Sample records for estimating mutual information

  1. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    PubMed Central

    Albers, D. J.; Hripcsak, George

    2012-01-01

    A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009

  2. Learning dependence from samples.

    PubMed

    Seth, Sohan; Príncipe, José C

    2014-01-01

    Mutual information, conditional mutual information and interaction information have been widely used in scientific literature as measures of dependence, conditional dependence and mutual dependence. However, these concepts suffer from several computational issues; they are difficult to estimate in continuous domain, the existing regularised estimators are almost always defined only for real or vector-valued random variables, and these measures address what dependence, conditional dependence and mutual dependence imply in terms of the random variables but not finite realisations. In this paper, we address the issue that given a set of realisations in an arbitrary metric space, what characteristic makes them dependent, conditionally dependent or mutually dependent. With this novel understanding, we develop new estimators of association, conditional association and interaction association. Some attractive properties of these estimators are that they do not require choosing free parameter(s), they are computationally simpler, and they can be applied to arbitrary metric spaces.

  3. Equitability, mutual information, and the maximal information coefficient.

    PubMed

    Kinney, Justin B; Atwal, Gurinder S

    2014-03-04

    How should one quantify the strength of association between two random variables without bias for relationships of a specific form? Despite its conceptual simplicity, this notion of statistical "equitability" has yet to receive a definitive mathematical formalization. Here we argue that equitability is properly formalized by a self-consistency condition closely related to Data Processing Inequality. Mutual information, a fundamental quantity in information theory, is shown to satisfy this equitability criterion. These findings are at odds with the recent work of Reshef et al. [Reshef DN, et al. (2011) Science 334(6062):1518-1524], which proposed an alternative definition of equitability and introduced a new statistic, the "maximal information coefficient" (MIC), said to satisfy equitability in contradistinction to mutual information. These conclusions, however, were supported only with limited simulation evidence, not with mathematical arguments. Upon revisiting these claims, we prove that the mathematical definition of equitability proposed by Reshef et al. cannot be satisfied by any (nontrivial) dependence measure. We also identify artifacts in the reported simulation evidence. When these artifacts are removed, estimates of mutual information are found to be more equitable than estimates of MIC. Mutual information is also observed to have consistently higher statistical power than MIC. We conclude that estimating mutual information provides a natural (and often practical) way to equitably quantify statistical associations in large datasets.

  4. Mutual Information between Discrete Variables with Many Categories using Recursive Adaptive Partitioning

    PubMed Central

    Seok, Junhee; Seon Kang, Yeong

    2015-01-01

    Mutual information, a general measure of the relatedness between two random variables, has been actively used in the analysis of biomedical data. The mutual information between two discrete variables is conventionally calculated by their joint probabilities estimated from the frequency of observed samples in each combination of variable categories. However, this conventional approach is no longer efficient for discrete variables with many categories, which can be easily found in large-scale biomedical data such as diagnosis codes, drug compounds, and genotypes. Here, we propose a method to provide stable estimations for the mutual information between discrete variables with many categories. Simulation studies showed that the proposed method reduced the estimation errors by 45 folds and improved the correlation coefficients with true values by 99 folds, compared with the conventional calculation of mutual information. The proposed method was also demonstrated through a case study for diagnostic data in electronic health records. This method is expected to be useful in the analysis of various biomedical data with discrete variables. PMID:26046461

  5. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information.

    PubMed

    Cui, Dong; Pu, Weiting; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Gu, Guanghua

    2016-10-01

    Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Parallel mutual information estimation for inferring gene regulatory networks on GPUs

    PubMed Central

    2011-01-01

    Background Mutual information is a measure of similarity between two variables. It has been widely used in various application domains including computational biology, machine learning, statistics, image processing, and financial computing. Previously used simple histogram based mutual information estimators lack the precision in quality compared to kernel based methods. The recently introduced B-spline function based mutual information estimation method is competitive to the kernel based methods in terms of quality but at a lower computational complexity. Results We present a new approach to accelerate the B-spline function based mutual information estimation algorithm with commodity graphics hardware. To derive an efficient mapping onto this type of architecture, we have used the Compute Unified Device Architecture (CUDA) programming model to design and implement a new parallel algorithm. Our implementation, called CUDA-MI, can achieve speedups of up to 82 using double precision on a single GPU compared to a multi-threaded implementation on a quad-core CPU for large microarray datasets. We have used the results obtained by CUDA-MI to infer gene regulatory networks (GRNs) from microarray data. The comparisons to existing methods including ARACNE and TINGe show that CUDA-MI produces GRNs of higher quality in less time. Conclusions CUDA-MI is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant speedup over sequential multi-threaded implementation by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. PMID:21672264

  7. Estimation and classification by sigmoids based on mutual information

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1994-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.

  8. Mutual information estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    For the automated, objective and joint analysis of time series, similarity measures are crucial. Used in the analysis of climate records, they allow for a complimentary, unbiased view onto sparse datasets. The irregular sampling of many of these time series, however, makes it necessary to either perform signal reconstruction (e.g. interpolation) or to develop and use adapted measures. Standard linear interpolation comes with an inevitable loss of information and bias effects. We have recently developed a Gaussian kernel-based correlation algorithm with which the interpolation error can be substantially lowered, but this would not work should the functional relationship in a bivariate setting be non-linear. We therefore propose an algorithm to estimate lagged auto and cross mutual information from irregularly sampled time series. We have extended the standard and adaptive binning histogram estimators and use Gaussian distributed weights in the estimation of the (joint) probabilities. To test our method we have simulated linear and nonlinear auto-regressive processes with Gamma-distributed inter-sampling intervals. We have then performed a sensitivity analysis for the estimation of actual coupling length, the lag of coupling and the decorrelation time in the synthetic time series and contrast our results to the performance of a signal reconstruction scheme. Finally we applied our estimator to speleothem records. We compare the estimated memory (or decorrelation time) to that from a least-squares estimator based on fitting an auto-regressive process of order 1. The calculated (cross) mutual information results are compared for the different estimators (standard or adaptive binning) and contrasted with results from signal reconstruction. We find that the kernel-based estimator has a significantly lower root mean square error and less systematic sampling bias than the interpolation-based method. It is possible that these encouraging results could be further improved by using non-histogram mutual information estimators, like k-Nearest Neighbor or Kernel-Density estimators, but for short (<1000 points) and irregularly sampled datasets the proposed algorithm is already a great improvement.

  9. Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data

    PubMed Central

    Daub, Carsten O; Steuer, Ralf; Selbig, Joachim; Kloska, Sebastian

    2004-01-01

    Background The information theoretic concept of mutual information provides a general framework to evaluate dependencies between variables. In the context of the clustering of genes with similar patterns of expression it has been suggested as a general quantity of similarity to extend commonly used linear measures. Since mutual information is defined in terms of discrete variables, its application to continuous data requires the use of binning procedures, which can lead to significant numerical errors for datasets of small or moderate size. Results In this work, we propose a method for the numerical estimation of mutual information from continuous data. We investigate the characteristic properties arising from the application of our algorithm and show that our approach outperforms commonly used algorithms: The significance, as a measure of the power of distinction from random correlation, is significantly increased. This concept is subsequently illustrated on two large-scale gene expression datasets and the results are compared to those obtained using other similarity measures. A C++ source code of our algorithm is available for non-commercial use from kloska@scienion.de upon request. Conclusion The utilisation of mutual information as similarity measure enables the detection of non-linear correlations in gene expression datasets. Frequently applied linear correlation measures, which are often used on an ad-hoc basis without further justification, are thereby extended. PMID:15339346

  10. Mutual Information in Frequency and Its Application to Measure Cross-Frequency Coupling in Epilepsy

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Johnson, Don H.; Kalamangalam, Giridhar P.; Tandon, Nitin; Aazhang, Behnaam

    2018-06-01

    We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy.

  11. Contrast-Enhanced Ultrasound Angiogenesis Imaging by Mutual Information Analysis for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Demi, Libertario; Bouhouch, Nabil; Kuenen, Maarten P J; Postema, Arnoud W; de la Rosette, Jean J M C H; Wijkstra, Hessel; Tjalkens, Tjalling J; Mischi, Massimo

    2017-03-01

    The role of angiogenesis in cancer growth has stimulated research aimed at noninvasive cancer detection by blood perfusion imaging. Recently, contrast ultrasound dispersion imaging was proposed as an alternative method for angiogenesis imaging. After the intravenous injection of an ultrasound-contrast-agent bolus, dispersion can be indirectly estimated from the local similarity between neighboring time-intensity curves (TICs) measured by ultrasound imaging. Up until now, only linear similarity measures have been investigated. Motivated by the promising results of this approach in prostate cancer (PCa), we developed a novel dispersion estimation method based on mutual information, thus including nonlinear similarity, to further improve its ability to localize PCa. First, a simulation study was performed to establish the theoretical link between dispersion and mutual information. Next, the method's ability to localize PCa was validated in vivo in 23 patients (58 datasets) referred for radical prostatectomy by comparison with histology. A monotonic relationship between dispersion and mutual information was demonstrated. The in vivo study resulted in a receiver operating characteristic (ROC) curve area equal to 0.77, which was superior (p = 0.21-0.24) to that obtained by linear similarity measures (0.74-0.75) and (p <; 0.05) to that by conventional perfusion parameters (≤0.70). Mutual information between neighboring time-intensity curves can be used to indirectly estimate contrast dispersion and can lead to more accurate PCa localization. An improved PCa localization method can possibly lead to better grading and staging of tumors, and support focal-treatment guidance. Moreover, future employment of the method in other types of angiogenic cancer can be considered.

  12. Least-dependent-component analysis based on mutual information

    NASA Astrophysics Data System (ADS)

    Stögbauer, Harald; Kraskov, Alexander; Astakhov, Sergey A.; Grassberger, Peter

    2004-12-01

    We propose to use precise estimators of mutual information (MI) to find the least dependent components in a linearly mixed signal. On the one hand, this seems to lead to better blind source separation than with any other presently available algorithm. On the other hand, it has the advantage, compared to other implementations of “independent” component analysis (ICA), some of which are based on crude approximations for MI, that the numerical values of the MI can be used for (i) estimating residual dependencies between the output components; (ii) estimating the reliability of the output by comparing the pairwise MIs with those of remixed components; and (iii) clustering the output according to the residual interdependencies. For the MI estimator, we use a recently proposed k -nearest-neighbor-based algorithm. For time sequences, we combine this with delay embedding, in order to take into account nontrivial time correlations. After several tests with artificial data, we apply the resulting MILCA (mutual-information-based least dependent component analysis) algorithm to a real-world dataset, the ECG of a pregnant woman.

  13. Multimodal registration via spatial-context mutual information.

    PubMed

    Yi, Zhao; Soatto, Stefano

    2011-01-01

    We propose a method to efficiently compute mutual information between high-dimensional distributions of image patches. This in turn is used to perform accurate registration of images captured under different modalities, while exploiting their local structure otherwise missed in traditional mutual information definition. We achieve this by organizing the space of image patches into orbits under the action of Euclidean transformations of the image plane, and estimating the modes of a distribution in such an orbit space using affinity propagation. This way, large collections of patches that are equivalent up to translations and rotations are mapped to the same representative, or "dictionary element". We then show analytically that computing mutual information for a joint distribution in this space reduces to computing mutual information between the (scalar) label maps, and between the transformations mapping each patch into its closest dictionary element. We show that our approach improves registration performance compared with the state of the art in multimodal registration, using both synthetic and real images with quantitative ground truth.

  14. Estimating Mutual Information for High-to-Low Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaud, Isaac James; Williams, Brian J.; Weaver, Brian Phillip

    Presentation shows that KSG 2 is superior to KSG 1 because it scales locally automatically; KSG estimators are limited to a maximum MI due to sample size; LNC extends the capability of KSG without onerous assumptions; iLNC allows LNC to estimate information gain.

  15. Reply to ``Comment on `Performance of different synchronization measures in real data: A case study on electroencephalographic signals' ''

    NASA Astrophysics Data System (ADS)

    Quian Quiroga, R.; Kraskov, A.; Kreuz, T.; Grassberger, P.

    2003-06-01

    We agree with the Comment by Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] that mutual information, estimated with an optimized algorithm, can be a useful tool for studying synchronization in real data. However, we point out that the improvement they found is mainly due to an interesting but nonstandard embedding technique used, and not so much due to the algorithm used for the estimation of mutual information itself. We also address the issue of stationarity of electroencephalographic (EEG) data.

  16. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    PubMed Central

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  17. Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations

    NASA Astrophysics Data System (ADS)

    Albers, D. J.; Hripcsak, George

    2012-03-01

    This paper addresses how to calculate and interpret the time-delayed mutual information (TDMI) for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here, aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can also be used to understand the degree of homo or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements from two different subpopulations of individuals from the Columbia University Medical Center electronic health record repository, revealing a picture of the composition of the population as well as physiological features.

  18. Empirical mode decomposition-based facial pose estimation inside video sequences

    NASA Astrophysics Data System (ADS)

    Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing

    2010-03-01

    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.

  19. Classification VIA Information-Theoretic Fusion of Vector-Magnetic and Acoustic Sensor Data

    DTIC Science & Technology

    2007-04-01

    10) where tBsBtBsBtBsBtsB zzyyxx, . (11) The operation in (10) may be viewed as a vector matched- filter on to estimate )(tB CPARv . In summary...choosing to maximize the classification information in Y are described in Section 3.2. A 3.2. Maximum mutual information ( MMI ) features We begin with a...review of several desirable properties of features that maximize a mutual information ( MMI ) criterion. Then we review a particular algorithm [2

  20. Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data

    NASA Astrophysics Data System (ADS)

    von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo

    2018-02-01

    Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which seem to belong to a more general class of stochastic processes, in which multiscale variance effects produce Hurst phenomena without long-range dependence. In our experimental data, the Hurst phenomenon and long-range memory appear as different system properties that should be estimated and interpreted independently.

  1. Geometric k-nearest neighbor estimation of entropy and mutual information

    NASA Astrophysics Data System (ADS)

    Lord, Warren M.; Sun, Jie; Bollt, Erik M.

    2018-03-01

    Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical system attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-Stögbauer-Grassberger estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but the data size is limited.

  2. Information trimming: Sufficient statistics, mutual information, and predictability from effective channel states

    NASA Astrophysics Data System (ADS)

    James, Ryan G.; Mahoney, John R.; Crutchfield, James P.

    2017-06-01

    One of the most basic characterizations of the relationship between two random variables, X and Y , is the value of their mutual information. Unfortunately, calculating it analytically and estimating it empirically are often stymied by the extremely large dimension of the variables. One might hope to replace such a high-dimensional variable by a smaller one that preserves its relationship with the other. It is well known that either X (or Y ) can be replaced by its minimal sufficient statistic about Y (or X ) while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information X 's minimal sufficient statistic preserves about Y is exactly the information that Y 's minimal sufficient statistic preserves about X . We call this procedure information trimming. As an important corollary, we consider the case where one variable is a stochastic process' past and the other its future. In this case, the mutual information is the channel transmission rate between the channel's effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.

  3. Maximum mutual information estimation of a simplified hidden MRF for offline handwritten Chinese character recognition

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Reichenbach, Stephen E.

    1999-01-01

    Understanding of hand-written Chinese characters is at such a primitive stage that models include some assumptions about hand-written Chinese characters that are simply false. So Maximum Likelihood Estimation (MLE) may not be an optimal method for hand-written Chinese characters recognition. This concern motivates the research effort to consider alternative criteria. Maximum Mutual Information Estimation (MMIE) is an alternative method for parameter estimation that does not derive its rationale from presumed model correctness, but instead examines the pattern-modeling problem in automatic recognition system from an information- theoretic point of view. The objective of MMIE is to find a set of parameters in such that the resultant model allows the system to derive from the observed data as much information as possible about the class. We consider MMIE for recognition of hand-written Chinese characters using on a simplified hidden Markov Random Field. MMIE provides improved performance improvement over MLE in this application.

  4. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  5. Information-theoretical noninvasive damage detection in bridge structures

    NASA Astrophysics Data System (ADS)

    Sudu Ambegedara, Amila; Sun, Jie; Janoyan, Kerop; Bollt, Erik

    2016-11-01

    Damage detection of mechanical structures such as bridges is an important research problem in civil engineering. Using spatially distributed sensor time series data collected from a recent experiment on a local bridge in Upper State New York, we study noninvasive damage detection using information-theoretical methods. Several findings are in order. First, the time series data, which represent accelerations measured at the sensors, more closely follow Laplace distribution than normal distribution, allowing us to develop parameter estimators for various information-theoretic measures such as entropy and mutual information. Second, as damage is introduced by the removal of bolts of the first diaphragm connection, the interaction between spatially nearby sensors as measured by mutual information becomes weaker, suggesting that the bridge is "loosened." Finally, using a proposed optimal mutual information interaction procedure to prune away indirect interactions, we found that the primary direction of interaction or influence aligns with the traffic direction on the bridge even after damaging the bridge.

  6. Elman RNN based classification of proteins sequences on account of their mutual information.

    PubMed

    Mishra, Pooja; Nath Pandey, Paras

    2012-10-21

    In the present work we have employed the method of estimating residue correlation within the protein sequences, by using the mutual information (MI) of adjacent residues, based on structural and solvent accessibility properties of amino acids. The long range correlation between nonadjacent residues is improved by constructing a mutual information vector (MIV) for a single protein sequence, like this each protein sequence is associated with its corresponding MIVs. These MIVs are given to Elman RNN to obtain the classification of protein sequences. The modeling power of MIV was shown to be significantly better, giving a new approach towards alignment free classification of protein sequences. We also conclude that sequence structural and solvent accessible property based MIVs are better predictor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Automatic indexing of compound words based on mutual information for Korean text retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Koo Kim; Yoo Kun Cho

    In this paper, we present an automatic indexing technique for compound words suitable to an aggulutinative language, specifically Korean. Firstly, we present the construction conditions to compose compound words as indexing terms. Also we present the decomposition rules applicable to consecutive nouns to extract all contents of text. Finally we propose a measure to estimate the usefulness of a term, mutual information, to calculate the degree of word association of compound words, based on the information theoretic notion. By applying this method, our system has raised the precision rate of compound words from 72% to 87%.

  8. On Information Metrics for Spatial Coding.

    PubMed

    Souza, Bryan C; Pavão, Rodrigo; Belchior, Hindiael; Tort, Adriano B L

    2018-04-01

    The hippocampal formation is involved in navigation, and its neuronal activity exhibits a variety of spatial correlates (e.g., place cells, grid cells). The quantification of the information encoded by spikes has been standard procedure to identify which cells have spatial correlates. For place cells, most of the established metrics derive from Shannon's mutual information (Shannon, 1948), and convey information rate in bits/s or bits/spike (Skaggs et al., 1993, 1996). Despite their widespread use, the performance of these metrics in relation to the original mutual information metric has never been investigated. In this work, using simulated and real data, we find that the current information metrics correlate less with the accuracy of spatial decoding than the original mutual information metric. We also find that the top informative cells may differ among metrics, and show a surrogate-based normalization that yields comparable spatial information estimates. Since different information metrics may identify different neuronal populations, we discuss current and alternative definitions of spatially informative cells, which affect the metric choice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Mutual Neutralization of Atomic Rare-Gas Cations (Ne+, Ar+, Kr+, Xe+) with Atomic Halide Anions (Cl-, Br-, I-)

    DTIC Science & Technology

    2015-01-07

    DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per...reviewing this collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information , including...suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports

  10. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  11. Stochastic information transfer from cochlear implant electrodes to auditory nerve fibers

    NASA Astrophysics Data System (ADS)

    Gao, Xiao; Grayden, David B.; McDonnell, Mark D.

    2014-08-01

    Cochlear implants, also called bionic ears, are implanted neural prostheses that can restore lost human hearing function by direct electrical stimulation of auditory nerve fibers. Previously, an information-theoretic framework for numerically estimating the optimal number of electrodes in cochlear implants has been devised. This approach relies on a model of stochastic action potential generation and a discrete memoryless channel model of the interface between the array of electrodes and the auditory nerve fibers. Using these models, the stochastic information transfer from cochlear implant electrodes to auditory nerve fibers is estimated from the mutual information between channel inputs (the locations of electrodes) and channel outputs (the set of electrode-activated nerve fibers). Here we describe a revised model of the channel output in the framework that avoids the side effects caused by an "ambiguity state" in the original model and also makes fewer assumptions about perceptual processing in the brain. A detailed comparison of how different assumptions on fibers and current spread modes impact on the information transfer in the original model and in the revised model is presented. We also mathematically derive an upper bound on the mutual information in the revised model, which becomes tighter as the number of electrodes increases. We found that the revised model leads to a significantly larger maximum mutual information and corresponding number of electrodes compared with the original model and conclude that the assumptions made in this part of the modeling framework are crucial to the model's overall utility.

  12. How much a galaxy knows about its large-scale environment?: An information theoretic perspective

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit; Sarkar, Suman

    2017-05-01

    The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.

  13. A Method for Evaluating Tuning Functions of Single Neurons based on Mutual Information Maximization

    NASA Astrophysics Data System (ADS)

    Brostek, Lukas; Eggert, Thomas; Ono, Seiji; Mustari, Michael J.; Büttner, Ulrich; Glasauer, Stefan

    2011-03-01

    We introduce a novel approach for evaluation of neuronal tuning functions, which can be expressed by the conditional probability of observing a spike given any combination of independent variables. This probability can be estimated out of experimentally available data. By maximizing the mutual information between the probability distribution of the spike occurrence and that of the variables, the dependence of the spike on the input variables is maximized as well. We used this method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to movement of the eye and retinal image movement.

  14. An information theory framework for dynamic functional domain connectivity.

    PubMed

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anthropic Correction of Information Estimates and Its Application to Neural Coding

    PubMed Central

    Gastpar, Michael C.; Gill, Patrick R.; Huth, Alexander G.; Theunissen, Frédéric E.

    2015-01-01

    Information theory has been used as an organizing principle in neuroscience for several decades. Estimates of the mutual information (MI) between signals acquired in neurophysiological experiments are believed to yield insights into the structure of the underlying information processing architectures. With the pervasive availability of recordings from many neurons, several information and redundancy measures have been proposed in the recent literature. A typical scenario is that only a small number of stimuli can be tested, while ample response data may be available for each of the tested stimuli. The resulting asymmetric information estimation problem is considered. It is shown that the direct plug-in information estimate has a negative bias. An anthropic correction is introduced that has a positive bias. These two complementary estimators and their combinations are natural candidates for information estimation in neuroscience. Tail and variance bounds are given for both estimates. The proposed information estimates are applied to the analysis of neural discrimination and redundancy in the avian auditory system. PMID:26900172

  16. Anthropic Correction of Information Estimates and Its Application to Neural Coding.

    PubMed

    Gastpar, Michael C; Gill, Patrick R; Huth, Alexander G; Theunissen, Frédéric E

    2010-02-01

    Information theory has been used as an organizing principle in neuroscience for several decades. Estimates of the mutual information (MI) between signals acquired in neurophysiological experiments are believed to yield insights into the structure of the underlying information processing architectures. With the pervasive availability of recordings from many neurons, several information and redundancy measures have been proposed in the recent literature. A typical scenario is that only a small number of stimuli can be tested, while ample response data may be available for each of the tested stimuli. The resulting asymmetric information estimation problem is considered. It is shown that the direct plug-in information estimate has a negative bias. An anthropic correction is introduced that has a positive bias. These two complementary estimators and their combinations are natural candidates for information estimation in neuroscience. Tail and variance bounds are given for both estimates. The proposed information estimates are applied to the analysis of neural discrimination and redundancy in the avian auditory system.

  17. Using Large-Scale Precipitation to Validate AMSR-E Satellite Soil Moisture Estimates by Means of Mutual Information

    NASA Astrophysics Data System (ADS)

    Tuttle, S. E.; Salvucci, G.

    2013-12-01

    Validation of remotely sensed soil moisture is complicated by the difference in scale between remote sensing footprints and traditional ground-based soil moisture measurements. To address this issue, a new method was developed to evaluate the useful information content of remotely sensed soil moisture data using only large-scale precipitation (i.e. without modeling). Under statistically stationary conditions [Salvucci, 2001], precipitation conditionally averaged according to soil moisture (denoted E[P|S]) results in a sigmoidal shape in a manner that reflects the dependence of drainage, runoff, and evapotranspiration on soil moisture. However, errors in satellite measurement and algorithmic conversion of satellite data to soil moisture can degrade this relationship. Thus, remotely sensed soil moisture products can be assessed by the degree to which the natural sigmoidal relationship is preserved. The metric of mutual information was used as an error-dependent measure of the strength of the sigmoidal relationship, calculated from a two-dimensional histogram of soil moisture versus precipitation estimated using Gaussian mixture models. Three AMSR-E algorithms (VUA-NASA [Owe et al., 2001], NASA [Njoku et al., 2003], and U. Montana [Jones & Kimball, 2010]) were evaluated with the method for a nine-year period (2002-2011) over the contiguous United States at ¼° latitude-longitude resolution, using precipitation from the North American Land Data Assimilation System (NLDAS). The U. Montana product resulted in the highest mutual information for 57% of the region, followed by VUA-NASA and NASA at 40% and 3%, respectively. Areas where the U. Montana product yielded the maximum mutual information generally coincided with low vegetation biomass and flatter terrain, while the VUA-NASA product contained more useful information in more rugged and highly vegetated areas. Additionally, E[P|S] curves resulting from the Gaussian mixture method can potentially be decomposed into their conditional evapotranspiration and drainage plus runoff components using matrix factorization methods, allowing for time-averaged mapping of these fluxes over the study area.

  18. Revealing Relationships among Relevant Climate Variables with Information Theory

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Golera, Anthony; Curry, Charles T.; Huyser, Karen A.; Kevin R. Wheeler; Rossow, William B.

    2005-01-01

    The primary objective of the NASA Earth-Sun Exploration Technology Office is to understand the observed Earth climate variability, thus enabling the determination and prediction of the climate's response to both natural and human-induced forcing. We are currently developing a suite of computational tools that will allow researchers to calculate, from data, a variety of information-theoretic quantities such as mutual information, which can be used to identify relationships among climate variables, and transfer entropy, which indicates the possibility of causal interactions. Our tools estimate these quantities along with their associated error bars, the latter of which is critical for describing the degree of uncertainty in the estimates. This work is based upon optimal binning techniques that we have developed for piecewise-constant, histogram-style models of the underlying density functions. Two useful side benefits have already been discovered. The first allows a researcher to determine whether there exist sufficient data to estimate the underlying probability density. The second permits one to determine an acceptable degree of round-off when compressing data for efficient transfer and storage. We also demonstrate how mutual information and transfer entropy can be applied so as to allow researchers not only to identify relations among climate variables, but also to characterize and quantify their possible causal interactions.

  19. Application of State-Space Smoothing to fMRI Data for Calculation of Lagged Transinformation between Human Brain Activations

    NASA Astrophysics Data System (ADS)

    Watanabe, Jobu

    2009-09-01

    Mutual information can be given a directional sense by introducing a time lag in one of the variables. In an author's previous study, to investigate the network dynamics of human brain regions, lagged transinformation (LTI) was introduced using time delayed mutual information. The LTI makes it possible to quantify the time course of dynamic information transfer between regions in the temporal domain. The LTI was applied to functional magnetic resonance imaging (fMRI) data involved in neural processing of the transformation and comparison from three-dimensional (3D) visual information to a two-dimensional (2D) location to calculate directed information flows between the activated brain regions. In the present study, for more precise estimation of LTI, Kalman filter smoothing was applied to the same fMRI data. Because the smoothing method exploits the full length of the time series data for the estimation, its application increases the precision. Large information flows were found from the bilateral prefrontal cortices to the parietal cortices. The results suggest that information of the 3D images stored as working memory was retrieved and transferred from the prefrontal cortices to the parietal cortices for comparison with information of the 2D images.

  20. Estimation of Delta Wave by Mutual Information of Heartbeat During Sleep

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Watanabe, Kajiro; Kobayashi, Kazuyuki; Tanaka, Hiroshi

    The quality of sleep is evaluated based on the sleep stages judged by R-K method or the manual of American Academy of Sleep Medicine. The brainwaves, eye movements, and chin EMG of sleeping subjects are used for the judgment. These methods above, however, require some electrodes to be attached to the head and the face to obtain the brainwaves, eye movements, and chin EMG, thus making the measurements troublesome to be held on a daily basis. If non-invasive measurements of brainwaves, eye movements, and chin EMG are feasible, or their equivalent data can be estimated through other bio-signals, the monitoring of the quality of daily sleeps, which influences the health condition, will be easy. In this paper, we discuss the appearance rate of delta wave occurrences, which is deeply related with the depth of sleep, can be estimated based on the average amount of mutual information calculated by pulse wave signals and body movements measured non-invasively by the pneumatic method. As a result, the root mean square error between the appearance rate of delta wave occurrences measured with a polysomnography and the estimated delta pulse was 14.93%.

  1. Estimating Mutual Information by Local Gaussian Approximation

    DTIC Science & Technology

    2015-07-13

    suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway...following conditions: lim N→∞ hi = 0 , lim N→∞ Nhi =∞, i = 1, 2, . . . , d. (9) Then the following holds: lim N→∞ E|f̂ (x)− f (x)| = 0 (10) lim N→∞ E|f̂ (x

  2. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis

    PubMed Central

    2014-01-01

    Background Leptotrombidium pallidum and Leptotrombidium scutellare are the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. Before these organisms can be subjected to whole-genome sequencing, it is necessary to estimate their genome sizes to obtain basic information for establishing the strategies that should be used for genome sequencing and assembly. Method The genome sizes of L. pallidum and L. scutellare were estimated by a method based on quantitative real-time PCR. In addition, a k-mer analysis of the whole-genome sequences obtained through Illumina sequencing was conducted to verify the mutual compatibility and reliability of the results. Results The genome sizes estimated using qPCR were 191 ± 7 Mb for L. pallidum and 262 ± 13 Mb for L. scutellare. The k-mer analysis-based genome lengths were estimated to be 175 Mb for L. pallidum and 286 Mb for L. scutellare. The estimates from these two independent methods were mutually complementary and within a similar range to those of other Acariform mites. Conclusions The estimation method based on qPCR appears to be a useful alternative when the standard methods, such as flow cytometry, are impractical. The relatively small estimated genome sizes should facilitate whole-genome analysis, which could contribute to our understanding of Arachnida genome evolution and provide key information for scrub typhus prevention and mite vector competence. PMID:24947244

  3. Segmentation of the Speaker's Face Region with Audiovisual Correlation

    NASA Astrophysics Data System (ADS)

    Liu, Yuyu; Sato, Yoichi

    The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.

  4. Buses of Cuernavaca—an agent-based model for universal random matrix behavior minimizing mutual information

    NASA Astrophysics Data System (ADS)

    Warchoł, Piotr

    2018-06-01

    The public transportation system of Cuernavaca, Mexico, exhibits random matrix theory statistics. In particular, the fluctuation of times between the arrival of buses on a given bus stop, follows the Wigner surmise for the Gaussian unitary ensemble. To model this, we propose an agent-based approach in which each bus driver tries to optimize his arrival time to the next stop with respect to an estimated arrival time of his predecessor. We choose a particular form of the associated utility function and recover the appropriate distribution in numerical experiments for a certain value of the only parameter of the model. We then investigate whether this value of the parameter is otherwise distinguished within an information theoretic approach and give numerical evidence that indeed it is associated with a minimum of averaged pairwise mutual information.

  5. The PHESAT95 catalogue of observations of the mutual events of the Saturnian satellites

    NASA Astrophysics Data System (ADS)

    Thuillot, W.; Arlot, J.-E.; Ruatti, C.; Berthier, J.; Blanco, C.; Colas, F.; Czech, W.; Damani, M.; D'Ambrosio, V.; Descamps, P.; Dourneau, G.; Emelianov, N.; Foglia, S.; Helmer, G.; Irsmambetova, T. R.; James, N.; Laques, P.; Lecacheux, J.; Le Campion, J.-F.; Ledoux, C.; Le Floch, J.-C.; Oprescu, G.; Rapaport, M.; Riccioli, R.; Starosta, B.; Tejfel, V. G.; Trunkovsky, E. M.; Viateau, B.; Veiga, C. H.; Vu, D. T.

    2001-05-01

    In 1994-1996 the Sun and the Earth passed through the equatorial plane of Saturn and therefore through the orbital planes of its main satellites. During this period, phenomena involving seven of these satellites were observed. Light curves of eclipses by Saturn and of mutual eclipses and occultations were recorded by the observers of the international campaign PHESAT95 organized by the Institut de mécanique céleste, Paris, France. Herein, we report 66 observations of 43 mutual events from 16 sites. For each observation, information is given about the telescope, the receptor, the site and the observational conditions. This paper gathers together all these data and gives a first estimate of the precision providing accurate astrometric data useful for the development of dynamical models.

  6. Mutual information in the evolution of trajectories in discrete aiming movements.

    PubMed

    Lai, Shih-Chiung; Mayer-Kress, Gottfried; Newell, Karl M

    2008-07-01

    This study investigated the mutual information in the trajectories of discrete aiming movements on a computer controlled graphics tablet where movement time ( 300 - 2050 ms) was manipulated in a given distance (100 mm) and movement distance (15-240 mm) in 2 given movement times (300 ms and 800 ms ). For the distance-fixed conditions, there was higher mutual information in the slower movements in the 0 vs. 80-100% trajectory point comparisons, whereas the mutual information was higher for the faster movements when comparing within the 80 and 100% points of the movement trajectory. For the time-fixed conditions, the spatial constraints led to a decreasing pattern of the mutual information throughout the points of the trajectory, with the highest mutual information found in the 80 vs. 100% comparison. Overall, the pattern of mutual information reveals systematic modulation of the trajectories between the attractive fixed point of the target as a function of movement condition. These mutual information patterns are postulated to be the consequence of the different relative contributions of feedforward and feedback control processes in trajectory formation as a function of task constraints.

  7. Joint eigenvector estimation from mutually anisotropic tensors improves susceptibility tensor imaging of the brain, kidney, and heart.

    PubMed

    Dibb, Russell; Liu, Chunlei

    2017-06-01

    To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Wideband Direction of Arrival Estimation in the Presence of Unknown Mutual Coupling

    PubMed Central

    Li, Weixing; Zhang, Yue; Lin, Jianzhi; Guo, Rui; Chen, Zengping

    2017-01-01

    This paper investigates a subarray based algorithm for direction of arrival (DOA) estimation of wideband uniform linear array (ULA), under the presence of frequency-dependent mutual coupling effects. Based on the Toeplitz structure of mutual coupling matrices, the whole array is divided into the middle subarray and the auxiliary subarray. Then two-sided correlation transformation is applied to the correlation matrix of the middle subarray instead of the whole array. In this way, the mutual coupling effects can be eliminated. Finally, the multiple signal classification (MUSIC) method is utilized to derive the DOAs. For the condition when the blind angles exist, we refine DOA estimation by using a simple approach based on the frequency-dependent mutual coupling matrixes (MCMs). The proposed method can achieve high estimation accuracy without any calibration sources. It has a low computational complexity because iterative processing is not required. Simulation results validate the effectiveness and feasibility of the proposed algorithm. PMID:28178177

  9. Mutuality and solidarity: assessing risks and sharing losses.

    PubMed Central

    Wilkie, D

    1997-01-01

    Mutuality is the principle of private, commercial insurance; individuals enter the pool for sharing losses, and pay according to the best estimate of the risk they bring with them. Solidarity is the sharing of losses with payment according to some other scheme; this is the principle of state social insurance; essential features of solidarity are comprehensiveness and compulsion. Private insurance is subject to the uberrima fides principle, or utmost good faith; each side declares all it knows about the risk. The Disability Discrimination Act requires insurers to justify disability discrimination on the basis of relevant information, acturial, statistical or medical, on which it is reasonable to rely. It could be very damaging to private insurance to abandon uberrima fides. However, although some genetic information is clearly useful to underwriters, other information may be so general as to be of little use. The way in which mortality rates are assessed is also explained. PMID:9304668

  10. Direction Finding With Mutually Orthogonal Antennas

    DTIC Science & Technology

    2011-03-24

    information of these waves must be estimated. The third step, referred to as geolocation , attempts to use the bearing information from step two...DF is distinct from, but related to, the geolocation problem. In DF we seek to answer, “where did that signal come from?” The geolocation problem...Sensor Technology Division) contracted a major aeronautical systems development company to research a DF and geolocation system for UAVs. The system

  11. Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era

    NASA Astrophysics Data System (ADS)

    Huijse, Pablo; Estévez, Pablo A.; Förster, Francisco; Daniel, Scott F.; Connolly, Andrew J.; Protopapas, Pavlos; Carrasco, Rodrigo; Príncipe, José C.

