
2016-11-25
Exposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health. ZIP-code level estimates of exposure for six pollutants (CO, NO x , EC, PM 2.5 , SO 4 , O 3 ) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error. Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs. Substantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3-85% for population error, and 31-85% for total error. When CO, NO x or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copollutants based on the estimated type I error rate. The impact of exposure error must be considered when interpreting results of copollutant epidemiologic models, due to the possibility of attenuation of main pollutant RRs and the increased probability of false positives when measurement error is present.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.
2004-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi
2013-12-01
Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.
Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.
Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672
Commentary: Reducing diagnostic errors: another role for checklists?
Winters, Bradford D; Aswani, Monica S; Pronovost, Peter J
2011-03-01
Diagnostic errors are a widespread problem, although the true magnitude is unknown because they cannot currently be measured validly. These errors have received relatively little attention despite alarming estimates of associated harm and death. One promising intervention to reduce preventable harm is the checklist. This intervention has proven successful in aviation, in which situations are linear and deterministic (one alarm goes off and a checklist guides the flight crew to evaluate the cause). In health care, problems are multifactorial and complex. A checklist has been used to reduce central-line-associated bloodstream infections in intensive care units. Nevertheless, this checklist was incorporated in a culture-based safety program that engaged and changed behaviors and used robust measurement of infections to evaluate progress. In this issue, Ely and colleagues describe how three checklists could reduce the cognitive biases and mental shortcuts that underlie diagnostic errors, but point out that these tools still need to be tested. To be effective, they must reduce diagnostic errors (efficacy) and be routinely used in practice (effectiveness). Such tools must intuitively support how the human brain works, and under time pressures, clinicians rarely think in conditional probabilities when making decisions. To move forward, it is necessary to accurately measure diagnostic errors (which could come from mapping out the diagnostic process as the medication process has done and measuring errors at each step) and pilot test interventions such as these checklists to determine whether they work.
Indoor-to-outdoor particle concentration ratio model for human exposure analysis
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Ryu, Sung Hee; Lee, Gwangjae; Bae, Gwi-Nam
2016-02-01
This study presents an indoor-to-outdoor particle concentration ratio (IOR) model for improved estimates of indoor exposure levels. This model is useful in epidemiological studies with large population, because sampling indoor pollutants in all participants' house is often necessary but impractical. As a part of a study examining the association between air pollutants and atopic dermatitis in children, 16 parents agreed to measure the indoor and outdoor PM10 and PM2.5 concentrations at their homes for 48 h. Correlation analysis and multi-step multivariate linear regression analysis was performed to develop the IOR model. Temperature and floor level were found to be powerful predictors of the IOR. Despite the simplicity of the model, it demonstrated high accuracy in terms of the root mean square error (RMSE). Especially for long-term IOR estimations, the RMSE was as low as 0.064 and 0.063 for PM10 and PM2.5, respectively. When using a prediction model in an epidemiological study, understanding the consequence of the modeling error and justifying the use of the model is very important. In the last section, this paper discussed the impact of the modeling error and developed a novel methodology to justify the use of the model.
Shabbir, Javid
2018-01-01
In the present paper we propose an improved class of estimators in the presence of measurement error and non-response under stratified random sampling for estimating the finite population mean. The theoretical and numerical studies reveal that the proposed class of estimators performs better than other existing estimators. PMID:29401519
An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.
ERIC Educational Resources Information Center
De Ayala, R. J.; And Others
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Crop area estimation based on remotely-sensed data with an accurate but costly subsample
NASA Technical Reports Server (NTRS)
Gunst, R. F.
1983-01-01
Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1978-01-01
Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.
Simulations in site error estimation for direction finders
NASA Astrophysics Data System (ADS)
López, Raúl E.; Passi, Ranjit M.
1991-08-01
The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.
