Predicting the evolution of complex networks via similarity dynamics
NASA Astrophysics Data System (ADS)
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-01-01
Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.
To trade or not to trade: Link prediction in the virtual water network
NASA Astrophysics Data System (ADS)
Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2017-12-01
In the international trade network, links express the (temporary) presence of a commercial exchange of goods between any two countries. Given the dynamical behaviour of the trade network, where links are created and dismissed every year, predicting the link activation/deactivation is an open research question. Through the international trade network of agricultural goods, water resources are 'virtually' transferred from the country of production to the country of consumption. We propose a novel methodology for link prediction applied to the network of virtual water trade. Starting from the assumption of having links between any two countries, we estimate the associated virtual water flows by means of a gravity-law model using country and link characteristics as drivers. We consider the links with estimated flows higher than 1000 m3/year as active links, while the others as non-active links. Flows traded along estimated active links are then re-estimated using a similar but differently-calibrated gravity-law model. We were able to correctly model 84% of the existing links and 93% of the non-existing links in year 2011. It is worth to note that the predicted active links carry 99% of the global virtual water flow; hence, missed links are mainly those where a minimum volume of virtual water is exchanged. Results indicate that, over the period from 1986 to 2011, population, geographical distances between countries, and agricultural efficiency (through fertilizers use) are the major factors driving the link activation and deactivation. As opposed to other (network-based) models for link prediction, the proposed method is able to reconstruct the network architecture without any prior knowledge of the network topology, using only the nodes and links attributes; it thus represents a general method that can be applied to other networks such as food or value trade networks.
Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor
2014-01-01
Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277
LESS: Link Estimation with Sparse Sampling in Intertidal WSNs
Ji, Xiaoyu; Chen, Yi-chao; Li, Xiaopeng; Xu, Wenyuan
2018-01-01
Deploying wireless sensor networks (WSN) in the intertidal area is an effective approach for environmental monitoring. To sustain reliable data delivery in such a dynamic environment, a link quality estimation mechanism is crucial. However, our observations in two real WSN systems deployed in the intertidal areas reveal that link update in routing protocols often suffers from energy and bandwidth waste due to the frequent link quality measurement and updates. In this paper, we carefully investigate the network dynamics using real-world sensor network data and find it feasible to achieve accurate estimation of link quality using sparse sampling. We design and implement a compressive-sensing-based link quality estimation protocol, LESS, which incorporates both spatial and temporal characteristics of the system to aid the link update in routing protocols. We evaluate LESS in both real WSN systems and a large-scale simulation, and the results show that LESS can reduce energy and bandwidth consumption by up to 50% while still achieving more than 90% link quality estimation accuracy. PMID:29494557
Toward link predictability of complex networks
Lü, Linyuan; Pan, Liming; Zhou, Tao; Zhang, Yi-Cheng; Stanley, H. Eugene
2015-01-01
The organization of real networks usually embodies both regularities and irregularities, and, in principle, the former can be modeled. The extent to which the formation of a network can be explained coincides with our ability to predict missing links. To understand network organization, we should be able to estimate link predictability. We assume that the regularity of a network is reflected in the consistency of structural features before and after a random removal of a small set of links. Based on the perturbation of the adjacency matrix, we propose a universal structural consistency index that is free of prior knowledge of network organization. Extensive experiments on disparate real-world networks demonstrate that (i) structural consistency is a good estimation of link predictability and (ii) a derivative algorithm outperforms state-of-the-art link prediction methods in both accuracy and robustness. This analysis has further applications in evaluating link prediction algorithms and monitoring sudden changes in evolving network mechanisms. It will provide unique fundamental insights into the above-mentioned academic research fields, and will foster the development of advanced information filtering technologies of interest to information technology practitioners. PMID:25659742
A new similarity measure for link prediction based on local structures in social networks
NASA Astrophysics Data System (ADS)
Aghabozorgi, Farshad; Khayyambashi, Mohammad Reza
2018-07-01
Link prediction is a fundamental problem in social network analysis. There exist a variety of techniques for link prediction which applies the similarity measures to estimate proximity of vertices in the network. Complex networks like social networks contain structural units named network motifs. In this study, a newly developed similarity measure is proposed where these structural units are applied as the source of similarity estimation. This similarity measure is tested through a supervised learning experiment framework, where other similarity measures are compared with this similarity measure. The classification model trained with this similarity measure outperforms others of its kind.
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks
Lam, William H. K.; Li, Qingquan
2017-01-01
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.
Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan
2017-12-06
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.
NASA Astrophysics Data System (ADS)
McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.