    2018-05-01

    The Large Synoptic Survey Telescope (LSST) will produce an unprecedented amount of light curves using six optical bands. Robust and efficient methods that can aggregate data from multidimensional sparsely sampled time-series are needed. In this paper we present a new method for light curve period estimation based on quadratic mutual information (QMI). The proposed method does not assume a particular model for the light curve nor its underlying probability density and it is robust to non-Gaussian noise and outliers. By combining the QMI from several bands the true period can be estimated even when no single-band QMI yields the period. Period recovery performance as a function of average magnitude and sample size is measured using 30,000 synthetic multiband light curves of RR Lyrae and Cepheid variables generated by the LSST Operations and Catalog simulators. The results show that aggregating information from several bands is highly beneficial in LSST sparsely sampled time-series, obtaining an absolute increase in period recovery rate up to 50%. We also show that the QMI is more robust to noise and light curve length (sample size) than the multiband generalizations of the Lomb–Scargle and AoV periodograms, recovering the true period in 10%–30% more cases than its competitors. A python package containing efficient Cython implementations of the QMI and other methods is provided.

  12. Minimax Estimation of Functionals of Discrete Distributions

    PubMed Central

    Jiao, Jiantao; Venkat, Kartik; Han, Yanjun; Weissman, Tsachy

    2017-01-01

    We propose a general methodology for the construction and analysis of essentially minimax estimators for a wide class of functionals of finite dimensional parameters, and elaborate on the case of discrete distributions, where the support size S is unknown and may be comparable with or even much larger than the number of observations n. We treat the respective regions where the functional is nonsmooth and smooth separately. In the nonsmooth regime, we apply an unbiased estimator for the best polynomial approximation of the functional whereas, in the smooth regime, we apply a bias-corrected version of the maximum likelihood estimator (MLE). We illustrate the merit of this approach by thoroughly analyzing the performance of the resulting schemes for estimating two important information measures: 1) the entropy H(P)=∑i=1S−pilnpi and 2) Fα(P)=∑i=1Spiα, α > 0. We obtain the minimax L2 rates for estimating these functionals. In particular, we demonstrate that our estimator achieves the optimal sample complexity n ≍ S/ln S for entropy estimation. We also demonstrate that the sample complexity for estimating Fα(P), 0 < α < 1, is n ≍ S1/α/ln S, which can be achieved by our estimator but not the MLE. For 1 < α < 3/2, we show the minimax L2 rate for estimating Fα(P) is (n ln n)−2(α−1) for infinite support size, while the maximum L2 rate for the MLE is n−2(α−1). For all the above cases, the behavior of the minimax rate-optimal estimators with n samples is essentially that of the MLE (plug-in rule) with n ln n samples, which we term “effective sample size enlargement.” We highlight the practical advantages of our schemes for the estimation of entropy and mutual information. We compare our performance with various existing approaches, and demonstrate that our approach reduces running time and boosts the accuracy. Moreover, we show that the minimax rate-optimal mutual information estimator yielded by our framework leads to significant performance boosts over the Chow–Liu algorithm in learning graphical models. The wide use of information measure estimation suggests that the insights and estimators obtained in this paper could be broadly applicable. PMID:29375152

  13. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging

    PubMed Central

    Mukherjee, Joyeeta Mitra; Hutton, Brian F; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A

    2014-01-01

    Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference (MSD), mutual information (MI), normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation (NCC) and entropy of the difference (EDI). Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in 1 of the 5 patient studies, and with external-surrogate based correction in 3 out of 5 patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. PMID:24107647

  14. Analytical Calculation of Mutual Information between Weakly Coupled Poisson-Spiking Neurons in Models of Dynamically Gated Communication.

    PubMed

    Cannon, Jonathan

    2017-01-01

    Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.

  15. Hierarchical mutual information for the comparison of hierarchical community structures in complex networks

    NASA Astrophysics Data System (ADS)

    Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido

    2015-12-01

    The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.

  16. Mutual information estimation reveals global associations between stimuli and biological processes

    PubMed Central

    Suzuki, Taiji; Sugiyama, Masashi; Kanamori, Takafumi; Sese, Jun

    2009-01-01

    Background Although microarray gene expression analysis has become popular, it remains difficult to interpret the biological changes caused by stimuli or variation of conditions. Clustering of genes and associating each group with biological functions are often used methods. However, such methods only detect partial changes within cell processes. Herein, we propose a method for discovering global changes within a cell by associating observed conditions of gene expression with gene functions. Results To elucidate the association, we introduce a novel feature selection method called Least-Squares Mutual Information (LSMI), which computes mutual information without density estimaion, and therefore LSMI can detect nonlinear associations within a cell. We demonstrate the effectiveness of LSMI through comparison with existing methods. The results of the application to yeast microarray datasets reveal that non-natural stimuli affect various biological processes, whereas others are no significant relation to specific cell processes. Furthermore, we discover that biological processes can be categorized into four types according to the responses of various stimuli: DNA/RNA metabolism, gene expression, protein metabolism, and protein localization. Conclusion We proposed a novel feature selection method called LSMI, and applied LSMI to mining the association between conditions of yeast and biological processes through microarray datasets. In fact, LSMI allows us to elucidate the global organization of cellular process control. PMID:19208155

  17. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    NASA Astrophysics Data System (ADS)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  18. Evaluation of assumptions in soil moisture triple collocation analysis

    USDA-ARS?s Scientific Manuscript database

    Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually-independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and ort...

  19. Generalized mutual information and Tsirelson's bound

    NASA Astrophysics Data System (ADS)

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-01

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the "no-supersignalling condition" (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  20. Generalized mutual information and Tsirelson's bound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-04

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the 'no-supersignalling condition' (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  1. Mutual information and the fidelity of response of gene regulatory models

    NASA Astrophysics Data System (ADS)

    Tabbaa, Omar P.; Jayaprakash, C.

    2014-08-01

    We investigate cellular response to extracellular signals by using information theory techniques motivated by recent experiments. We present results for the steady state of the following gene regulatory models found in both prokaryotic and eukaryotic cells: a linear transcription-translation model and a positive or negative auto-regulatory model. We calculate both the information capacity and the mutual information exactly for simple models and approximately for the full model. We find that (1) small changes in mutual information can lead to potentially important changes in cellular response and (2) there are diminishing returns in the fidelity of response as the mutual information increases. We calculate the information capacity using Gillespie simulations of a model for the TNF-α-NF-κ B network and find good agreement with the measured value for an experimental realization of this network. Our results provide a quantitative understanding of the differences in cellular response when comparing experimentally measured mutual information values of different gene regulatory models. Our calculations demonstrate that Gillespie simulations can be used to compute the mutual information of more complex gene regulatory models, providing a potentially useful tool in synthetic biology.

  2. Mutual information-based LPI optimisation for radar network

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  3. Phase estimation with nonunitary interferometers: Information as a metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahder, Thomas B.

    2011-05-15

    Determining the phase in one arm of a quantum interferometer is discussed taking into account the three nonideal aspects in real experiments: nondeterministic state preparation, nonunitary state evolution due to losses during state propagation, and imperfect state detection. A general expression is written for the probability of a measurement outcome taking into account these three nonideal aspects. As an example of applying the formalism, the classical Fisher information and fidelity (Shannon mutual information between phase and measurements) are computed for few-photon Fock and N00N states input into a lossy Mach-Zehnder interferometer. These three nonideal aspects lead to qualitative differences inmore » phase estimation, such as a decrease in fidelity and Fisher information that depends on the true value of the phase.« less

  4. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  5. Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.

    PubMed

    Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan

    2018-03-09

    This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.

  6. Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise

    PubMed Central

    Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan

    2018-01-01

    This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499

  7. Estimating the mutual information of an EEG-based Brain-Computer Interface.

    PubMed

    Schlögl, A; Neuper, C; Pfurtscheller, G

    2002-01-01

    An EEG-based Brain-Computer Interface (BCI) could be used as an additional communication channel between human thoughts and the environment. The efficacy of such a BCI depends mainly on the transmitted information rate. Shannon's communication theory was used to quantify the information rate of BCI data. For this purpose, experimental EEG data from four BCI experiments was analyzed off-line. Subjects imaginated left and right hand movements during EEG recording from the sensorimotor area. Adaptive autoregressive (AAR) parameters were used as features of single trial EEG and classified with linear discriminant analysis. The intra-trial variation as well as the inter-trial variability, the signal-to-noise ratio, the entropy of information, and the information rate were estimated. The entropy difference was used as a measure of the separability of two classes of EEG patterns.

  8. Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling

    NASA Astrophysics Data System (ADS)

    Akkar, Salem; Harabi, Ferid; Gharsallah, Ali

    2013-06-01

    Directions of arrival (DoAs) estimation of multiple sources using an antenna array is a challenging topic in wireless communication. The DoAs estimation accuracy depends not only on the selected technique and algorithm, but also on the geometrical configuration of the antenna array used during the estimation. In this article the robustness of common planar antenna arrays against unaccounted mutual coupling is examined and their DoAs estimation capabilities are compared and analysed through computer simulations using the well-known MUltiple SIgnal Classification (MUSIC) algorithm. Our analysis is based on an electromagnetic concept to calculate an approximation of the impedance matrices that define the mutual coupling matrix (MCM). Furthermore, a CRB analysis is presented and used as an asymptotic performance benchmark of the studied antenna arrays. The impact of the studied antenna arrays geometry on the MCM structure is also investigated. Simulation results show that the UCCA has more robustness against unaccounted mutual coupling and performs better results than both UCA and URA geometries. The performed simulations confirm also that, although the UCCA achieves better performance under complicated scenarios, the URA shows better asymptotic (CRB) behaviour which promises more accuracy on DoAs estimation.

  9. Research on electricity consumption forecast based on mutual information and random forests algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Shi, Yunli; Tan, Jian; Zhu, Lei; Li, Hu

    2018-02-01

    Traditional power forecasting models cannot efficiently take various factors into account, neither to identify the relation factors. In this paper, the mutual information in information theory and the artificial intelligence random forests algorithm are introduced into the medium and long-term electricity demand prediction. Mutual information can identify the high relation factors based on the value of average mutual information between a variety of variables and electricity demand, different industries may be highly associated with different variables. The random forests algorithm was used for building the different industries forecasting models according to the different correlation factors. The data of electricity consumption in Jiangsu Province is taken as a practical example, and the above methods are compared with the methods without regard to mutual information and the industries. The simulation results show that the above method is scientific, effective, and can provide higher prediction accuracy.

  10. Uncertainty Propagation and the Fano Based Infromation Theoretic Method: A Radar Example

    DTIC Science & Technology

    2015-02-01

    Hogg, “Phase transitions and the search problem by, artificial intellience ”, (an Elsevier journal) volume 81, published in 1996, Pages 1- 15. [39] R...dispersion of the mean mutual information of the estimate is low enough to support the use of the linear approximation. M ut ua l In M uf or m at io n

  11. Nonlinear pattern analysis of ventricular premature beats by mutual information

    NASA Technical Reports Server (NTRS)

    Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.

    1997-01-01

    The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.

  12. Sparse Bayesian learning for DOA estimation with mutual coupling.

    PubMed

    Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi

    2015-10-16

    Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.

  13. Mutual information against correlations in binary communication channels.

    PubMed

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  14. 76 FR 35084 - Mutual to Stock Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Mutual to Stock Conversion Application... invite comments on the following information collection. Title of Proposal: Mutual to Stock Conversion... and soundness of the proposed stock conversion. The purpose of the information collection is to...

  15. 77 FR 11601 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ..., Washington, DC 20549-0213. Extension: Mutual Fund Interactive Data; SEC File No. 270-580; OMB Control No... information for submitting risk/ return summary information in interactive data format is ``Mutual Fund.... The purpose of the Mutual Fund Interactive Data requirements is to make risk/return summary...

  16. Quantitative assessment of drivers of recent global temperature variability: an information theoretic approach

    NASA Astrophysics Data System (ADS)

    Bhaskar, Ankush; Ramesh, Durbha Sai; Vichare, Geeta; Koganti, Triven; Gurubaran, S.

    2017-12-01

    Identification and quantification of possible drivers of recent global temperature variability remains a challenging task. This important issue is addressed adopting a non-parametric information theory technique, the Transfer Entropy and its normalized variant. It distinctly quantifies actual information exchanged along with the directional flow of information between any two variables with no bearing on their common history or inputs, unlike correlation, mutual information etc. Measurements of greenhouse gases: CO2, CH4 and N2O; volcanic aerosols; solar activity: UV radiation, total solar irradiance ( TSI) and cosmic ray flux ( CR); El Niño Southern Oscillation ( ENSO) and Global Mean Temperature Anomaly ( GMTA) made during 1984-2005 are utilized to distinguish driving and responding signals of global temperature variability. Estimates of their relative contributions reveal that CO2 ({˜ } 24 %), CH4 ({˜ } 19 %) and volcanic aerosols ({˜ }23 %) are the primary contributors to the observed variations in GMTA. While, UV ({˜ } 9 %) and ENSO ({˜ } 12 %) act as secondary drivers of variations in the GMTA, the remaining play a marginal role in the observed recent global temperature variability. Interestingly, ENSO and GMTA mutually drive each other at varied time lags. This study assists future modelling efforts in climate science.

  17. The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks

    PubMed Central

    Chevalier, Michael; Venturelli, Ophelia; El-Samad, Hana

    2015-01-01

    Stochastic fluctuations in signaling and gene expression limit the ability of cells to sense the state of their environment, transfer this information along cellular pathways, and respond to it with high precision. Mutual information is now often used to quantify the fidelity with which information is transmitted along a cellular pathway. Mutual information calculations from experimental data have mostly generated low values, suggesting that cells might have relatively low signal transmission fidelity. In this work, we demonstrate that mutual information calculations might be artificially lowered by cell-to-cell variability in both initial conditions and slowly fluctuating global factors across the population. We carry out our analysis computationally using a simple signaling pathway and demonstrate that in the presence of slow global fluctuations, every cell might have its own high information transmission capacity but that population averaging underestimates this value. We also construct a simple synthetic transcriptional network and demonstrate using experimental measurements coupled to computational modeling that its operation is dominated by slow global variability, and hence that its mutual information is underestimated by a population averaged calculation. PMID:26484538

  18. 77 FR 26051 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ..., Washington, DC 20549-0213. Extension: Mutual Fund Interactive Data; SEC File No. 270-580; OMB Control No... information in interactive data format is ``Mutual Fund Interactive Data.'' This collection of information... disclosure requirements for funds and other issuers. The purpose of the Mutual Fund Interactive Data...

  19. Estimating the decomposition of predictive information in multivariate systems

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  20. The mutual causality analysis between the stock and futures markets

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Qing-Wen

    2017-07-01

    In this paper we employ the conditional Granger causality model to estimate the information flow, and find that the improved model outperforms the Granger causality model in revealing the asymmetric correlation between stocks and futures in the Chinese market. First, we find that information flows estimated by Granger causality tests from futures to stocks are greater than those from stocks to futures. Additionally, average correlation coefficients capture some important characteristics between stock prices and information flows over time. Further, we find that direct information flows estimated by conditional Granger causality tests from stocks to futures are greater than those from futures to stocks. Besides, the substantial increases of information flows and direct information flows exhibit a certain degree of synchronism with the occurrences of important events. Finally, the comparative analysis with the asymmetric ratio and the bootstrap technique demonstrates the slight asymmetry of information flows and the significant asymmetry of direct information flows. It reveals that the information flows from futures to stocks are slightly greater than those in the reverse direction, while the direct information flows from stocks to futures are significantly greater than those in the reverse direction.

  1. Multiparty quantum mutual information: An alternative definition

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh

    2017-07-01

    Mutual information is the reciprocal information that is common to or shared by two or more parties. Quantum mutual information for bipartite quantum systems is non-negative, and bears the interpretation of total correlation between the two subsystems. This may, however, no longer be true for three or more party quantum systems. In this paper, we propose an alternative definition of multipartite information, taking into account the shared information between two and more parties. It is non-negative, observes monotonicity under partial trace as well as completely positive maps, and equals the multipartite information measure in literature for pure states. We then define multiparty quantum discord, and give some examples. Interestingly, we observe that quantum discord increases when a measurement is performed on a large number of subsystems. Consequently, the symmetric quantum discord, which involves a measurement on all parties, reveals the maximal quantumness. This raises a question on the interpretation of measured mutual information as a classical correlation.

  2. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    PubMed

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  3. 75 FR 33319 - Agency Information Collection Activities: New Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Information Collection; ICE Mutual Agreement Between Government and Employers (IMAGE). The Department of... technological collection techniques or other forms of information technology, e.g., permitting electronic... information collection. (2) Title of the Form/Collection: ICE Mutual Agreement between Government and...

  4. A multivariate extension of mutual information for growing neural networks.

    PubMed

    Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J

    2017-11-01

    Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Automatic registration of optical imagery with 3d lidar data using local combined mutual information

    NASA Astrophysics Data System (ADS)

    Parmehr, E. G.; Fraser, C. S.; Zhang, C.; Leach, J.

    2013-10-01

    Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The effectiveness of intensity-based methods such as Mutual Information (MI) for automated registration of multi-sensor image has been previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 3D probability density function (pdf). In addition, a local similarity measure is introduced to decrease the complexity of optimisation at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in urban and rural areas is experimentally evaluated and the results obtained are discussed.

  6. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information.

    PubMed

    Meyer, Patrick E; Lafitte, Frédéric; Bontempi, Gianluca

    2008-10-29

    This paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package returns a network where nodes denote genes, edges model statistical dependencies between genes and the weight of an edge quantifies the statistical evidence of a specific (e.g transcriptional) gene-to-gene interaction. Four different entropy estimators are made available in the package minet (empirical, Miller-Madow, Schurmann-Grassberger and shrink) as well as four different inference methods, namely relevance networks, ARACNE, CLR and MRNET. Also, the package integrates accuracy assessment tools, like F-scores, PR-curves and ROC-curves in order to compare the inferred network with a reference one. The package minet provides a series of tools for inferring transcriptional networks from microarray data. It is freely available from the Comprehensive R Archive Network (CRAN) as well as from the Bioconductor website.

  7. Rényi generalizations of the conditional quantum mutual information

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Seshadreesan, Kaushik P.; Wilde, Mark M.

    2015-02-01

    The conditional quantum mutual information I(A; B|C) of a tripartite state ρABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different α-Rényi generalizations Iα(A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit α → 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter α. We prove that this conjecture is true in some special cases and when α is in a neighborhood of one.

  8. Rényi generalizations of the conditional quantum mutual information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Mario; Seshadreesan, Kaushik P.; Wilde, Mark M.

    2015-02-15

    The conditional quantum mutual information I(A; B|C) of a tripartite state ρ{sub ABC} is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such,more » it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different α-Rényi generalizations I{sub α}(A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit α → 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter α. We prove that this conjecture is true in some special cases and when α is in a neighborhood of one.« less

  9. Multipass Target Search in Natural Environments

    PubMed Central

    Otte, Michael W.; Sofge, Donald; Gupta, Satyandra K.

    2017-01-01

    Consider a disaster scenario where search and rescue workers must search difficult to access buildings during an earthquake or flood. Often, finding survivors a few hours sooner results in a dramatic increase in saved lives, suggesting the use of drones for expedient rescue operations. Entropy can be used to quantify the generation and resolution of uncertainty. When searching for targets, maximizing mutual information of future sensor observations will minimize expected target location uncertainty by minimizing the entropy of the future estimate. Motion planning for multi-target autonomous search requires planning over an area with an imperfect sensor and may require multiple passes, which is hindered by the submodularity property of mutual information. Further, mission duration constraints must be handled accordingly, requiring consideration of the vehicle’s dynamics to generate feasible trajectories and must plan trajectories spanning the entire mission duration, something which most information gathering algorithms are incapable of doing. If unanticipated changes occur in an uncertain environment, new plans must be generated quickly. In addition, planning multipass trajectories requires evaluating path dependent rewards, requiring planning in the space of all previously selected actions, compounding the problem. We present an anytime algorithm for autonomous multipass target search in natural environments. The algorithm is capable of generating long duration dynamically feasible multipass coverage plans that maximize mutual information using a variety of techniques such as ϵ-admissible heuristics to speed up the search. To the authors’ knowledge this is the first attempt at efficiently solving multipass target search problems of such long duration. The proposed algorithm is based on best first branch and bound and is benchmarked against state of the art algorithms adapted to the problem in natural Simplex environments, gathering the most information in the given search time. PMID:29099087

  10. Groupwise registration of cardiac perfusion MRI sequences using normalized mutual information in high dimension

    NASA Astrophysics Data System (ADS)

    Hamrouni, Sameh; Rougon, Nicolas; Pr"teux, Françoise

    2011-03-01

    In perfusion MRI (p-MRI) exams, short-axis (SA) image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent (Gd-DTPA) through the cardiac chambers and muscle. Compensating cardio-thoracic motions is a requirement for enabling computer-aided quantitative assessment of myocardial ischaemia from contrast-enhanced p-MRI sequences. The classical paradigm consists of registering each sequence frame on a reference image using some intensity-based matching criterion. In this paper, we introduce a novel unsupervised method for the spatio-temporal groupwise registration of cardiac p-MRI exams based on normalized mutual information (NMI) between high-dimensional feature distributions. Here, local contrast enhancement curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization to a target feature distribution derived from a registered reference template. The hard issue of probability density estimation in high-dimensional state spaces is bypassed by using consistent geometric entropy estimators, allowing NMI to be computed directly from feature samples. Specifically, a computationally efficient kth-nearest neighbor (kNN) estimation framework is retained, leading to closed-form expressions for the gradient flow of NMI over finite- and infinite-dimensional motion spaces. This approach is applied to the groupwise alignment of cardiac p-MRI exams using a free-form Deformation (FFD) model for cardio-thoracic motions. Experiments on simulated and natural datasets suggest its accuracy and robustness for registering p-MRI exams comprising more than 30 frames.

  11. Principal Components of Recurrence Quantification Analysis of EMG

    DTIC Science & Technology

    2001-10-25

    Springer, 1981, pp. 366-381. 4. M. Fraser and H. L. Swinney, “ Independent coordinates for strange attractors from mutual information ,” Phys. Rev. A...autocorrelation function of s(n), although it has also been argued that the first local minimum of the auto mutual information function is more appropriate [4...recordings from a given subject. T was taken as the lag corresponding to the first minimum of the auto mutual information function, calculated as

  12. 31 CFR 1024.520 - Special information sharing procedures to deter money laundering and terrorist activity for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to deter money laundering and terrorist activity for mutual funds. 1024.520 Section 1024.520 Money... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MUTUAL FUNDS Special Information Sharing Procedures... deter money laundering and terrorist activity for mutual funds. (a) Refer to § 1010.520 of this chapter...

  13. Mutual Information Rate and Bounds for It

    PubMed Central

    Baptista, Murilo S.; Rubinger, Rero M.; Viana, Emilson R.; Sartorelli, José C.; Parlitz, Ulrich; Grebogi, Celso

    2012-01-01

    The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators. PMID:23112809

  14. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Bredel, M; Brezovich, I

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods frommore » a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.« less

  15. Quantum Darwinism for mixed-state environment

    NASA Astrophysics Data System (ADS)

    Quan, Haitao; Zwolak, Michael; Zurek, Wojciech

    2009-03-01

    We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.

  16. Application of independent component analysis for speech-music separation using an efficient score function estimation

    NASA Astrophysics Data System (ADS)

    Pishravian, Arash; Aghabozorgi Sahaf, Masoud Reza

    2012-12-01

    In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time

  17. Entanglement entropy and mutual information production rates in acoustic black holes.

    PubMed

    Giovanazzi, Stefano

    2011-01-07

    A method to investigate acoustic Hawking radiation is proposed, where entanglement entropy and mutual information are measured from the fluctuations of the number of particles. The rate of entropy radiated per one-dimensional (1D) channel is given by S=κ/12, where κ is the sound acceleration on the sonic horizon. This entropy production is accompanied by a corresponding formation of mutual information to ensure the overall conservation of information. The predictions are confirmed using an ab initio analytical approach in transonic flows of 1D degenerate ideal Fermi fluids.

  18. Construction of mutually unbiased bases with cyclic symmetry for qubit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyfarth, Ulrich; Ranade, Kedar S.

    2011-10-15

    For the complete estimation of arbitrary unknown quantum states by measurements, the use of mutually unbiased bases has been well established in theory and experiment for the past 20 years. However, most constructions of these bases make heavy use of abstract algebra and the mathematical theory of finite rings and fields, and no simple and generally accessible construction is available. This is particularly true in the case of a system composed of several qubits, which is arguably the most important case in quantum information science and quantum computation. In this paper, we close this gap by providing a simple andmore » straightforward method for the construction of mutually unbiased bases in the case of a qubit register. We show that our construction is also accessible to experiments, since only Hadamard and controlled-phase gates are needed, which are available in most practical realizations of a quantum computer. Moreover, our scheme possesses the optimal scaling possible, i.e., the number of gates scales only linearly in the number of qubits.« less

  19. A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Pahlavani, Parham; Bigdeli, Behnaz

    2017-12-01

    Hyperspectral images contain extremely rich spectral information that offer great potential to discriminate between various land cover classes. However, these images are usually composed of tens or hundreds of spectrally close bands, which result in high redundancy and great amount of computation time in hyperspectral classification. Furthermore, in the presence of mixed coverage pixels, crisp classifiers produced errors, omission and commission. This paper presents a mutual information-Dempster-Shafer system through an ensemble classification approach for classification of hyperspectral data. First, mutual information is applied to split data into a few independent partitions to overcome high dimensionality. Then, a fuzzy maximum likelihood classifies each band subset. Finally, Dempster-Shafer is applied to fuse the results of the fuzzy classifiers. In order to assess the proposed method, a crisp ensemble system based on a support vector machine as the crisp classifier and weighted majority voting as the crisp fusion method are applied on hyperspectral data. Furthermore, a dimension reduction system is utilized to assess the effectiveness of mutual information band splitting of the proposed method. The proposed methodology provides interesting conclusions on the effectiveness and potentiality of mutual information-Dempster-Shafer based classification of hyperspectral data.

  20. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.

    PubMed

    Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E

    2018-03-05

    The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.

  1. Exploring Proxy Measures of Mutuality for Strategic Partnership Development: A Case Study.

    PubMed

    Mayo-Gamble, Tilicia L; Barnes, Priscilla A; Sherwood-Laughlin, Catherine M; Reece, Michael; DeWeese, Sandy; Kennedy, Carol Weiss; Valenta, Mary Ann

    2017-07-01

    Partnerships between academic and clinical-based health organizations are becoming increasingly important in improving health outcomes. Mutuality is recognized as a vital component of these partnerships. If partnerships are to achieve mutuality, there is a need to define what it means to partnering organizations. Few studies have described the elements contributing to mutuality, particularly in new relationships between academic and clinical partners. This study seeks to identify how mutuality is expressed and to explore potential proxy measures of mutuality for an alliance consisting of a hospital system and a School of Public Health. Key informant interviews were conducted with faculty and hospital representatives serving on the partnership steering committee. Key informants were asked about perceived events that led to the development of the Alliance; perceived goals, expectations, and outcomes; and current/future roles with the Alliance. Four proxy measures of mutuality for an academic-clinical partnership were identified: policy directives, community beneficence, procurement of human capital, and partnership longevity. Findings can inform the development of tools for assisting in strengthening relationships and ensuring stakeholders' interests align with the mission and goal of the partnership by operationalizing elements necessary to evaluate the progress of the partnership.

  2. A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Volpi, Mara; Locatelli, Ugo; Sansottera, Marco

    2018-05-01

    The inclinations of exoplanets detected via radial velocity method are essentially unknown. We aim to provide estimations of the ranges of mutual inclinations that are compatible with the long-term stability of the system. Focusing on the skeleton of an extrasolar system, i.e. considering only the two most massive planets, we study the Hamiltonian of the three-body problem after the reduction of the angular momentum. Such a Hamiltonian is expanded both in Poincaré canonical variables and in the small parameter D_2, which represents the normalised angular momentum deficit. The value of the mutual inclination is deduced from D_2 and, thanks to the use of interval arithmetic, we are able to consider open sets of initial conditions instead of single values. Looking at the convergence radius of the Kolmogorov normal form, we develop a reverse KAM approach in order to estimate the ranges of mutual inclinations that are compatible with the long-term stability in a KAM sense. Our method is successfully applied to the extrasolar systems HD 141399, HD 143761 and HD 40307.

  3. 75 FR 53322 - Agency Information Collection Activities: New Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Information Collection for Review; ICE Mutual Agreement between Government and Employers (IMAGE), OMB No. 1653...) Title of the Form/Collection: IMAGE Information Request and Membership Application/ICE Mutual Agreement between Government and Employers (IMAGE) (3) Agency form number, if any, and the applicable component of...

  4. Discrete-to-continuous transition in quantum phase estimation

    NASA Astrophysics Data System (ADS)

    Rządkowski, Wojciech; Demkowicz-Dobrzański, Rafał

    2017-09-01

    We analyze the problem of quantum phase estimation in which the set of allowed phases forms a discrete N -element subset of the whole [0 ,2 π ] interval, φn=2 π n /N , n =0 ,⋯,N -1 , and study the discrete-to-continuous transition N →∞ for various cost functions as well as the mutual information. We also analyze the relation between the problems of phase discrimination and estimation by considering a step cost function of a given width σ around the true estimated value. We show that in general a direct application of the theory of covariant measurements for a discrete subgroup of the U(1 ) group leads to suboptimal strategies due to an implicit requirement of estimating only the phases that appear in the prior distribution. We develop the theory of subcovariant measurements to remedy this situation and demonstrate truly optimal estimation strategies when performing a transition from discrete to continuous phase estimation.

  5. Exponential Modelling for Mutual-Cohering of Subband Radar Data

    NASA Astrophysics Data System (ADS)

    Siart, U.; Tejero, S.; Detlefsen, J.

    2005-05-01

    Increasing resolution and accuracy is an important issue in almost any type of radar sensor application. However, both resolution and accuracy are strongly related to the available signal bandwidth and energy that can be used. Nowadays, often several sensors operating in different frequency bands become available on a sensor platform. It is an attractive goal to use the potential of advanced signal modelling and optimization procedures by making proper use of information stemming from different frequency bands at the RF signal level. An important prerequisite for optimal use of signal energy is coherence between all contributing sensors. Coherent multi-sensor platforms are greatly expensive and are thus not available in general. This paper presents an approach for accurately estimating object radar responses using subband measurements at different RF frequencies. An exponential model approach allows to compensate for the lack of mutual coherence between independently operating sensors. Mutual coherence is recovered from the a-priori information that both sensors have common scattering centers in view. Minimizing the total squared deviation between measured data and a full-range exponential signal model leads to more accurate pole angles and pole magnitudes compared to single-band optimization. The model parameters (range and magnitude of point scatterers) after this full-range optimization process are also more accurate than the parameters obtained from a commonly used super-resolution procedure (root-MUSIC) applied to the non-coherent subband data.

  6. An Efficient Location Verification Scheme for Static Wireless Sensor Networks.

    PubMed

    Kim, In-Hwan; Kim, Bo-Sung; Song, JooSeok

    2017-01-24

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.

  7. An Efficient Location Verification Scheme for Static Wireless Sensor Networks

    PubMed Central

    Kim, In-hwan; Kim, Bo-sung; Song, JooSeok

    2017-01-01

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors. PMID:28125007

  8. Research on the method of information system risk state estimation based on clustering particle filter

    NASA Astrophysics Data System (ADS)

    Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua

    2017-05-01

    With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.

  9. 12 CFR 12.101 - National bank disclosure of remuneration for mutual fund transactions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mutual fund transactions. 12.101 Section 12.101 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT... Interpretations § 12.101 National bank disclosure of remuneration for mutual fund transactions. A national bank... by § 12.4, for mutual fund transactions by providing this information to the customer in a current...

  10. 12 CFR 12.101 - National bank disclosure of remuneration for mutual fund transactions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mutual fund transactions. 12.101 Section 12.101 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT... Interpretations § 12.101 National bank disclosure of remuneration for mutual fund transactions. A national bank... by § 12.4, for mutual fund transactions by providing this information to the customer in a current...

  11. Holographic mutual information of two disjoint spheres

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Fan, Zhong-Ying; Li, Wen-Ming; Zhang, Cheng-Yong

    2018-04-01

    We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1 /n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play an indispensable role in reading the leading order corrections to the bulk mutual information.

  12. Development of stock correlation networks using mutual information and financial big data.

    PubMed

    Guo, Xue; Zhang, Hu; Tian, Tianhai

    2018-01-01

    Stock correlation networks use stock price data to explore the relationship between different stocks listed in the stock market. Currently this relationship is dominantly measured by the Pearson correlation coefficient. However, financial data suggest that nonlinear relationships may exist in the stock prices of different shares. To address this issue, this work uses mutual information to characterize the nonlinear relationship between stocks. Using 280 stocks traded at the Shanghai Stocks Exchange in China during the period of 2014-2016, we first compare the effectiveness of the correlation coefficient and mutual information for measuring stock relationships. Based on these two measures, we then develop two stock networks using the Minimum Spanning Tree method and study the topological properties of these networks, including degree, path length and the power-law distribution. The relationship network based on mutual information has a better distribution of the degree and larger value of the power-law distribution than those using the correlation coefficient. Numerical results show that mutual information is a more effective approach than the correlation coefficient to measure the stock relationship in a stock market that may undergo large fluctuations of stock prices.

  13. Development of stock correlation networks using mutual information and financial big data

    PubMed Central

    Guo, Xue; Zhang, Hu

    2018-01-01

    Stock correlation networks use stock price data to explore the relationship between different stocks listed in the stock market. Currently this relationship is dominantly measured by the Pearson correlation coefficient. However, financial data suggest that nonlinear relationships may exist in the stock prices of different shares. To address this issue, this work uses mutual information to characterize the nonlinear relationship between stocks. Using 280 stocks traded at the Shanghai Stocks Exchange in China during the period of 2014-2016, we first compare the effectiveness of the correlation coefficient and mutual information for measuring stock relationships. Based on these two measures, we then develop two stock networks using the Minimum Spanning Tree method and study the topological properties of these networks, including degree, path length and the power-law distribution. The relationship network based on mutual information has a better distribution of the degree and larger value of the power-law distribution than those using the correlation coefficient. Numerical results show that mutual information is a more effective approach than the correlation coefficient to measure the stock relationship in a stock market that may undergo large fluctuations of stock prices. PMID:29668715

  14. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions

    PubMed Central

    Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin

    2016-01-01

    Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435

  15. Cross Correlation versus Normalized Mutual Information on Image Registration

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  16. An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency.

    PubMed

    Faghihi, Faramarz; Kolodziejski, Christoph; Fiala, André; Wörgötter, Florentin; Tetzlaff, Christian

    2013-12-20

    Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.

  17. 78 FR 35325 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Prohibited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ...-end investment company (mutual fund) when a fiduciary with respect to the plan is also the investment advisor for the mutual fund. There are three basic disclosure requirements incorporated within PTE 77-4... mutual fund. The second requirement is that, at the time of the purchase or sale of such mutual fund...

  18. Mutual information and spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Hamma, A.; Giampaolo, S. M.; Illuminati, F.

    2016-01-01

    We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the exactly solvable one-dimensional quantum X Y model, we further verify the general result by considering also the quantum mutual information based on the von Neumann entanglement entropy.

  19. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    PubMed

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  20. Hierarchical clustering using mutual information

    NASA Astrophysics Data System (ADS)

    Kraskov, A.; Stögbauer, H.; Andrzejak, R. G.; Grassberger, P.

    2005-04-01

    We present a conceptually simple method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon (probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman.

  1. Rényi information flow in the Ising model with single-spin dynamics.

    PubMed

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  2. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  3. Problem decomposition by mutual information and force-based clustering

    NASA Astrophysics Data System (ADS)

    Otero, Richard Edward

    The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.

  4. Waking and scrambling in holographic heating up

    NASA Astrophysics Data System (ADS)

    Ageev, D. S.; Aref'eva, I. Ya.

    2017-10-01

    Using holographic methods, we study the heating up process in quantum field theory. As a holographic dual of this process, we use absorption of a thin shell on a black brane. We find the explicit form of the time evolution of the quantum mutual information during heating up from the temperature Ti to the temperature T f in a system of two intervals in two-dimensional space-time. We determine the geometric characteristics of the system under which the time dependence of the mutual information has a bell shape: it is equal to zero at the initial instant, becomes positive at some subsequent instant, further attains its maximum, and again decreases to zero. Such a behavior of the mutual information occurs in the process of photosynthesis. We show that if the distance x between the intervals is less than log 2/2π T i, then the evolution of the holographic mutual information has a bell shape only for intervals whose lengths are bounded from above and below. For sufficiently large x, i.e., for x < log 2/2π T i, the bell-like shape of the time dependence of the quantum mutual information is present only for sufficiently large intervals. Moreover, the zone narrows as T i increases and widens as T f increases.