Rohani, S Alireza; Ghomashchi, Soroush; Agrawal, Sumit K; Ladak, Hanif M
2017-03-01
Finite-element models of the tympanic membrane are sensitive to the Young's modulus of the pars tensa. The aim of this work is to estimate the Young's modulus under a different experimental paradigm than currently used on the human tympanic membrane. These additional values could potentially be used by the auditory biomechanics community for building consensus. The Young's modulus of the human pars tensa was estimated through inverse finite-element modelling of an in-situ pressurization experiment. The experiments were performed on three specimens with a custom-built pressurization unit at a quasi-static pressure of 500 Pa. The shape of each tympanic membrane before and after pressurization was recorded using a Fourier transform profilometer. The samples were also imaged using micro-computed tomography to create sample-specific finite-element models. For each sample, the Young's modulus was then estimated by numerically optimizing its value in the finite-element model so simulated pressurized shapes matched experimental data. The estimated Young's modulus values were 2.2 MPa, 2.4 MPa and 2.0 MPa, and are similar to estimates obtained using in-situ single-point indentation testing. The estimates were obtained under the assumptions that the pars tensa is linearly elastic, uniform, isotropic with a thickness of 110 μm, and the estimates are limited to quasi-static loading. Estimates of pars tensa Young's modulus are sensitive to its thickness and inclusion of the manubrial fold. However, they do not appear to be sensitive to optimization initialization, height measurement error, pars flaccida Young's modulus, and tympanic membrane element type (shell versus solid). Copyright © 2017 Elsevier B.V. All rights reserved.
Human Error and the International Space Station: Challenges and Triumphs in Science Operations
NASA Technical Reports Server (NTRS)
Harris, Samantha S.; Simpson, Beau C.
2016-01-01
Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.
Trommer, J.T.; Loper, J.E.; Hammett, K.M.; Bowman, Georgia
1996-01-01
Hydrologists use several traditional techniques for estimating peak discharges and runoff volumes from ungaged watersheds. However, applying these techniques to watersheds in west-central Florida requires that empirical relationships be extrapolated beyond tested ranges. As a result there is some uncertainty as to their accuracy. Sixty-six storms in 15 west-central Florida watersheds were modeled using (1) the rational method, (2) the U.S. Geological Survey regional regression equations, (3) the Natural Resources Conservation Service (formerly the Soil Conservation Service) TR-20 model, (4) the Army Corps of Engineers HEC-1 model, and (5) the Environmental Protection Agency SWMM model. The watersheds ranged between fully developed urban and undeveloped natural watersheds. Peak discharges and runoff volumes were estimated using standard or recommended methods for determining input parameters. All model runs were uncalibrated and the selection of input parameters was not influenced by observed data. The rational method, only used to calculate peak discharges, overestimated 45 storms, underestimated 20 storms and estimated the same discharge for 1 storm. The mean estimation error for all storms indicates the method overestimates the peak discharges. Estimation errors were generally smaller in the urban watersheds and larger in the natural watersheds. The U.S. Geological Survey regression equations provide peak discharges for storms of specific recurrence intervals. Therefore, direct comparison with observed data was limited to sixteen observed storms that had precipitation equivalent to specific recurrence intervals. The mean estimation error for all storms indicates the method overestimates both peak discharges and runoff volumes. Estimation errors were smallest for the larger natural watersheds in Sarasota County, and largest for the small watersheds located in the eastern part of the study area. The Natural Resources Conservation Service TR-20 model, overestimated peak discharges for 45 storms and underestimated 21 storms, and overestimated runoff volumes for 44 storms and underestimated 22 storms. The mean estimation error for all storms modeled indicates that the model overestimates peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. The HEC-1 model overestimated peak discharge rates for 55 storms and underestimated 11 storms. Runoff volumes were overestimated for 44 storms and underestimated for 22 storms using the Army Corps of Engineers HEC-1 model. The mean estimation error for all the storms modeled indicates that the model overestimates peak discharge rates and runoff volumes. Generally, the smaller estimation errors in peak discharges were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. Estimation errors in runoff volumes; however, were smallest for the 3 natural watersheds located in the southernmost part of Sarasota County. The Environmental Protection Agency Storm Water Management model produced similar peak discharges and runoff volumes when using both the Green-Ampt and Horton infiltration methods. Estimated peak discharge and runoff volume data calculated with the Horton method was only slightly higher than those calculated with the Green-Ampt method. The mean estimation error for all the storms modeled indicates the model using the Green-Ampt infiltration method overestimates peak discharges and slightly underestimates runoff volumes. Using the Horton infiltration method, the model overestimates both peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the five natural watersheds in Sarasota County with the least amount of impervious cover and the lowest slopes. The largest er
Approximation of Bit Error Rates in Digital Communications
2007-06-01
and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase
The Infinitesimal Jackknife with Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.