NASA Astrophysics Data System (ADS)
Vadivel, R.; Bhaskaran, V. Murali
2010-10-01
The main reason for packet loss in ad hoc networks is the link failure or node failure. In order to increase the path stability, it is essential to distinguish and moderate the failures. By knowing individual link stability along a path, path stability can be identified. In this paper, we develop an adaptive reliable routing protocol using combined link stability estimation for mobile ad hoc networks. The main objective of this protocol is to determine a Quality of Service (QoS) path along with prolonging the network life time and to reduce the packet loss. We calculate a combined metric for a path based on the parameters Link Expiration Time, Node Remaining Energy and Node Velocity and received signal strength to predict the link stability or lifetime. Then, a bypass route is established to retransmit the lost data, when a link failure occurs. By simulation results, we show that the proposed reliable routing protocol achieves high delivery ratio with reduced delay and packet drop.
NASA Astrophysics Data System (ADS)
Scholz, Jan; Dejori, Mathäus; Stetter, Martin; Greiner, Martin
2005-05-01
The impact of observational noise on the analysis of scale-free networks is studied. Various noise sources are modeled as random link removal, random link exchange and random link addition. Emphasis is on the resulting modifications for the node-degree distribution and for a functional ranking based on betweenness centrality. The implications for estimated gene-expressed networks for childhood acute lymphoblastic leukemia are discussed.
NASA Astrophysics Data System (ADS)
Fuchs, Christian; Poulenard, Sylvain; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep
2017-02-01
Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented.
Estimating topological properties of weighted networks from limited information
NASA Astrophysics Data System (ADS)
Gabrielli, Andrea; Cimini, Giulio; Garlaschelli, Diego; Squartini, Angelo
A typical problem met when studying complex systems is the limited information available on their topology, which hinders our understanding of their structural and dynamical properties. A paramount example is provided by financial networks, whose data are privacy protected. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here we develop a reconstruction method, based on statistical mechanics concepts, that exploits the empirical link density in a highly non-trivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems. Acknoweledgement to ``Growthcom'' ICT - EC project (Grant No: 611272) and ``Crisislab'' Italian Project.
Correlations between Community Structure and Link Formation in Complex Networks
Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep
2013-01-01
Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818
Link prediction with node clustering coefficient
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Lin, Youfang; Wang, Jing; Gregory, Steve
2016-06-01
Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai-Alanis-Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.
Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks
Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.
2017-02-01
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less
Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less
Potential of commercial microwave link network derived rainfall for river runoff simulations
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald
2017-03-01
Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.
Estimating topological properties of weighted networks from limited information.
Cimini, Giulio; Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego
2015-10-01
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
Estimating topological properties of weighted networks from limited information
NASA Astrophysics Data System (ADS)
Cimini, Giulio; Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego
2015-10-01
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
Dombrowski, Kirk; Khan, Bilal; Wendel, Travis; McLean, Katherine; Misshula, Evan; Curtis, Ric
2012-12-01
As part of a recent study of the dynamics of the retail market for methamphetamine use in New York City, we used network sampling methods to estimate the size of the total networked population. This process involved sampling from respondents' list of co-use contacts, which in turn became the basis for capture-recapture estimation. Recapture sampling was based on links to other respondents derived from demographic and "telefunken" matching procedures-the latter being an anonymized version of telephone number matching. This paper describes the matching process used to discover the links between the solicited contacts and project respondents, the capture-recapture calculation, the estimation of "false matches", and the development of confidence intervals for the final population estimates. A final population of 12,229 was estimated, with a range of 8235 - 23,750. The techniques described here have the special virtue of deriving an estimate for a hidden population while retaining respondent anonymity and the anonymity of network alters, but likely require larger sample size than the 132 persons interviewed to attain acceptable confidence levels for the estimate.
Rainfall estimation from microwave links in São Paulo, Brazil.
NASA Astrophysics Data System (ADS)
Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko
2017-04-01
Rainfall estimation from microwave link networks has been successfully demonstrated in countries such as the Netherlands, Israel and Germany. The path-averaged rainfall intensity can be computed from the signal attenuation between cell phone towers. Although this technique is still in development, it offers great opportunities to retrieve rainfall rates at high spatiotemporal resolutions very close to the ground surface. High spatiotemporal resolutions and closer-to-ground measurements are highly appreciated, especially in urban catchments where high-impact events such as flash-floods develop in short time scales. We evaluate here this rainfall measurement technique for a tropical climate, something that has hardly been done previously. This is highly relevant since many countries with few surface rainfall observations are located in the tropics. The test-bed is the Brazilian city of São Paulo. The performance of 16 microwave links was evaluated, from a network of 200 links, for the last 3 months of 2014. The open software package RAINLINK was employed to obtain link rainfall estimates. The evaluation was done through a dense automatic gauge network. Results are promising and encouraging, especially for short links for which a high correlation (> 0.9) and a low bias (< 5%) were obtained.