  5. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    PubMed

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  6. Efficient Estimation of Mutual Information for Strongly Dependent Variables

    DTIC Science & Technology

    2015-05-11

    the two possibilities: for a fixed dimension d and near- est neighbor parameter k, we find a constant ↵ k,d , such that if V̄ (i)/V (i) < ↵ k,d , then...also compare the results to several baseline estima- tors: KSG (Kraskov et al., 2004), generalized near- est neighbor graph (GNN) (Pál et al., 2010...Amaury Lendasse, and Francesco Corona. A boundary corrected expansion of the moments of near- est neighbor distributions. Random Struct. Algorithms

  7. Evolution of the Fusarium–Euwallacea ambrosia beetle mutualism

    USDA-ARS?s Scientific Manuscript database

    The Euwallacea – Fusarium mutualistic symbiosis represents one of the independent evolutionary origins of fungus-farming. Diversification time estimates place the evolutionary origin of this mutualism in the early Miocene approximately 21 million years ago. Fusarium is best known as one of the most ...

  8. Medical image registration based on normalized multidimensional mutual information

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ji, Hongbing; Tong, Ming

    2009-10-01

    Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.

  9. Equity trees and graphs via information theory

    NASA Astrophysics Data System (ADS)

    Harré, M.; Bossomaier, T.

    2010-01-01

    We investigate the similarities and differences between two measures of the relationship between equities traded in financial markets. Our measures are the correlation coefficients and the mutual information. In the context of financial markets correlation coefficients are well established whereas mutual information has not previously been as well studied despite its theoretically appealing properties. We show that asset trees which are derived from either the correlation coefficients or the mutual information have a mixture of both similarities and differences at the individual equity level and at the macroscopic level. We then extend our consideration from trees to graphs using the "genus 0" condition recently introduced in order to study the networks of equities.

  10. TOF-SIMS imaging technique with information entropy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials.

  11. Mutualisms and Population Regulation: Mechanism Matters

    PubMed Central

    Jha, Shalene; Allen, David; Liere, Heidi; Perfecto, Ivette; Vandermeer, John

    2012-01-01

    For both applied and theoretical ecological science, the mutualism between ants and their hemipteran partners is iconic. In this well-studied interaction, ants are assumed to provide hemipterans protection from natural enemies in exchange for nutritive honeydew. Despite decades of research and the potential importance in pest control, the precise mechanism producing this mutualism remains contested. By analyzing maximum likelihood parameter estimates of a hemipteran population model, we show that the mechanism of the mutualism is direct, via improved hemipteran growth rates, as opposed to the frequently assumed indirect mechanism, via harassment of the specialist parasites and predators of the hemipterans. Broadly, this study demonstrates that the management of mutualism-based ecosystem services requires a mechanistic understanding of mutualistic interactions. A consequence of this finding is the counter intuitive demonstration that preserving ant participation in the ant-hemipteran mutualism may be the best way of insuring pest control. PMID:22927978

  12. 31 CFR 1024.500 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MUTUAL FUNDS Special Information Sharing Procedures To Deter Money Laundering and Terrorist Activity § 1024.500 General. Mutual funds are subject to the... forth and cross referenced in this subpart. Mutual funds should also refer to subpart E of part 1010 of...

  13. The coarticulation/invariance scale: Mutual information as a measure of coarticulation resistance, motor synergy, and articulatory invariance

    PubMed Central

    Iskarous, Khalil; Mooshammer, Christine; Hoole, Phil; Recasens, Daniel; Shadle, Christine H.; Saltzman, Elliot; Whalen, D. H.

    2013-01-01

    Coarticulation and invariance are two topics at the center of theorizing about speech production and speech perception. In this paper, a quantitative scale is proposed that places coarticulation and invariance at the two ends of the scale. This scale is based on physical information flow in the articulatory signal, and uses Information Theory, especially the concept of mutual information, to quantify these central concepts of speech research. Mutual Information measures the amount of physical information shared across phonological units. In the proposed quantitative scale, coarticulation corresponds to greater and invariance to lesser information sharing. The measurement scale is tested by data from three languages: German, Catalan, and English. The relation between the proposed scale and several existing theories of coarticulation is discussed, and implications for existing theories of speech production and perception are presented. PMID:23927125

  14. Using Mutual Information for Adaptive Item Comparison and Student Assessment

    ERIC Educational Resources Information Center

    Liu, Chao-Lin

    2005-01-01

    The author analyzes properties of mutual information between dichotomous concepts and test items. The properties generalize some common intuitions about item comparison, and provide principled foundations for designing item-selection heuristics for student assessment in computer-assisted educational systems. The proposed item-selection strategies…

  15. Photoanthropometric face iridial proportions for age estimation: An investigation using features selected via a joint mutual information criterion.

    PubMed

    Borges, Díbio L; Vidal, Flávio B; Flores, Marta R P; Melani, Rodolfo F H; Guimarães, Marco A; Machado, Carlos E P

    2018-03-01

    Age assessment from images is of high interest in the forensic community because of the necessity to establish formal protocols to identify child pornography, child missing and abuses where visual evidences are the mostly admissible. Recently, photoanthropometric methods have been found useful for age estimation correlating facial proportions in image databases with samples of some age groups. Notwithstanding the advances, newer facial features and further analysis are needed to improve accuracy and establish larger applicability. In this investigation, frontal images of 1000 individuals (500 females, 500 males), equally distributed in five age groups (6, 10, 14, 18, 22 years old) were used in a 10 fold cross-validated experiment for three age thresholds classifications (<10, <14, <18 years old). A set of novel 40 features, based on a relation between landmark distances and the iris diameter, is proposed and joint mutual information is used to select the most relevant and complementary features for the classification task. In a civil image identification database with diverse ancestry, receiver operating characteristic (ROC) curves were plotted to verify accuracy, and the resultant AUCs achieved 0.971, 0.969, and 0.903 for the age classifications (<10, <14, <18 years old), respectively. These results add support to continuing research in age assessment from images using the metric approach. Still, larger samples are necessary to evaluate reliability in extensive conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Applications of statistical physics and information theory to the analysis of DNA sequences

    NASA Astrophysics Data System (ADS)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  17. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.

    PubMed

    Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini

    2011-01-01

    Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.

  18. Field Day: A Case Study examining scientists’ oral performance skills

    USDA-ARS?s Scientific Manuscript database

    Communication is a complex cyclic process wherein senders and receivers encode and decode information in an effort to reach a state of mutuality or mutual understanding. When the communication of scientific or technical information occurs in a public space, effective speakers follow a formula for co...

  19. Mutual Information Item Selection in Adaptive Classification Testing

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2007-01-01

    A general approach for item selection in adaptive multiple-category classification tests is provided. The approach uses mutual information (MI), a special case of the Kullback-Leibler distance, or relative entropy. MI works efficiently with the sequential probability ratio test and alleviates the difficulties encountered with using other local-…

  20. 75 FR 4894 - Self-Regulatory Organizations; National Securities Clearing Corporation; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... activity.\\5\\ There will also be an increase in the monthly fee for the mutual fund Profile Phase II Service.... Profile Phase I transmits mutual fund price and rate information. Profile Phase II stores data elements such as accumulation, breakpoints, and commission eligibility that relate to mutual fund processing...

  1. Information Theoretic Approaches to Rapid Discovery of Relationships in Large Climate Data Sets

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Rossow, William B.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Mutual information as the asymptotic Bayesian measure of independence is an excellent starting point for investigating the existence of possible relationships among climate-relevant variables in large data sets, As mutual information is a nonlinear function of of its arguments, it is not beholden to the assumption of a linear relationship between the variables in question and can reveal features missed in linear correlation analyses. However, as mutual information is symmetric in its arguments, it only has the ability to reveal the probability that two variables are related. it provides no information as to how they are related; specifically, causal interactions or a relation based on a common cause cannot be detected. For this reason we also investigate the utility of a related quantity called the transfer entropy. The transfer entropy can be written as a difference between mutual informations and has the capability to reveal whether and how the variables are causally related. The application of these information theoretic measures is rested on some familiar examples using data from the International Satellite Cloud Climatology Project (ISCCP) to identify relation between global cloud cover and other variables, including equatorial pacific sea surface temperature (SST), over seasonal and El Nino Southern Oscillation (ENSO) cycles.

  2. A novel approach to validate satellite soil moisture retrievals using precipitation data

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Kumar, D. Nagesh

    2016-10-01

    A novel approach is proposed that attempts to validate passive microwave soil moisture retrievals using precipitation data (applied over India). It is based on the concept that the expectation of precipitation conditioned on soil moisture follows a sigmoidal convex-concave-shaped curve, the characteristic of which was recently shown to be represented by mutual information estimated between soil moisture and precipitation. On this basis, with an emphasis over distribution-free nonparametric computations, a new measure called Copula-Kernel Density Estimator based Mutual Information (CKDEMI) is introduced. The validation approach is generic in nature and utilizes CKDEMI in tandem with a couple of proposed bootstrap strategies, to check accuracy of any two soil moisture products (here Advanced Microwave Scanning Radiometer-EOS sensor's Vrije Universiteit Amsterdam-NASA (VUAN) and University of Montana (MONT) products) using precipitation (India Meteorological Department) data. The proposed technique yields a "best choice soil moisture product" map which contains locations where any one of the two/none of the two/both the products have produced accurate retrievals. The results indicated that in general, VUA-NASA product has performed well over University of Montana's product for India. The best choice soil moisture map is then integrated with land use land cover and elevation information using a novel probability density function-based procedure to gain insight on conditions under which each of the products has performed well. Finally, the impact of using a different precipitation (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) data set over the best choice soil moisture product map is also analyzed. The proposed methodology assists researchers and practitioners in selecting the appropriate soil moisture product for various assimilation strategies at both basin and continental scales.

  3. Receiver-Coupling Schemes Based On Optimal-Estimation Theory

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1992-01-01

    Two schemes for reception of weak radio signals conveying digital data via phase modulation provide for mutual coupling of multiple receivers, and coherent combination of outputs of receivers. In both schemes, optimal mutual-coupling weights computed according to Kalman-filter theory, but differ in manner of transmission and combination of outputs of receivers.

  4. Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Doiron, Terence a.

    2007-01-01

    In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.

  5. Entanglement entropy of dispersive media from thermodynamic entropy in one higher dimension.

    PubMed

    Maghrebi, M F; Reid, M T H

    2015-04-17

    A dispersive medium becomes entangled with zero-point fluctuations in the vacuum. We consider an arbitrary array of material bodies weakly interacting with a quantum field and compute the quantum mutual information between them. It is shown that the mutual information in D dimensions can be mapped to classical thermodynamic entropy in D+1 dimensions. As a specific example, we compute the mutual information both analytically and numerically for a range of separation distances between two bodies in D=2 dimensions and find a logarithmic correction to the area law at short separations. A key advantage of our method is that it allows the strong subadditivity property to be easily verified.

  6. Distributed and dynamic intracellular organization of extracellular information.

    PubMed

    Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S

    2018-06-05

    Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.

  7. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  8. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  9. Multiple Input Design for Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene

    2003-01-01

    A method for designing multiple inputs for real-time dynamic system identification in the frequency domain was developed and demonstrated. The designed inputs are mutually orthogonal in both the time and frequency domains, with reduced peak factors to provide good information content for relatively small amplitude excursions. The inputs are designed for selected frequency ranges, and therefore do not require a priori models. The experiment design approach was applied to identify linear dynamic models for the F-15 ACTIVE aircraft, which has multiple control effectors.

  10. Characterizing the Efficacy of the NRL Network Pump in Mitigating Covert Timing Channels

    DTIC Science & Technology

    2012-02-01

    of Diffie-Hellman, RSA, DSS, and other systems,” in Advances in CryptologyCRYPTO96. Springer, 1996, pp. 104–113. [16] D . Chaum , “Blind signatures for...transmits Xi = ei(W ) across the channel. The decoder takes the channel outputs Y n and forms an estimate of the original message Ŵ = d (Y n). To...communicate W reliably, it can be shown that the “essence” of this problem is to design e(·) and subsequently d (·) to maximize the mutual information I(W ;Y n

  11. Architecture for multi-technology real-time location systems.

    PubMed

    Rodas, Javier; Barral, Valentín; Escudero, Carlos J

    2013-02-07

    The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.

  12. 75 FR 69130 - Proposed Extension of Information Collection Request Submitted for Public Comment; Prohibited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    .... Description: Without the relief provided by this exemption, an open-end mutual fund would be unable to sell... investment advisor for the mutual fund. As a result, plans would be compelled to liquidate their existing... disclosure requirements. The first requires at the time of the purchase or sale of such mutual fund shares...

  13. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.

    PubMed

    Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam

    2011-01-01

    One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

  14. Entanglement of purification in free scalar field theories

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Takayanagi, Tadashi; Umemoto, Koji

    2018-04-01

    We compute the entanglement of purification (EoP) in a 2d free scalar field theory with various masses. This quantity measures correlations between two subsystems and is reduced to the entanglement entropy when the total system is pure. We obtain explicit numerical values by assuming minimal gaussian wave functionals for the purified states. We find that when the distance between the subsystems is large, the EoP behaves like the mutual information. However, when the distance is small, the EoP shows a characteristic behavior which qualitatively agrees with the conjectured holographic computation and which is different from that of the mutual information. We also study behaviors of mutual information in purified spaces and violations of monogamy/strong superadditivity.

  15. 76 FR 19790 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... shares of an open-end investment company (mutual fund) when a fiduciary with respect to the plan is also the investment advisor for the mutual fund. In order to ensure that the exemption is not abused and... mutual fund shares that the independent fiduciary of the plan receive a copy of the current prospectus...

  16. The Generalization of Mutual Information as the Information between a Set of Variables: The Information Correlation Function Hierarchy and the Information Structure of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolf, David R.

    2004-01-01

    The topic of this paper is a hierarchy of information-like functions, here named the information correlation functions, where each function of the hierarchy may be thought of as the information between the variables it depends upon. The information correlation functions are particularly suited to the description of the emergence of complex behaviors due to many- body or many-agent processes. They are particularly well suited to the quantification of the decomposition of the information carried among a set of variables or agents, and its subsets. In more graphical language, they provide the information theoretic basis for understanding the synergistic and non-synergistic components of a system, and as such should serve as a forceful toolkit for the analysis of the complexity structure of complex many agent systems. The information correlation functions are the natural generalization to an arbitrary number of sets of variables of the sequence starting with the entropy function (one set of variables) and the mutual information function (two sets). We start by describing the traditional measures of information (entropy) and mutual information.

  17. Information's role in the estimation of chaotic signals

    NASA Astrophysics Data System (ADS)

    Drake, Daniel Fred

    1998-11-01

    Researchers have proposed several methods designed to recover chaotic signals from noise-corrupted observations. While the methods vary, their qualitative performance does not: in low levels of noise all methods effectively recover the underlying signal; in high levels of noise no method can recover the underlying signal to any meaningful degree of accuracy. Of the methods proposed to date, all represent sub-optimal estimators. So: Is the inability to recover the signal in high noise levels simply a consequence of estimator sub-optimality? Or is estimator failure actually a manifestation of some intrinsic property of chaos itself? These questions are answered by deriving an optimal estimator for a class of chaotic systems and noting that it, too, fails in high levels of noise. An exact, closed- form expression for the estimator is obtained for a class of chaotic systems whose signals are solutions to a set of linear (but noncausal) difference equations. The existence of this linear description circumvents the difficulties normally encountered when manipulating the nonlinear (but causal) expressions that govern. chaotic behavior. The reason why even the optimal estimator fails to recover underlying chaotic signals in high levels of noise has its roots in information theory. At such noise levels, the mutual information linking the corrupted observations to the underlying signal is essentially nil, reducing the estimator to a simple guessing strategy based solely on a priori statistics. Entropy, long the common bond between information theory and dynamical systems, is actually one aspect of a far more complete characterization of information sources: the rate distortion function. Determining the rate distortion function associated with the class of chaotic systems considered in this work provides bounds on estimator performance in high levels of noise. Finally, a slight modification of the linear description leads to a method of synthesizing on limited precision platforms ``pseudo-chaotic'' sequences that mimic true chaotic behavior to any finite degree of precision and duration. The use of such a technique in spread-spectrum communications is considered.

  18. Mutually unbiased coarse-grained measurements of two or more phase-space variables

    NASA Astrophysics Data System (ADS)

    Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz

    2018-05-01

    Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.

  19. 2D-3D registration using gradient-based MI for image guided surgery systems

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James

    2011-03-01

    Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.

  20. Nonrigid mammogram registration using mutual information

    NASA Astrophysics Data System (ADS)

    Wirth, Michael A.; Narhan, Jay; Gray, Derek W. S.

    2002-05-01

    Of the papers dealing with the task of mammogram registration, the majority deal with the task by matching corresponding control-points derived from anatomical landmark points. One of the caveats encountered when using pure point-matching techniques is their reliance on accurately extracted anatomical features-points. This paper proposes an innovative approach to matching mammograms which combines the use of a similarity-measure and a point-based spatial transformation. Mutual information is a cost-function used to determine the degree of similarity between the two mammograms. An initial rigid registration is performed to remove global differences and bring the mammograms into approximate alignment. The mammograms are then subdivided into smaller regions and each of the corresponding subimages is matched independently using mutual information. The centroids of each of the matched subimages are then used as corresponding control-point pairs in association with the Thin-Plate Spline radial basis function. The resulting spatial transformation generates a nonrigid match of the mammograms. The technique is illustrated by matching mammograms from the MIAS mammogram database. An experimental comparison is made between mutual information incorporating purely rigid behavior, and that incorporating a more nonrigid behavior. The effectiveness of the registration process is evaluated using image differences.

  1. Adaptive DSPI phase denoising using mutual information and 2D variational mode decomposition

    NASA Astrophysics Data System (ADS)

    Xiao, Qiyang; Li, Jian; Wu, Sijin; Li, Weixian; Yang, Lianxiang; Dong, Mingli; Zeng, Zhoumo

    2018-04-01

    In digital speckle pattern interferometry (DSPI), noise interference leads to a low peak signal-to-noise ratio (PSNR) and measurement errors in the phase map. This paper proposes an adaptive DSPI phase denoising method based on two-dimensional variational mode decomposition (2D-VMD) and mutual information. Firstly, the DSPI phase map is subjected to 2D-VMD in order to obtain a series of band-limited intrinsic mode functions (BLIMFs). Then, on the basis of characteristics of the BLIMFs and in combination with mutual information, a self-adaptive denoising method is proposed to obtain noise-free components containing the primary phase information. The noise-free components are reconstructed to obtain the denoising DSPI phase map. Simulation and experimental results show that the proposed method can effectively reduce noise interference, giving a PSNR that is higher than that of two-dimensional empirical mode decomposition methods.

  2. Holographic control of information and dynamical topology change for composite open quantum systems

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Volovich, I. V.; Inozemcev, O. V.

    2017-12-01

    We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

  3. Approximated mutual information training for speech recognition using myoelectric signals.

    PubMed

    Guo, Hua J; Chan, A D C

    2006-01-01

    A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.

  4. Mutual information as an order parameter for quantum synchronization

    NASA Astrophysics Data System (ADS)

    Ameri, V.; Eghbali-Arani, M.; Mari, A.; Farace, A.; Kheirandish, F.; Giovannetti, V.; Fazio, R.

    2015-01-01

    Spontaneous synchronization is a fundamental phenomenon, important in many theoretical studies and applications. Recently, this effect has been analyzed and observed in a number of physical systems close to the quantum-mechanical regime. In this work we propose mutual information as a useful order parameter which can capture the emergence of synchronization in very different contexts, ranging from semiclassical to intrinsically quantum-mechanical systems. Specifically, we first study the synchronization of two coupled Van der Pol oscillators in both classical and quantum regimes and later we consider the synchronization of two qubits inside two coupled optical cavities. In all these contexts, we find that mutual information can be used as an appropriate figure of merit for determining the synchronization phases independently of the specific details of the system.

  5. Comment on ``Performance of different synchronization measures in real data: A case study on electroencephalographic signals''

    NASA Astrophysics Data System (ADS)

    Nicolaou, N.; Nasuto, S. J.

    2005-12-01

    We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k -nearest neighbors, which supports the conjecture by Quian Quiroga in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.

  6. Architecture for Multi-Technology Real-Time Location Systems

    PubMed Central

    Rodas, Javier; Barral, Valentín; Escudero, Carlos J.

    2013-01-01

    The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position. PMID:23435050

  7. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

    PubMed Central

    Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.

    2016-01-01

    Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095

  8. Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballester, Manuel A.; Wehner, Stephanie

    We prove tight entropic uncertainty relations for a large number of mutually unbiased measurements. In particular, we show that a bound derived from the result by Maassen and Uffink [Phys. Rev. Lett. 60, 1103 (1988)] for two such measurements can in fact be tight for up to {radical}(d) measurements in mutually unbiased bases. We then show that using more mutually unbiased bases does not always lead to a better locking effect. We prove that the optimal bound for the accessible information using up to {radical}(d) specific mutually unbiased bases is log d/2, which is the same as can be achievedmore » by using only two bases. Our result indicates that merely using mutually unbiased bases is not sufficient to achieve a strong locking effect and we need to look for additional properties.« less

  9. Potentials for mutually beneficial collaboration between FIA specialists and IEG-40 pathologists and geneticists working on fusiform rust

    Treesearch

    Ellis Cowling; KaDonna Randolph

    2013-01-01

    The purpose of this article is to encourage development of an enduring mutually beneficial collaboration between data and information analysts in the US Forest Service’s "Enhanced Forest Inventory and Analysis (FIA) Program" and forest pathologists and geneticists in the information exchange group (IEG) titled "Genetics and Breeding of Southern Forest...

  10. Maximum likelihood clustering with dependent feature trees

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.

  11. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates. Copyright © 2015, American Association for the Advancement of Science.

  12. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.

    PubMed

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.

  13. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  14. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa

    2015-10-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.

  15. Nonlinear Statistical Estimation with Numerical Maximum Likelihood

    DTIC Science & Technology

    1974-10-01

    probably most directly attributable to the speed, precision and compactness of the linear programming algorithm exercised ; the mutual primal-dual...discriminant analysis is to classify the individual as a member of T# or IT, 1 2 according to the relative...Introduction to the Dissertation 1 Introduction to Statistical Estimation Theory 3 Choice of Estimator.. .Density Functions 12 Choice of Estimator

  16. A parameter for the assessment of the segmentation of TEM tomography reconstructed volumes based on mutual information.

    PubMed

    Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen

    2017-12-01

    A method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined. It consists of the mutual information value between the acquired TEM images of the sample and the Radon projections of the segmented volumes. In this work, it has been proved that this new mutual information parameter and the Jaccard coefficient between the segmented volume and the ideal one are correlated. In addition, the results of the new parameter are compared to the results obtained from another validated method to select the optimum segmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Side-band mutual interactions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.; Helliwell, R. A.; Bell, T. F.

    1980-01-01

    Sideband mutual interactions between VLF waves in the magnetosphere are investigated. Results of an experimental program involving the generation of sidebands by means of frequency shift keying are presented which indicate that the energetic electrons in the magnetosphere can interact only with sidebands generated by signals with short modulation periods. Using the value of the memory time during which electrons interact with the waves implied by the above result, it is estimated that the length of the electron interaction region in the magnetosphere is between 4000 and 2000 km. Sideband interactions are found to be similar to those between constant-frequency signals, exhibiting suppression and energy coupling. Results from a second sideband transmitting program show that for most cases the coherence bandwidth of sidebands is about 50 Hz. Sideband mutual interactions are then explained by the overlap of the ranges of the parallel velocity of the electrons which the sidebands organize, and the wave intensity in the interaction region is estimated to be 2.5-10 milli-gamma, in agreement with satellite measurements.

  18. 75 FR 81606 - Agency Information Collection Activities: Announcement of Board Approval Under Delegated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... of most mutual funds. Current Actions: On October 14, 2010, the Federal Reserve published a notice in... margin stock, and (3) shares of most mutual funds. Lenders other than brokers and dealers and banks must...

  19. Renyi generalizations of the conditional quantum mutual information

    DTIC Science & Technology

    2015-02-23

    D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement , an entanglement measure...that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the...possessing the C systems, and the sender and receiver sharing noiseless entanglement before communication begins, the optimal rate of quantum communication

  20. Part mutual information for quantifying direct associations in networks.

    PubMed

    Zhao, Juan; Zhou, Yiwei; Zhang, Xiujun; Chen, Luonan

    2016-05-03

    Quantitatively identifying direct dependencies between variables is an important task in data analysis, in particular for reconstructing various types of networks and causal relations in science and engineering. One of the most widely used criteria is partial correlation, but it can only measure linearly direct association and miss nonlinear associations. However, based on conditional independence, conditional mutual information (CMI) is able to quantify nonlinearly direct relationships among variables from the observed data, superior to linear measures, but suffers from a serious problem of underestimation, in particular for those variables with tight associations in a network, which severely limits its applications. In this work, we propose a new concept, "partial independence," with a new measure, "part mutual information" (PMI), which not only can overcome the problem of CMI but also retains the quantification properties of both mutual information (MI) and CMI. Specifically, we first defined PMI to measure nonlinearly direct dependencies between variables and then derived its relations with MI and CMI. Finally, we used a number of simulated data as benchmark examples to numerically demonstrate PMI features and further real gene expression data from Escherichia coli and yeast to reconstruct gene regulatory networks, which all validated the advantages of PMI for accurately quantifying nonlinearly direct associations in networks.

  1. Mutual information-based analysis of JPEG2000 contexts.

    PubMed

    Liu, Zhen; Karam, Lina J

    2005-04-01

    Context-based arithmetic coding has been widely adopted in image and video compression and is a key component of the new JPEG2000 image compression standard. In this paper, the contexts used in JPEG2000 are analyzed using the mutual information, which is closely related to the compression performance. We first show that, when combining the contexts, the mutual information between the contexts and the encoded data will decrease unless the conditional probability distributions of the combined contexts are the same. Given I, the initial number of contexts, and F, the final desired number of contexts, there are S(I, F) possible context classification schemes where S(I, F) is called the Stirling number of the second kind. The optimal classification scheme is the one that gives the maximum mutual information. Instead of using an exhaustive search, the optimal classification scheme can be obtained through a modified generalized Lloyd algorithm with the relative entropy as the distortion metric. For binary arithmetic coding, the search complexity can be reduced by using dynamic programming. Our experimental results show that the JPEG2000 contexts capture the correlations among the wavelet coefficients very well. At the same time, the number of contexts used as part of the standard can be reduced without loss in the coding performance.

  2. A Balanced Approach to Adaptive Probability Density Estimation.

    PubMed

    Kovacs, Julio A; Helmick, Cailee; Wriggers, Willy

    2017-01-01

    Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.

  3. Tracking the coupling of two electroencephalogram series in the isoflurane and remifentanil anesthesia.

    PubMed

    Liang, Zhenhu; Liang, Shujuan; Wang, Yinghua; Ouyang, Gaoxiang; Li, Xiaoli

    2015-02-01

    Coupling in multiple electroencephalogram (EEG) signals provides a perspective tool to understand the mechanism of brain communication. In this study, we propose a method based on permutation cross-mutual information (PCMI) to investigate whether or not the coupling between EEG series can be used to quantify the effect of specific anesthetic drugs (isoflurane and remifentanil) on brain activities. A Rössler-Lorenz system and surrogate analysis was first employed to compare histogram-based mutual information (HMI) and PCMI for estimating the coupling of two nonlinear systems. Then, the HMI and the PCMI indices of EEG recordings from two sides of the forehead of 12 patients undergoing combined remifentanil and isoflurane anesthesia were demonstrated for tracking the effect of drug on the coupling of brain activities. Performance of all indices was assessed by the correlation coefficients (Rij) and relative coefficient of variation (CV). The PCMI can track the coupling strength of two nonlinear systems, and it is sensitive to the phase change of the coupling systems. Compared to the HMI, the PCMI has a better correlation with the coupling strength in nonlinear systems. The PCMI could track the effect of anesthesia and distinguish the consciousness state from the unconsciousness state. Moreover, at the embedding dimension m=4 and lag τ=1, the PCMI had a better performance than HMI in tracking the effect of anesthesia drugs on brain activities. As a measure of coupling, the PCMI was able to reflect the state of consciousness from two EEG recordings. The PCMI is a promising new coupling measure for estimating the effect of isoflurane and remifentanil anesthetic drugs on the brain activity. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  4. Asteroid mass estimation with Markov-chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Siltala, L.; Granvik, M.

    2017-09-01

    We have developed a new Markov-chain Monte Carlo-based algorithm for asteroid mass estimation based on mutual encounters and tested it for several different asteroids. Our results are in line with previous literature values but suggest that uncertainties of prior estimates may be misleading as a consequence of using linearized methods.

  5. Comparison of co-expression measures: mutual information, correlation, and model based indices.

    PubMed

    Song, Lin; Langfelder, Peter; Horvath, Steve

    2012-12-09

    Co-expression measures are often used to define networks among genes. Mutual information (MI) is often used as a generalized correlation measure. It is not clear how much MI adds beyond standard (robust) correlation measures or regression model based association measures. Further, it is important to assess what transformations of these and other co-expression measures lead to biologically meaningful modules (clusters of genes). We provide a comprehensive comparison between mutual information and several correlation measures in 8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g. using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function that relates correlation to mutual information which can be used to approximate the mutual information from the corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative to MI for capturing non-linear relationships between quantitative variables. The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships. Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to measuring co-expression relationships in stationary data.

  6. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables

    NASA Astrophysics Data System (ADS)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.

  7. Large distance expansion of mutual information for disjoint disks in a free scalar theory

    DOE PAGES

    Agón, Cesar A.; Cohen-Abbo, Isaac; Schnitzer, Howard J.

    2016-11-11

    We compute the next-to-leading order term in the long-distance expansion of the mutual information for free scalars in three space-time dimensions. The geometry considered is two disjoint disks separated by a distance r between their centers. No evidence for non-analyticity in the Rényi parameter n for the continuation n → 1 in the next-to-leading order term is found.

  8. A Search for Strange Attractors in the Saturation of Middle Atmosphere Gravity Waves

    DTIC Science & Technology

    1990-09-01

    Fraser, A. M. and H. L. Swinney, 1986: Independent coordinates for strange attractors from mutual information . Phvs. Rev. A, 33, 1134-1140. Fraser...vectors implies that the two are linearly independent . However, data characterized by a strange attractor are usually highly nonlinear, thus making...noise in this data set. The degree of autocorrelation and the lack of general independence as determined from the mutual information also reduces the

  9. Measurement of motion detection of wireless capsule endoscope inside large intestine.

    PubMed

    Zhou, Mingda; Bao, Guanqun; Pahlavan, Kaveh

    2014-01-01

    Wireless Capsule Endoscope (WCE) provides a noninvasive way to inspect the entire Gastrointestinal (GI) tract, including large intestine, where intestinal diseases most likely occur. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of detected intestinal diseases. Knowing how the capsule moves inside the large intestine would greatly complement the existing wireless localization systems by providing the motion information. Since the most recently released WCE can take up to 6 frames per second, it's possible to estimate the movement of the capsule by processing the successive image sequence. In this paper, a computer vision based approach without utilizing any external device is proposed to estimate the motion of WCE inside the large intestine. The proposed approach estimate the displacement and rotation of the capsule by calculating entropy and mutual information between frames using Fibonacci method. The obtained results of this approach show its stability and better performance over other existing approaches of motion measurements. Meanwhile, findings of this paper lay a foundation for motion pattern of WCEs inside the large intestine, which will benefit other medical applications.

  10. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale

    PubMed Central

    Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters. PMID:27391786

  11. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    PubMed

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  12. Evaluating Remotely-Sensed Surface Soil Moisture Estimates Using Triple Collocation

    USDA-ARS?s Scientific Manuscript database

    Recent work has demonstrated the potential of enhancing remotely-sensed surface soil moisture validation activities through the application of triple collocation techniques which compare time series of three mutually independent geophysical variable estimates in order to acquire the root-mean-square...

  13. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.

    PubMed

    Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G

    2017-03-01

    We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  15. Computing the Energy Cost of the Information Transmitted by Model Biological Neurons

    NASA Astrophysics Data System (ADS)

    Torrealdea, F. J.; Sarasola, C.; d'Anjou, A.; Moujahid, A.

    2009-08-01

    We assign an energy function to a Hindmarsh-Rose model of a neuron and use it to compute values of average energy consumption during its signalling activity. We also compute values of information entropy of an isolated neuron and of mutual information between two electrically coupled neurons. We find that for the isolated neuron the chaotic signaling regime is the one with the biggest ratio of information entropy to energy consumption. We also find that in the case of electrically coupled neurons there are values of the coupling strength at which the mutual information to energy consumption ratio is maximum, that is, that transmitting at that coupling conditions is energetically less expensive.

  16. Past and Present of the Chinese and Korean Trainees and Survival of a Small Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Nishihata, Mikio

    In 1973, the author established the Nippon Bell Parts Co., Ltd. in Funabashi-city under his estimation of the advances in communication, information, semiconductor and automotive industries, then he has focused on R&D and developed the manufacturing of precise parts. During the past 30 years, he has himself experienced the importance of the mutual exchange between Japan and China and Korea, for keeping the human capability as well as for the management and the technical development to avoid a bankruptcy. The author is intentionally acting for the education of craftsmen in small and medium-sized manufacturing industries.

  17. Optimization of stable quadruped locomotion using mutual information

    NASA Astrophysics Data System (ADS)

    Silva, Pedro; Santos, Cristina P.; Polani, Daniel

    2013-10-01

    Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.

  18. An incompressible fluid flow model with mutual information for MR image registration

    NASA Astrophysics Data System (ADS)

    Tsai, Leo; Chang, Herng-Hua

    2013-03-01

    Image registration is one of the fundamental and essential tasks within image processing. It is a process of determining the correspondence between structures in two images, which are called the template image and the reference image, respectively. The challenge of registration is to find an optimal geometric transformation between corresponding image data. This paper develops a new MR image registration algorithm that uses a closed incompressible viscous fluid model associated with mutual information. In our approach, we treat the image pixels as the fluid elements of a viscous fluid flow governed by the nonlinear Navier-Stokes partial differential equation (PDE). We replace the pressure term with the body force mainly used to guide the transformation with a weighting coefficient, which is expressed by the mutual information between the template and reference images. To solve this modified Navier-Stokes PDE, we adopted the fast numerical techniques proposed by Seibold1. The registration process of updating the body force, the velocity and deformation fields is repeated until the mutual information weight reaches a prescribed threshold. We applied our approach to the BrainWeb and real MR images. As consistent with the theory of the proposed fluid model, we found that our method accurately transformed the template images into the reference images based on the intensity flow. Experimental results indicate that our method is of potential in a wide variety of medical image registration applications.

  19. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  20. 47 CFR 25.263 - Information sharing requirements for SDARS terrestrial repeater operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SDARS licensee and all potentially affected WCS licensees reach a mutual agreement to provide... SDARS licensee and all potentially affected WCS licensees reach a mutual agreement to provide... notice period. (e) Duty to cooperate. SDARS licensees must cooperate in good faith in the selection and...

  1. 47 CFR 27.72 - Information sharing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... WCS licensees in the 2305-2320 MHz and 2345-2360 MHz bands. (a) Sites and frequency selections. WCS..., unless the SDARS licensee and all potentially affected WCS licensees reach a mutual agreement to provide... affected WCS licensees reach a mutual agreement to provide notification by some other means, that agreement...

  2. 75 FR 9453 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... certain investment advisory programs. These programs, which include ``wrap fee'' and ``mutual fund wrap... size of most mutual funds. Under wrap fee and similar programs, a client's account is typically managed... securities and funds in the account. The requirement that the sponsor (or its designee) obtain information...

  3. 32 CFR 264.4 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... purposes only. 2. This information shall be accorded substantially the same degree of security protection... 413(a) of the Mutual Security Act of 1954, as amended (22 U.S.C. 1933(a)), and pursuant to the... the Mutual Security Program, to relieve the Department of Defense of administrative burdens, and to...

  4. Are Neurodynamic Organizations A Fundamental Property of Teamwork?

    PubMed Central

    Stevens, Ronald H.; Galloway, Trysha L.