2012-01-01
The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…
Zijlstra, Agnes; Zijlstra, Wiebren
2013-09-01
Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life. Copyright © 2013 Elsevier B.V. All rights reserved.
Xiaopeng, QI; Liang, WEI; BARKER, Laurie; LEKIACHVILI, Akaki; Xingyou, ZHANG
2015-01-01
Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature’s association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly—or 30-day—basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R2, mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS’s merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects. PMID:26167169
Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models
Fodor, Nándor
2012-01-01
In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451
Modeling human response errors in synthetic flight simulator domain
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.
In Situ Height and Width Estimation of Sorghum Plants from 2.5d Infrared Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baharav, Tavor; Bariya, Mohini; Zakhor, Avideh
Plant phenotyping, or the measurement of plant traits such as stem width and plant height, is a critical step in the development and evaluation of higher yield biofuel crops. Phenotyping allows biologists to quantitatively estimate the biomass of plant varieties and therefore their potential for biofuel production. Manual phenotyping is costly, time-consuming, and errorprone, requiring a person to walk through the fields measuring individual plants with a tape measure and notebook. In this work we describe an alternative system consisting of an autonomous robot equipped with two infrared cameras that travels through fields, collecting 2.5D image data of sorghum plants.more » We develop novel image processing based algorithms to estimate plant height and stem width from the image data. Our proposed method has the advantage of working in situ using images of plants from only one side. This allows phenotypic data to be collected nondestructively throughout the growing cycle, providing biologists with valuable information on crop growth patterns. Our approach first estimates plant heights and stem widths from individual frames. It then uses tracking algorithms to refine these estimates across frames and avoid double counting the same plant in multiple frames. The result is a histogram of stem widths and plant heights for each plot of a particular genetically engineered sorghum variety. In-field testing and comparison with human collected ground truth data demonstrates that our system achieves 13% average absolute error for stem width estimation and 15% average absolute error for plant height estimation.« less
In Situ Height and Width Estimation of Sorghum Plants from 2.5d Infrared Images
Baharav, Tavor; Bariya, Mohini; Zakhor, Avideh
2017-01-29
Plant phenotyping, or the measurement of plant traits such as stem width and plant height, is a critical step in the development and evaluation of higher yield biofuel crops. Phenotyping allows biologists to quantitatively estimate the biomass of plant varieties and therefore their potential for biofuel production. Manual phenotyping is costly, time-consuming, and errorprone, requiring a person to walk through the fields measuring individual plants with a tape measure and notebook. In this work we describe an alternative system consisting of an autonomous robot equipped with two infrared cameras that travels through fields, collecting 2.5D image data of sorghum plants.more » We develop novel image processing based algorithms to estimate plant height and stem width from the image data. Our proposed method has the advantage of working in situ using images of plants from only one side. This allows phenotypic data to be collected nondestructively throughout the growing cycle, providing biologists with valuable information on crop growth patterns. Our approach first estimates plant heights and stem widths from individual frames. It then uses tracking algorithms to refine these estimates across frames and avoid double counting the same plant in multiple frames. The result is a histogram of stem widths and plant heights for each plot of a particular genetically engineered sorghum variety. In-field testing and comparison with human collected ground truth data demonstrates that our system achieves 13% average absolute error for stem width estimation and 15% average absolute error for plant height estimation.« less
NASA Technical Reports Server (NTRS)
Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.