A comprehensive comparison of network similarities for link prediction and spurious link elimination
NASA Astrophysics Data System (ADS)
Zhang, Peng; Qiu, Dan; Zeng, An; Xiao, Jinghua
2018-06-01
Identifying missing interactions in complex networks, known as link prediction, is realized by estimating the likelihood of the existence of a link between two nodes according to the observed links and nodes' attributes. Similar approaches have also been employed to identify and remove spurious links in networks which is crucial for improving the reliability of network data. In network science, the likelihood for two nodes having a connection strongly depends on their structural similarity. The key to address these two problems thus becomes how to objectively measure the similarity between nodes in networks. In the literature, numerous network similarity metrics have been proposed and their accuracy has been discussed independently in previous works. In this paper, we systematically compare the accuracy of 18 similarity metrics in both link prediction and spurious link elimination when the observed networks are very sparse or consist of inaccurate linking information. Interestingly, some methods have high prediction accuracy, they tend to perform low accuracy in identification spurious interaction. We further find that methods can be classified into several cluster according to their behaviors. This work is useful for guiding future use of these similarity metrics for different purposes.
Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Jennings, Esther
2013-01-01
In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.
Link prediction measures considering different neighbors’ effects and application in social networks
NASA Astrophysics Data System (ADS)
Luo, Peng; Wu, Chong; Li, Yongli
Link prediction measures have been attracted particular attention in the field of mathematical physics. In this paper, we consider the different effects of neighbors in link prediction and focus on four different situations: only consider the individual’s own effects; consider the effects of individual, neighbors and neighbors’ neighbors; consider the effects of individual, neighbors, neighbors’ neighbors, neighbors’ neighbors’ neighbors and neighbors’ neighbors’ neighbors’ neighbors; consider the whole network participants’ effects. Then, according to the four situations, we present our link prediction models which also take the effects of social characteristics into consideration. An artificial network is adopted to illustrate the parameter estimation based on logistic regression. Furthermore, we compare our methods with the some other link prediction methods (LPMs) to examine the validity of our proposed model in online social networks. The results show the superior of our proposed link prediction methods compared with others. In the application part, our models are applied to study the social network evolution and used to recommend friends and cooperators in social networks.
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai
2016-01-01
This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209
Link Prediction in Evolving Networks Based on Popularity of Nodes.
Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian
2017-08-02
Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.
Staggered scheduling of sensor estimation and fusion for tracking over long-haul links
Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin
2016-08-01
Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimalmore » tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.« less
Predicting missing links via correlation between nodes
NASA Astrophysics Data System (ADS)
Liao, Hao; Zeng, An; Zhang, Yi-Cheng
2015-10-01
As a fundamental problem in many different fields, link prediction aims to estimate the likelihood of an existing link between two nodes based on the observed information. Since this problem is related to many applications ranging from uncovering missing data to predicting the evolution of networks, link prediction has been intensively investigated recently and many methods have been proposed so far. The essential challenge of link prediction is to estimate the similarity between nodes. Most of the existing methods are based on the common neighbor index and its variants. In this paper, we propose to calculate the similarity between nodes by the Pearson correlation coefficient. This method is found to be very effective when applied to calculate similarity based on high order paths. We finally fuse the correlation-based method with the resource allocation method, and find that the combined method can substantially outperform the existing methods, especially in sparse networks.
Scaling of global input-output networks
NASA Astrophysics Data System (ADS)
Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming
2016-06-01
Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.
An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance
Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun
2015-01-01
Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314
Link prediction based on local weighted paths for complex networks
NASA Astrophysics Data System (ADS)
Yao, Yabing; Zhang, Ruisheng; Yang, Fan; Yuan, Yongna; Hu, Rongjing; Zhao, Zhili
As a significant problem in complex networks, link prediction aims to find the missing and future links between two unconnected nodes by estimating the existence likelihood of potential links. It plays an important role in understanding the evolution mechanism of networks and has broad applications in practice. In order to improve prediction performance, a variety of structural similarity-based methods that rely on different topological features have been put forward. As one topological feature, the path information between node pairs is utilized to calculate the node similarity. However, many path-dependent methods neglect the different contributions of paths for a pair of nodes. In this paper, a local weighted path (LWP) index is proposed to differentiate the contributions between paths. The LWP index considers the effect of the link degrees of intermediate links and the connectivity influence of intermediate nodes on paths to quantify the path weight in the prediction procedure. The experimental results on 12 real-world networks show that the LWP index outperforms other seven prediction baselines.