    2017-01-01

    When performing a task it is important for teams to optimize their strategies and actions to maximize value and avoid the cost of surprise. The decisions teams make sometimes have unintended consequences and they must then reorganize their thinking, roles and/or configuration into corrective structures more appropriate for the situation. In this study we ask: What are the neurodynamic properties of these reorganizations and how do they relate to the moment-by-moment, and longer, performance-outcomes of teams?. We describe an information-organization approach for detecting and quantitating the fluctuating neurodynamic organizations in teams. Neurodynamic organization is the propensity of team members to enter into prolonged (minutes) metastable neurodynamic relationships as they encounter and resolve disturbances to their normal rhythms. Team neurodynamic organizations were detected and modeled by transforming the physical units of each team member's EEG power levels into Shannon entropy-derived information units about the team's organization and synchronization. Entropy is a measure of the variability or uncertainty of information in a data stream. This physical unit to information unit transformation bridges micro level social coordination events with macro level expert observations of team behavior allowing multimodal comparisons across the neural, cognitive and behavioral time scales of teamwork. The measures included the entropy of each team member's data stream, the overall team entropy and the mutual information between dyad pairs of the team. Mutual information can be thought of as periods related to team member synchrony. Comparisons between individual entropy and mutual information levels for the dyad combinations of three-person teams provided quantitative estimates of the proportion of a person's neurodynamic organizations that represented periods of synchrony with other team members, which in aggregate provided measures of the overall degree of neurodynamic interactions of the team. We propose that increased neurodynamic organization occurs when a team's operating rhythm can no longer support the complexity of the task and the team needs to expend energy to re-organize into structures that better minimize the “surprise” in the environment. Consistent with this hypothesis, the frequency and magnitude of neurodynamic organizations were less in experienced military and healthcare teams than they were in more junior teams. Similar dynamical properties of neurodynamic organization were observed in models of the EEG data streams of military, healthcare and high school science teams suggesting that neurodynamic organization may be a common property of teamwork. The innovation of this study is the potential it raises for developing globally applicable quantitative models of team dynamics that will allow comparisons to be made across teams, tasks and training protocols. PMID:28512438

  5. 31 CFR 205.24 - How are accurate estimates maintained?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EFFICIENT FEDERAL-STATE FUNDS TRANSFERS Rules Applicable to Federal Assistance Programs Included in a... funding technique provisions in the Treasury-State agreement or take other mutually agreed upon corrective... funds to be transferred under the Federal assistance program or program component to which an estimate...

  6. Myocardial strain estimation from CT: towards computer-aided diagnosis on infarction identification

    NASA Astrophysics Data System (ADS)

    Wong, Ken C. L.; Tee, Michael; Chen, Marcus; Bluemke, David A.; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Regional myocardial strains have the potential for early quantification and detection of cardiac dysfunctions. Although image modalities such as tagged and strain-encoded MRI can provide motion information of the myocardium, they are uncommon in clinical routine. In contrary, cardiac CT images are usually available, but they only provide motion information at salient features such as the cardiac boundaries. To estimate myocardial strains from a CT image sequence, we adopted a cardiac biomechanical model with hyperelastic material properties to relate the motion on the cardiac boundaries to the myocardial deformation. The frame-to-frame displacements of the cardiac boundaries are obtained using B-spline deformable image registration based on mutual information, which are enforced as boundary conditions to the biomechanical model. The system equation is solved by the finite element method to provide the dense displacement field of the myocardium, and the regional values of the three principal strains and the six strains in cylindrical coordinates are computed in terms of the American Heart Association nomenclature. To study the potential of the estimated regional strains on identifying myocardial infarction, experiments were performed on cardiac CT image sequences of ten canines with artificially induced myocardial infarctions. The leave-one-subject-out cross validations show that, by using the optimal strain magnitude thresholds computed from ROC curves, the radial strain and the first principal strain have the best performance.

  7. Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.

    PubMed

    Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan

    2006-08-01

    An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.

  8. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  9. Entanglement and purity of two-mode Gaussian states in noisy channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio

    2004-02-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.

  10. Mutual information based feature selection for medical image retrieval

    NASA Astrophysics Data System (ADS)

    Zhi, Lijia; Zhang, Shaomin; Li, Yan

    2018-04-01

    In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.

  11. A Synchronous Digital Duplexing Technique for OFDMA-Based Indoor Communications

    NASA Astrophysics Data System (ADS)

    Park, Chang-Hwan; Ko, Yo-Han; Kim, Yeong-Jun; Park, Kyung-Won; Jeon, Won-Gi; Paik, Jong-Ho; Lee, Seok-Pil; Cho, Yong-Soo

    In this paper, we propose a new digital duplexing scheme, called synchronous digital duplexing (SDD), which can increase data efficiency and flexibility of resource by transmitting uplink signal and downlink signal simultaneously in wireless communication. In order to transmit uplink and downlink signals simultaneously, the proposed SDD obtains mutual information among subscriber stations (SSs) with a mutual ranging symbol. This information is used for selection of transmission time, decision on cyclic suffix (CS) insertion, determination of CS length, and re-establishment of FFT starting point.

  12. Analytical techniques for the study of some parameters of multispectral scanner systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Wiswell, E. R.; Cooper, G. R. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.

  13. Secure anonymous mutual authentication for star two-tier wireless body area networks.

    PubMed

    Ibrahim, Maged Hamada; Kumari, Saru; Das, Ashok Kumar; Wazid, Mohammad; Odelu, Vanga

    2016-10-01

    Mutual authentication is a very important service that must be established between sensor nodes in wireless body area network (WBAN) to ensure the originality and integrity of the patient's data sent by sensors distributed on different parts of the body. However, mutual authentication service is not enough. An adversary can benefit from monitoring the traffic and knowing which sensor is in transmission of patient's data. Observing the traffic (even without disclosing the context) and knowing its origin, it can reveal to the adversary information about the patient's medical conditions. Therefore, anonymity of the communicating sensors is an important service as well. Few works have been conducted in the area of mutual authentication among sensor nodes in WBAN. However, none of them has considered anonymity among body sensor nodes. Up to our knowledge, our protocol is the first attempt to consider this service in a two-tier WBAN. We propose a new secure protocol to realize anonymous mutual authentication and confidential transmission for star two-tier WBAN topology. The proposed protocol uses simple cryptographic primitives. We prove the security of the proposed protocol using the widely-accepted Burrows-Abadi-Needham (BAN) logic, and also through rigorous informal security analysis. In addition, to demonstrate the practicality of our protocol, we evaluate it using NS-2 simulator. BAN logic and informal security analysis prove that our proposed protocol achieves the necessary security requirements and goals of an authentication service. The simulation results show the impact on the various network parameters, such as end-to-end delay and throughput. The nodes in the network require to store few hundred bits. Nodes require to perform very few hash invocations, which are computationally very efficient. The communication cost of the proposed protocol is few hundred bits in one round of communication. Due to the low computation cost, the energy consumed by the nodes is also low. Our proposed protocol is a lightweight anonymous mutually authentication protocol to mutually authenticate the sensor nodes with the controller node (hub) in a star two-tier WBAN topology. Results show that our protocol proves efficiency over previously proposed protocols and at the same time, achieves the necessary security requirements for a secure anonymous mutual authentication scheme. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Prediction of microsleeps using pairwise joint entropy and mutual information between EEG channels.

    PubMed

    Baseer, Abdul; Weddell, Stephen J; Jones, Richard D

    2017-07-01

    Microsleeps are involuntary and brief instances of complete loss of responsiveness, typically of 0.5-15 s duration. They adversely affect performance in extended attention-driven jobs and can be fatal. Our aim was to predict microsleeps from 16 channel EEG signals. Two information theoretic concepts - pairwise joint entropy and mutual information - were independently used to continuously extract features from EEG signals. k-nearest neighbor (kNN) with k = 3 was used to calculate both joint entropy and mutual information. Highly correlated features were discarded and the rest were ranked using Fisher score followed by an average of 3-fold cross-validation area under the curve of the receiver operating characteristic (AUC ROC ). Leave-one-out method (LOOM) was performed to test the performance of microsleep prediction system on independent data. The best prediction for 0.25 s ahead was AUCROC, sensitivity, precision, geometric mean (GM), and φ of 0.93, 0.68, 0.33, 0.75, and 0.38 respectively with joint entropy using single linear discriminant analysis (LDA) classifier.

  15. Joint estimation of subject motion and tracer kinetic parameters of dynamic PET data in an EM framework

    NASA Astrophysics Data System (ADS)

    Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.

    2012-02-01

    Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.

  16. Information-theoretic decomposition of embodied and situated systems.

    PubMed

    Da Rold, Federico

    2018-07-01

    The embodied and situated view of cognition stresses the importance of real-time and nonlinear bodily interaction with the environment for developing concepts and structuring knowledge. In this article, populations of robots controlled by an artificial neural network learn a wall-following task through artificial evolution. At the end of the evolutionary process, time series are recorded from perceptual and motor neurons of selected robots. Information-theoretic measures are estimated on pairings of variables to unveil nonlinear interactions that structure the agent-environment system. Specifically, the mutual information is utilized to quantify the degree of dependence and the transfer entropy to detect the direction of the information flow. Furthermore, the system is analyzed with the local form of such measures, thus capturing the underlying dynamics of information. Results show that different measures are interdependent and complementary in uncovering aspects of the robots' interaction with the environment, as well as characteristics of the functional neural structure. Therefore, the set of information-theoretic measures provides a decomposition of the system, capturing the intricacy of nonlinear relationships that characterize robots' behavior and neural dynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Modelling nutritional mutualisms: challenges and opportunities for data integration.

    PubMed

    Clark, Teresa J; Friel, Colleen A; Grman, Emily; Shachar-Hill, Yair; Friesen, Maren L

    2017-09-01

    Nutritional mutualisms are ancient, widespread, and profoundly influential in biological communities and ecosystems. Although much is known about these interactions, comprehensive answers to fundamental questions, such as how resource availability and structured interactions influence mutualism persistence, are still lacking. Mathematical modelling of nutritional mutualisms has great potential to facilitate the search for comprehensive answers to these and other fundamental questions by connecting the physiological and genomic underpinnings of mutualisms with ecological and evolutionary processes. In particular, when integrated with empirical data, models enable understanding of underlying mechanisms and generalisation of principles beyond the particulars of a given system. Here, we demonstrate how mathematical models can be integrated with data to address questions of mutualism persistence at four biological scales: cell, individual, population, and community. We highlight select studies where data has been or could be integrated with models to either inform model structure or test model predictions. We also point out opportunities to increase model rigour through tighter integration with data, and describe areas in which data is urgently needed. We focus on plant-microbe systems, for which a wealth of empirical data is available, but the principles and approaches can be generally applied to any nutritional mutualism. © 2017 John Wiley & Sons Ltd/CNRS.

  18. Community structure detection based on the neighbor node degree information

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo

    2016-11-01

    Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.

  19. The Indochinese Mutual Assistance Associations: Characteristics, Composition, Capacity Building Needs and Future Directions.

    ERIC Educational Resources Information Center

    Bui, Diana D.; And Others

    The results of an informal survey of the characteristics, composition, capacity building needs and future directions of sixty Cambodian, Laotian and Vietnamese Mutual Assistance Associations (MAAs) are documented in this report. Included among the survey findings are the purposes, current achievements, and future goals of the associations,…

  20. School/Business Partnerships: We Expanded the Idea into a Mutual-Benefit Plan.

    ERIC Educational Resources Information Center

    Cameron, S. L.

    1987-01-01

    Describes a "mutual benefit" arrangement that expanded the school-business partnership model. Westfall Secondary School and an industrial operation in Owen Sound Ontario, Canada, linked their strengths and needs to offer students actual work and project experiences and to give the company useful information, services, and adult basic…

  1. Isoflurane and Ketamine Anesthesia have Different Effects on Ventilatory Pattern Variability in Rats

    PubMed Central

    Chung, Augustine; Fishman, Mikkel; Dasenbrook, Elliot C.; Loparo, Kenneth A.; Dick, Thomas E.; Jacono, Frank J.

    2013-01-01

    We hypothesize that isoflurane and ketamine impact ventilatory pattern variability (VPV) differently. Adult Sprague-Dawley rats were recorded in a whole-body plethysmograph before, during and after deep anesthesia. VPV was quantified from 60-s epochs using a complementary set of analytic techniques that included constructing surrogate data sets that preserved the linear structure but disrupted nonlinear deterministic properties of the original data. Even though isoflurane decreased and ketamine increased respiratory rate, VPV as quantified by the coefficient of variation decreased for both anesthetics. Further, mutual information increased and sample entropy decreased and the nonlinear complexity index (NLCI) increased during anesthesia despite qualitative differences in the shape and period of the waveform. Surprisingly mutual information and sample entropy did not change in the surrogate sets constructed from isoflurane data, but in those constructed from ketamine data, mutual information increased and sample entropy decreased significantly in the surrogate segments constructed from anesthetized relative to unanesthetized epochs. These data suggest that separate mechanisms modulate linear and nonlinear variability of breathing. PMID:23246800

  2. LCD denoise and the vector mutual information method in the application of the gear fault diagnosis under different working conditions

    NASA Astrophysics Data System (ADS)

    Xiangfeng, Zhang; Hong, Jiang

    2018-03-01

    In this paper, the full vector LCD method is proposed to solve the misjudgment problem caused by the change of the working condition. First, the signal from different working condition is decomposed by LCD, to obtain the Intrinsic Scale Component (ISC)whose instantaneous frequency with physical significance. Then, calculate of the cross correlation coefficient between ISC and the original signal, signal denoising based on the principle of mutual information minimum. At last, calculate the sum of absolute Vector mutual information of the sample under different working condition and the denoised ISC as the characteristics to classify by use of Support vector machine (SVM). The wind turbines vibration platform gear box experiment proves that this method can identify fault characteristics under different working conditions. The advantage of this method is that it reduce dependence of man’s subjective experience, identify fault directly from the original data of vibration signal. It will has high engineering value.

  3. Cooperative dynamics in auditory brain response

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; DrożdŻ, S.; Liu, L. C.; Ioannides, A. A.

    1998-11-01

    Simultaneous estimates of activity in the left and right auditory cortex of five normal human subjects were extracted from multichannel magnetoencephalography recordings. Left, right, and binaural stimulations were used, in separate runs, for each subject. The resulting time series of left and right auditory cortex activity were analyzed using the concept of mutual information. The analysis constitutes an objective method to address the nature of interhemispheric correlations in response to auditory stimulations. The results provide clear evidence of the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20 ms, as can be seen in the average signal. The strength of the interhemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  4. Maximally Informative Stimuli and Tuning Curves for Sigmoidal Rate-Coding Neurons and Populations

    NASA Astrophysics Data System (ADS)

    McDonnell, Mark D.; Stocks, Nigel G.

    2008-08-01

    A general method for deriving maximally informative sigmoidal tuning curves for neural systems with small normalized variability is presented. The optimal tuning curve is a nonlinear function of the cumulative distribution function of the stimulus and depends on the mean-variance relationship of the neural system. The derivation is based on a known relationship between Shannon’s mutual information and Fisher information, and the optimality of Jeffrey’s prior. It relies on the existence of closed-form solutions to the converse problem of optimizing the stimulus distribution for a given tuning curve. It is shown that maximum mutual information corresponds to constant Fisher information only if the stimulus is uniformly distributed. As an example, the case of sub-Poisson binomial firing statistics is analyzed in detail.

  5. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    PubMed Central

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-01-01

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271

  6. Spatially weighted mutual information image registration for image guided radiation therapy.

    PubMed

    Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W

    2010-09-01

    To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with a Gaussian weight function (SWMI-GW) was tested between two different imaging modalities: CT and MRI image sets. SWMI-GW converges 10% faster than registration using mutual information with an ROI. SWMI-GW as well as SWMI with SOI-based weight function (SWMI-SOI) shows better compensation of the target organ's deformation and neighboring critical organs' deformation. SWMI-GW was also used to successfully fuse MRI and CT images. Rigid-body image registration using our SWMI-GW and SWMI-SOI as cost functions can achieve better registration results in (a) designated image region(s) as well as faster convergence. With the theoretical foundation established, we believe SWMI could be extended to larger clinical testing.

  7. Entanglement measures based on observable correlations

    NASA Astrophysics Data System (ADS)

    Luo, Shunlong

    2008-06-01

    By regarding quantum states as communication channels and using observable correlations quantitatively expressed by mutual information, we introduce a hierarchy of entanglement measures that includes the entanglement of formation as a particular instance. We compare the maximal and minimal measures and indicate the conceptual advantages of the minimal measure over the entanglement of formation. We reveal a curious feature of the entanglement of formation by showing that it can exceed the quantum mutual information, which is usually regarded as a theoretical measure of total correlations. This places the entanglement of formation in a broader scenario, highlights its peculiarity in relation to pure-state ensembles, and introduces a competing definition with intrinsic informational significance.

  8. Relative-Error-Covariance Algorithms

    NASA Technical Reports Server (NTRS)

    Bierman, Gerald J.; Wolff, Peter J.

    1991-01-01

    Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.

  9. Estimating nonrigid motion from inconsistent intensity with robust shape features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less

  10. Estimating nonrigid motion from inconsistent intensity with robust shape features.

    PubMed

    Liu, Wenyang; Ruan, Dan

    2013-12-01

    To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  11. Chinese and American Women: Issues of Mutual Concern. Wingspread Brief.

    ERIC Educational Resources Information Center

    Johnson Foundation, Inc., Racine, WI.

    This article briefly describes a conference of Chinese and American women held to discuss womens' issues and promote mutual understanding between the two groups. The cultural exchange of information at the conference focused on discussion of the All China Womens' Federation (ACWF); the roles of women in China and the United States in the areas of…

  12. Children's Use of Mutual Exclusivity to Learn Labels for Parts of Objects

    ERIC Educational Resources Information Center

    Hansen, Mikkel B.; Markman, Ellen M.

    2009-01-01

    When teaching children part terms, adults frequently outline the relevant part rather than simply point. This pragmatic information very likely helps children interpret the label correctly. But the importance of gestures may not negate the need for default lexical biases such as the whole object assumption and mutual exclusivity. On this view,…

  13. Heat engine driven by purely quantum information.

    PubMed

    Park, Jung Jun; Kim, Kang-Hwan; Sagawa, Takahiro; Kim, Sang Wook

    2013-12-06

    The key question of this Letter is whether work can be extracted from a heat engine by using purely quantum mechanical information. If the answer is yes, what is its mathematical formula? First, by using a bipartite memory we show that the work extractable from a heat engine is bounded not only by the free energy change and the sum of the entropy change of an individual memory but also by the change of quantum mutual information contained inside the memory. We then find that the engine can be driven by purely quantum information, expressed as the so-called quantum discord, forming a part of the quantum mutual information. To confirm it, as a physical example we present the Szilard engine containing a diatomic molecule with a semipermeable wall.

  14. Universal recovery map for approximate Markov chains.

    PubMed

    Sutter, David; Fawzi, Omar; Renner, Renato

    2016-02-01

    A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I ( A : C | B ) of a tripartite quantum state ρ ABC can be bounded from below by its distance to the closest recovered state [Formula: see text], where the C -part is reconstructed from the B -part only and the recovery map [Formula: see text] merely depends on ρ BC . One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems.

  15. Universal recovery map for approximate Markov chains

    PubMed Central

    Sutter, David; Fawzi, Omar; Renner, Renato

    2016-01-01

    A central question in quantum information theory is to determine how well lost information can be reconstructed. Crucially, the corresponding recovery operation should perform well without knowing the information to be reconstructed. In this work, we show that the quantum conditional mutual information measures the performance of such recovery operations. More precisely, we prove that the conditional mutual information I(A:C|B) of a tripartite quantum state ρABC can be bounded from below by its distance to the closest recovered state RB→BC(ρAB), where the C-part is reconstructed from the B-part only and the recovery map RB→BC merely depends on ρBC. One particular application of this result implies the equivalence between two different approaches to define topological order in quantum systems. PMID:27118889

  16. Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

    PubMed Central

    Han, Fang; Wang, Zhijie; Fan, Hong

    2017-01-01

    This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760

  17. Mitigating budget constraints on visitation volume surveys: the case of U.S. National forests

    Treesearch

    Ashley E. Askew; Donald B.K. English; Stanley J. Zarnoch; Neelam C. Poudyal; J.M. Bowker

    2014-01-01

    Stratified random sampling (SRS) provides a scientifically based estimate of a population comprising mutually exclusive, homogenous subgroups. In the National Visitor Use Monitoring (NVUM) program, SRS is used to estimate recreation visitation and visitor characteristics across activities on National forests. However, with rising costs and declining budgets, carrying...

  18. Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina

    2016-09-01

    The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a mutual information of 0.2217 bits which is 75.8% of maximum achievable. The implication is that only by coding both MSB and LSB jointly can we hope to get close to this 75.8% limit. Hence, non-binary codes are essential to achieve acceptable performance.

  19. Optimal protocol for maximum work extraction in a feedback process with a time-varying potential

    NASA Astrophysics Data System (ADS)

    Kwon, Chulan

    2017-12-01

    The nonequilibrium nature of information thermodynamics is characterized by the inequality or non-negativity of the total entropy change of the system, memory, and reservoir. Mutual information change plays a crucial role in the inequality, in particular if work is extracted and the paradox of Maxwell's demon is raised. We consider the Brownian information engine where the protocol set of the harmonic potential is initially chosen by the measurement and varies in time. We confirm the inequality of the total entropy change by calculating, in detail, the entropic terms including the mutual information change. We rigorously find the optimal values of the time-dependent protocol for maximum extraction of work both for the finite-time and the quasi-static process.

  20. Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach

    NASA Astrophysics Data System (ADS)

    Bähr, Hermann; Hanssen, Ramon F.

    2012-12-01

    An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.

  1. Reservoir computing with a slowly modulated mask signal for preprocessing using a mutually coupled optoelectronic system

    NASA Astrophysics Data System (ADS)

    Tezuka, Miwa; Kanno, Kazutaka; Bunsen, Masatoshi

    2016-08-01

    Reservoir computing is a machine-learning paradigm based on information processing in the human brain. We numerically demonstrate reservoir computing with a slowly modulated mask signal for preprocessing by using a mutually coupled optoelectronic system. The performance of our system is quantitatively evaluated by a chaotic time series prediction task. Our system can produce comparable performance with reservoir computing with a single feedback system and a fast modulated mask signal. We showed that it is possible to slow down the modulation speed of the mask signal by using the mutually coupled system in reservoir computing.

  2. Determination of Relevant Neuron–Neuron Connections for Neural Prosthetics Using Time-Delayed Mutual Information: Tutorial and Preliminary Results

    PubMed Central

    Taghva, Alexander; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2013-01-01

    BACKGROUND Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. METHODS Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. RESULTS Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. CONCLUSIONS Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. PMID:22120279

  3. Determination of relevant neuron-neuron connections for neural prosthetics using time-delayed mutual information: tutorial and preliminary results.

    PubMed

    Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2012-12-01

    Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    PubMed Central

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-01-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. PMID:24710978

  5. Computing algebraic transfer entropy and coupling directions via transcripts

    NASA Astrophysics Data System (ADS)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  6. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

    PubMed

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-05-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.

  7. Permutation auto-mutual information of electroencephalogram in anesthesia

    NASA Astrophysics Data System (ADS)

    Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli

    2013-04-01

    Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.

  8. Optimal reconstruction of the states in qutrit systems

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yang, Ming; Cao, Zhuo-Liang

    2010-10-01

    Based on mutually unbiased measurements, an optimal tomographic scheme for the multiqutrit states is presented explicitly. Because the reconstruction process of states based on mutually unbiased states is free of information waste, we refer to our scheme as the optimal scheme. By optimal we mean that the number of the required conditional operations reaches the minimum in this tomographic scheme for the states of qutrit systems. Special attention will be paid to how those different mutually unbiased measurements are realized; that is, how to decompose each transformation that connects each mutually unbiased basis with the standard computational basis. It is found that all those transformations can be decomposed into several basic implementable single- and two-qutrit unitary operations. For the three-qutrit system, there exist five different mutually unbiased-bases structures with different entanglement properties, so we introduce the concept of physical complexity to minimize the number of nonlocal operations needed over the five different structures. This scheme is helpful for experimental scientists to realize the most economical reconstruction of quantum states in qutrit systems.

  9. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    PubMed

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  10. Musical expertise is related to altered functional connectivity during audiovisual integration

    PubMed Central

    Paraskevopoulos, Evangelos; Kraneburg, Anja; Herholz, Sibylle Cornelia; Bamidis, Panagiotis D.; Pantev, Christo

    2015-01-01

    The present study investigated the cortical large-scale functional network underpinning audiovisual integration via magnetoencephalographic recordings. The reorganization of this network related to long-term musical training was investigated by comparing musicians to nonmusicians. Connectivity was calculated on the basis of the estimated mutual information of the sources’ activity, and the corresponding networks were statistically compared. Nonmusicians’ results indicated that the cortical network associated with audiovisual integration supports visuospatial processing and attentional shifting, whereas a sparser network, related to spatial awareness supports the identification of audiovisual incongruences. In contrast, musicians’ results showed enhanced connectivity in regions related to the identification of auditory pattern violations. Hence, nonmusicians rely on the processing of visual clues for the integration of audiovisual information, whereas musicians rely mostly on the corresponding auditory information. The large-scale cortical network underpinning multisensory integration is reorganized due to expertise in a cognitive domain that largely involves audiovisual integration, indicating long-term training-related neuroplasticity. PMID:26371305

  11. Mutual help in SETIs

    NASA Astrophysics Data System (ADS)

    Melia, F.; Frisch, D. H.

    1985-06-01

    Techniques to establish communication between earth and extraterrestrial intelligent beings are examined analytically, emphasizing that the success of searches for extraterrestrial intelligence (SETIs) depends on the selection by both sender and receiver of one of a few mutually helpful SETI strategies. An equation for estimating the probability that an SETI will result in the recognition of an ETI signal is developed, and numerical results for various SETI strategies are presented in tables. A minimum approach employing 10 40-m 20-kW dish antennas for a 30-yr SETI in a 2500-light-year disk is proposed.

  12. It Takes Two to Tango: How Parents' and Adolescents' Personalities Link to the Quality of Their Mutual Relationship

    ERIC Educational Resources Information Center

    Denissen, Jaap J. A.; van Aken, Marcel A. G.; Dubas, Judith S.

    2009-01-01

    According to J. Belsky's (1984) process model of parenting, both adolescents' and parents' personality should exert a significant impact on the quality of their mutual relationship. Using multi-informant, symmetric data on the Big Five personality traits and the relationship quality of mothers, fathers, and two adolescent children, the current…

  13. An Information-theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Howe, Alex R.; Burrows, Adam; Deming, Drake

    2017-01-01

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  14. 77 FR 70547 - Financial Crimes Enforcement Network; Proposed Collection; Comment Request; Renewal Without...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... terrorism, and to implement counter-money laundering programs and compliance procedures.\\3\\ Regulations... merchants, introducing brokers in commodities, money services businesses, and mutual funds). Estimated Total...

  15. Parallel Mutual Information Based Construction of Genome-Scale Networks on the Intel® Xeon Phi™ Coprocessor.

    PubMed

    Misra, Sanchit; Pamnany, Kiran; Aluru, Srinivas

    2015-01-01

    Construction of whole-genome networks from large-scale gene expression data is an important problem in systems biology. While several techniques have been developed, most cannot handle network reconstruction at the whole-genome scale, and the few that can, require large clusters. In this paper, we present a solution on the Intel Xeon Phi coprocessor, taking advantage of its multi-level parallelism including many x86-based cores, multiple threads per core, and vector processing units. We also present a solution on the Intel® Xeon® processor. Our solution is based on TINGe, a fast parallel network reconstruction technique that uses mutual information and permutation testing for assessing statistical significance. We demonstrate the first ever inference of a plant whole genome regulatory network on a single chip by constructing a 15,575 gene network of the plant Arabidopsis thaliana from 3,137 microarray experiments in only 22 minutes. In addition, our optimization for parallelizing mutual information computation on the Intel Xeon Phi coprocessor holds out lessons that are applicable to other domains.

  16. Study of the correlation parameters of the surface structure of disordered semiconductors by the two-dimensional DFA and average mutual information methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpatov, A. V.; Vikhrov, S. P.; Rybina, N. V., E-mail: pgnv@mail.ru

    The processes of self-organization of the surface structure of hydrogenated amorphous silicon are studied by the methods of fluctuation analysis and average mutual information on the basis of atomic-force-microscopy images of the surface. It is found that all of the structures can be characterized by a correlation vector and represented as a superposition of harmonic components and noise. It is shown that, under variations in the technological parameters of the production of a-Si:H films, the correlation properties of their structure vary as well. As the substrate temperature is increased, the formation of structural irregularities becomes less efficient; in this case,more » the length of the correlation vector and the degree of structural ordering increase. It is shown that the procedure based on the method of fluctuation analysis in combination with the method of average mutual information provides a means for studying the self-organization processes in any structures on different length scales.« less

  17. Critical scaling of the mutual information in two-dimensional disordered Ising models

    NASA Astrophysics Data System (ADS)

    Sriluckshmy, P. V.; Mandal, Ipsita

    2018-04-01

    Rényi mutual information, computed from second Rényi entropies, can identify classical phase transitions from their finite-size scaling at critical points. We apply this technique to examine the presence or absence of finite temperature phase transitions in various two-dimensional models on a square lattice, which are extensions of the conventional Ising model by adding a quenched disorder. When the quenched disorder causes the nearest neighbor bonds to be both ferromagnetic and antiferromagnetic, (a) a spin glass phase exists only at zero temperature, and (b) a ferromagnetic phase exists at a finite temperature when the antiferromagnetic bond distributions are sufficiently dilute. Furthermore, finite temperature paramagnetic-ferromagnetic transitions can also occur when the disordered bonds involve only ferromagnetic couplings of random strengths. In our numerical simulations, the ‘zero temperature only’ phase transitions are identified when there is no consistent finite-size scaling of the Rényi mutual information curves, while for finite temperature critical points, the curves can identify the critical temperature T c by their crossings at T c and 2 Tc .

  18. Effect of age on changes in motor units functional connectivity.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh

    2015-08-01

    With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.

  19. Effect of acculturation and mutuality on family loyalty among Mexican American caregivers of elders.

    PubMed

    Kao, Hsueh-Fen S; An, Kyungeh

    2012-06-01

    Informal family care for elders is conventional in Mexican American communities despite increasing intergenerational gaps in filial values. In our study, we explored whether acculturation and dyadic mutuality, as perceived by Mexican American family caregivers, explain the caregivers' expectations of family loyalty toward elderly relatives. A nonexperimental, correlational design with convenience sampling was used in El Paso, Texas, from October 2007 to January 2008. Three bilingual promotoras collected data from 193 Mexican American adult caregivers of community-dwelling elders using three scales designed for Mexican Americans: the Acculturation Rating Scale for Mexican Americans II-Short Form, the Mutuality Scale, and the Expectations of Family Loyalty of Children Toward Elderly Relatives Scale. Confirmatory factor analysis was used to analyze the data. Acculturation had a marginal effect (r = .21, p < .05), but mutuality presented a strong correlation (r = .45, p < .001) with the expectations of family loyalty toward elderly relatives. There was no significant correlation between acculturation and mutuality (r = .05). Although Mexican American caregivers with strong Mexican orientation may have high expectations of family loyalty toward elderly relatives, mutuality exhibits more significant effects on expectations. Among Mexican Americans, mutuality between the caregiving dyad, as perceived by caregivers, may be a better predictor of filial values than caregivers' acculturation alone. It may be useful to incorporate the dual paradigm of acculturation and mutuality into immigrant family care for elderly relatives. © 2012 Sigma Theta Tau International.

  20. Caregiving and mutuality among long-term colorectal cancer survivors with ostomies: qualitative study.

    PubMed

    Altschuler, Andrea; Liljestrand, Petra; Grant, Marcia; Hornbrook, Mark C; Krouse, Robert S; McMullen, Carmit K

    2018-02-01

    The cancer caregiving literature focuses on the early phases of survivorship, but caregiving can continue for decades when cancer creates disability. Survivors with an ostomy following colorectal cancer (CRC) have caregiving needs that may last decades. Mutuality has been identified as a relationship component that can affect caregiving. This paper discusses how mutuality may affect long-term ostomy caregiving. We conducted semi-structured, in-depth interviews with 31 long-term CRC survivors with ostomies and their primary informal caregivers. Interviewees were members of an integrated health care delivery system in the USA. We used inductive theme analysis techniques to analyze the interviews. Most survivors were 71 years of age or older (67%), female (55%), and with some college education (54%). Two thirds lived with and received care from spouses. Caregiving ranged from minimal support to intimate assistance with daily ostomy care. While some survivors received caregiving far beyond what was needed, others did not receive adequate caregiving for their health care needs. Low mutuality created challenges for ostomy caregiving. Mutuality impacts the quality of caregiving, and this quality may change over time, depending on various factors. Emotional feedback and amplification is the proposed mechanism by which mutuality may shift over time. Survivorship care should include assessment and support of mutuality as a resource to enhance health outcomes and quality of life for survivors with long-term caregiving needs and their caregivers. Appropriate questionnaires can be identified or developed to assess mutuality over the survivorship trajectory.

  1. Resolution of Probabilistic Weather Forecasts with Application in Disease Management.

    PubMed

    Hughes, G; McRoberts, N; Burnett, F J

    2017-02-01

    Predictive systems in disease management often incorporate weather data among the disease risk factors, and sometimes this comes in the form of forecast weather data rather than observed weather data. In such cases, it is useful to have an evaluation of the operational weather forecast, in addition to the evaluation of the disease forecasts provided by the predictive system. Typically, weather forecasts and disease forecasts are evaluated using different methodologies. However, the information theoretic quantity expected mutual information provides a basis for evaluating both kinds of forecast. Expected mutual information is an appropriate metric for the average performance of a predictive system over a set of forecasts. Both relative entropy (a divergence, measuring information gain) and specific information (an entropy difference, measuring change in uncertainty) provide a basis for the assessment of individual forecasts.

  2. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique

    USGS Publications Warehouse

    Anderson, Katherine H.; Bartlein, Patrick J.; Strickland, Laura E.; Pelltier, Richard T.; Thompson, Robert S.; Shafer, Sarah L.

    2012-01-01

    The mutual climatic range (MCR) technique is perhaps the most widely used method for estimating past climatic parameters from fossil assemblages, largely because it can be conducted on a simple list of the taxa present in an assemblage. When applied to plant macrofossil data, this unweighted approach (MCRun) will frequently identify a large range for a given climatic parameter where the species in an assemblage can theoretically live together. To narrow this range, we devised a new weighted approach (MCRwt) that employs information from the modern relations between climatic parameters and plant distributions to lessen the influence of the "tails" of the distributions of the climatic data associated with the taxa in an assemblage. To assess the performance of the MCR approaches, we applied them to a set of modern climatic data and plant distributions on a 25-km grid for North America, and compared observed and estimated climatic values for each grid point. In general, MCRwt was superior to MCRun in providing smaller anomalies, less bias, and better correlations between observed and estimated values. However, by the same measures, the results of Modern Analog Technique (MAT) approaches were superior to MCRwt. Although this might be reason to favor MAT approaches, they are based on assumptions that may not be valid for paleoclimatic reconstructions, including that: 1) the absence of a taxon from a fossil sample is meaningful, 2) plant associations were largely unaffected by past changes in either levels of atmospheric carbon dioxide or in the seasonal distributions of solar radiation, and 3) plant associations of the past are adequately represented on the modern landscape. To illustrate the application of these MCR and MAT approaches to paleoclimatic reconstructions, we applied them to a Pleistocene paleobotanical assemblage from the western United States. From our examinations of the estimates of modern and past climates from vegetation assemblages, we conclude that the MCRun technique provides reliable and unbiased estimates of the ranges of possible climatic conditions that can reasonably be associated with these assemblages. The application of MCRwt and MAT approaches can further constrain these estimates and may provide a systematic way to assess uncertainty. The data sets required for MCR analyses in North America are provided in a parallel publication.

  3. Information flow to assess cardiorespiratory interactions in patients on weaning trials.

    PubMed

    Vallverdú, M; Tibaduisa, O; Clariá, F; Hoyer, D; Giraldo, B; Benito, S; Caminal, P

    2006-01-01

    Nonlinear processes of the autonomic nervous system (ANS) can produce breath-to-breath variability in the pattern of breathing. In order to provide assess to these nonlinear processes, nonlinear statistical dependencies between heart rate variability and respiratory pattern variability are analyzed. In this way, auto-mutual information and cross-mutual information concepts are applied. This information flow analysis is presented as a short-term non linear analysis method to investigate the information flow interactions in patients on weaning trials. 78 patients from mechanical ventilation were studied: Group A of 28 patients that failed to maintain spontaneous breathing and were reconnected; Group B of 50 patients with successful trials. The results show lower complexity with an increase of information flow in group A than in group B. Furthermore, a more (weakly) coupled nonlinear oscillator behavior is observed in the series of group A than in B.