2007-01-01
Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.
NASA Technical Reports Server (NTRS)
Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.
1994-01-01
We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.
2015-12-01
Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.
Monte Carlo errors with less errors
NASA Astrophysics Data System (ADS)
Wolff, Ulli; Alpha Collaboration
2004-01-01
We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Ariyama, Kaoru; Kadokura, Masashi; Suzuki, Tadanao
2008-01-01
Techniques to determine the geographic origin of foods have been developed for various agricultural and fishery products, and they have used various principles. Some of these techniques are already in use for checking the authenticity of the labeling. Many are based on multielement analysis and chemometrics. We have developed such a technique to determine the geographic origin of onions (Allium cepa L.). This technique, which determines whether an onion is from outside Japan, is designed for onions labeled as having a geographic origin of Hokkaido, Hyogo, or Saga, the main onion production areas in Japan. However, estimations of discrimination errors for this technique have not been fully conducted; they have been limited to those for discrimination models and do not include analytical errors. Interlaboratory studies were conducted to estimate the analytical errors of the technique. Four collaborators each determined 11 elements (Na, Mg, P, Mn, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in 4 test materials of fresh and dried onions. Discrimination errors in this technique were estimated by summing (1) individual differences within lots, (2) variations between lots from the same production area, and (3) analytical errors. The discrimination errors for onions from Hokkaido, Hyogo, and Saga were estimated to be 2.3, 9.5, and 8.0%, respectively. Those for onions from abroad in determinations targeting Hokkaido, Hyogo, and Saga were estimated to be 28.2, 21.6, and 21.9%, respectively.
Defining the Relationship Between Human Error Classes and Technology Intervention Strategies
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.; Rantanen, Esa; Crisp, Vicki K. (Technical Monitor)
2002-01-01
One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.
Signal location using generalized linear constraints
NASA Astrophysics Data System (ADS)
Griffiths, Lloyd J.; Feldman, D. D.
1992-01-01
This report has presented a two-part method for estimating the directions of arrival of uncorrelated narrowband sources when there are arbitrary phase errors and angle independent gain errors. The signal steering vectors are estimated in the first part of the method; in the second part, the arrival directions are estimated. It should be noted that the second part of the method can be tailored to incorporate additional information about the nature of the phase errors. For example, if the phase errors are known to be caused solely by element misplacement, the element locations can be estimated concurrently with the DOA's by trying to match the theoretical steering vectors to the estimated ones. Simulation results suggest that, for general perturbation, the method can resolve closely spaced sources under conditions for which a standard high-resolution DOA method such as MUSIC fails.
Estimation of 3D reconstruction errors in a stereo-vision system
NASA Astrophysics Data System (ADS)
Belhaoua, A.; Kohler, S.; Hirsch, E.
2009-06-01
The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.
Stannard, David L.; Rosenberry, Donald O.; Winter, Thomas C.; Parkhurst, Renee S.
2004-01-01
Micrometeorological measurements of evapotranspiration (ET) often are affected to some degree by errors arising from limited fetch. A recently developed model was used to estimate fetch-induced errors in Bowen-ratio energy-budget measurements of ET made at a small wetland with fetch-to-height ratios ranging from 34 to 49. Estimated errors were small, averaging −1.90%±0.59%. The small errors are attributed primarily to the near-zero lower sensor height, and the negative bias reflects the greater Bowen ratios of the drier surrounding upland. Some of the variables and parameters affecting the error were not measured, but instead are estimated. A sensitivity analysis indicates that the uncertainty arising from these estimates is small. In general, fetch-induced error in measured wetland ET increases with decreasing fetch-to-height ratio, with increasing aridity and with increasing atmospheric stability over the wetland. Occurrence of standing water at a site is likely to increase the appropriate time step of data integration, for a given level of accuracy. Occurrence of extensive open water can increase accuracy or decrease the required fetch by allowing the lower sensor to be placed at the water surface. If fetch is highly variable and fetch-induced errors are significant, the variables affecting fetch (e.g., wind direction, water level) need to be measured. Fetch-induced error during the non-growing season may be greater or smaller than during the growing season, depending on how seasonal changes affect both the wetland and upland at a site.