  4. Self-concept in fairness and rule establishment during a competitive game: a computational approach

    PubMed Central

    Lee, Sang Ho; Kim, Sung-Phil; Cho, Yang Seok

    2015-01-01

    People consider fairness as well as their own interest when making decisions in economic games. The present study proposes a model that encompasses the self-concept determined by one's own kindness as a factor of fairness. To observe behavioral patterns that reflect self-concept and fairness, a chicken game experiment was conducted. Behavioral data demonstrates four distinct patterns; “switching,” “mutual rush,” “mutual avoidance,” and “unfair” patterns. Model estimation of chicken game data shows that a model with self-concept predicts those behaviors better than previous models of fairness, suggesting that self-concept indeed affects human behavior in competitive economic games. Moreover, a non-stationary parameter analysis revealed the process of reaching consensus between the players in a game. When the models were fitted to a continuous time window, the parameters of the players in a pair with “switching” and “mutual avoidance” patterns became similar as the game proceeded, suggesting that the players gradually formed a shared rule during the game. In contrast, the difference of parameters between the players in the “unfair” and “mutual rush” patterns did not become stable. The outcomes of the present study showed that people are likely to change their strategy until they reach a mutually beneficial status. PMID:26441707

  5. Signal processing in local neuronal circuits based on activity-dependent noise and competition

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Levine, Herbert

    2009-09-01

    We study the characteristics of weak signal detection by a recurrent neuronal network with plastic synaptic coupling. It is shown that in the presence of an asynchronous component in synaptic transmission, the network acquires selectivity with respect to the frequency of weak periodic stimuli. For nonperiodic frequency-modulated stimuli, the response is quantified by the mutual information between input (signal) and output (network's activity) and is optimized by synaptic depression. Introducing correlations in signal structure resulted in the decrease in input-output mutual information. Our results suggest that in neural systems with plastic connectivity, information is not merely carried passively by the signal; rather, the information content of the signal itself might determine the mode of its processing by a local neuronal circuit.

  6. Information theory applications for biological sequence analysis.

    PubMed

    Vinga, Susana

    2014-05-01

    Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.

  7. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    NASA Astrophysics Data System (ADS)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  8. Earthquake Damage Assessment over Port-au-Prince (Haiti) by Fusing Optical and SAR Data

    NASA Astrophysics Data System (ADS)

    Romaniello, V.; Piscini, A.; Bignami, C.; Anniballe, R.; Pierdicca, N.; Stramondo, S.

    2016-08-01

    This work proposes methodologies aiming at evaluating the sensitivity of optical and SAR change features obtained from satellite images with respect to the damage grade. The proposed methods are derived from the literature ([1], [2], [3], [4]) and the main novelty concerns the estimation of these change features at object scale.The test case is the Mw 7.0 earthquake that hit Haiti on January 12, 2010.The analysis of change detection indicators is based on ground truth information collected during a post- earthquake survey. We have generated the damage map of Port-au-Prince by considering a set of polygons extracted from the open source Open Street Map geo- database. The resulting damage map was calculated in terms of collapse ratio [5].We selected some features having a good sensitivity with damage at object scale [6]: the Normalised Difference Index, the Kullback-Libler Divergence, the Mutual Information and the Intensity Correlation Difference.The Naive Bayes and the Support Vector Machine classifiers were used to evaluate the goodness of these features. The classification results demonstrate that the simultaneous use of several change features from EO observations can improve the damage estimation at object scale.

  9. Benefit and cost curves for typical pollination mutualisms.

    PubMed

    Morris, William F; Vázquez, Diego P; Chacoff, Natacha P

    2010-05-01

    Mutualisms provide benefits to interacting species, but they also involve costs. If costs come to exceed benefits as population density or the frequency of encounters between species increases, the interaction will no longer be mutualistic. Thus curves that represent benefits and costs as functions of interaction frequency are important tools for predicting when a mutualism will tip over into antagonism. Currently, most of what we know about benefit and cost curves in pollination mutualisms comes from highly specialized pollinating seed-consumer mutualisms, such as the yucca moth-yucca interaction. There, benefits to female reproduction saturate as the number of visits to a flower increases (because the amount of pollen needed to fertilize all the flower's ovules is finite), but costs continue to increase (because pollinator offspring consume developing seeds), leading to a peak in seed production at an intermediate number of visits. But for most plant-pollinator mutualisms, costs to the plant are more subtle than consumption of seeds, and how such costs scale with interaction frequency remains largely unknown. Here, we present reasonable benefit and cost curves that are appropriate for typical pollinator-plant interactions, and we show how they can result in a wide diversity of relationships between net benefit (benefit minus cost) and interaction frequency. We then use maximum-likelihood methods to fit net-benefit curves to measures of female reproductive success for three typical pollination mutualisms from two continents, and for each system we chose the most parsimonious model using information-criterion statistics. We discuss the implications of the shape of the net-benefit curve for the ecology and evolution of plant-pollinator mutualisms, as well as the challenges that lie ahead for disentangling the underlying benefit and cost curves for typical pollination mutualisms.

  10. The Philosophy of Information as an Underlying and Unifying Theory of Information Science

    ERIC Educational Resources Information Center

    Tomic, Taeda

    2010-01-01

    Introduction: Philosophical analyses of theoretical principles underlying these sub-domains reveal philosophy of information as underlying meta-theory of information science. Method: Conceptual research on the knowledge sub-domains in information science and philosophy and analysis of their mutual connection. Analysis: Similarities between…

  11. 78 FR 45550 - Agency Information Collection Activities: Extension, Without Change, of an Existing Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... Request. ACTION: 30-Day Notice of Information Collection; 73-028; ICE Mutual Agreement between Government... technological collection techniques or other forms of information technology, e.g., permitting electronic... program. The information provided by the company plays a vital role in determining that company's...

  12. >From naive to sophisticated behavior in multiagents-based financial market models

    NASA Astrophysics Data System (ADS)

    Mansilla, R.

    2000-09-01

    The behavior of physical complexity and mutual information function of the outcome of a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game is studied. The first magnitude is a measure rooted in the Kolmogorov-Chaitin theory and the second a measure related to Shannon's information entropy. Extensive computer simulations were done, as a result of which, is proposed an ansatz for physical complexity of the type C(l)=lα and the dependence of the exponent α from the parameters of the model is established. The accuracy of our results and the relationship with the behavior of mutual information function as a measure of time correlation of agents choice are discussed.

  13. Estimation of the proteomic cancer co-expression sub networks by using association estimators.

    PubMed

    Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu

    2017-01-01

    In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.

  14. On Whether People Have the Capacity to Make Observations of Mutually Excl usive Physical Phenomena Simultaneously

    NASA Astrophysics Data System (ADS)

    Snyder

    1998-04-01

    It has been shown by Einstein, Podolsky, and Rosen that in quantum mechanics two different wave functions can simultaneously characterize the same physical existent. This result means that one can make predictions regarding simultaneous, mutually exclusive features of a physical existent. It is important to ask whether people have the capacity to make observations of mutually exclusive phenomena simultaneously? Our everyday experience informs us that a human observer is capable of observing only one set of physical circumstances at a time. Evidence from psychology, though, indicates that people indeed have the capacity to make observations of mutually exclusive phenomena simultaneously, even though this capacity is not generally recognized. Working independently, Sigmund Freud and William James provided some of this evidence. How the nature of the quantum mechanical wave function is associated with the problem posed by Einstein, Podolsky, and Rosen, is addressed at the end of the paper.

  15. Send-side matching of data communications messages

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-07-01

    Send-side matching of data communications messages includes a plurality of compute nodes organized for collective operations, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  16. Send-side matching of data communications messages

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-06-17

    Send-side matching of data communications messages in a distributed computing system comprising a plurality of compute nodes, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  17. 48 CFR 952.204-72 - Disclosure of information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... classified information or restricted data: Disclosure of Information (APR 1994) (a) It is mutually expected... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Disclosure of information... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.204-72 Disclosure...

  18. 48 CFR 952.204-72 - Disclosure of information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... classified information or restricted data: Disclosure of Information (APR 1994) (a) It is mutually expected... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Disclosure of information... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.204-72 Disclosure...

  19. 48 CFR 952.204-72 - Disclosure of information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... classified information or restricted data: Disclosure of Information (APR 1994) (a) It is mutually expected... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Disclosure of information... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.204-72 Disclosure...

  20. Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.

    2010-06-01

    Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical world from the quantum substrate. The key to this emergence is the proliferation of redundant information throughout the environment where observers can then intercept it. We study this process for a purely decohering interaction when the environment, E, is in a nonideal (e.g., mixed) initial state. In the case of good decoherence, that is, after the pointer states have been unambiguously selected, the mutual information between the system, S, and an environment fragment, F, is given solely by F’s entropy increase. This demonstrates that the environment’s capacity for recording the state of S is directly related to its ability to increase its entropy. Environments that remain nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we show that, when decoherence is not complete, the deviation of the mutual information from F’s entropy change is quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment almost always acquires redundant information about the system but its rate of acquisition can be reduced.

  1. Fluctuation sensitivity of a transcriptional signaling cascade

    NASA Astrophysics Data System (ADS)

    Pilkiewicz, Kevin R.; Mayo, Michael L.

    2016-09-01

    The internal biochemical state of a cell is regulated by a vast transcriptional network that kinetically correlates the concentrations of numerous proteins. Fluctuations in protein concentration that encode crucial information about this changing state must compete with fluctuations caused by the noisy cellular environment in order to successfully transmit information across the network. Oftentimes, one protein must regulate another through a sequence of intermediaries, and conventional wisdom, derived from the data processing inequality of information theory, leads us to expect that longer sequences should lose more information to noise. Using the metric of mutual information to characterize the fluctuation sensitivity of transcriptional signaling cascades, we find, counter to this expectation, that longer chains of regulatory interactions can instead lead to enhanced informational efficiency. We derive an analytic expression for the mutual information from a generalized chemical kinetics model that we reduce to simple, mass-action kinetics by linearizing for small fluctuations about the basal biological steady state, and we find that at long times this expression depends only on a simple ratio of protein production to destruction rates and the length of the cascade. We place bounds on the values of these parameters by requiring that the mutual information be at least one bit—otherwise, any received signal would be indistinguishable from noise—and we find not only that nature has devised a way to circumvent the data processing inequality, but that it must be circumvented to attain this one-bit threshold. We demonstrate how this result places informational and biochemical efficiency at odds with one another by correlating high transcription factor binding affinities with low informational output, and we conclude with an analysis of the validity of our assumptions and propose how they might be tested experimentally.

  2. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets

    PubMed Central

    Lu, Songjian; Lu, Kevin N.; Cheng, Shi-Yuan; Hu, Bo; Ma, Xiaojun; Nystrom, Nicholas; Lu, Xinghua

    2015-01-01

    An important goal of cancer genomic research is to identify the driving pathways underlying disease mechanisms and the heterogeneity of cancers. It is well known that somatic genome alterations (SGAs) affecting the genes that encode the proteins within a common signaling pathway exhibit mutual exclusivity, in which these SGAs usually do not co-occur in a tumor. With some success, this characteristic has been utilized as an objective function to guide the search for driver mutations within a pathway. However, mutual exclusivity alone is not sufficient to indicate that genes affected by such SGAs are in common pathways. Here, we propose a novel, signal-oriented framework for identifying driver SGAs. First, we identify the perturbed cellular signals by mining the gene expression data. Next, we search for a set of SGA events that carries strong information with respect to such perturbed signals while exhibiting mutual exclusivity. Finally, we design and implement an efficient exact algorithm to solve an NP-hard problem encountered in our approach. We apply this framework to the ovarian and glioblastoma tumor data available at the TCGA database, and perform systematic evaluations. Our results indicate that the signal-oriented approach enhances the ability to find informative sets of driver SGAs that likely constitute signaling pathways. PMID:26317392

  3. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    PubMed

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  4. Vanishing Point Extraction and Refinement for Robust Camera Calibration

    PubMed Central

    Tsai, Fuan

    2017-01-01

    This paper describes a flexible camera calibration method using refined vanishing points without prior information. Vanishing points are estimated from human-made features like parallel lines and repeated patterns. With the vanishing points extracted from the three mutually orthogonal directions, the interior and exterior orientation parameters can be further calculated using collinearity condition equations. A vanishing point refinement process is proposed to reduce the uncertainty caused by vanishing point localization errors. The fine-tuning algorithm is based on the divergence of grouped feature points projected onto the reference plane, minimizing the standard deviation of each of the grouped collinear points with an O(1) computational complexity. This paper also presents an automated vanishing point estimation approach based on the cascade Hough transform. The experiment results indicate that the vanishing point refinement process can significantly improve camera calibration parameters and the root mean square error (RMSE) of the constructed 3D model can be reduced by about 30%. PMID:29280966

  5. EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Wu, Chun-ting; Liu, Huan-lin

    2017-07-01

    Noise may reduce the demodulation accuracy of fiber Bragg grating (FBG) sensing signal so as to affect the quality of sensing detection. Thus, the recovery of a signal from observed noisy data is necessary. In this paper, a precise self-adaptive algorithm of selecting relevant modes is proposed to remove the noise of signal. Empirical mode decomposition (EMD) is first used to decompose a signal into a set of modes. The pseudo modes cancellation is introduced to identify and eliminate false modes, and then the Mutual Information (MI) of partial modes is calculated. MI is used to estimate the critical point of high and low frequency components. Simulation results show that the proposed algorithm estimates the critical point more accurately than the traditional algorithms for FBG spectral signal. While, compared to the similar algorithms, the signal noise ratio of the signal can be improved more than 10 dB after processing by the proposed algorithm, and correlation coefficient can be increased by 0.5, so it demonstrates better de-noising effect.

  6. Information-Based Analysis of Data Assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Gupta, H. V.; Crow, W. T.; Gong, W.

    2013-12-01

    Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation methods make the application of Bayes' law tractable either by employing assumptions about the prior, posterior and likelihood distributions (e.g., the Kalman family of filters) or by using resampling methods (e.g., bootstrap filter). We propose to quantify the efficiency of these approximations in an OSSE setting using information theory and, in an OSSE or real-world validation setting, to measure the amount - and more importantly, the quality - of information extracted from observations during data assimilation. To analyze DA assumptions, uncertainty is quantified as the Shannon-type entropy of a discretized probability distribution. The maximum amount of information that can be extracted from observations about model states is the mutual information between states and observations, which is equal to the reduction in entropy in our estimate of the state due to Bayesian filtering. The difference between this potential and the actual reduction in entropy due to Kalman (or other type of) filtering measures the inefficiency of the filter assumptions. Residual uncertainty in DA posterior state estimates can be attributed to three sources: (i) non-injectivity of the observation operator, (ii) noise in the observations, and (iii) filter approximations. The contribution of each of these sources is measurable in an OSSE setting. The amount of information extracted from observations by data assimilation (or system identification, including parameter estimation) can also be measured by Shannon's theory. Since practical filters are approximations of Bayes' law, it is important to know whether the information that is extracted form observations by a filter is reliable. We define information as either good or bad, and propose to measure these two types of information using partial Kullback-Leibler divergences. Defined this way, good and bad information sum to total information. This segregation of information into good and bad components requires a validation target distribution; in a DA OSSE setting, this can be the true Bayesian posterior, but in a real-world setting the validation target might be determined by a set of in situ observations.

  7. 78 FR 28894 - Agency Information Collection Activities: Extension, Without Change, of an Existing Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... entity in the private sector to participate in the program and the information obtained from the company... Request ACTION: 60-Day Notice of Information Collection; 73-028; ICE Mutual Agreement between Government... other forms of information technology, e.g., permitting electronic submission of responses. Overview of...

  8. Mutual information criterion for feature selection with application to classification of breast microcalcifications

    NASA Astrophysics Data System (ADS)

    Diamant, Idit; Shalhon, Moran; Goldberger, Jacob; Greenspan, Hayit

    2016-03-01

    Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. In this paper we present a novel method for feature selection based on mutual information (MI) criterion for automatic classification of microcalcifications. We explored the MI based feature selection for various texture features. The proposed method was evaluated on a standardized digital database for screening mammography (DDSM). Experimental results demonstrate the effectiveness and the advantage of using the MI-based feature selection to obtain the most relevant features for the task and thus to provide for improved performance as compared to using all features.

  9. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  10. Timing the state of light with anomalous dispersion and a gradient echo memory

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy B.

    We study the effects of anomalous dispersion on the continuous-variable entanglement of EPR states (generated using four-wave mixing in 85 Rb) by sending one part of the state through a fast-light medium and measuring the state's quantum mutual information. We observe an advance in the maximum of the quantum mutual information between modes. In contrast, due to uncorrelated noise added by a small phase-insensitive gain, we do not observe any statistically significant advance in the leading edge of the mutual information. We also study the storage and retrieval of multiplexed optical signals in a Gradient Echo Memory (GEM) at relevant four-wave mixing frequencies in 85Rb. Temporal multiplexing capabilities are demonstrated by storing multiple classical images in the memory simultaneously and observing the expected first-in last-out order of recall without obvious cross-talk. We also develop a technique wherein selected portions of an image written into the memory can be spatially targeted for readout and erasure on demand. The effect of diffusion on the quality of the recalled images is characterized. Our results indicate that Raman-based atomic memories may serve as a flexible platform for the storage and retrieval of multiplexed optical signals.

  11. Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information

    PubMed Central

    Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling

    2013-01-01

    The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995

  12. Interpretation of the auto-mutual information rate of decrease in the context of biomedical signal analysis. Application to electroencephalogram recordings.

    PubMed

    Escudero, Javier; Hornero, Roberto; Abásolo, Daniel

    2009-02-01

    The mutual information (MI) is a measure of both linear and nonlinear dependences. It can be applied to a time series and a time-delayed version of the same sequence to compute the auto-mutual information function (AMIF). Moreover, the AMIF rate of decrease (AMIFRD) with increasing time delay in a signal is correlated with its entropy and has been used to characterize biomedical data. In this paper, we aimed at gaining insight into the dependence of the AMIFRD on several signal processing concepts and at illustrating its application to biomedical time series analysis. Thus, we have analysed a set of synthetic sequences with the AMIFRD. The results show that the AMIF decreases more quickly as bandwidth increases and that the AMIFRD becomes more negative as there is more white noise contaminating the time series. Additionally, this metric detected changes in the nonlinear dynamics of a signal. Finally, in order to illustrate the analysis of real biomedical signals with the AMIFRD, this metric was applied to electroencephalogram (EEG) signals acquired with eyes open and closed and to ictal and non-ictal intracranial EEG recordings.

  13. Rényi squashed entanglement, discord, and relative entropy differences

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Berta, Mario; Wilde, Mark M.

    2015-10-01

    The squashed entanglement quantifies the amount of entanglement in a bipartite quantum state, and it satisfies all of the axioms desired for an entanglement measure. The quantum discord is a measure of quantum correlations that are different from those due to entanglement. What these two measures have in common is that they are both based upon the conditional quantum mutual information. In Berta et al (2015 J. Math. Phys. 56 022205), we recently proposed Rényi generalizations of the conditional quantum mutual information of a tripartite state on ABC (with C being the conditioning system), which were shown to satisfy some properties that hold for the original quantity, such as non-negativity, duality, and monotonicity with respect to local operations on the system B (with it being left open to show that the Rényi quantity is monotone with respect to local operations on system A). Here we define a Rényi squashed entanglement and a Rényi quantum discord based on a Rényi conditional quantum mutual information and investigate these quantities in detail. Taking as a conjecture that the Rényi conditional quantum mutual information is monotone with respect to local operations on both systems A and B, we prove that the Rényi squashed entanglement and the Rényi quantum discord satisfy many of the properties of the respective original von Neumann entropy based quantities. In our prior work (Berta et al 2015 Phys. Rev. A 91 022333), we also detailed a procedure to obtain Rényi generalizations of any quantum information measure that is equal to a linear combination of von Neumann entropies with coefficients chosen from the set \\{-1,0,1\\}. Here, we extend this procedure to include differences of relative entropies. Using the extended procedure and a conjectured monotonicity of the Rényi generalizations in the Rényi parameter, we discuss potential remainder terms for well known inequalities such as monotonicity of the relative entropy, joint convexity of the relative entropy, and the Holevo bound.

  14. Estimation of the proteomic cancer co-expression sub networks by using association estimators

    PubMed Central

    Kurt, Zeyneb; Diri, Banu

    2017-01-01

    In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators’ performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists. PMID:29145449

  15. Optimal Multi-Type Sensor Placement for Structural Identification by Static-Load Testing

    PubMed Central

    Papadopoulou, Maria; Vernay, Didier; Smith, Ian F. C.

    2017-01-01

    Assessing ageing infrastructure is a critical challenge for civil engineers due to the difficulty in the estimation and integration of uncertainties in structural models. Field measurements are increasingly used to improve knowledge of the real behavior of a structure; this activity is called structural identification. Error-domain model falsification (EDMF) is an easy-to-use model-based structural-identification methodology which robustly accommodates systematic uncertainties originating from sources such as boundary conditions, numerical modelling and model fidelity, as well as aleatory uncertainties from sources such as measurement error and material parameter-value estimations. In most practical applications of structural identification, sensors are placed using engineering judgment and experience. However, since sensor placement is fundamental to the success of structural identification, a more rational and systematic method is justified. This study presents a measurement system design methodology to identify the best sensor locations and sensor types using information from static-load tests. More specifically, three static-load tests were studied for the sensor system design using three types of sensors for a performance evaluation of a full-scale bridge in Singapore. Several sensor placement strategies are compared using joint entropy as an information-gain metric. A modified version of the hierarchical algorithm for sensor placement is proposed to take into account mutual information between load tests. It is shown that a carefully-configured measurement strategy that includes multiple sensor types and several load tests maximizes information gain. PMID:29240684

  16. 77 FR 18849 - Notice of Proposed Information Collection: Comment Request: Insurance Termination Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Information Collection: Comment Request: Insurance Termination Request for Multifamily Mortgage AGENCY: Office... also lists the following information: Title of Proposal: Insurance Termination Request for Multifamily... mortgagee mutually agree to terminate the HUD multifamily mortgage insurance. Agency form numbers, if...

  17. Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain

    ERIC Educational Resources Information Center

    Nelson, Jonathan D.

    2005-01-01

    Several norms for how people should assess a question's usefulness have been proposed, notably Bayesian diagnosticity, information gain (mutual information), Kullback-Liebler distance, probability gain (error minimization), and impact (absolute change). Several probabilistic models of previous experiments on categorization, covariation assessment,…

  18. Optimal averaging of soil moisture predictions from ensemble land surface model simulations

    USDA-ARS?s Scientific Manuscript database

    The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble’s mutual error covariance. Here we propose a new technique for obtaining such information using an instrumental variabl...

  19. Ethics of care in medical tourism: Informal caregivers' narratives of responsibility, vulnerability and mutuality.

    PubMed

    Whitmore, Rebecca; Crooks, Valorie A; Snyder, Jeremy

    2015-09-01

    This study examines the experiences of informal caregivers in medical tourism through an ethics of care lens. We conducted semi-structured interviews with 20 Canadians who had accompanied their friends or family members abroad for surgery, asking questions that dealt with their experiences prior to, during and after travel. Thematic analysis revealed three themes central to an ethics of care: responsibility, vulnerability and mutuality. Ethics of care theorists have highlighted how care has been historically devalued. We posit that medical tourism reproduces dominant narratives about care in a novel care landscape. Informal care goes unaccounted for by the industry, as it occurs in largely private spaces at a geographic distance from the home countries of medical tourists. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [Study of the Consumers' preference on the universal health coverage development strategy through health mutual in Ziguinchor Region, Southwest of Senegal].

    PubMed

    Sagna, O; Seck, I; Dia, A T; Sall, F L; Diouf, S; Mendy, J; Ka, O; Kassoka, B

    2016-08-01

    In Senegal, the informal and rural sector that accounts for over 80% of the population is covered only up to 7% by a health insurance system. That is why, for the implementation of development strategy of the universal health coverage (UHC) through mutual health insurance providers, the Government of Senegal has focused on this sector. The objective of this study was to assess the consumer's preference on the UHC development strategies through mutual health insurance providers. This was a qualitative and exploratory study based on a literature review, and indepth interview with the heads of households. It was also based on focus groups of people with and without health mutual membership, and the Expert Committee meetings. The results showed that the most critical attributes in the decision-making of consumers to join the health mutual in Ziguinchor were the membership units; the content of the benefit package, the payment modalities of the premium, the premium amount, the availability of transportation, the co-payment level, convention arrangement with health facilities, and health mutual governance. For a successful implementation of the UHC development strategy through health mutual organizations, policymakers should explore the possibility of introducing the modality of payment in kind, the revision of the co-payment amount, and the promotion of equity through the introduction of a differentiated premium contribution by income. They should also establish a crossborder strategy with The Gambia and Guinea-Bissau to improve health care access to people living in the borders. The promotion of innovative funding and risk equalization between health insurance schemes is also recommended. In areas where the microfinance institutions are well organized and structured their substitution to health mutuals should be an option the decision-makers have to explore.

  1. Prostate Cancer Rates by Race and Ethnicity

    MedlinePlus

    ... P25–1130). For more information, see the USCS technical notes. † Race categories are not mutually exclusive from ... with caution. For more information, see the USCS technical notes. ¶ Data are compiled from cancer registries that ...

  2. 21 CFR 26.19 - Information relating to quality aspects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Information relating to quality aspects. 26.19... relating to quality aspects. The authorities will establish an appropriate means of exchanging information... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM...

  3. 21 CFR 26.19 - Information relating to quality aspects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Information relating to quality aspects. 26.19... relating to quality aspects. The authorities will establish an appropriate means of exchanging information... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM...

  4. 21 CFR 26.19 - Information relating to quality aspects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Information relating to quality aspects. 26.19... relating to quality aspects. The authorities will establish an appropriate means of exchanging information... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM...

  5. 21 CFR 26.19 - Information relating to quality aspects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Information relating to quality aspects. 26.19... relating to quality aspects. The authorities will establish an appropriate means of exchanging information... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM...

  6. Joint Attention Enhances Visual Working Memory

    ERIC Educational Resources Information Center

    Gregory, Samantha E. A.; Jackson, Margaret C.

    2017-01-01

    Joint attention--the mutual focus of 2 individuals on an item--speeds detection and discrimination of target information. However, what happens to that information beyond the initial perceptual episode? To fully comprehend and engage with our immediate environment also requires working memory (WM), which integrates information from second to…

  7. Optimal averaging of soil moisture predictions from ensemble land surface model simulations

    USDA-ARS?s Scientific Manuscript database

    The correct interpretation of ensemble 3 soil moisture information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble’s mutual error covariance. Here we propose a new technique for obtaining such information using an inst...

  8. A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification

    NASA Astrophysics Data System (ADS)

    Wang, Suge; Li, Deyu; Wei, Yingjie; Li, Hongxia

    With the rapid growth of e-commerce, product reviews on the Web have become an important information source for customers' decision making when they intend to buy some product. As the reviews are often too many for customers to go through, how to automatically classify them into different sentiment orientation categories (i.e. positive/negative) has become a research problem. In this paper, based on Fisher's discriminant ratio, an effective feature selection method is proposed for product review text sentiment classification. In order to validate the validity of the proposed method, we compared it with other methods respectively based on information gain and mutual information while support vector machine is adopted as the classifier. In this paper, 6 subexperiments are conducted by combining different feature selection methods with 2 kinds of candidate feature sets. Under 1006 review documents of cars, the experimental results indicate that the Fisher's discriminant ratio based on word frequency estimation has the best performance with F value 83.3% while the candidate features are the words which appear in both positive and negative texts.

  9. Using Correlation to Compute Better Probability Estimates in Plan Graphs

    NASA Technical Reports Server (NTRS)

    Bryce, Daniel; Smith, David E.

    2006-01-01

    Plan graphs are commonly used in planning to help compute heuristic "distance" estimates between states and goals. A few authors have also attempted to use plan graphs in probabilistic planning to compute estimates of the probability that propositions can be achieved and actions can be performed. This is done by propagating probability information forward through the plan graph from the initial conditions through each possible action to the action effects, and hence to the propositions at the next layer of the plan graph. The problem with these calculations is that they make very strong independence assumptions - in particular, they usually assume that the preconditions for each action are independent of each other. This can lead to gross overestimates in probability when the plans for those preconditions interfere with each other. It can also lead to gross underestimates of probability when there is synergy between the plans for two or more preconditions. In this paper we introduce a notion of the binary correlation between two propositions and actions within a plan graph, show how to propagate this information within a plan graph, and show how this improves probability estimates for planning. This notion of correlation can be thought of as a continuous generalization of the notion of mutual exclusion (mutex) often used in plan graphs. At one extreme (correlation=0) two propositions or actions are completely mutex. With correlation = 1, two propositions or actions are independent, and with correlation > 1, two propositions or actions are synergistic. Intermediate values can and do occur indicating different degrees to which propositions and action interfere or are synergistic. We compare this approach with another recent approach by Bryce that computes probability estimates using Monte Carlo simulation of possible worlds in plan graphs.

  10. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    NASA Astrophysics Data System (ADS)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  11. Bases for qudits from a nonstandard approach to SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibler, M. R., E-mail: kibler@ipnl.in2p3.fr

    2011-06-15

    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C{sup p}. Repeated application of the formula can be used for generating mutually unbiased bases in C{sup d} with d = p{sup e} (e {>=} 2) a power of a prime integer. A connection between mutually unbiasedmore » bases and the unitary group SU(d) is briefly discussed in the case d = p{sup e}.« less

  12. Peritoneal fluid transport: mechanisms, pathways, methods of assessment.

    PubMed

    Waniewski, Jacek

    2013-11-01

    Fluid removal during peritoneal dialysis is controlled by many mutually dependent factors and therefore its analysis is more complex than that of the removal of small solutes used as markers of dialysis adequacy. Many new tests have been proposed to assess quantitatively different components of fluid transport (transcapillary ultrafiltration, peritoneal absorption, free water, etc.) and to estimate the factors that influence the rate of fluid transport (osmotic conductance). These tests provide detailed information about indices and parameters that describe fluid transport, especially those concerning the problem of the permanent loss of ultrafiltration capacity (ultrafiltration failure). Different theories and respective mathematical models of mechanisms and pathways of fluid transport are presently discussed and applied, and some fluid transport issues are still debated. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  13. Quantum corrections to holographic mutual information

    DOE PAGES

    Agon, Cesar A.; Faulkner, Thomas

    2016-08-22

    We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal [2] this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and providemore » in this way a non-trivial check of the FLM proposal.« less

  14. Delocalizing entanglement of anisotropic black branes

    NASA Astrophysics Data System (ADS)

    Jahnke, Viktor

    2018-01-01

    We study the mutual information between pairs of regions on the two asymptotic boundaries of maximally extended anisotropic black branes. This quantity characterizes the local pattern of entanglement of the thermofield double states which are dual to these geometries. We analyze the disruption of the mutual information in anisotropic shock wave geometries and show that the entanglement velocity plays an important role in this phenomenon. Moreover, we compute several chaos-related properties of this system, such as the entanglement velocity, the butterfly velocity, and the scrambling time. We find that the butterfly velocity and the entanglement velocity violate the upper bounds proposed in [1-3], but remain bounded by their corresponding values in the infrared effective theory.

  15. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling

    PubMed Central

    Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-01-01

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result. PMID:29072588

  16. ESPRIT-Like Two-Dimensional DOA Estimation for Monostatic MIMO Radar with Electromagnetic Vector Received Sensors under the Condition of Gain and Phase Uncertainties and Mutual Coupling.

    PubMed

    Zhang, Dong; Zhang, Yongshun; Zheng, Guimei; Feng, Cunqian; Tang, Jun

    2017-10-26

    In this paper, we focus on the problem of two-dimensional direction of arrival (2D-DOA) estimation for monostatic MIMO Radar with electromagnetic vector received sensors (MIMO-EMVSs) under the condition of gain and phase uncertainties (GPU) and mutual coupling (MC). GPU would spoil the invariance property of the EMVSs in MIMO-EMVSs, thus the effective ESPRIT algorithm unable to be used directly. Then we put forward a C-SPD ESPRIT-like algorithm. It estimates the 2D-DOA and polarization station angle (PSA) based on the instrumental sensors method (ISM). The C-SPD ESPRIT-like algorithm can obtain good angle estimation accuracy without knowing the GPU. Furthermore, it can be applied to arbitrary array configuration and has low complexity for avoiding the angle searching procedure. When MC and GPU exist together between the elements of EMVSs, in order to make our algorithm feasible, we derive a class of separated electromagnetic vector receiver and give the S-SPD ESPRIT-like algorithm. It can solve the problem of GPU and MC efficiently. And the array configuration can be arbitrary. The effectiveness of our proposed algorithms is verified by the simulation result.

  17. Item Selection Criteria with Practical Constraints for Computerized Classification Testing

    ERIC Educational Resources Information Center

    Lin, Chuan-Ju

    2011-01-01

    This study compares four item selection criteria for a two-category computerized classification testing: (1) Fisher information (FI), (2) Kullback-Leibler information (KLI), (3) weighted log-odds ratio (WLOR), and (4) mutual information (MI), with respect to the efficiency and accuracy of classification decision using the sequential probability…

  18. 77 FR 35705 - Notice of Submission of Proposed Information Collection to OMB Request for Termination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... Proposed Information Collection to OMB Request for Termination of Multifamily Mortgage Insurance AGENCY... mutually agree to terminate the HUD multifamily mortgage insurance. DATES: Comments Due Date: July 16, 2012... following information: Title of Proposal: Request for Termination of Multifamily Mortgage Insurance. OMB...

  19. 32 CFR 700.334 - The Chief of Information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The Chief of Information is the direct representative of the Secretary of the Navy in all public affairs and internal relations matters. The Chief of Information is authorized to implement Navy public affairs and internal relations policies and to coordinate those Navy and Marine Corps activities of mutual...

  20. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  1. AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Alex R.; Burrows, Adam; Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs ofmore » combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.« less

  2. A practical tool for maximal information coefficient analysis.

    PubMed

    Albanese, Davide; Riccadonna, Samantha; Donati, Claudio; Franceschi, Pietro

    2018-04-01

    The ability of finding complex associations in large omics datasets, assessing their significance, and prioritizing them according to their strength can be of great help in the data exploration phase. Mutual information-based measures of association are particularly promising, in particular after the recent introduction of the TICe and MICe estimators, which combine computational efficiency with superior bias/variance properties. An open-source software implementation of these two measures providing a complete procedure to test their significance would be extremely useful. Here, we present MICtools, a comprehensive and effective pipeline that combines TICe and MICe into a multistep procedure that allows the identification of relationships of various degrees of complexity. MICtools calculates their strength assessing statistical significance using a permutation-based strategy. The performances of the proposed approach are assessed by an extensive investigation in synthetic datasets and an example of a potential application on a metagenomic dataset is also illustrated. We show that MICtools, combining TICe and MICe, is able to highlight associations that would not be captured by conventional strategies.

  3. 12 CFR 1291.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... scoring process pursuant to the requirements of § 1291.5 of this part. Cost of funds means, for purposes of a subsidized advance, the estimated cost of issuing Bank System consolidated obligations with..., including overnight and emergency shelters, transitional housing for homeless households, mutual housing...

  4. PREMER: a Tool to Infer Biological Networks.

    PubMed

    Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R

    2017-10-04

    Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).

  5. Visual motion direction is represented in population-level neural response as measured by magnetoencephalography.

    PubMed

    Kaneoke, Y; Urakawa, T; Kakigi, R

    2009-05-19

    We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.

  6. Measuring the usefulness of hidden units in Boltzmann machines with mutual information.

    PubMed

    Berglund, Mathias; Raiko, Tapani; Cho, Kyunghyun

    2015-04-01

    Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are important models in deep learning, but it is often difficult to measure their performance in general, or measure the importance of individual hidden units in specific. We propose to use mutual information to measure the usefulness of individual hidden units in Boltzmann machines. The measure is fast to compute, and serves as an upper bound for the information the neuron can pass on, enabling detection of a particular kind of poor training results. We confirm experimentally that the proposed measure indicates how much the performance of the model drops when some of the units of an RBM are pruned away. We demonstrate the usefulness of the measure for early detection of poor training in DBMs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Recurrence plot statistics and the effect of embedding

    NASA Astrophysics Data System (ADS)

    March, T. K.; Chapman, S. C.; Dendy, R. O.

    2005-01-01

    Recurrence plots provide a graphical representation of the recurrent patterns in a timeseries, the quantification of which is a relatively new field. Here we derive analytical expressions which relate the values of key statistics, notably determinism and entropy of line length distribution, to the correlation sum as a function of embedding dimension. These expressions are obtained by deriving the transformation which generates an embedded recurrence plot from an unembedded plot. A single unembedded recurrence plot thus provides the statistics of all possible embedded recurrence plots. If the correlation sum scales exponentially with embedding dimension, we show that these statistics are determined entirely by the exponent of the exponential. This explains the results of Iwanski and Bradley [J.S. Iwanski, E. Bradley, Recurrence plots of experimental data: to embed or not to embed? Chaos 8 (1998) 861-871] who found that certain recurrence plot statistics are apparently invariant to embedding dimension for certain low-dimensional systems. We also examine the relationship between the mutual information content of two timeseries and the common recurrent structure seen in their recurrence plots. This allows time-localized contributions to mutual information to be visualized. This technique is demonstrated using geomagnetic index data; we show that the AU and AL geomagnetic indices share half their information, and find the timescale on which mutual features appear.