Quantifying uncertainty in carbon and nutrient pools of coarse woody debris
NASA Astrophysics Data System (ADS)
See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.
2016-12-01
Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
Factor Rotation and Standard Errors in Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.
2015-01-01
In this article, we report a surprising phenomenon: Oblique CF-varimax and oblique CF-quartimax rotation produced similar point estimates for rotated factor loadings and factor correlations but different standard error estimates in an empirical example. Influences of factor rotation on asymptotic standard errors are investigated using a numerical…
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols.
Varghese, Suresh K; Gangamma, S
2009-06-01
In the nearly saturated human respiratory tract, the presence of water-soluble substances in the inhaled aerosols can cause change in the size distribution of the particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. Similarly, the presence of high concentration of hygroscopic aerosols also affects the water vapor and temperature profiles in the respiratory tract. A model is presented to analyze these effects in human respiratory system. The model solves simultaneously the heat and mass transfer equations to determine the size evolution of respirable particles and gas-phase properties within human respiratory tract. First, the model predictions for nonhygroscopic aerosols are compared with experimental results. The model results are compared with experimental results of sodium chloride particles. The model reproduces the major features of the experimental data. The water vapor profile is significantly modified only when a high concentration of particles is present. The model is used to study the effect of equilibrium assumptions on particle deposition. Simulations show that an infinite dilution solution assumption to calculate the saturation equilibrium over droplet could induce errors in estimating particle growth. This error is significant in the case of particles of size greater than 1 mum and at number concentrations higher than 10(5)/cm(3).
Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes' sieve method
NASA Astrophysics Data System (ADS)
Adam, Gh.; Adam, S.
2001-04-01
The reliability of the local error estimates returned by the Gauss-Kronrod quadrature rules can be raised up to the theoretical 100% rate of success, under error estimate sharpening, provided a number of natural validating conditions are required. The self-validating scheme of the local error estimates, which is easy to implement and adds little supplementary computing effort, strengthens considerably the correctness of the decisions within the automatic adaptive quadrature.
Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A
2013-08-01
The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined stiffness values of the prosthetic foot. The mechatronic system and methods proposed in this study are capable of accurately estimating ankle stiffness during the foot-flat region of stance phase. Future work will focus on the implementation of this validated system in estimating human ankle impedance during the stance phase of walking.
Non-invasive heart rate monitoring system using giant magneto resistance sensor.
Kalyan, Kubera; Chugh, Vinit Kumar; Anoop, C S
2016-08-01
A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication. A prototype of the system has been built and test results on 26 volunteers have been reported. The error in HR estimation of the system is merely 1 beat per minute. The performance of the system when layer of cloth is present between the sensor and the human body is investigated. The capability of the system as a HR variability estimator has also been established through experimentation. The proposed technique can be used as an efficient alternative to conventional HR monitors and is well suited for remote and continuous monitoring of HR.
Reflections on human error - Matters of life and death
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1989-01-01
The last two decades have witnessed a rapid growth in the introduction of automatic devices into aircraft cockpits, and eleswhere in human-machine systems. This was motivated in part by the assumption that when human functioning is replaced by machine functioning, human error is eliminated. Experience to date shows that this is far from true, and that automation does not replace humans, but changes their role in the system, as well as the types and severity of the errors they make. This altered role may lead to fewer, but more critical errors. Intervention strategies to prevent these errors, or ameliorate their consequences include basic human factors engineering of the interface, enhanced warning and alerting systems, and more intelligent interfaces that understand the strategic intent of the crew and can detect and trap inconsistent or erroneous input before it affects the system.
The estimation error covariance matrix for the ideal state reconstructor with measurement noise
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1988-01-01
A general expression is derived for the state estimation error covariance matrix for the Ideal State Reconstructor when the input measurements are corrupted by measurement noise. An example is presented which shows that the more measurements used in estimating the state at a given time, the better the estimator.
Estimating Uncertainty in Annual Forest Inventory Estimates
Ronald E. McRoberts; Veronica C. Lessard
1999-01-01
The precision of annual forest inventory estimates may be negatively affected by uncertainty from a variety of sources including: (1) sampling error; (2) procedures for updating plots not measured in the current year; and (3) measurement errors. The impact of these sources of uncertainty on final inventory estimates is investigated using Monte Carlo simulation...
Nonparametric Item Response Curve Estimation with Correction for Measurement Error
ERIC Educational Resources Information Center
Guo, Hongwen; Sinharay, Sandip
2011-01-01
Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy
Manually locating physical and virtual reality objects.
Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G
2014-09-01
In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.
Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.
2017-01-01
This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494
Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung
2018-05-01
This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.
A stochastic dynamic model for human error analysis in nuclear power plants
NASA Astrophysics Data System (ADS)
Delgado-Loperena, Dharma
Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.
Optimal estimation of suspended-sediment concentrations in streams
Holtschlag, D.J.
2001-01-01
Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.
NASA Technical Reports Server (NTRS)
Klein, V.
1979-01-01
Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.
State estimation for autopilot control of small unmanned aerial vehicles in windy conditions
NASA Astrophysics Data System (ADS)
Poorman, David Paul
The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.
Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach
NASA Astrophysics Data System (ADS)
Manno, Giorgio; Lo Re, Carlo; Ciraolo, Giuseppe
2017-09-01
In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.
NASA Astrophysics Data System (ADS)
GonzáLez, Pablo J.; FernáNdez, José
2011-10-01
Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.
2016-01-01
Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151
Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul
2014-01-01
Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr
Measurement error associated with surveys of fish abundance in Lake Michigan
Krause, Ann E.; Hayes, Daniel B.; Bence, James R.; Madenjian, Charles P.; Stedman, Ralph M.
2002-01-01
In fisheries, imprecise measurements in catch data from surveys adds uncertainty to the results of fishery stock assessments. The USGS Great Lakes Science Center (GLSC) began to survey the fall fish community of Lake Michigan in 1962 with bottom trawls. The measurement error was evaluated at the level of individual tows for nine fish species collected in this survey by applying a measurement-error regression model to replicated trawl data. It was found that the estimates of measurement-error variance ranged from 0.37 (deepwater sculpin, Myoxocephalus thompsoni) to 1.23 (alewife, Alosa pseudoharengus) on a logarithmic scale corresponding to a coefficient of variation = 66% to 156%. The estimates appeared to increase with the range of temperature occupied by the fish species. This association may be a result of the variability in the fall thermal structure of the lake. The estimates may also be influenced by other factors, such as pelagic behavior and schooling. Measurement error might be reduced by surveying the fish community during other seasons and/or by using additional technologies, such as acoustics. Measurement-error estimates should be considered when interpreting results of assessments that use abundance information from USGS-GLSC surveys of Lake Michigan and could be used if the survey design was altered. This study is the first to report estimates of measurement-error variance associated with this survey.
Sulcal set optimization for cortical surface registration.
Joshi, Anand A; Pantazis, Dimitrios; Li, Quanzheng; Damasio, Hanna; Shattuck, David W; Toga, Arthur W; Leahy, Richard M
2010-04-15
Flat mapping based cortical surface registration constrained by manually traced sulcal curves has been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with the number of sulcal curves used for registration. We present a method for estimation of an optimal subset of size N(C) from N possible candidate sulcal curves that minimizes a mean squared error metric over all combinations of N(C) curves. The resulting procedure allows us to estimate a subset with a reduced number of curves to be traced as part of the registration procedure leading to optimal use of manual labeling effort for registration. To minimize the error metric we analyze the correlation structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution. For a given subset of sulci used as constraints in surface registration, the proposed model estimates registration error based on the correlation structure of the sulcal errors. The optimal subset of constraint curves consists of the N(C) sulci that jointly minimize the estimated error variance for the subset of unconstrained curves conditioned on the N(C) constraint curves. The optimal subsets of sulci are presented and the estimated and actual registration errors for these subsets are computed. Copyright 2009 Elsevier Inc. All rights reserved.