  8. Cancer cell redirection biomarker discovery using a mutual information approach.

    PubMed

    Roche, Kimberly; Feltus, F Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B S; Bentires-Alj, Mohamed; Booth, Brian W

    2017-01-01

    Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state.

  9. Cancer cell redirection biomarker discovery using a mutual information approach

    PubMed Central

    Roche, Kimberly; Feltus, F. Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B. S.; Bentires-Alj, Mohamed

    2017-01-01

    Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state. PMID:28594912

  10. Independent EEG Sources Are Dipolar

    PubMed Central

    Delorme, Arnaud; Palmer, Jason; Onton, Julie; Oostenveld, Robert; Makeig, Scott

    2012-01-01

    Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison). PMID:22355308

  11. Non-monogamy: risk factor for STI transmission and acquisition and determinant of STI spread in populations.

    PubMed

    Aral, Sevgi O; Leichliter, Jami S

    2010-12-01

    The concept of concurrent partnerships, while theoretically appealing, has been challenged at many levels. However, non-monogamy may be an important risk factor for the acquisition and transmission of sexually transmitted infections (STI). One's own non-monogamy is a risk factor for transmitting STI to others, partners' non-monogamy is a risk factor for acquiring STI and, most importantly, mutual non-monogamy is a population level determinant of increased STI spread. This study describes the levels, distribution and correlates of non-monogamy, partners' non-monogamy and mutual non-monogamy among adult men and women in the USA. Data from the National Survey of Family Growth (NSFG) Cycle 6 were used. NSFG is a national household survey of subjects aged 15-44 years in the USA. Cochran-Mantel-Haenszel tests and χ(2) tests were used in the analysis. Among sexually active adults, 17.6% of women and 23.0% of men (an estimated 19 million) reported non-monogamy over the past 12 months in 2002. An estimated 11 million Americans (1 in 10) reported partners' non-monogamy and an estimated 8.4 million (7% of women and 10.5% of men) reported mutual non-monogamy. All three types of non-monogamy were reported more frequently by men than women. Younger age, lower education, formerly or never married status, living below the poverty level and having spent time in jail were associated with all three types of non-monogamy in general. The three types of non-monogamy may be helpful in tailoring prevention messages and targeting prevention efforts to subgroups most likely to spread infection.

  12. International Librarianship: Developing Professional, Intercultural, and Educational Leadership

    ERIC Educational Resources Information Center

    Constantinou, Constantia, Ed.; Miller, Michael J., Ed.; Schlesinger, Kenneth, Ed.

    2017-01-01

    International librarianship stems from a desire to bring about political change, transcultural understanding, collaboration, and mutual respect. Historically, librarians have been deeply involved with challenging issues of information sharing, equity in information access, and bridging the digital divide between different socioeconomic…

  13. SU-E-J-179: Prediction of Pelvic Nodal Coverage Using Mutual Information Between Cone-Beam and Planning CTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, S; Kishan, A; O'Connell, D

    2014-06-01

    Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as amore » ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.« less

  14. Parental smoking and childhood obesity: higher effect estimates for maternal smoking in pregnancy compared with paternal smoking--a meta-analysis.

    PubMed

    Riedel, Christina; Schönberger, Katharina; Yang, Seungmi; Koshy, Gibby; Chen, Yang-Ching; Gopinath, Bamini; Ziebarth, Stephanie; von Kries, Rüdiger

    2014-10-01

    Some studies reported similar effect estimates for the impact of maternal smoking in pregnancy and paternal smoking on childhood obesity, whereas others suggested higher effects for maternal smoking. We performed a meta-analysis to compare the effect of in utero exposure to maternal smoking and that of paternal or household smoking exposure in utero or after birth with mutual adjustment. Meta-analysis of observational studies identified in MEDLINE, EMBASE and Web of Knowledge published in 1900-2013. Study inclusion criterion was assessment of the association of maternal smoking during pregnancy and paternal or household smoking (anyone living in the household who smokes) at any time with childhood overweight and obesity. The analyses were based on all studies with mutually adjusted effect estimates for maternal and paternal/household smoking applying a random-effects model. Data for 109,838 mother/child pairs were reported in 12 studies. The pooled odds ratios (ORs) for overweight 1.33 [95% confidence interval (CI) 1.23;1.44] (n=6, I2=0.00%) and obesity 1.60 (95% CI 1.37;1.88) (n=4, I2=32.47%) for maternal smoking during pregnancy were higher than for paternal smoking: 1.07 (95% CI 1.00;1.16) (n=6, I2=41.34%) and 1.23 (95% CI 1.10;1.38) (n=4, I2=14.61%), respectively. Similar estimates with widely overlapping confidence limits were found for maternal smoking during pregnancy and childhood overweight and obesity: 1.35 (95% CI 1.20;1.51) (n=3, I2=0.00%) and 1.28 (95% CI 1.07;1.54) (n=3, I2=0.00%) compared with household smoking 1.22 (95% CI 1.06;1.39) (n=3, I2=72.14%) and 1.31 (95% CI 1.15;1.50)] (n=3, I2=0.00%). Higher effect estimates for maternal smoking in pregnancy compared with paternal smoking in mutually adjusted models may suggest a direct intrauterine effect. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  15. Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.

    PubMed

    Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef

    2017-01-01

    This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

  16. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity.

    PubMed

    Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail

    2011-02-01

    The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.

  17. What Makes Informal Mentorship in the Medical Realm Effective?

    ERIC Educational Resources Information Center

    Mohtady, Heba A.; Könings, Karen D.; van Merriënboer, Jeroen J. G.

    2016-01-01

    Informal mentoring is based on a natural match between a junior individual and a senior one who share mutual interests. It usually aids in the professional and personal development of both parties involved. We reviewed the literature regarding factors that make informal mentoring effective within the medical realm, by searching a major academic…

  18. Pushing Library Information to First-Year Students: An Exploratory Study of Faculty/Library Collaboration

    ERIC Educational Resources Information Center

    Dobozy, Eva; Gross, Julia

    2010-01-01

    The authors contend that better information literacy and library skills development practice is needed for students entering university. This paper presents a case study of how a teacher education (TE) lecturer and a faculty librarian collaborated in an Australian university to provide information literacy practice. A mutual interest in…

  19. Inference of topology and the nature of synapses, and the flow of information in neuronal networks

    NASA Astrophysics Data System (ADS)

    Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.

    2018-02-01

    The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

  20. Estimating the Information Extracted by a Single Spiking Neuron from a Continuous Input Time Series.

    PubMed

    Zeldenrust, Fleur; de Knecht, Sicco; Wadman, Wytse J; Denève, Sophie; Gutkin, Boris

    2017-01-01

    Understanding the relation between (sensory) stimuli and the activity of neurons (i.e., "the neural code") lies at heart of understanding the computational properties of the brain. However, quantifying the information between a stimulus and a spike train has proven to be challenging. We propose a new ( in vitro ) method to measure how much information a single neuron transfers from the input it receives to its output spike train. The input is generated by an artificial neural network that responds to a randomly appearing and disappearing "sensory stimulus": the hidden state. The sum of this network activity is injected as current input into the neuron under investigation. The mutual information between the hidden state on the one hand and spike trains of the artificial network or the recorded spike train on the other hand can easily be estimated due to the binary shape of the hidden state. The characteristics of the input current, such as the time constant as a result of the (dis)appearance rate of the hidden state or the amplitude of the input current (the firing frequency of the neurons in the artificial network), can independently be varied. As an example, we apply this method to pyramidal neurons in the CA1 of mouse hippocampi and compare the recorded spike trains to the optimal response of the "Bayesian neuron" (BN). We conclude that like in the BN, information transfer in hippocampal pyramidal cells is non-linear and amplifying: the information loss between the artificial input and the output spike train is high if the input to the neuron (the firing of the artificial network) is not very informative about the hidden state. If the input to the neuron does contain a lot of information about the hidden state, the information loss is low. Moreover, neurons increase their firing rates in case the (dis)appearance rate is high, so that the (relative) amount of transferred information stays constant.

  1. The acacia ants revisited: convergent evolution and biogeographic context in an iconic ant/plant mutualism

    PubMed Central

    2017-01-01

    Phylogenetic and biogeographic analyses can enhance our understanding of multispecies interactions by placing the origin and evolution of such interactions in a temporal and geographical context. We use a phylogenomic approach—ultraconserved element sequence capture—to investigate the evolutionary history of an iconic multispecies mutualism: Neotropical acacia ants (Pseudomyrmex ferrugineus group) and their associated Vachellia hostplants. In this system, the ants receive shelter and food from the host plant, and they aggressively defend the plant against herbivores and competing plants. We confirm the existence of two separate lineages of obligate acacia ants that convergently occupied Vachellia and evolved plant-protecting behaviour, from timid ancestors inhabiting dead twigs in rainforest. The more diverse of the two clades is inferred to have arisen in the Late Miocene in northern Mesoamerica, and subsequently expanded its range throughout much of Central America. The other lineage is estimated to have originated in southern Mesoamerica about 3 Myr later, apparently piggy-backing on the pre-existing mutualism. Initiation of the Pseudomyrmex/Vachellia interaction involved a shift in the ants from closed to open habitats, into an environment with more intense plant herbivory. Comparative studies of the two lineages of mutualists should provide insight into the essential features binding this mutualism. PMID:28298350

  2. A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts

    PubMed Central

    Onken, Arno; Dragoi, Valentin; Obermayer, Klaus

    2012-01-01

    Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392

  3. The impact of rural mutual health care on health status: evaluation of a social experiment in rural China.

    PubMed

    Wang, Hong; Yip, Winnie; Zhang, Licheng; Hsiao, William C

    2009-07-01

    Despite widespread efforts to expand health insurance in developing countries, there is scant evidence as to whether doing so actually improves people's health. This paper aims to fill this gap by evaluating the impact of Rural Mutual Health Care (RMHC), a community-based health insurance scheme, on enrollees' health outcomes. RMHC is a social experiment that was conducted in one of China's western provinces from 2003 to 2006. The RMHC experiment adopted a pre-post treatment-control study design. This study used panel data collected in 2002, 1 year prior to the intervention, and followed up in 2005, 2 years after the intervention, both in the intervention and control sites. We measured health status using both a 5-point Categorical Rating Scale and the EQ-5D instruments. The estimation method used here is difference-in-difference combined propensity score matching. The results show that RMHC has a positive effect on the health status of participants. Among the five dimensions of EQ-5D, RMHC significantly reduces pain/discomfort and anxiety/depression for the general population, and has a positive impact on mobility and usual activity for those over 55-years old. Our study provides useful policy information on the development of health insurance in developing countries, and also identifies areas where further research is needed.

  4. Quantitative metrics for evaluating parallel acquisition techniques in diffusion tensor imaging at 3 Tesla.

    PubMed

    Ardekani, Siamak; Selva, Luis; Sayre, James; Sinha, Usha

    2006-11-01

    Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.

  5. MIMO radar waveform design with peak and sum power constraints

    NASA Astrophysics Data System (ADS)

    Arulraj, Merline; Jeyaraman, Thiruvengadam S.

    2013-12-01

    Optimal power allocation for multiple-input multiple-output radar waveform design subject to combined peak and sum power constraints using two different criteria is addressed in this paper. The first one is by maximizing the mutual information between the random target impulse response and the reflected waveforms, and the second one is by minimizing the mean square error in estimating the target impulse response. It is assumed that the radar transmitter has knowledge of the target's second-order statistics. Conventionally, the power is allocated to transmit antennas based on the sum power constraint at the transmitter. However, the wide power variations across the transmit antenna pose a severe constraint on the dynamic range and peak power of the power amplifier at each antenna. In practice, each antenna has the same absolute peak power limitation. So it is desirable to consider the peak power constraint on the transmit antennas. A generalized constraint that jointly meets both the peak power constraint and the average sum power constraint to bound the dynamic range of the power amplifier at each transmit antenna is proposed recently. The optimal power allocation using the concept of waterfilling, based on the sum power constraint, is the special case of p = 1. The optimal solution for maximizing the mutual information and minimizing the mean square error is obtained through the Karush-Kuhn-Tucker (KKT) approach, and the numerical solutions are found through a nested Newton-type algorithm. The simulation results show that the detection performance of the system with both sum and peak power constraints gives better detection performance than considering only the sum power constraint at low signal-to-noise ratio.

  6. Solar flux forecasting using mutual information with an optimal delay

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Conway, D.; Rokni, M.; Sperling, R.; Roszman, L.; Cooley, J.

    1993-01-01

    Solar flux F(sub 10.7) directly affects the atmospheric density, thereby changing the lifetime and prediction of satellite orbits. For this reason, accurate forecasting of F(sub 10.7) is crucial for orbit determination of spacecraft. Our attempts to model and forecast F(sub 10.7) uncovered highly entangled dynamics. We concluded that the general lack of predictability in solar activity arises from its nonlinear nature. Nonlinear dynamics allow us to predict F(sub 10.7) more accurately than is possible using stochastic methods for time scales shorter than a characteristic horizon, and with about the same accuracy as using stochastic techniques when the forecasted data exceed this horizon. The forecast horizon is a function of two dynamical invariants: the attractor dimension and the Lyapunov exponent. In recent years, estimation of the attractor dimension reconstructed from a time series has become an important tool in data analysis. In calculating the invariants of the system, the first necessary step is the reconstruction of the attractor for the system from the time-delayed values of the time series. The choice of the time delay is critical for this reconstruction. For an infinite amount of noise-free data, the time delay can, in principle, be chosen almost arbitrarily. However, the quality of the phase portraits produced using the time-delay technique is determined by the value chosen for the delay time. Fraser and Swinney have shown that a good choice for this time delay is the one suggested by Shaw, which uses the first local minimum of the mutual information rather than the autocorrelation function to determine the time delay. This paper presents a refinement of this criterion and applies the refined technique to solar flux data to produce a forecast of the solar activity.

  7. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  8. Compressed Secret Key Agreement:Maximizing Multivariate Mutual Information per Bit

    NASA Astrophysics Data System (ADS)

    Chan, Chung

    2017-10-01

    The multiterminal secret key agreement problem by public discussion is formulated with an additional source compression step where, prior to the public discussion phase, users independently compress their private sources to filter out strongly correlated components for generating a common secret key. The objective is to maximize the achievable key rate as a function of the joint entropy of the compressed sources. Since the maximum achievable key rate captures the total amount of information mutual to the compressed sources, an optimal compression scheme essentially maximizes the multivariate mutual information per bit of randomness of the private sources, and can therefore be viewed more generally as a dimension reduction technique. Single-letter lower and upper bounds on the maximum achievable key rate are derived for the general source model, and an explicit polynomial-time computable formula is obtained for the pairwise independent network model. In particular, the converse results and the upper bounds are obtained from those of the related secret key agreement problem with rate-limited discussion. A precise duality is shown for the two-user case with one-way discussion, and such duality is extended to obtain the desired converse results in the multi-user case. In addition to posing new challenges in information processing and dimension reduction, the compressed secret key agreement problem helps shed new light on resolving the difficult problem of secret key agreement with rate-limited discussion, by offering a more structured achieving scheme and some simpler conjectures to prove.

  9. Evaluation of counterfactuality in counterfactual communication protocols

    NASA Astrophysics Data System (ADS)

    Arvidsson-Shukur, D. R. M.; Barnes, C. H. W.; Gottfries, A. N. O.

    2017-12-01

    We provide an in-depth investigation of parameter estimation in nested Mach-Zehnder interferometers (NMZIs) using two information measures: the Fisher information and the Shannon mutual information. Protocols for counterfactual communication have, so far, been based on two different definitions of counterfactuality. In particular, some schemes have been based on NMZI devices, and have recently been subject to criticism. We provide a methodology for evaluating the counterfactuality of these protocols, based on an information-theoretical framework. More specifically, we make the assumption that any realistic quantum channel in MZI structures will have some weak uncontrolled interaction. We then use the Fisher information of this interaction to measure counterfactual violations. The measure is used to evaluate the suggested counterfactual communication protocol of H. Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502]. The protocol of D. R. M. Arvidsson-Shukur and C. H. W. Barnes [Phys. Rev. A 94, 062303 (2016), 10.1103/PhysRevA.94.062303], based on a different definition, is evaluated with a probability measure. Our results show that the definition of Arvidsson-Shukur and Barnes is satisfied by their scheme, while that of Salih et al. is only satisfied by perfect quantum channels. For realistic devices the latter protocol does not achieve its objective.

  10. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication

    PubMed Central

    Thepsoonthorn, C.; Yokozuka, T.; Miura, S.; Ogawa, K.; Miyake, Y.

    2016-01-01

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony. PMID:27910902

  11. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication.

    PubMed

    Thepsoonthorn, C; Yokozuka, T; Miura, S; Ogawa, K; Miyake, Y

    2016-12-02

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony.

  12. Mutual Information and Information Gating in Synfire Chains

    DOE PAGES

    Xiao, Zhuocheng; Wang, Binxu; Sornborger, Andrew Tyler; ...

    2018-02-01

    Here, coherent neuronal activity is believed to underlie the transfer and processing of information in the brain. Coherent activity in the form of synchronous firing and oscillations has been measured in many brain regions and has been correlated with enhanced feature processing and other sensory and cognitive functions. In the theoretical context, synfire chains and the transfer of transient activity packets in feedforward networks have been appealed to in order to describe coherent spiking and information transfer. Recently, it has been demonstrated that the classical synfire chain architecture, with the addition of suitably timed gating currents, can support the gradedmore » transfer of mean firing rates in feedforward networks (called synfire-gated synfire chains—SGSCs). Here we study information propagation in SGSCs by examining mutual information as a function of layer number in a feedforward network. We explore the effects of gating and noise on information transfer in synfire chains and demonstrate that asymptotically, two main regions exist in parameter space where information may be propagated and its propagation is controlled by pulse-gating: a large region where binary codes may be propagated, and a smaller region near a cusp in parameter space that supports graded propagation across many layers.« less

  13. Mutual Information and Information Gating in Synfire Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zhuocheng; Wang, Binxu; Sornborger, Andrew Tyler

    Here, coherent neuronal activity is believed to underlie the transfer and processing of information in the brain. Coherent activity in the form of synchronous firing and oscillations has been measured in many brain regions and has been correlated with enhanced feature processing and other sensory and cognitive functions. In the theoretical context, synfire chains and the transfer of transient activity packets in feedforward networks have been appealed to in order to describe coherent spiking and information transfer. Recently, it has been demonstrated that the classical synfire chain architecture, with the addition of suitably timed gating currents, can support the gradedmore » transfer of mean firing rates in feedforward networks (called synfire-gated synfire chains—SGSCs). Here we study information propagation in SGSCs by examining mutual information as a function of layer number in a feedforward network. We explore the effects of gating and noise on information transfer in synfire chains and demonstrate that asymptotically, two main regions exist in parameter space where information may be propagated and its propagation is controlled by pulse-gating: a large region where binary codes may be propagated, and a smaller region near a cusp in parameter space that supports graded propagation across many layers.« less

  14. Detection of biomarkers for Hepatocellular Carcinoma using a hybrid univariate gene selection methods

    PubMed Central

    2012-01-01

    Background Discovering new biomarkers has a great role in improving early diagnosis of Hepatocellular carcinoma (HCC). The experimental determination of biomarkers needs a lot of time and money. This motivates this work to use in-silico prediction of biomarkers to reduce the number of experiments required for detecting new ones. This is achieved by extracting the most representative genes in microarrays of HCC. Results In this work, we provide a method for extracting the differential expressed genes, up regulated ones, that can be considered candidate biomarkers in high throughput microarrays of HCC. We examine the power of several gene selection methods (such as Pearson’s correlation coefficient, Cosine coefficient, Euclidean distance, Mutual information and Entropy with different estimators) in selecting informative genes. A biological interpretation of the highly ranked genes is done using KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, ENTREZ and DAVID (Database for Annotation, Visualization, and Integrated Discovery) databases. The top ten genes selected using Pearson’s correlation coefficient and Cosine coefficient contained six genes that have been implicated in cancer (often multiple cancers) genesis in previous studies. A fewer number of genes were obtained by the other methods (4 genes using Mutual information, 3genes using Euclidean distance and only one gene using Entropy). A better result was obtained by the utilization of a hybrid approach based on intersecting the highly ranked genes in the output of all investigated methods. This hybrid combination yielded seven genes (2 genes for HCC and 5 genes in different types of cancer) in the top ten genes of the list of intersected genes. Conclusions To strengthen the effectiveness of the univariate selection methods, we propose a hybrid approach by intersecting several of these methods in a cascaded manner. This approach surpasses all of univariate selection methods when used individually according to biological interpretation and the examination of gene expression signal profiles. PMID:22867264

  15. Statistics of optimal information flow in ensembles of regulatory motifs

    NASA Astrophysics Data System (ADS)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  16. Learning from each other: cross-cultural insights on palliative care in Indian and Australian regions.

    PubMed

    McGrath, Pam; Holewa, Hamish; Koilparampil, Thomas; Koshy, Cherian; George, Shobha

    2009-10-01

    This article presents the findings of a cross-cultural research project that explored similarities and differences between palliative care service provision in Kerala, India and South-East Queensland, Australia, to inform a process of mutual learning for service development. Three major points of difference that can inform this process of mutual learning were identified: 1) an understanding of the significance of honesty in information-giving to the patient, 2) recognition of the importance of palliative care specialists providing education to mainstream health professionals, and 3) appreciation of the need for palliative care to be cognizant of the socio-economic impact of dying-especially for families experiencing poverty-by embracing strategies for financial and material support. The findings highlight the effectiveness of a cross-cultural collaboration between health professionals and researchers in South-East Queensland, Australia and Kerala, India.

  17. 43 CFR 17.333 - Investigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Conciliation, and Enforcement Procedures § 17.333 Investigation. (a) Informal investigation. (1) DOI will... mediation agreement. (2) As part of the initial investigation, DOI will use informal fact finding methods... possible, settle the complaint on terms that are mutually agreeable to the parties. DOI may seek the...

  18. A Menagerie of Tracks at Maryland: HARD, Enterprise, QA, and Genomics, Oh My!

    DTIC Science & Technology

    2006-01-01

    mutually agreeable search strategy for acquiring the desired information. Like information need negotiation in a reference interview, clarification...answer key to identify relevant nuggets in system responses. The obvious downside of this approach is that the process requires human intervention

  19. 43 CFR 17.333 - Investigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Conciliation, and Enforcement Procedures § 17.333 Investigation. (a) Informal investigation. (1) DOI will... mediation agreement. (2) As part of the initial investigation, DOI will use informal fact finding methods... possible, settle the complaint on terms that are mutually agreeable to the parties. DOI may seek the...

  20. Implementation of mutual information and bayes theorem for classification microarray data

    NASA Astrophysics Data System (ADS)

    Dwifebri Purbolaksono, Mahendra; Widiastuti, Kurnia C.; Syahrul Mubarok, Mohamad; Adiwijaya; Aminy Ma’ruf, Firda

    2018-03-01

    Microarray Technology is one of technology which able to read the structure of gen. The analysis is important for this technology. It is for deciding which attribute is more important than the others. Microarray technology is able to get cancer information to diagnose a person’s gen. Preparation of microarray data is a huge problem and takes a long time. That is because microarray data contains high number of insignificant and irrelevant attributes. So, it needs a method to reduce the dimension of microarray data without eliminating important information in every attribute. This research uses Mutual Information to reduce dimension. System is built with Machine Learning approach specifically Bayes Theorem. This theorem uses a statistical and probability approach. By combining both methods, it will be powerful for Microarray Data Classification. The experiment results show that system is good to classify Microarray data with highest F1-score using Bayesian Network by 91.06%, and Naïve Bayes by 88.85%.

  1. Traditional risk-sharing arrangements and informal social insurance in Eritrea.

    PubMed

    Habtom, GebreMichael Kibreab; Ruys, Pieter

    2007-01-01

    In Eritrea neither the state nor the market is effective in providing health insurance to low-income people (in rural and informal job sector). Schemes intended for the informal sector are confronted with low and irregular incomes of target populations and consequently negligible potential for profit making. Because of this there, are no formal health insurance systems in Eritrea that cover people in the traditional (or informal) sector of the economy. In the absence of formal safety nets traditional Eritrean societies use their local social capital to alleviate unexpected social costs. In Eritrea traditional risk-sharing arrangements are made within extended families and mutual aid community associations. This study reveals that in a situation where the state no longer provides free public health services any more and access to private insurance is denied, the extension of the voluntary mutual aid community associations to Mahber-based health insurance schemes at the local level is a viable way for providing modern health services.

  2. Information-theoretic approach to lead-lag effect on financial markets

    NASA Astrophysics Data System (ADS)

    Fiedor, Paweł

    2014-08-01

    Recently the interest of researchers has shifted from the analysis of synchronous relationships of financial instruments to the analysis of more meaningful asynchronous relationships. Both types of analysis are concentrated mostly on Pearson's correlation coefficient and consequently intraday lead-lag relationships (where one of the variables in a pair is time-lagged) are also associated with them. Under the Efficient-Market Hypothesis such relationships are not possible as all information is embedded in the prices, but in real markets we find such dependencies. In this paper we analyse lead-lag relationships of financial instruments and extend known methodology by using mutual information instead of Pearson's correlation coefficient. Mutual information is not only a more general measure, sensitive to non-linear dependencies, but also can lead to a simpler procedure of statistical validation of links between financial instruments. We analyse lagged relationships using New York Stock Exchange 100 data not only on an intraday level, but also for daily stock returns, which have usually been ignored.

  3. Link performance model for filter bank based multicarrier systems

    NASA Astrophysics Data System (ADS)

    Petrov, Dmitry; Oborina, Alexandra; Giupponi, Lorenza; Stitz, Tobias Hidalgo

    2014-12-01

    This paper presents a complete link level abstraction model for link quality estimation on the system level of filter bank multicarrier (FBMC)-based networks. The application of mean mutual information per coded bit (MMIB) approach is validated for the FBMC systems. The considered quality measure of the resource element for the FBMC transmission is the received signal-to-noise-plus-distortion ratio (SNDR). Simulation results of the proposed link abstraction model show that the proposed approach is capable of estimating the block error rate (BLER) accurately, even when the signal is propagated through the channels with deep and frequent fades, as it is the case for the 3GPP Hilly Terrain (3GPP-HT) and Enhanced Typical Urban (ETU) models. The FBMC-related results of link level simulations are compared with cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) analogs. Simulation results are also validated through the comparison to reference publicly available results. Finally, the steps of link level abstraction algorithm for FBMC are formulated and its application for system level simulation of a professional mobile radio (PMR) network is discussed.

  4. Three validation metrics for automated probabilistic image segmentation of brain tumours

    PubMed Central

    Zou, Kelly H.; Wells, William M.; Kikinis, Ron; Warfield, Simon K.

    2005-01-01

    SUMMARY The validity of brain tumour segmentation is an important issue in image processing because it has a direct impact on surgical planning. We examined the segmentation accuracy based on three two-sample validation metrics against the estimated composite latent gold standard, which was derived from several experts’ manual segmentations by an EM algorithm. The distribution functions of the tumour and control pixel data were parametrically assumed to be a mixture of two beta distributions with different shape parameters. We estimated the corresponding receiver operating characteristic curve, Dice similarity coefficient, and mutual information, over all possible decision thresholds. Based on each validation metric, an optimal threshold was then computed via maximization. We illustrated these methods on MR imaging data from nine brain tumour cases of three different tumour types, each consisting of a large number of pixels. The automated segmentation yielded satisfactory accuracy with varied optimal thresholds. The performances of these validation metrics were also investigated via Monte Carlo simulation. Extensions of incorporating spatial correlation structures using a Markov random field model were considered. PMID:15083482

  5. Vision-based mapping with cooperative robots

    NASA Astrophysics Data System (ADS)

    Little, James J.; Jennings, Cullen; Murray, Don

    1998-10-01

    Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.

  6. 1 CFR 301.2 - Purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agencies, assisted by outside experts, may cooperatively study mutual problems, exchange information, and develop recommendations for action by proper authorities to the end that private rights may be fully...

  7. African American women describe support processes during high-risk pregnancy and postpartum.

    PubMed

    Coffman, Sherrilyn; Ray, Marilyn A

    2002-01-01

    To explore social support processes in low-income African American women during high-risk pregnancy and postpartum. A qualitative grounded theory approach. Interview was the primary data collection technique and was combined with observation, medical chart review, and literature review. A high-risk pregnancy clinic and participants' homes. Ten pregnant women, 3 social network members, and 11 health care providers. Four of the women at high risk tell their in-depth stories in this article: Yolanda, coping with gestational diabetes; Frances, participating in drug rehabilitation; Trista, waiting to deliver a fetus with severe congenital anomalies; and Beatrice, HIV positive and carrying her seventh child. The substantive theory of support developed in the study was termed mutual intentionality. Narratives illustrate the mutual roles that women at high risk and support givers played in the helping process. Support themes included being there, caring, respecting, sharing information, knowing, believing in, and doing for the other. The theorsy of mutual intentionality suggests that social support is a process or transaction involving intentionality. For support to happen, the therapeutic relationship must be valued as a mutual resource.

  8. Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Hall, Joanne L.; Rao, Asha

    2010-04-01

    Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in {\\bb C}^d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in {\\bb C}^d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354 Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.

  9. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    PubMed Central

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  10. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    PubMed

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  11. Collinearity in Least-Squares Analysis

    ERIC Educational Resources Information Center

    de Levie, Robert

    2012-01-01

    How useful are the standard deviations per se, and how reliable are results derived from several least-squares coefficients and their associated standard deviations? When the output parameters obtained from a least-squares analysis are mutually independent, as is often assumed, they are reliable estimators of imprecision and so are the functions…

  12. The use of information theory for the evaluation of biomarkers of aging and physiological age.

    PubMed

    Blokh, David; Stambler, Ilia

    2017-04-01

    The present work explores the application of information theoretical measures, such as entropy and normalized mutual information, for research of biomarkers of aging. The use of information theory affords unique methodological advantages for the study of aging processes, as it allows evaluating non-linear relations between biological parameters, providing the precise quantitative strength of those relations, both for individual and multiple parameters, showing cumulative or synergistic effect. Here we illustrate those capabilities utilizing a dataset on heart disease, including diagnostic parameters routinely available to physicians. The use of information-theoretical methods, utilizing normalized mutual information, revealed the exact amount of information that various diagnostic parameters or their combinations contained about the persons' age. Based on those exact informative values for the correlation of measured parameters with age, we constructed a diagnostic rule (a decision tree) to evaluate physiological age, as compared to chronological age. The present data illustrated that younger subjects suffering from heart disease showed characteristics of people of higher age (higher physiological age). Utilizing information-theoretical measures, with additional data, it may be possible to create further clinically applicable information-theory-based markers and models for the evaluation of physiological age, its relation to age-related diseases and its potential modifications by therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Strategic Information Systems Planning in Malaysian Public Universities

    ERIC Educational Resources Information Center

    Ismail, Noor Azizi; Raja Mohd Ali, Raja Haslinda; Mat Saat, Rafeah; Hsbollah, Hafizah Mohamad

    2007-01-01

    Purpose: The paper's purpose is to investigate the current status, problems and benefits of strategic information systems planning implementation in Malaysian public universities. Design/methodology/approach: The study uses dual but mutually supportive strands of investigation, i.e. a questionnaire survey and interviews. Findings: Malaysian public…

  14. 21 CFR 26.71 - Exchange of information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Exchange of information. 26.71 Section 26.71 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS...

  15. A Robust Apnea Period Detection Method in Changing Sleep Posture by Average Mutual Information of Heartbeat and Respiration

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Watanabe, Kajiro; Kobayashi, Kazuyuki; Tanaka, Tanaka

    Sleep disorders disturb the recovery from mental and physical fatigues, one of the functions of the sleep. The majority of those who with the disorders are suffering from Sleep Apnea Syndrome (SAS). Continuous Hypoxia during sleep due to SAS cause Circulatory Disturbances, such as hypertension and ischemic heart disease, and Malfunction of Autonomic Nervous System, and other severe complications, often times bringing the suffers to death. In order to prevent these from happening, it is important to detect the SAS in its early stage by monitoring the daily respirations during sleep, and to provide appropriate treatments at medical institutions. In this paper, the Pneumatic Method to detect the Apnea period during sleep is proposed. Pneumatic method can measure heartbeat and respiration signal. Respiration signal can be considered as noise against heartbeat signal, and the decrease in the respiration signal due to Apnea increases the Average Mutual Information of heartbeat. The result of scaling analysis of the average mutual information is defined as threshold to detect the apnea period. The root mean square error between the lengths of Apnea measured by Strain Gauge using for reference and those measured by using the proposed method was 3.1 seconds. And, error of the number of apnea times judged by doctor and proposal method in OSAS patients was 3.3 times.

  16. Automatic registration of ICG images using mutual information and perfusion analysis

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Jong-Mo; Lee, June-goo; Kim, Jong Hyo; Park, Kwangsuk; Yu, Hyeong-Gon; Yu, Young Suk; Chung, Hum

    2005-04-01

    Introduction: Indocyanin green fundus angiographic images (ICGA) of the eyes is useful method in detecting and characterizing the choroidal neovascularization (CNV), which is the major cause of the blindness over 65 years of age. To investigate the quantitative analysis of the blood flow on ICGA, systematic approach for automatic registration of using mutual information and a quantitative analysis was developed. Methods: Intermittent sequential images of indocyanin green angiography were acquired by Heidelberg retinal angiography that uses the laser scanning system for the image acquisition. Misalignment of the each image generated by the minute eye movement of the patients was corrected by the mutual information method because the distribution of the contrast media on image is changing throughout the time sequences. Several region of interest (ROI) were selected by a physician and the intensities of the selected region were plotted according to the time sequences. Results: The registration of ICGA time sequential images is required not only translate transform but also rotational transform. Signal intensities showed variation based on gamma-variate function depending on ROIs and capillary vessels show more variance of signal intensity than major vessels. CNV showed intermediate variance of signal intensity and prolonged transit time. Conclusion: The resulting registered images can be used not only for quantitative analysis, but also for perfusion analysis. Various investigative approached on CNV using this method will be helpful in the characterization of the lesion and follow-up.

  17. Classical mutual information in mean-field spin glass models

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Inglis, Stephen; Pollet, Lode

    2016-03-01

    We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.

  18. 21 CFR 26.19 - Information relating to quality aspects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...

  19. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    DOEpatents

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  20. Let the right one in: a microeconomic approach to partner choice in mutualisms.

    PubMed

    Archetti, Marco; Ubeda, Francisco; Fudenberg, Drew; Green, Jerry; Pierce, Naomi E; Yu, Douglas W

    2011-01-01

    One of the main problems impeding the evolution of cooperation is partner choice. When information is asymmetric (the quality of a potential partner is known only to himself), it may seem that partner choice is not possible without signaling. Many mutualisms, however, exist without signaling, and the mechanisms by which hosts might select the right partners are unclear. Here we propose a general mechanism of partner choice, "screening," that is similar to the economic theory of mechanism design. Imposing the appropriate costs and rewards may induce the informed individuals to screen themselves according to their types and therefore allow a noninformed individual to establish associations with the correct partners in the absence of signaling. Several types of biological symbioses are good candidates for screening, including bobtail squid, ant-plants, gut microbiomes, and many animal and plant species that produce reactive oxygen species. We describe a series of diagnostic tests for screening. Screening games can apply to the cases where by-products, partner fidelity feedback, or host sanctions do not apply, therefore explaining the evolution of mutualism in systems where it is impossible for potential symbionts to signal their cooperativeness beforehand and where the host does not punish symbiont misbehavior.

  1. Quantitative estimation of bioclimatic parameters from presence/absence vegetation data in North America by the modern analog technique

    USGS Publications Warehouse

    Thompson, R.S.; Anderson, K.H.; Bartlein, P.J.

    2008-01-01

    The method of modern analogs is widely used to obtain estimates of past climatic conditions from paleobiological assemblages, and despite its frequent use, this method involved so-far untested assumptions. We applied four analog approaches to a continental-scale set of bioclimatic and plant-distribution presence/absence data for North America to assess how well this method works under near-optimal modern conditions. For each point on the grid, we calculated the similarity between its vegetation assemblage and those of all other points on the grid (excluding nearby points). The climate of the points with the most similar vegetation was used to estimate the climate at the target grid point. Estimates based the use of the Jaccard similarity coefficient had smaller errors than those based on the use of a new similarity coefficient, although the latter may be more robust because it does not assume that the "fossil" assemblage is complete. The results of these analyses indicate that presence/absence vegetation assemblages provide a valid basis for estimating bioclimates on the continental scale. However, the accuracy of the estimates is strongly tied to the number of species in the target assemblage, and the analog method is necessarily constrained to produce estimates that fall within the range of observed values. We applied the four modern analog approaches and the mutual overlap (or "mutual climatic range") method to estimate bioclimatic conditions represented by the plant macrofossil assemblage from a packrat midden of Last Glacial Maximum age from southern Nevada. In general, the estimation approaches produced similar results in regard to moisture conditions, but there was a greater range of estimates for growing-degree days. Despite its limitations, the modern analog technique can provide paleoclimatic reconstructions that serve as the starting point to the interpretation of past climatic conditions.

  2. Mutual information and redundancy in spontaneous communication between cortical neurons.

    PubMed

    Szczepanski, J; Arnold, M; Wajnryb, E; Amigó, J M; Sanchez-Vives, M V

    2011-03-01

    An important question in neural information processing is how neurons cooperate to transmit information. To study this question, we resort to the concept of redundancy in the information transmitted by a group of neurons and, at the same time, we introduce a novel concept for measuring cooperation between pairs of neurons called relative mutual information (RMI). Specifically, we studied these two parameters for spike trains generated by neighboring neurons from the primary visual cortex in the awake, freely moving rat. The spike trains studied here were spontaneously generated in the cortical network, in the absence of visual stimulation. Under these conditions, our analysis revealed that while the value of RMI oscillated slightly around an average value, the redundancy exhibited a behavior characterized by a higher variability. We conjecture that this combination of approximately constant RMI and greater variable redundancy makes information transmission more resistant to noise disturbances. Furthermore, the redundancy values suggest that neurons can cooperate in a flexible way during information transmission. This mostly occurs via a leading neuron with higher transmission rate or, less frequently, through the information rate of the whole group being higher than the sum of the individual information rates-in other words in a synergetic manner. The proposed method applies not only to the stationary, but also to locally stationary neural signals.

  3. Estimating the Tradeoff Between Risk Protection and Moral Hazard with a Nonlinear Budget Set Model of Health Insurance*

    PubMed Central

    Kowalski, Amanda E.

    2015-01-01

    Insurance induces a tradeoff between the welfare gains from risk protection and the welfare losses from moral hazard. Empirical work traditionally estimates each side of the tradeoff separately, potentially yielding mutually inconsistent results. I develop a nonlinear budget set model of health insurance that allows for both simultaneously. Nonlinearities in the budget set arise from deductibles, coinsurance rates, and stoplosses that alter moral hazard as well as risk protection. I illustrate the properties of my model by estimating it using data on employer sponsored health insurance from a large firm. PMID:26664035

  4. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  5. Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding

    PubMed Central

    2018-01-01

    Transfer entropy from non-uniform embedding is a popular tool for the inference of causal relationships among dynamical subsystems. In this study we present an approach that makes use of low-dimensional conditional mutual information quantities to decompose the original high-dimensional conditional mutual information in the searching procedure of non-uniform embedding for significant variables at different lags. We perform a series of simulation experiments to assess the sensitivity and specificity of our proposed method to demonstrate its advantage compared to previous algorithms. The results provide concrete evidence that low-dimensional approximations can help to improve the statistical accuracy of transfer entropy in multivariate causality analysis and yield a better performance over other methods. The proposed method is especially efficient as the data length grows. PMID:29547669

  6. Performance of different synchronization measures in real data: A case study on electroencephalographic signals

    NASA Astrophysics Data System (ADS)

    Quian Quiroga, R.; Kraskov, A.; Kreuz, T.; Grassberger, P.

    2002-04-01

    We study the synchronization between left and right hemisphere rat electroencephalographic (EEG) channels by using various synchronization measures, namely nonlinear interdependences, phase synchronizations, mutual information, cross correlation, and the coherence function. In passing we show a close relation between two recently proposed phase synchronization measures and we extend the definition of one of them. In three typical examples we observe that except mutual information, all these measures give a useful quantification that is hard to be guessed beforehand from the raw data. Despite their differences, results are qualitatively the same. Therefore, we claim that the applied measures are valuable for the study of synchronization in real data. Moreover, in the particular case of EEG signals their use as complementary variables could be of clinical relevance.

  7. Entropy, energy, and entanglement of localized states in bent triatomic molecules

    NASA Astrophysics Data System (ADS)

    Yuan, Qiang; Hou, Xi-Wen

    2017-05-01

    The dynamics of quantum entropy, energy, and entanglement is studied for various initial states in an important spectroscopic Hamiltonian of bent triatomic molecules H2O, D2O, and H2S. The total quantum correlation is quantified in terms of the mutual information and the entanglement by the concurrence borrowed from the theory of quantum information. The Pauli entropy and the intramolecular energy usually used in the theory of molecules are calculated to establish a possible relationship between both theories. Sections of two quantities among these four quantities are introduced to visualize such relationship. Analytic and numerical simulations demonstrate that if an initial state is taken to be the stretch- or the bend-vibrationally localized state, the mutual information, the Pauli entropy, and the concurrence are dominant-positively correlated while they are dominantly anti-correlated with the interacting energy among three anharmonic vibrational modes. In particular, such correlation is more distinct for the localized state with high excitations in the bending mode. The nice quasi-periodicity of those quantities in D2O molecule reveals that this molecule prepared in the localized state in the stretching or the bending mode can be more appreciated for molecular quantum computation. However, the dynamical correlations of those quantities behave irregularly for the dislocalized states. Moreover, the hierarchy of the mutual information and the Pauli entropy is explicitly proved. Quantum entropy and energy in every vibrational mode are investigated. Thereby, the relation between bipartite and tripartite entanglements is discussed as well. Those are useful for the understanding of quantum correlations in high-dimensional states in polyatomic molecules from quantum information and intramolecular dynamics.

  8. Network model of human aging: Frailty limits and information measures

    NASA Astrophysics Data System (ADS)

    Farrell, Spencer G.; Mitnitski, Arnold B.; Rockwood, Kenneth; Rutenberg, Andrew D.

    2016-11-01

    Aging is associated with the accumulation of damage throughout a persons life. Individual health can be assessed by the Frailty Index (FI). The FI is calculated simply as the proportion f of accumulated age-related deficits relative to the total, leading to a theoretical maximum of f ≤1 . Observational studies have generally reported a much more stringent bound, with f ≤fmax<1 . The value of fmax in observational studies appears to be nonuniversal, but fmax≈0.7 is often reported. A previously developed network model of individual aging was unable to recover fmax<1 while retaining the other observed phenomenology of increasing f and mortality rates with age. We have developed a computationally accelerated network model that also allows us to tune the scale-free network exponent α . The network exponent α significantly affects the growth of mortality rates with age. However, we are only able to recover fmax by also introducing a deficit sensitivity parameter 1 -q , which is equivalent to a false-negative rate q . Our value of q =0.3 is comparable to finite sensitivities of age-related deficits with respect to mortality that are often reported in the literature. In light of nonzero q , we use mutual information I to provide a nonparametric measure of the predictive value of the FI with respect to individual mortality. We find that I is only modestly degraded by q <1 , and this degradation is mitigated when increasing number of deficits are included in the FI. We also find that the information spectrum, i.e., the mutual information of individual deficits versus connectivity, has an approximately power-law dependence that depends on the network exponent α . Mutual information I is therefore a useful tool for characterizing the network topology of aging populations.

  9. Aggression and Moral Development: Integrating Social Information Processing and Moral Domain Models

    ERIC Educational Resources Information Center

    Arsenio, William F.; Lemerise, Elizabeth A.

    2004-01-01

    Social information processing and moral domain theories have developed in relative isolation from each other despite their common focus on intentional harm and victimization, and mutual emphasis on social cognitive processes in explaining aggressive, morally relevant behaviors. This article presents a selective summary of these literatures with…

  10. 77 FR 50757 - 60-Day Notice of Proposed Information Collection: Exchange Visitor Program Participant Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    .... Type of Request: New Collection. Originating Office: Bureau of Educational and Cultural Affairs, ECA/EC... of technology. Abstract of proposed collection: This collection of information is under the provisions of the Mutual Educational and Cultural Exchange Act, as amended, and its implementing regulations...

  11. 78 FR 15800 - 30-Day Notice of Proposed Information Collection: Exchange Student Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Collection. Originating Office: Educational and Cultural Affairs (ECA/ PE/C/PY). Form Number: SV2012-0007... automated collection techniques or other forms of information technology. Please note that comments... provisions of the Mutual Educational and Cultural Exchange Act, as amended, and the Exchange Visitor Program...

  12. Information Seeking and Avoidance Behavior in School Library Distance Learning

    ERIC Educational Resources Information Center

    Du, Yunfei

    2010-01-01

    Library science students in school librarianship were surveyed to determine their information seeking and avoidance behaviors in Web-based online environments. Two coping styles were identified among students. Barriers to student online collaboration, such as individual preferences, concerns on efficiency, and lack of mutual trust, were observed.…

  13. The Information Ambassadors: The 1990-91 Library/Book Fellows.

    ERIC Educational Resources Information Center

    American Library Association, Chicago, IL.

    The American Library Association (ALA) Library/Book Fellows program began in 1986 with a grant from the U.S. Information Agency. The program's purpose is threefold: (1) to increase international understanding through the establishment of professional and personal relationships and the accomplishment of mutual goals; (2) to promote international…

  14. Digitally Included: Business-Community Partnerships To Promote the Use of Information and Communication Technologies.

    ERIC Educational Resources Information Center

    2003

    This publication describes efforts in the United Kingdom (UK) to develop mutually beneficial, collaborative partnerships between businesses and communities that promote digital inclusion (access to information and communication technologies). Case studies of different kinds of relationships are listed, including UK online centers, schools, events…

  15. Term Dependence: A Basis for Luhn and Zipf Models.

    ERIC Educational Resources Information Center

    Losee, Robert M.

    2001-01-01

    Discusses relationships between the frequency-based characteristics of neighboring terms in natural language and the rank or frequency of the terms. Topics include information theory measures, including expected mutual information measure (EMIM); entropy and rank; Luhn's model of term aboutness; Zipf's law; and implications for indexing and…

  16. Facilitated peer support in breast cancer: a pre- and post-program evaluation of women's expectations and experiences of a facilitated peer support program.

    PubMed

    Power, Sinead; Hegarty, Josephine

    2010-01-01

    Peer support programs are associated with the provision of emotional, informational, and appraisal support. The benefits of peer support for women with breast cancer include reduced social isolation, enhanced coping, and access to information. The aim of this study was to conduct a pre- and post-program evaluation of a 7-week facilitated breast cancer peer support program in a cancer support house. Women with primary breast cancer (n = 8) participated in pre- and post-program focus groups. The interviews were recorded and were transcribed verbatim by the researcher. The data were analyzed using content analysis. Eight themes were identified. The key themes emerging from the pre and post programme focus groups included: The need for mutual identification; Post-treatment isolation; Help with moving on; The impact of hair loss; Consolidation of information; Enablement/empowerment; The importance of the cancer survivor; Mutual sharing. It is essential that facilitated peer support programs are tailored to meet the support needs of women with breast cancer. There is a particular need to facilitate mutual sharing and support for hair loss within these programs. Implications for practice emerging from this study include the importance of pre- and post-program evaluations in identifying whether peer support programs meet the expectations of women with breast cancer, the need for peer/professional programs to support women with treatment-induced hair loss, the importance of including cancer survivors in support programs, and the need to allow more informal sharing to occur in facilitated peer support programs.

  17. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  18. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  19. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  20. A Lightweight RFID Mutual Authentication Protocol Based on Physical Unclonable Function.

    PubMed

    Xu, He; Ding, Jie; Li, Peng; Zhu, Feng; Wang, Ruchuan

    2018-03-02

    With the fast development of the Internet of Things, Radio Frequency Identification (RFID) has been widely applied into many areas. Nevertheless, security problems of the RFID technology are also gradually exposed, when it provides life convenience. In particular, the appearance of a large number of fake and counterfeit goods has caused massive loss for both producers and customers, for which the clone tag is a serious security threat. If attackers acquire the complete information of a tag, they can then obtain the unique identifier of the tag by some technological means. In general, because there is no extra identifier of a tag, it is difficult to distinguish an original tag and its clone one. Once the legal tag data is obtained, attackers can be able to clone this tag. Therefore, this paper shows an efficient RFID mutual verification protocol. This protocol is based on the Physical Unclonable Function (PUF) and the lightweight cryptography to achieve efficient verification of a single tag. The protocol includes three process: tag recognition, mutual verification and update. The tag recognition is that the reader recognizes the tag; mutual verification is that the reader and tag mutually verify the authenticity of each other; update is supposed to maintain the latest secret key for the following verification. Analysis results show that this protocol has a good balance between performance and security.

  1. A Lightweight RFID Mutual Authentication Protocol Based on Physical Unclonable Function

    PubMed Central

    Ding, Jie; Zhu, Feng; Wang, Ruchuan

    2018-01-01

    With the fast development of the Internet of Things, Radio Frequency Identification (RFID) has been widely applied into many areas. Nevertheless, security problems of the RFID technology are also gradually exposed, when it provides life convenience. In particular, the appearance of a large number of fake and counterfeit goods has caused massive loss for both producers and customers, for which the clone tag is a serious security threat. If attackers acquire the complete information of a tag, they can then obtain the unique identifier of the tag by some technological means. In general, because there is no extra identifier of a tag, it is difficult to distinguish an original tag and its clone one. Once the legal tag data is obtained, attackers can be able to clone this tag. Therefore, this paper shows an efficient RFID mutual verification protocol. This protocol is based on the Physical Unclonable Function (PUF) and the lightweight cryptography to achieve efficient verification of a single tag. The protocol includes three process: tag recognition, mutual verification and update. The tag recognition is that the reader recognizes the tag; mutual verification is that the reader and tag mutually verify the authenticity of each other; update is supposed to maintain the latest secret key for the following verification. Analysis results show that this protocol has a good balance between performance and security. PMID:29498684

  2. Information and communication technology in cross-industry glossaries

    NASA Astrophysics Data System (ADS)

    Pronichev, A. N.; Polyakov, E. V.; Nikitaev, V. G.; Vasilyev, N. P.; Dmitrieva, V. V.; Ulina, I. V.

    2017-01-01

    Interdisciplinary glossary is proposed to ensure mutual understanding of specialists from various fields of science and technology. Glossary is designed with application of information technologies. The field of information technologies is considered. It is necessary for the understanding and cooperation of specialists in various areas. The technological solutions and applications for multi-disciplinary areas, results of testing of the developed techniques are presented.

  3. A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker.

    PubMed

    Leibfried, Felix; Braun, Daniel A

    2015-08-01

    Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

  4. The locking-decoding frontier for generic dynamics.

    PubMed

    Dupuis, Frédéric; Florjanczyk, Jan; Hayden, Patrick; Leung, Debbie

    2013-11-08

    It is known that the maximum classical mutual information, which can be achieved between measurements on pairs of quantum systems, can drastically underestimate the quantum mutual information between them. In this article, we quantify this distinction between classical and quantum information by demonstrating that after removing a logarithmic-sized quantum system from one half of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might yield only outcomes essentially independent of each other. This effect is a form of information locking but the definition we use is strictly stronger than those used previously. Moreover, we find that this property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect might be relevant to statistical mechanics or black hole physics. While previous works had always assumed a uniform message, we assume only a min-entropy bound and also explore the effect of entanglement. We find that classical information is strongly locked almost until it can be completely decoded. Finally, we exhibit a quantum key distribution protocol that is 'secure' in the sense of accessible information but in which leakage of even a logarithmic number of bits compromises the secrecy of all others.

  5. Activity Recognition on Streaming Sensor Data.

    PubMed

    Krishnan, Narayanan C; Cook, Diane J

    2014-02-01

    Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.

  6. The locking-decoding frontier for generic dynamics

    PubMed Central

    Dupuis, Frédéric; Florjanczyk, Jan; Hayden, Patrick; Leung, Debbie

    2013-01-01

    It is known that the maximum classical mutual information, which can be achieved between measurements on pairs of quantum systems, can drastically underestimate the quantum mutual information between them. In this article, we quantify this distinction between classical and quantum information by demonstrating that after removing a logarithmic-sized quantum system from one half of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might yield only outcomes essentially independent of each other. This effect is a form of information locking but the definition we use is strictly stronger than those used previously. Moreover, we find that this property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect might be relevant to statistical mechanics or black hole physics. While previous works had always assumed a uniform message, we assume only a min-entropy bound and also explore the effect of entanglement. We find that classical information is strongly locked almost until it can be completely decoded. Finally, we exhibit a quantum key distribution protocol that is ‘secure’ in the sense of accessible information but in which leakage of even a logarithmic number of bits compromises the secrecy of all others. PMID:24204183

  7. MIDER: network inference with mutual information distance and entropy reduction.

    PubMed

    Villaverde, Alejandro F; Ross, John; Morán, Federico; Banga, Julio R

    2014-01-01

    The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available (http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information-theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide range of problems without requiring tuning.

  8. Shannon information entropy in the canonical genetic code.

    PubMed

    Nemzer, Louis R

    2017-02-21

    The Shannon entropy measures the expected information value of messages. As with thermodynamic entropy, the Shannon entropy is only defined within a system that identifies at the outset the collections of possible messages, analogous to microstates, that will be considered indistinguishable macrostates. This fundamental insight is applied here for the first time to amino acid alphabets, which group the twenty common amino acids into families based on chemical and physical similarities. To evaluate these schemas objectively, a novel quantitative method is introduced based the inherent redundancy in the canonical genetic code. Each alphabet is taken as a separate system that partitions the 64 possible RNA codons, the microstates, into families, the macrostates. By calculating the normalized mutual information, which measures the reduction in Shannon entropy, conveyed by single nucleotide messages, groupings that best leverage this aspect of fault tolerance in the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. This approach allows the quantification of the average information value of nucleotide positions, which can shed light on the coevolution of the canonical genetic code with the tRNA-protein translation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Building mutually beneficial partnerships to improve physical activity opportunities through shared-use efforts in under-resourced communities in Los Angeles County.

    PubMed

    Burbage, Lindsey; Gonzalez, Eloisa; Dunning, Lauren; Simon, Paul; Kuo, Tony

    2014-10-01

    To evaluate 18 shared-use agreements (SUAs) implemented in Los Angeles County during 2010-2012. SUAs opened school grounds and/or facilities in seven school districts to increase physical activity opportunities for under-resourced communities with high prevalence of obesity. We reviewed the extent to which SUAs addressed school district concerns about cost responsibility, sustainability, and scope. A school site and community partner survey was conducted to inform planning and to facilitate comparisons of the types and range of legal clauses (up to 16) contained in the agreements. We used geographic information systems and 2010 United States Census data to estimate the population reached and the potential benefits of the SUAs. SUAs varied in the degree to which they addressed the three categories of concerns. Eight of the 18 agreements included 13 of the 16 legal clauses. We estimate that these SUAs have the potential to reach nearly 165,000 children (ages 5-19) and more than 500,000 adults (ages 20-64) at a cost of about $0.38 per community member reached. SUAs that include legal clauses to address school concerns about factors such as vandalism, staffing and funding represent a promising strategy for increasing physical activity opportunities in under-resourced neighborhoods where the prevalence of obesity is high. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems.

    PubMed

    Seo, Hwa Jeong; Kim, Hye Hyeon; Kim, Ju Han

    2011-09-01

    Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system.

  11. A SWOT Analysis of the Various Backup Scenarios Used in Electronic Medical Record Systems

    PubMed Central

    Seo, Hwa Jeong; Kim, Hye Hyeon

    2011-01-01

    Objectives Electronic medical records (EMRs) are increasingly being used by health care services. Currently, if an EMR shutdown occurs, even for a moment, patient safety and care can be seriously impacted. Our goal was to determine the methodology needed to develop an effective and reliable EMR backup system. Methods Our "independent backup system by medical organizations" paradigm implies that individual medical organizations develop their own EMR backup systems within their organizations. A "personal independent backup system" is defined as an individual privately managing his/her own medical records, whereas in a "central backup system by the government" the government controls all the data. A "central backup system by private enterprises" implies that individual companies retain control over their own data. A "cooperative backup system among medical organizations" refers to a networked system established through mutual agreement. The "backup system based on mutual trust between an individual and an organization" means that the medical information backup system at the organizational level is established through mutual trust. Results Through the use of SWOT analysis it can be shown that cooperative backup among medical organizations is possible to be established through a network composed of various medical agencies and that it can be managed systematically. An owner of medical information only grants data access to the specific person who gave the authorization for backup based on the mutual trust between an individual and an organization. Conclusions By employing SWOT analysis, we concluded that a linkage among medical organizations or between an individual and an organization can provide an efficient backup system. PMID:22084811

  12. Cyber Mutual Assistance Workshop Report

    DTIC Science & Technology

    2018-02-01

    Information Technology, Nuclear Reactors, Materials/Waste, Defense Industrial Base, Critical Manufacturing, Food/ Agriculture Government Facilities and...Manufacturing, Food/ Agriculture Government Facilities and Chemical, Commercial Facilities [DHS 2017c]. Distributed Energy Resources (DER) are

  13. Qualities in friendship - Within an outside perspective - Definitions expressed by adolescents with mild intellectual disabilities.

    PubMed

    Sigstad, Hanne Marie Høybråten

    2017-03-01

    This study examined how adolescents with mild intellectual disabilities define qualities of friendship and discussed the extent to which these definitions adhere to established definitions of close friendship. The study was based on qualitative interviews with 11 adolescents in secondary school. The interviews were supplemented with information from six parents. A thematic structural analysis was used to identify themes. Qualities of friendship were categorized as mutual preference, mutual enjoyment, shared interactions, care, mutual trust and bonding. The criteria for close friendship seem to be fulfilled, albeit to a moderate degree. Closeness and reciprocity appear to be significant in this study, although these features have been considered less relevant within this target group in previous research. Differences in definitions may explain divergent results compared with other studies, and the need to achieve equivalence in friendship may be another.

  14. 12-Step Interventions and Mutual Support Programs for Substance Use Disorders: An Overview

    PubMed Central

    Donovan, Dennis M.; Ingalsbe, Michelle H.; Benbow, James; Daley, Dennis C.

    2013-01-01

    Social workers and other behavioral health professionals are likely to encounter individuals with substance use disorders in a variety of practice settings outside of specialty treatment. 12-Step mutual support programs represent readily available, no cost community-based resources for such individuals; however, practitioners are often unfamiliar with such programs. The present article provides a brief overview of 12-Step programs, the positive substance use and psychosocial outcomes associated with active 12-Step involvement, and approaches ranging from ones that can be utilized by social workers in any practice setting to those developed for specialty treatment programs to facilitate engagement in 12-Step meetings and recovery activities. The goal is to familiarize social workers with 12-Step approaches so that they are better able to make informed referrals that match clients to mutual support groups that best meet the individual’s needs and maximize the likelihood of engagement and positive outcomes. PMID:23731422

  15. Prediction of acoustic feature parameters using myoelectric signals.

    PubMed

    Lee, Ki-Seung

    2010-07-01

    It is well-known that a clear relationship exists between human voices and myoelectric signals (MESs) from the area of the speaker's mouth. In this study, we utilized this information to implement a speech synthesis scheme in which MES alone was used to predict the parameters characterizing the vocal-tract transfer function of specific speech signals. Several feature parameters derived from MES were investigated to find the optimal feature for maximization of the mutual information between the acoustic and the MES features. After the optimal feature was determined, an estimation rule for the acoustic parameters was proposed, based on a minimum mean square error (MMSE) criterion. In a preliminary study, 60 isolated words were used for both objective and subjective evaluations. The results showed that the average Euclidean distance between the original and predicted acoustic parameters was reduced by about 30% compared with the average Euclidean distance of the original parameters. The intelligibility of the synthesized speech signals using the predicted features was also evaluated. A word-level identification ratio of 65.5% and a syllable-level identification ratio of 73% were obtained through a listening test.

  16. Relevant Scatterers Characterization in SAR Images

    NASA Astrophysics Data System (ADS)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  17. Occupational conditions and workers' sense of community: variations by gender and race.

    PubMed

    Lambert, S J; Hopkins, K

    1995-04-01

    The literature is reviewed to define a sense of community in the workplace and to identify factors that may foster it. A model is developed and estimated with survey data from a culturally diverse sample of men and women performing lower-level jobs at a medium-sized manufacturing firm. Results of regression analyses are reported that correct for sample selection bias resulting from the lower response rates of minority workers. Findings suggest that well-designed jobs and supportive workplace relationships and policies are important in explaining workers' sense of community, defined as workers' perceptions of mutual commitment between employee and employer. Informal sources of support play a larger role in explaining men's sense of community, while formal sources of support are more important in explaining women's sense of community. Findings further suggest that African American workers, especially women, have a difficult time experiencing a sense of community at work.

  18. Copula Entropy coupled with Wavelet Neural Network Model for Hydrological Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Yue, JiGuang; Liu, ShuGuang; Wang, Li

    2018-02-01

    Artificial Neural network(ANN) has been widely used in hydrological forecasting. in this paper an attempt has been made to find an alternative method for hydrological prediction by combining Copula Entropy(CE) with Wavelet Neural Network(WNN), CE theory permits to calculate mutual information(MI) to select Input variables which avoids the limitations of the traditional linear correlation(LCC) analysis. Wavelet analysis can provide the exact locality of any changes in the dynamical patterns of the sequence Coupled with ANN Strong non-linear fitting ability. WNN model was able to provide a good fit with the hydrological data. finally, the hybrid model(CE+WNN) have been applied to daily water level of Taihu Lake Basin, and compared with CE ANN, LCC WNN and LCC ANN. Results showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models.

  19. Constellation labeling optimization for bit-interleaved coded APSK

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  20. When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health.

    PubMed

    Highwood, Eleanor J; Kinnersley, Robert P

    2006-05-01

    With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring.

  1. U.S. Information Policy and Cultural Diplomacy. Headline Series No. 308.

    ERIC Educational Resources Information Center

    Ninkovich, Frank

    This booklet examines U.S. involvement with cultural diplomacy, emphasizing exchanges of persons and ideas that have lasting effects on relatively small numbers of people and information programs using the mass media to influence large numbers of people. Whereas the cultural exchange programs are internationalist in nature, promoting mutual and…

  2. Informal Social Support Interventions and their Role in Violence Prevention: An Agenda for Future Evaluation

    ERIC Educational Resources Information Center

    Budde, Stephen; Schene, Patricia

    2004-01-01

    There is increasing interest among policymakers and practitioners in tapping the potential of family, friends, volunteers, peer support groups, and mutual aid organizations to help prevent violence. The popularity of these informal social support (ISS) interventions stems, in part, from their flexibility, responsiveness to individual needs, and…

  3. Internet Resources for Reference: Finance and Investment.

    ERIC Educational Resources Information Center

    Mai, Brent Alan

    1997-01-01

    When called upon to aid in filtering through finance and investment information on the Internet, the business librarian is also faced with knowing what is available and how to find it. Web sites are identified that provide information about stocks and their exchanges, mutual funds, bonds, company annual reports, and taxes. (Author/AEF)

  4. 78 FR 64197 - Renewable Energy Policy Business Roundtable in Livermore, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... allowed the private sector to explore areas of mutual concern and share with government officials their... rolling basis in the order they are received. Selected companies will be contacted with information about... send an email to [email protected] with the following information. Name of Applicant Company Name Company...

  5. U.S. Information Ambassadors: The 1991-92 Library Fellows and Debriefing Report.

    ERIC Educational Resources Information Center

    Doyle, Robert P.

    The American Library Association (ALA) Library Fellows program began in 1986 with a grant from the U.S. Information Agency. The program's purpose is threefold: (1) to increase international understanding through the establishment of professional and personal relationships and the accomplishment of mutual goals; (2) to promote international sharing…

  6. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

    PubMed Central

    Chen, Yun; Yang, Hui

    2016-01-01

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering. PMID:27966581

  7. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures.

    PubMed

    Chen, Yun; Yang, Hui

    2016-12-14

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.

  8. Identifying functionally informative evolutionary sequence profiles.

    PubMed

    Gil, Nelson; Fiser, Andras

    2018-04-15

    Multiple sequence alignments (MSAs) can provide essential input to many bioinformatics applications, including protein structure prediction and functional annotation. However, the optimal selection of sequences to obtain biologically informative MSAs for such purposes is poorly explored, and has traditionally been performed manually. We present Selection of Alignment by Maximal Mutual Information (SAMMI), an automated, sequence-based approach to objectively select an optimal MSA from a large set of alternatives sampled from a general sequence database search. The hypothesis of this approach is that the mutual information among MSA columns will be maximal for those MSAs that contain the most diverse set possible of the most structurally and functionally homogeneous protein sequences. SAMMI was tested to select MSAs for functional site residue prediction by analysis of conservation patterns on a set of 435 proteins obtained from protein-ligand (peptides, nucleic acids and small substrates) and protein-protein interaction databases. Availability and implementation: A freely accessible program, including source code, implementing SAMMI is available at https://github.com/nelsongil92/SAMMI.git. andras.fiser@einstein.yu.edu. Supplementary data are available at Bioinformatics online.

  9. Tightening the entropic uncertainty bound in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Adabi, F.; Salimi, S.; Haseli, S.

    2016-06-01

    The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables cannot be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. M. Berta et al. [Nat. Phys. 6, 659 (2010), 10.1038/nphys1734] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on the Holevo quantity and mutual information. We conclude that our lower bound will be tightened with respect to that of Berta et al. when the accessible information about measurements outcomes is less than the mutual information about the joint state. Some examples have been investigated for which our lower bound is tighter than Berta et al.'s lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has been obtained, as well as an upper bound for the regularized distillable common randomness.

  10. Alternate entropy measure for assessing volatility in financial markets.

    PubMed

    Bose, Ranjan; Hamacher, Kay

    2012-11-01

    We propose two alternate information theoretical approaches to assess non-Gaussian fluctuations in the return dynamics of financial markets. Specifically, we use superinformation, which is a measure of the disorder of the entropy of time series. We argue on theoretical grounds on its usefulness and show that it can be applied effectively for analyzing returns. A study of stock market data for over five years has been carried out using this approach. We show how superinformation helps to identify and classify important signals in the time series. The financial crisis of 2008 comes out very clearly in the superinformation plots. In addition, we introduce the super mutual information. Distinct super mutual information signatures are observed that might be used to mitigate idiosyncratic risk. The universality of our approach has been tested by carrying out the analysis for the 100 stocks listed in S&P100 index. The average superinformation values for the S&P100 stocks correlates very well with the VIX.

  11. Alternate entropy measure for assessing volatility in financial markets

    NASA Astrophysics Data System (ADS)

    Bose, Ranjan; Hamacher, Kay

    2012-11-01

    We propose two alternate information theoretical approaches to assess non-Gaussian fluctuations in the return dynamics of financial markets. Specifically, we use superinformation, which is a measure of the disorder of the entropy of time series. We argue on theoretical grounds on its usefulness and show that it can be applied effectively for analyzing returns. A study of stock market data for over five years has been carried out using this approach. We show how superinformation helps to identify and classify important signals in the time series. The financial crisis of 2008 comes out very clearly in the superinformation plots. In addition, we introduce the super mutual information. Distinct super mutual information signatures are observed that might be used to mitigate idiosyncratic risk. The universality of our approach has been tested by carrying out the analysis for the 100 stocks listed in S&P100 index. The average superinformation values for the S&P100 stocks correlates very well with the VIX.

  12. Computing quantum discord is NP-complete

    NASA Astrophysics Data System (ADS)

    Huang, Yichen

    2014-03-01

    We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.

  13. Women's experiences of social support during the first year following primary breast cancer surgery.

    PubMed

    Drageset, Sigrunn; Lindstrøm, Torill Christine; Giske, Tove; Underlid, Kjell

    2016-06-01

    The aim of this qualitative follow-up study was to describe women's individual experiences of social support during their first year after primary breast cancer surgery. Individual semi-structured interviews with 10 women 1 year after surgery analysed by Kvales' meaning condensation method. Sharing experiences, being understood as an individual, continuity, and information and explanations were themes identified. Sharing mutual experiences increased the women's knowledge regarding cancer, increased experience of support and minimised rumination. After 1 year, the women felt that the network around them had 'normalised' and was less supportive. Being seen as a person, not as 'a diagnosis being treated', and continuity of professional support were important, giving feelings of security and trust. The women felt uncertainty after loss of professional support post-treatment. Information and explanations regarding treatment and treatment-related problems were essential. Mutual sharing of experiences is an important part of social support. Continuity, availability, information and respect were essential aspects of experienced professional support. © 2015 Nordic College of Caring Science.

  14. Tripartite counterfactual quantum cryptography

    NASA Astrophysics Data System (ADS)

    Salih, Hatim

    2014-07-01

    We show how two distrustful parties, "Bob" and "Charlie," can share a secret key with the help of a mutually trusted "Alice" counterfactually; that is, with no information-carrying particles traveling between any of the three.

  15. Mutual information detects a decreased interdependence between RR and SAP in orthostatic intolerance after microgravity condition.

    PubMed

    Raimondi, G; Chillemi, S; Michelassi, C; Di Garbo, A; Varanini, M; Legramante, J; Balocchi, R

    2002-07-01

    Orthostatic intolerance is the most serious symptom of cardiovascular deconditioning induced by microgravity. However, the exact mechanisms underlying these alterations have not been completely clarified. Several methods for studying the time series of systolic arterial pressure and RR interval have been proposed both in the time and in the frequency domain. However, these methods did not produce definitive results. In fact heart rate and arterial pressure show a complex pattern of global variability which is likely due to non linear feedback which involves the autonomic nervous system and to "stochastic" influences. Aim of this study was to evaluate the degree of interdependence between the mechanisms responsible for the variability of SAP and RR signals in subjects exposed to head down (HD). This quantification was achieved by using Mutual Information (MI).

  16. Mutual information measures applied to EEG signals for sleepiness characterization.

    PubMed

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value < 0.0001). WDS group presented more complexity than EDS in the occipital zone, while a stronger nonlinear coupling between occipital and frontal zones was detected in EDS patients than in WDS. The AMIF and CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Handheld Synthetic Array Final Report, Part B

    DTIC Science & Technology

    2014-12-01

    Multiple Model IMU Inertial Measurement Unit 4/154 IEEE Institute of Electrical and Electronics Engineers KF Kalman Filter KL Kullback - Leibler LAMBDA...important metric in information theory is the input–output mutual information (MI) that is used as an indicator of how much coded information can be...tracking using best- fitting Gaussian distributions,” Proc. Int. Conf. Inform . Fusion, pp. 1–8, 2005. [liv] L. Svensson, “On the Bayesian Cramér-Rao

  18. MIDER: Network Inference with Mutual Information Distance and Entropy Reduction

    PubMed Central

    Villaverde, Alejandro F.; Ross, John; Morán, Federico; Banga, Julio R.

    2014-01-01

    The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available (http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information–theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide range of problems without requiring tuning. PMID:24806471

  19. Improved 2D/3D registration robustness using local spatial information

    NASA Astrophysics Data System (ADS)

    De Momi, Elena; Eckman, Kort; Jaramaz, Branislav; DiGioia, Anthony, III

    2006-03-01

    Xalign is a tool designed to measure implant orientation after joint arthroplasty by co-registering a projection of an implant model and a digitally reconstructed radiograph of the patient's anatomy with a post operative x-ray. A mutual information based registration method is used to automate alignment. When using basic mutual information, the presence of local maxima can result in misregistration. To increase robustness of registration, our research is aimed at improving the similarity function by modifying the information measure and incorporating local spatial information. A test dataset with known groundtruth parameters was created to evaluate the performance of this measure. A synthetic radiograph was generated first from a preoperative pelvic CT scan to act as the gold standard. The voxel weights used to generate the image were then modified and new images were generated with the CT rigidly transformed. The roll, pitch and yaw angles span a range of -10/+10 degrees, while x, y and z translations range from -10mm to +10mm. These images were compared with the reference image. The proposed cost function correctly identified the correct pose in all tests and did not exhibit any local maxima which would slow or prevent locating the global maximum.

  20. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    PubMed

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (p<0.05). Moreover, the joint information carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The taboo of cancer: the experiences of cancer disclosure by Iranian patients, their family members and physicians.