Facial motion parameter estimation and error criteria in model-based image coding
NASA Astrophysics Data System (ADS)
Liu, Yunhai; Yu, Lu; Yao, Qingdong
2000-04-01
Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.
NASA Astrophysics Data System (ADS)
Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar
2017-11-01
Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.
Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E
2011-06-22
Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
Human factors process failure modes and effects analysis (HF PFMEA) software tool
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)
2011-01-01
Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.
Chaplain Corps Cadet Chapel Community Center Chapel Institutional Review Board Not Human Subjects Research Requirements 7 Not Human Subjects Research Form 8 Researcher Instructions - Activities Submitted to DoD IRB 9 Review 18 Not Human Subjects Errors 19 Exempt Research Most Frequent Errors 20 Most Frequent Errors for
Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.
DOT National Transportation Integrated Search
2002-07-01
Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...
Human Error: The Stakes Are Raised.
ERIC Educational Resources Information Center
Greenberg, Joel
1980-01-01
Mistakes related to the operation of nuclear power plants and other technologically complex systems are discussed. Recommendations are given for decreasing the chance of human error in the operation of nuclear plants. The causes of the Three Mile Island incident are presented in terms of the human error element. (SA)
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Systematic Error Modeling and Bias Estimation
Zhang, Feihu; Knoll, Alois
2016-01-01
This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386
Estimation of an Occupational Choice Model when Occupations Are Misclassified
ERIC Educational Resources Information Center
Sullivan, Paul
2009-01-01
This paper develops an empirical occupational choice model that corrects for misclassification in occupational choices and measurement error in occupation-specific work experience. The model is used to estimate the extent of measurement error in occupation data and quantify the bias that results from ignoring measurement error in occupation codes…
BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...
Application of Consider Covariance to the Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Lundberg, John B.
1996-01-01
The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
Unifying error structures in commonly used biotracer mixing models.
Stock, Brian C; Semmens, Brice X
2016-10-01
Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. © 2016 by the Ecological Society of America.
Alcohol consumption, beverage prices and measurement error.
Young, Douglas J; Bielinska-Kwapisz, Agnieszka
2003-03-01
Alcohol price data collected by the American Chamber of Commerce Researchers Association (ACCRA) have been widely used in studies of alcohol consumption and related behaviors. A number of problems with these data suggest that they contain substantial measurement error, which biases conventional statistical estimators toward a finding of little or no effect of prices on behavior. We test for measurement error, assess the magnitude of the bias and provide an alternative estimator that is likely to be superior. The study utilizes data on per capita alcohol consumption across U.S. states and the years 1982-1997. State and federal alcohol taxes are used as instrumental variables for prices. Formal tests strongly confim the hypothesis of measurement error. Instrumental variable estimates of the price elasticity of demand range from -0.53 to -1.24. These estimates are substantially larger in absolute value than ordinary least squares estimates, which sometimes are not significantly different from zero or even positive. The ACCRA price data are substantially contaminated with measurement error, but using state and federal taxes as instrumental variables mitigates the problem.
A model for the prediction of latent errors using data obtained during the development process
NASA Technical Reports Server (NTRS)
Gaffney, J. E., Jr.; Martello, S. J.
1984-01-01
A model implemented in a program that runs on the IBM PC for estimating the latent (or post ship) content of a body of software upon its initial release to the user is presented. The model employs the count of errors discovered at one or more of the error discovery processes during development, such as a design inspection, as the input data for a process which provides estimates of the total life-time (injected) error content and of the latent (or post ship) error content--the errors remaining a delivery. The model presented presumes that these activities cover all of the opportunities during the software development process for error discovery (and removal).
Error Analyses of the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Wetherbee, G.A.; Latysh, N.E.; Gordon, J.D.
2005-01-01
Data from the U.S. Geological Survey (USGS) collocated-sampler program for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) are used to estimate the overall error of NADP/NTN measurements. Absolute errors are estimated by comparison of paired measurements from collocated instruments. Spatial and temporal differences in absolute error were identified and are consistent with longitudinal distributions of NADP/NTN measurements and spatial differences in precipitation characteristics. The magnitude of error for calcium, magnesium, ammonium, nitrate, and sulfate concentrations, specific conductance, and sample volume is of minor environmental significance to data users. Data collected after a 1994 sample-handling protocol change are prone to less absolute error than data collected prior to 1994. Absolute errors are smaller during non-winter months than during winter months for selected constituents at sites where frozen precipitation is common. Minimum resolvable differences are estimated for different regions of the USA to aid spatial and temporal watershed analyses.
Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David
2016-01-01
Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Eric H. Wharton; Tiberius Cunia
1987-01-01
Proceedings of a workshop co-sponsored by the USDA Forest Service, the State University of New York, and the Society of American Foresters. Presented were papers on the methodology of sample tree selection, tree biomass measurement, construction of biomass tables and estimation of their error, and combining the error of biomass tables with that of the sample plots or...
NASA Technical Reports Server (NTRS)
Wang, Qinglin; Gogineni, S. P.
1991-01-01
A numerical procedure for estimating the true scattering coefficient, sigma(sup 0), from measurements made using wide-beam antennas. The use of wide-beam antennas results in an inaccurate estimate of sigma(sup 0) if the narrow-beam approximation is used in the retrieval process for sigma(sup 0). To reduce this error, a correction procedure was proposed that estimates the error resulting from the narrow-beam approximation and uses the error to obtain a more accurate estimate of sigma(sup 0). An exponential model was assumed to take into account the variation of sigma(sup 0) with incidence angles, and the model parameters are estimated from measured data. Based on the model and knowledge of the antenna pattern, the procedure calculates the error due to the narrow-beam approximation. The procedure is shown to provide a significant improvement in estimation of sigma(sup 0) obtained with wide-beam antennas. The proposed procedure is also shown insensitive to the assumed sigma(sup 0) model.
On the representation and estimation of spatial uncertainty. [for mobile robot
NASA Technical Reports Server (NTRS)
Smith, Randall C.; Cheeseman, Peter
1987-01-01
This paper describes a general method for estimating the nominal relationship and expected error (covariance) between coordinate frames representing the relative locations of objects. The frames may be known only indirectly through a series of spatial relationships, each with its associated error, arising from diverse causes, including positioning errors, measurement errors, or tolerances in part dimensions. This estimation method can be used to answer such questions as whether a camera attached to a robot is likely to have a particular reference object in its field of view. The calculated estimates agree well with those from an independent Monte Carlo simulation. The method makes it possible to decide in advance whether an uncertain relationship is known accurately enough for some task and, if not, how much of an improvement in locational knowledge a proposed sensor will provide. The method presented can be generalized to six degrees of freedom and provides a practical means of estimating the relationships (position and orientation) among objects, as well as estimating the uncertainty associated with the relationships.
Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume
2013-01-01
Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.
Methods and apparatus for reducing peak wind turbine loads
Moroz, Emilian Mieczyslaw
2007-02-13
A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-01-01
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-08-19
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.
Fractional kalman filter to estimate the concentration of air pollution
NASA Astrophysics Data System (ADS)
Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik
2018-04-01
Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).
Worldwide Ocean Optics Database (WOOD)
2002-09-30
attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters
ERIC Educational Resources Information Center
Hoshino, Takahiro; Shigemasu, Kazuo
2008-01-01
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
McGrath, Timothy; Fineman, Richard; Stirling, Leia
2018-06-08
Inertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles—an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study ( n = 15) with an absolute root-mean-square-error (RMSE) of 9.24∘ and a zero-mean RMSE of 3.49∘. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.