    PubMed

    Zamanzadeh, Vahid; Rahmani, Azad; Valizadeh, Leila; Ferguson, Caleb; Hassankhani, Hadi; Nikanfar, Ali-Reza; Howard, Fuchsia

    2013-02-01

    The objective of this study is to describe the experiences of cancer disclosure by Iranian cancer patients, their family members and physicians. Twenty cancer patients, ten family members and eight physicians participated in this study. Data were collected via semi-structured, in-depth interviews and analyzed using qualitative content analysis. Three categories were identified: cancer avoidance, a climate of non-disclosure and mutual concern. The findings demonstrated that cancer is a taboo subject and the word cancer, as well as other indicative terms, was rarely used in daily communication. A climate of non-disclosure predominated because patients were the last to know their diagnosis, they were unaware of their prognosis, and family members and physicians employed strategies to conceal this information. The mutual concern of patients, family members and physicians was the main reason that cancer was not discussed. Cancer is a taboo subject in Iran that is maintained and reinforced primarily because of the mutual concern of patients, family members and physicians. The first step to address this taboo and inform cancer patients of their diagnosis would be to understand and help mitigate the individual, family and social consequences of disclosure. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Effects of Design Properties on Parameter Estimation in Large-Scale Assessments

    ERIC Educational Resources Information Center

    Hecht, Martin; Weirich, Sebastian; Siegle, Thilo; Frey, Andreas

    2015-01-01

    The selection of an appropriate booklet design is an important element of large-scale assessments of student achievement. Two design properties that are typically optimized are the "balance" with respect to the positions the items are presented and with respect to the mutual occurrence of pairs of items in the same booklet. The purpose…

  3. Faithful Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Christandl, Matthias; Yard, Jon

    2011-09-01

    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled. We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence. The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.

  4. Managing Your Administrator.

    ERIC Educational Resources Information Center

    Von Bergen, C. W.; Soper, Barlow; Licata, Jane W.

    2002-01-01

    Explains why effective teachers need relationships of mutual respect and understanding with their supervisors. Makes suggestions for building relationships: understand administrators' objectives, pressures, strengths, weaknesses, and preferred styles; communicate needs clearly; and keep administrators informed. Describes incompetent types of…

  5. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Gupta, Anupam K.; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S.; Fu, Yanqing; Caspers, Philip; Buck, John R.

    2017-04-01

    Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20 %), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

  6. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar.

    PubMed

    Müller, Rolf; Gupta, Anupam K; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S; Fu, Yanqing; Caspers, Philip; Buck, John R

    2017-04-14

    Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20%), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

  7. Variable input observer for structural health monitoring of high-rate systems

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Laflamme, Simon; Cao, Liang; Dodson, Jacob

    2017-02-01

    The development of high-rate structural health monitoring methods is intended to provide damage detection on timescales of 10 µs -10ms where speed of detection is critical to maintain structural integrity. Here, a novel Variable Input Observer (VIO) coupled with an adaptive observer is proposed as a potential solution for complex high-rate problems. The VIO is designed to adapt its input space based on real-time identification of the system's essential dynamics. By selecting appropriate time-delayed coordinates defined by both a time delay and an embedding dimension, the proper input space is chosen which allows more accurate estimations of the current state and a reduction of the convergence rate. The optimal time-delay is estimated based on mutual information, and the embedding dimension is based on false nearest neighbors. A simulation of the VIO is conducted on a two degree-of-freedom system with simulated damage. Results are compared with an adaptive Luenberger observer, a fixed time-delay observer, and a Kalman Filter. Under its preliminary design, the VIO converges significantly faster than the Luenberger and fixed observer. It performed similarly to the Kalman Filter in terms of convergence, but with greater accuracy.

  8. A comparison of foveated acquisition and tracking performance relative to uniform resolution approaches

    NASA Astrophysics Data System (ADS)

    Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William

    2009-05-01

    Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.

  9. Streamflow Prediction based on Chaos Theory

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, X.; Babovic, V. M.

    2015-12-01

    Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.

  10. Sex-oriented stable matchings of the marriage problem with correlated and incomplete information

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido; Capocci, Andrea; Laureti, Paolo

    2001-10-01

    In the stable marriage problem two sets of agents must be paired according to mutual preferences, which may happen to conflict. We present two generalizations of its sex-oriented version, aiming to take into account correlations between the preferences of agents and costly information. Their effects are investigated both numerically and analytically.

  11. "We Got to Figure It out": Information-Sharing and Siblings' Negotiations of Conflicts of Interests

    ERIC Educational Resources Information Center

    Ram, Avigail; Ross, Hildy

    2008-01-01

    Given the importance of mutual understanding for constructive conflict resolution, this study investigated the influence of information-sharing on siblings faced with conflicts of interests. Thirty-two sibling dyads (ages 4.5 to 8) participated. Siblings were asked to negotiate the division of five toys between themselves. Half of the pairs first…

  12. Estimation of Directional Stability Derivatives at Moderate Angles and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kaattari, George E.

    1959-01-01

    A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.

  13. Numerical modeling and analytical evaluation of light absorption by gold nanostars

    NASA Astrophysics Data System (ADS)

    Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery

    2018-04-01

    In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.

  14. Regression analysis of longitudinal data with correlated censoring and observation times.

    PubMed

    Li, Yang; He, Xin; Wang, Haiying; Sun, Jianguo

    2016-07-01

    Longitudinal data occur in many fields such as the medical follow-up studies that involve repeated measurements. For their analysis, most existing approaches assume that the observation or follow-up times are independent of the response process either completely or given some covariates. In practice, it is apparent that this may not be true. In this paper, we present a joint analysis approach that allows the possible mutual correlations that can be characterized by time-dependent random effects. Estimating equations are developed for the parameter estimation and the resulted estimators are shown to be consistent and asymptotically normal. The finite sample performance of the proposed estimators is assessed through a simulation study and an illustrative example from a skin cancer study is provided.

  15. Pointwise Partial Information Decomposition Using the Specificity and Ambiguity Lattices

    NASA Astrophysics Data System (ADS)

    Finn, Conor; Lizier, Joseph

    2018-04-01

    What are the distinct ways in which a set of predictor variables can provide information about a target variable? When does a variable provide unique information, when do variables share redundant information, and when do variables combine synergistically to provide complementary information? The redundancy lattice from the partial information decomposition of Williams and Beer provided a promising glimpse at the answer to these questions. However, this structure was constructed using a much criticised measure of redundant information, and despite sustained research, no completely satisfactory replacement measure has been proposed. In this paper, we take a different approach, applying the axiomatic derivation of the redundancy lattice to a single realisation from a set of discrete variables. To overcome the difficulty associated with signed pointwise mutual information, we apply this decomposition separately to the unsigned entropic components of pointwise mutual information which we refer to as the specificity and ambiguity. This yields a separate redundancy lattice for each component. Then based upon an operational interpretation of redundancy, we define measures of redundant specificity and ambiguity enabling us to evaluate the partial information atoms in each lattice. These atoms can be recombined to yield the sought-after multivariate information decomposition. We apply this framework to canonical examples from the literature and discuss the results and the various properties of the decomposition. In particular, the pointwise decomposition using specificity and ambiguity satisfies a chain rule over target variables, which provides new insights into the so-called two-bit-copy example.

  16. Megatrends: Megahype, Megabad.

    ERIC Educational Resources Information Center

    Goldman, Louis

    1983-01-01

    Criticizes John Naisbitt's bestselling novel, "Megatrends," for reifying constructs (industrial society and information society), treating these entities as mutually exclusive, and endowing them with a life cycle. In addition, claims the novel is marred by faddish jargon and is statistically unreliable. (MLF)

  17. Partnership to build research capacity.

    PubMed

    Boland, Mary G; Kamikawa, Cindy; Inouye, Jillian; Latimer, Renee W; Marshall, Stephanie

    2010-01-01

    Today's nursing leaders are setting the stage for the next evolution--bringing together skilled clinicians and administrators with peers in education to create new approaches to leading the profession forward. Partnerships share goals, common purpose, mutual respect, willingness to negotiate and compromise, informed participation, information giving, and shared decision making. The shared practice academia effort between a public university and a private health care system situated in the island state of Hawai'i is described. The medical center and school of nursing pursued individual strategic efforts to build research capacity and used the opportunity to fund academic practice research projects. The mutual need and recognition of the high stakes involved, in concert with stable, committed leaders at all levels, were key to the early success of their efforts. Through the formal research partnership mechanism, a discrete focus was created for efforts and used to move to tactical, operational, and interpersonal integration in this relationship.

  18. Weber-aware weighted mutual information evaluation for infrared-visible image fusion

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoyan; Wang, Shining; Yuan, Ding

    2016-10-01

    A performance metric for infrared and visible image fusion is proposed based on Weber's law. To indicate the stimulus of source images, two Weber components are provided. One is differential excitation to reflect the spectral signal of visible and infrared images, and the other is orientation to capture the scene structure feature. By comparing the corresponding Weber component in infrared and visible images, the source pixels can be marked with different dominant properties in intensity or structure. If the pixels have the same dominant property label, the pixels are grouped to calculate the mutual information (MI) on the corresponding Weber components between dominant source and fused images. Then, the final fusion metric is obtained via weighting the group-wise MI values according to the number of pixels in different groups. Experimental results demonstrate that the proposed metric performs well on popular image fusion cases and outperforms other image fusion metrics.

  19. Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.

    2015-11-01

    The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.

  20. Entropy perspective on the thermal crossover in a fermionic Hubbard chain

    NASA Astrophysics Data System (ADS)

    Bonnes, Lars; Pichler, Hannes; Läuchli, Andreas M.

    2013-10-01

    We study the Renyi entropy in the finite-temperature crossover regime of a Hubbard chain using quantum Monte Carlo. The ground-state entropy has characteristic features such as a logarithmic divergence with block size and 2kF oscillations that are a hallmark of its Luttinger liquid nature. The interplay between the (extensive) thermal entropy and the ground-state features is studied and we analyze the temperature-induced decay of the amplitude of the oscillations as well as the scaling of the purity. Furthermore, we show how the spin and charge velocities can be extracted from the temperature dependence of the Renyi entropy, bridging our findings to recent experimental proposals on how to implement the measurement of Renyi entropies in the cold atom system. Studying the Renyi mutual information, we also demonstrate how constraints such as particle number conservation can induce persistent correlations visible in the mutual information even at high temperature.

  1. Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Qiyuan; Jing Jiliang

    2008-09-15

    The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It has been shown that the same 'initial entanglement' for the state parameter {alpha} and its 'normalized partners'{radical}(1-{alpha}{sup 2}) will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state no longer has distillable entanglement for any {alpha}. It is interestingmore » to note that the mutual information in this limit is equal to just half of the 'initially mutual information'. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which indicates the degradation of entanglement.« less

  2. The comparison and analysis of extracting video key frame

    NASA Astrophysics Data System (ADS)

    Ouyang, S. Z.; Zhong, L.; Luo, R. Q.

    2018-05-01

    Video key frame extraction is an important part of the large data processing. Based on the previous work in key frame extraction, we summarized four important key frame extraction algorithms, and these methods are largely developed by comparing the differences between each of two frames. If the difference exceeds a threshold value, take the corresponding frame as two different keyframes. After the research, the key frame extraction based on the amount of mutual trust is proposed, the introduction of information entropy, by selecting the appropriate threshold values into the initial class, and finally take a similar mean mutual information as a candidate key frame. On this paper, several algorithms is used to extract the key frame of tunnel traffic videos. Then, with the analysis to the experimental results and comparisons between the pros and cons of these algorithms, the basis of practical applications is well provided.

  3. Does alcohol involvement increase the severity of intimate partner violence?

    PubMed

    McKinney, Christy M; Caetano, Raul; Rodriguez, Lori A; Okoro, Ngozi

    2010-04-01

    Most studies that have examined alcohol use immediately prior to intimate partner violence (IPV) have been limited to male-to-female partner violence (MFPV) and are subject to a number of methodological limitations. We add new information concerning the relationship between alcohol involvement and severity of IPV, MFPV, and female-to-male partner violence (FMPV). We analyzed data from a 1995 U.S. national population-based survey of couples > or = 18 years old. We examined 436 couples who reported IPV and had information on alcohol involvement with IPV. We measured IPV using a revised Conflict Tactics Scale, Form R that asked respondents about 11 violent behaviors in the past year. Respondents were classified into mutually exclusive categories as having experienced mild only or mild + severe ("severe") IPV, MFPV or FMPV. Respondents were also asked if they or their partner were drinking at the time the violent behavior occurred and were classified as exposed to IPV with or without alcohol involvement. We estimated proportions, odds ratios, 95% confidence intervals, and p-values of the proposed associations, accounting for the complex survey design. Overall, 30.2% of couples who reported IPV reported alcohol involved IPV; 69.8% reported no alcohol involvement. In adjusted analyses, those reporting severe (vs. mild only) IPV were more than twice as likely to report alcohol involvement. In adjusted analyses, those reporting severe (vs. mild) MFPV or FMPV were more likely to report female but not male alcohol involvement. Though estimates were positive and strong, most confidence intervals were compatible with a wide range of estimates including no association. Our findings suggest alcohol involvement of either or both in the couple increases the risk of severe IPV. Our findings also suggest female alcohol use may play an important role in determining the severity of IPV, MFPV or FMPV.

  4. Empirical and Theoretical Aspects of Generation and Transfer of Information in a Neuromagnetic Source Network

    PubMed Central

    Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal

    2011-01-01

    Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968

  5. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  6. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

    PubMed

    Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

    2016-04-01

    To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with <50% contact), "Very Good" (vessels with >50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

  7. Evaluation of an Automatic Registration-Based Algorithm for Direct Measurement of Volume Change in Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saradwata; Johnson, Timothy D.; Ma, Bing

    2012-07-01

    Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient's therapy and lead to shorter clinical trials. We investigated an image registration-based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. Themore » interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (-8.93% to 10.49%) for MI-based and (-7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor's normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over {+-}80% of reference tumor volume was (-3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.« less

  8. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction

    PubMed Central

    Gunasekara, Chathura; Zhang, Kui; Deng, Wenping; Brown, Laura

    2018-01-01

    Abstract Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks were calculated and ranked. We showed that the TFs with higher frequencies were usually genuine pathway regulators upon evaluating multiple pathways in plants, animals and yeast. Comparison of TGMI with several other algorithms demonstrated its higher accuracy. Therefore, TGMI will be a valuable tool that can help biologists to identify regulators of metabolic pathways and biological processes from the exploded high-throughput gene expression data in public repositories. PMID:29579312

  9. An Efficient Mutual Authentication Framework for Healthcare System in Cloud Computing.

    PubMed

    Kumar, Vinod; Jangirala, Srinivas; Ahmad, Musheer

    2018-06-28

    The increasing role of Telecare Medicine Information Systems (TMIS) makes its accessibility for patients to explore medical treatment, accumulate and approach medical data through internet connectivity. Security and privacy preservation is necessary for medical data of the patient in TMIS because of the very perceptive purpose. Recently, Mohit et al.'s proposed a mutual authentication protocol for TMIS in the cloud computing environment. In this work, we reviewed their protocol and found that it is not secure against stolen verifier attack, many logged in patient attack, patient anonymity, impersonation attack, and fails to protect session key. For enhancement of security level, we proposed a new mutual authentication protocol for the similar environment. The presented framework is also more capable in terms of computation cost. In addition, the security evaluation of the protocol protects resilience of all possible security attributes, and we also explored formal security evaluation based on random oracle model. The performance of the proposed protocol is much better in comparison to the existing protocol.

  10. An analysis of marketing authorisation applications via the mutual recognition and decentralised procedures in Europe.

    PubMed

    Ebbers, Hans C; Langedijk, Joris; Bouvy, Jacoline C; Hoekman, Jarno; Boon, Wouter P C; de Jong, Jean Philippe; De Bruin, Marie L

    2015-10-01

    The aim of this study is to provide a comprehensive overview of the outcomes of marketing authorisation applications via the mutual recognition and decentralised procedures (MRP/DCP) and assess determinants of licensing failure during CMDh referral procedures. All MRP/DCP procedures to the Co-ordination group for Mutual recognition and Decentralised procedures-human (CMDh) during the period from January 2006 to December 2013 were analysed. Reasons for starting referral procedures were scored. In addition, a survey under pharmaceutical companies was performed to estimate the frequency of licensing failure prior to CMDh referrals. During the study period, 10392 MRP/DCP procedures were finalized. Three hundred seventy-seven (3.6%) resulted in a referral procedure, of which 70 (19%) resulted in licensing failure, defined as refusal or withdrawal of the application. The frequency of CMDh referrals decreased from 14.5% in 2006 to 1.6% in 2013. Of all referrals, 272 (72%) were resolved through consensus within the CMDh, the remaining 105 (28%) were resolved at the level of the CHMP. Most referrals were started because of objections raised about the clinical development program. Study design issues and objections about the demonstration of equivalence were most likely to result in licensing failure. An estimated 11% of all MRP/DCP procedures resulted in licensing failure prior to CMDh referral. Whereas the absolute number of MRP/DCP procedures resulting in a referral has reduced substantially over the past years, no specific time trend could be observed regarding the frequency of referrals resulting in licensing failure. Increased knowledge at the level of companies and regulators has reduced the frequency of late-stage failure of marketing applications via the MRP/DCP.

  11. Novel multimodality segmentation using level sets and Jensen-Rényi divergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, Daniel, E-mail: daniel.markel@mail.mcgill.ca; Zaidi, Habib; Geneva Neuroscience Center, Geneva University, CH-1205 Geneva

    2013-12-15

    Purpose: Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. Methods: A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set activemore » contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. Results: The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with aR{sup 2} value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. Conclusions: The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.« less

  12. Novel multimodality segmentation using level sets and Jensen-Rényi divergence.

    PubMed

    Markel, Daniel; Zaidi, Habib; El Naqa, Issam

    2013-12-01

    Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set active contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with a R(2) value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.

  13. Cyber Mutual Assistance Workshop Report

    DTIC Science & Technology

    2018-02-01

    Assistance 6 2.3.3 Recommendations 7 2.4 Rules of Engagement for Operational Technology and Information Technology 7 2.5 What Are the Legal or...Can They Help? 15 2.9 Pre-Incident Preparation 16 2.10 What Are the Critical Assets? 18 2.11 Sources of Threat Information 19 2.12 Public Sector... Information Technology (IT) vs. Operations Technology (OT) [Harp 2017] • deployment scenarios including duration of use and transitions 1 Quoted on

  14. Attention and Trust Biases in the Design of Augmented Reality Displays

    DTIC Science & Technology

    2000-04-01

    storage, selective attention , and their mutual constraints within the human information processing system. Psychological Bulletin, 104(2), 163-191...the pilots’ attention at the cost of processing other information in the far domain beyond the symbology, i.e., attentional tunneling (Fadden et al...need to select between two sources of information, attention is allocated to the one which facilitates the user’s task. When only a single source of

  15. Interactions of the NAEG information support project with other projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfuderer, H.A.

    In the past year the Information Support Project to the Nevada Applied Ecology Group has interacted with many other research projects on the transuranics and other radionuclides. Group interactions through symposiums, workshops, and responding to search requests have proven to be mutually beneficial. The NAEG Information Support Project will draw on the information resources of the Oak Ridge National Laboratory to produce a bibliography of the radionuclides (other than the transuranics) of interest to the Nevada Test Site. (auth)

  16. Shannon: Theory and cryptography

    NASA Astrophysics Data System (ADS)

    Roefs, H. F. A.

    1982-11-01

    The ideas of Shannon as a theoretical basis for cryptography are discussed. The notion of mutual information is introduced to provide a deeper understanding of the functioning of cryptographic systems. Shannon's absolute secure cryptosystem and his notion of unicity distance are explained.

  17. Structures and Dynamics Division research and technology plans, fiscal year, 1981

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1981-01-01

    The objectives, expected results, approach, and FY 81 milestones for the Structures and Dynamics Division's research program are presented. This information will be useful in program coordination with other government organizations in areas of mutual interest.

  18. Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis

    PubMed Central

    Miotto, Olivo; Heiny, AT; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir

    2008-01-01

    Background The identification of mutations that confer unique properties to a pathogen, such as host range, is of fundamental importance in the fight against disease. This paper describes a novel method for identifying amino acid sites that distinguish specific sets of protein sequences, by comparative analysis of matched alignments. The use of mutual information to identify distinctive residues responsible for functional variants makes this approach highly suitable for analyzing large sets of sequences. To support mutual information analysis, we developed the AVANA software, which utilizes sequence annotations to select sets for comparison, according to user-specified criteria. The method presented was applied to an analysis of influenza A PB2 protein sequences, with the objective of identifying the components of adaptation to human-to-human transmission, and reconstructing the mutation history of these components. Results We compared over 3,000 PB2 protein sequences of human-transmissible and avian isolates, to produce a catalogue of sites involved in adaptation to human-to-human transmission. This analysis identified 17 characteristic sites, five of which have been present in human-transmissible strains since the 1918 Spanish flu pandemic. Sixteen of these sites are located in functional domains, suggesting they may play functional roles in host-range specificity. The catalogue of characteristic sites was used to derive sequence signatures from historical isolates. These signatures, arranged in chronological order, reveal an evolutionary timeline for the adaptation of the PB2 protein to human hosts. Conclusion By providing the most complete elucidation to date of the functional components participating in PB2 protein adaptation to humans, this study demonstrates that mutual information is a powerful tool for comparative characterization of sequence sets. In addition to confirming previously reported findings, several novel characteristic sites within PB2 are reported. Sequence signatures generated using the characteristic sites catalogue characterize concisely the adaptation characteristics of individual isolates. Evolutionary timelines derived from signatures of early human influenza isolates suggest that characteristic variants emerged rapidly, and remained remarkably stable through subsequent pandemics. In addition, the signatures of human-infecting H5N1 isolates suggest that this avian subtype has low pandemic potential at present, although it presents more human adaptation components than most avian subtypes. PMID:18315849

  19. The Chaos of Katrina

    DTIC Science & Technology

    2007-03-01

    partners for their mutual benefit. Unfortunately, based on government reports, FEMA did not have adequate control of its supply chain information ...is one attractor . “Edge of chaos” systems have two to eight attractors and in chaotic systems many attractors . Some are called strange attractors ...investigates whether chaos theory, part of complexity science, can extract information from Katrina contracting data to help managers make better logistics

  20. Direction of coupling from phases of interacting oscillators: An information-theoretic approach

    NASA Astrophysics Data System (ADS)

    Paluš, Milan; Stefanovska, Aneta

    2003-05-01

    A directionality index based on conditional mutual information is proposed for application to the instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.

  1. US Army War College Information Operations Primer

    DTIC Science & Technology

    2009-11-01

    understand, inform, and influence foreign audiences and opinion makers, and by broadening the dialogue between American citizens and institutions...Its focus was the domestic audience and it used public speakers, advertising, pamphlets, periodicals, and the burgeoning American motion picture...with a mission to "promote a better understanding of the United States in other countries, and to increase mutual understanding" between Americans

  2. 20 CFR 660.300 - What definitions apply to the regulations for workforce investment systems under title I of WIA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or more organized labor unions for the purpose of mutual support and action. Literacy means an... information to determine an individual's eligibility for services under WIA title I. Individuals may be... the information he/she submits to demonstrate eligibility for a program under title I of WIA is true...

  3. Detection of correlated fragments in a sequence of images by superimposed Fourier holograms

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-08-01

    The problem of detecting correlated fragments in a sequence of images recorded by the superimposing holograms within the Fourier holography scheme with angular multiplication of a spatially modulated reference beam is considered. The approach to the solution of this problem is based on the properties of the variance of the image sum. It is shown that this problem can be solved by providing a constant distance between the signal and reference images when recording superimposed holograms and a partial mutual correlatedness of reference images. The detection efficiency is analysed from the point of view of estimated image data capacity, the degree of mutual correlation of reference images, and the hologram recording conditions. The results of a numerical experiment under the most complicated conditions (representation of images by realisations of homogeneous random fields) confirm the theoretical conclusions.

  4. The Structure of Scientific Evolution

    PubMed Central

    2013-01-01

    Science is the construction and testing of systems that bind symbols to sensations according to rules. Material implication is the primary rule, providing the structure of definition, elaboration, delimitation, prediction, explanation, and control. The goal of science is not to secure truth, which is a binary function of accuracy, but rather to increase the information about data communicated by theory. This process is symmetric and thus entails an increase in the information about theory communicated by data. Important components in this communication are the elevation of data to the status of facts, the descent of models under the guidance of theory, and their close alignment through the evolving retroductive process. The information mutual to theory and data may be measured as the reduction in the entropy, or complexity, of the field of data given the model. It may also be measured as the reduction in the entropy of the field of models given the data. This symmetry explains the important status of parsimony (how thoroughly the data exploit what the model can say) alongside accuracy (how thoroughly the model represents what can be said about the data). Mutual information is increased by increasing model accuracy and parsimony, and by enlarging and refining the data field under purview. PMID:28018043

  5. Replica symmetric evaluation of the information transfer in a two-layer network in the presence of continuous and discrete stimuli.

    PubMed

    Del Prete, Valeria; Treves, Alessandro

    2002-04-01

    In a previous paper we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous and discrete correlates. The mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a method that, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.

  6. A weighted exact test for mutually exclusive mutations in cancer

    PubMed Central

    Leiserson, Mark D.M.; Reyna, Matthew A.; Raphael, Benjamin J.

    2016-01-01

    Motivation: The somatic mutations in the pathways that drive cancer development tend to be mutually exclusive across tumors, providing a signal for distinguishing driver mutations from a larger number of random passenger mutations. This mutual exclusivity signal can be confounded by high and highly variable mutation rates across a cohort of samples. Current statistical tests for exclusivity that incorporate both per-gene and per-sample mutational frequencies are computationally expensive and have limited precision. Results: We formulate a weighted exact test for assessing the significance of mutual exclusivity in an arbitrary number of mutational events. Our test conditions on the number of samples with a mutation as well as per-event, per-sample mutation probabilities. We provide a recursive formula to compute P-values for the weighted test exactly as well as a highly accurate and efficient saddlepoint approximation of the test. We use our test to approximate a commonly used permutation test for exclusivity that conditions on per-event, per-sample mutation frequencies. However, our test is more efficient and it recovers more significant results than the permutation test. We use our Weighted Exclusivity Test (WExT) software to analyze hundreds of colorectal and endometrial samples from The Cancer Genome Atlas, which are two cancer types that often have extremely high mutation rates. On both cancer types, the weighted test identifies sets of mutually exclusive mutations in cancer genes with fewer false positives than earlier approaches. Availability and Implementation: See http://compbio.cs.brown.edu/projects/wext for software. Contact: braphael@cs.brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587696

  7. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    NASA Astrophysics Data System (ADS)

    Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina

    2016-02-01

    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver.

  8. The ARAC-RODOS-WSPEEDI Information Exchange Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T J

    1999-09-01

    Under the auspices of a US DOE-JAPAN Memorandum of Understanding JAERI and LLNL agreed to develop and evaluate a prototype information exchange protocol for nuclear accident emergency situations. This project received some interest from the US DOS and FEMA as it fits nicely under the umbrella of the G-7's GEMINI (Global Emergency Management Information Network Initiative) project. Because of LLNL/ARAC and JAERV WSPEEDI interest in nuclear accident consequence assessment and hazard prediction on all scales, to include global, we were happy to participate. Subsequent to the Spring 1997 RODOS-ARAC Workshop a Memorandum of Agreement was developed to enhance mutual collaborationmore » on matters of emergency systems development. In the summer of 1998 the project leaders of RODOS, WSPEEDI and ARAC met at FZK and agreed to join in a triangular collaboration on the development and demonstration of an emergency information exchange protocol. JAERI and FZK are engaged in developing a formal cooperation agreement. The purpose of this project is to evaluate the prototype information protocol application for technical feasibility and mutual benefit through simulated (real) event; quick exchange of atmospheric modeling products and environmental data during emergencies, distribution of predicted results to other countries having no prediction capabilities, and utilization of the link for collaborative studies.« less

  9. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    PubMed Central

    Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina

    2016-01-01

    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver. PMID:26864633

  10. Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel—Ziv complexity

    NASA Astrophysics Data System (ADS)

    Luo, Xi-Liu; Wang, Jiang; Han, Chun-Xiao; Deng, Bin; Wei, Xi-Le; Bian, Hong-Rui

    2012-02-01

    As a convenient approach to the characterization of cerebral cortex electrical information, electroencephalograph (EEG) has potential clinical application in monitoring the acupuncture effects. In this paper, a method composed of the mutual information method and Lempel—Ziv complexity method (MILZC) is proposed to investigate the effects of acupuncture on the complexity of information exchanges between different brain regions based on EEGs. In the experiments, eight subjects are manually acupunctured at ‘Zusanli’ acupuncture point (ST-36) with different frequencies (i.e., 50, 100, 150, and 200 times/min) and the EEGs are recorded simultaneously. First, MILZC values are compared in general. Then average brain connections are used to quantify the effectiveness of acupuncture under the above four frequencies. Finally, significance index P values are used to study the spatiality of the acupuncture effect on the brain. Three main findings are obtained: (i) MILZC values increase during the acupuncture; (ii) manual acupunctures (MAs) with 100 times/min and 150 times/min are more effective than with 50 times/min and 200 times/min; (iii) contralateral hemisphere activation is more prominent than ipsilateral hemisphere's. All these findings suggest that acupuncture contributes to the increase of brain information exchange complexity and the MILZC method can successfully describe these changes.

  11. Predicting protein contact map using evolutionary and physical constraints by integer programming.

    PubMed

    Wang, Zhiyong; Xu, Jinbo

    2013-07-01

    Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.

  12. A Semi-Supervised Learning Algorithm for Predicting Four Types MiRNA-Disease Associations by Mutual Information in a Heterogeneous Network.

    PubMed

    Zhang, Xiaotian; Yin, Jian; Zhang, Xu

    2018-03-02

    Increasing evidence suggests that dysregulation of microRNAs (miRNAs) may lead to a variety of diseases. Therefore, identifying disease-related miRNAs is a crucial problem. Currently, many computational approaches have been proposed to predict binary miRNA-disease associations. In this study, in order to predict underlying miRNA-disease association types, a semi-supervised model called the network-based label propagation algorithm is proposed to infer multiple types of miRNA-disease associations (NLPMMDA) by mutual information derived from the heterogeneous network. The NLPMMDA method integrates disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity information of miRNAs and diseases to construct a heterogeneous network. NLPMMDA is a semi-supervised model which does not require verified negative samples. Leave-one-out cross validation (LOOCV) was implemented for four known types of miRNA-disease associations and demonstrated the reliable performance of our method. Moreover, case studies of lung cancer and breast cancer confirmed effective performance of NLPMMDA to predict novel miRNA-disease associations and their association types.

  13. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  14. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 8 2012-04-01 2012-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  15. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  16. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  17. Response of selected binomial coefficients to varying degrees of matrix sparseness and to matrices with known data interrelationships

    USGS Publications Warehouse

    Archer, A.W.; Maples, C.G.

    1989-01-01

    Numerous departures from ideal relationships are revealed by Monte Carlo simulations of widely accepted binomial coefficients. For example, simulations incorporating varying levels of matrix sparseness (presence of zeros indicating lack of data) and computation of expected values reveal that not only are all common coefficients influenced by zero data, but also that some coefficients do not discriminate between sparse or dense matrices (few zero data). Such coefficients computationally merge mutually shared and mutually absent information and do not exploit all the information incorporated within the standard 2 ?? 2 contingency table; therefore, the commonly used formulae for such coefficients are more complicated than the actual range of values produced. Other coefficients do differentiate between mutual presences and absences; however, a number of these coefficients do not demonstrate a linear relationship to matrix sparseness. Finally, simulations using nonrandom matrices with known degrees of row-by-row similarities signify that several coefficients either do not display a reasonable range of values or are nonlinear with respect to known relationships within the data. Analyses with nonrandom matrices yield clues as to the utility of certain coefficients for specific applications. For example, coefficients such as Jaccard, Dice, and Baroni-Urbani and Buser are useful if correction of sparseness is desired, whereas the Russell-Rao coefficient is useful when sparseness correction is not desired. ?? 1989 International Association for Mathematical Geology.

  18. Psychophysically determined forces of dynamic pushing for female industrial workers: Comparison of two apparatuses.

    PubMed

    Ciriello, Vincent M; Maikala, Rammohan V; Dempsey, Patrick G; O'Brien, Niall V

    2010-01-01

    Using psychophysics, the maximum acceptable forces for pushing have been previously developed using a magnetic particle brake (MPB) treadmill at the Liberty Mutual Research Institute for Safety. The objective of this study was to investigate the reproducibility of maximum acceptable initial and sustained forces while performing a pushing task at a frequency of 1min(-1) both on a MPB treadmill and on a high-inertia pushcart. This is important because our pushing guidelines are used extensively as a ergonomic redesign strategy and we would like the information to be as applicable as possible to cart pushing. On two separate days, nineteen female industrial workers performed a 40-min MPB treadmill pushing task and a 2-hr pushcart task, in the context of a larger experiment. During pushing, the subjects were asked to select a workload they could sustain for 8h without "straining themselves or without becoming unusually tired, weakened, overheated or out of breath." The results demonstrated that maximum acceptable initial and sustained forces of pushing determined on the high inertia pushcart were 0.8% and 2.5% lower than the MPB treadmill. The results also show that the maximum acceptable sustained force of the MPB treadmill task was 0.5% higher than the maximum acceptable sustained force of Snook and Ciriello (1991). Overall, the findings confirm that the existing pushing data developed by the Liberty Mutual Research Institute for Safety still provides an accurate estimate of maximal acceptable forces for the selected combination of distance and frequency of push for female industrial workers.

  19. Financial viability of district mutual health insurance schemes of lawra and sissala East districts, upper west region, ghana.

    PubMed

    Yevutsey, S K; Aikins, M

    2010-12-01

    The National Health Insurance Act, passed in 2003 mandates the National Health Insurance Authority to, in conjunction with the district assemblies establish district mutual health insurance scheme (DMHIS) governed by semi-autonomous boards in all ten regions. Since its implementation, unsubstantiated reports indicate increasing health care and administrative costs of the various DMHIS across the country without any corresponding increase in the premium level. We sought to assess the financial viability of the DMHIS in Lawra (LDMHIS) and Sissala East (SEDMHIS) districts, Upper West Region of Ghana. Cost analysis of revenue and expenditure of LDMHIS and SEDMHIS from 2004 to 2007 was used to estimate the revenue, expenditure, administrative cost, expense, claims and combined ratios. The scheme's major sources of revenue were funds from NHIA on behalf of exempted group and the formal sector employees and premium collected from the informal sector. Other sources of revenue were significant at the beginning and became almost negligible at the end of 2007. At the end of 2005, administrative cost was higher than medical claims. By the end of 2007, it has reduced to 34.3% and 15.7% of the total expenditure of the SEDMHIS and LDMHIS respectively. The combined ratios decreased from 2.27 and 1.17 in 2005 to 0.74 and 0.95 in 2007 for SEDMHIS and LDMHIS respectively. Continuous NHIA support, increasing coverage of the scheme and a corresponding reduction in administrative cost would increase revenue. If this is sustained, the schemes could be financially viable in the long term.

  20. Figs, pollinators, and parasites: A longitudinal study of the effects of nematode infection on fig wasp fitness

    NASA Astrophysics Data System (ADS)

    Van Goor, Justin; Piatscheck, Finn; Houston, Derek D.; Nason, John D.

    2018-07-01

    Mutualisms are interactions between two species in which the fitnesses of both symbionts benefit from the relationship. Although examples of mutualism are ubiquitous in nature, the ecology, evolution, and stability of mutualism has rarely been studied in the broader, multi-species community context in which they occur. The pollination mutualism between figs and fig wasps provides an excellent model system for investigating interactions between obligate mutualists and antagonists. Compared to the community of non-pollinating fig wasps that develop within fig inflorescences at the expense of fig seeds and pollinators, consequences of interactions between female pollinating wasps and their host-specialist nematode parasites is much less well understood. Here we focus on a tri-partite system comprised of a fig (Ficus petiolaris), pollinating wasp (Pegoscapus sp.), and nematode (Parasitodiplogaster sp.), investigating geographical variation in the incidence of attack and mechanisms through which nematodes may limit the fitness of their wasp hosts at successive life history stages. Observational data reveals that nematodes are ubiquitous across their host range in Baja California, Mexico; that the incidence of nematode infection varies across seasons within- and between locations, and that infected pollinators are sometimes associated with fitness declines through reduced offspring production. We find that moderate levels of infection (1-9 juvenile nematodes per host) are well tolerated by pollinator wasps whereas higher infection levels (≥10 nematodes per host) are correlated with a significant reduction in wasp lifespan and dispersal success. This overexploitation, however, is estimated to occur in only 2.8% of wasps in each generation. The result that nematode infection appears to be largely benign - and the unexpected finding that nematodes frequently infect non-pollinating wasps - highlight gaps in our knowledge of pollinator-Parasitodiplogaster interactions and suggest previously unappreciated ways in which this nematode may influence fig and pollinator fitness, mutualism persistence, and non-pollinator community dynamics.

Top