Locating inefficient links in a large-scale transportation network
NASA Astrophysics Data System (ADS)
Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu
2015-02-01
Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T < 0 or Δ T > 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.
Experimental FSO network availability estimation using interactive fog condition monitoring
NASA Astrophysics Data System (ADS)
Turán, Ján.; Ovseník, Łuboš
2016-12-01
Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based on FSO link data the FSO link and experimental FSO network availability was estimated for years from 2007 up to 2015. The average FSO network availability up to 98,3378 % was measured (for the BER 10-9). From the experimental data also Hybrid RF/FSO link availability was evaluated. As the weather conditions for FSO and RF link are complementary (FSO works well in rain and RF works well in fog) Hybrid FSO/RF system long time average availability was much better up to 99,9986 %.
Information-geometric measures as robust estimators of connection strengths and external inputs.
Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi
2009-08-01
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.
Link performance model for filter bank based multicarrier systems
NASA Astrophysics Data System (ADS)
Petrov, Dmitry; Oborina, Alexandra; Giupponi, Lorenza; Stitz, Tobias Hidalgo
2014-12-01
This paper presents a complete link level abstraction model for link quality estimation on the system level of filter bank multicarrier (FBMC)-based networks. The application of mean mutual information per coded bit (MMIB) approach is validated for the FBMC systems. The considered quality measure of the resource element for the FBMC transmission is the received signal-to-noise-plus-distortion ratio (SNDR). Simulation results of the proposed link abstraction model show that the proposed approach is capable of estimating the block error rate (BLER) accurately, even when the signal is propagated through the channels with deep and frequent fades, as it is the case for the 3GPP Hilly Terrain (3GPP-HT) and Enhanced Typical Urban (ETU) models. The FBMC-related results of link level simulations are compared with cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) analogs. Simulation results are also validated through the comparison to reference publicly available results. Finally, the steps of link level abstraction algorithm for FBMC are formulated and its application for system level simulation of a professional mobile radio (PMR) network is discussed.
Earth-Space Link Attenuation Estimation via Ground Radar Kdp
NASA Technical Reports Server (NTRS)
Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.
2003-01-01
A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.
NASA Astrophysics Data System (ADS)
Mushkin, I.; Solomon, S.
2017-10-01
We study the inverse contagion problem (ICP). As opposed to the direct contagion problem, in which the network structure is known and the question is when each node will be contaminated, in the inverse problem the links of the network are unknown but a sequence of contagion histories (the times when each node was contaminated) is observed. We consider two versions of the ICP: The strong problem (SICP), which is the reconstruction of the network and has been studied before, and the weak problem (WICP), which requires "only" the prediction (at each time step) of the nodes that will be contaminated at the next time step (this is often the real life situation in which a contagion is observed and predictions are made in real time). Moreover, our focus is on analyzing the increasing accuracy of the solution, as a function of the number of contagion histories already observed. For simplicity, we discuss the simplest (deterministic and synchronous) contagion dynamics and the simplest solution algorithm, which we have applied to different network types. The main result of this paper is that the complex problem of the convergence of the ICP for a network can be reduced to an individual property of pairs of nodes: the "false link difficulty". By definition, given a pair of unlinked nodes i and j, the difficulty of the false link (i,j) is the probability that in a random contagion history, the nodes i and j are not contaminated at the same time step (or at consecutive time steps). In other words, the "false link difficulty" of a non-existing network link is the probability that the observations during a random contagion history would not rule out that link. This probability is relatively straightforward to calculate, and in most instances relies only on the relative positions of the two nodes (i,j) and not on the entire network structure. We have observed the distribution of false link difficulty for various network types, estimated it theoretically and confronted it (successfully) with the numerical simulations. Based on it, we estimated analytically the convergence of the ICP solution (as a function of the number of contagion histories observed), and found it to be in perfect agreement with simulation results. Finally, the most important insight we obtained is that SICP and WICP are have quite different properties: if one in interested only in the operational aspect of predicting how contagion will spread, the links which are most difficult to decide about are the least influential on contagion dynamics. In other words, the parts of the network which are harder to reconstruct are also least important for predicting the contagion dynamics, up to the point where a (large) constant number of false links in the network (i.e. non-convergence of the network reconstruction procedure) implies a zero rate of the node contagion prediction errors (perfect convergence of the WICP). Thus, the contagion prediction problem (WICP) difficulty is very different from the network reconstruction problem (SICP), in as far as links which are difficult to reconstruct are quite harmless in terms of contagion prediction capability (WICP).
Hydrophobic-Interaction-Induced Stiffening of α -Synuclein Fibril Networks
NASA Astrophysics Data System (ADS)
Semerdzhiev, Slav A.; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M. A. E.
2018-05-01
In water, networks of semiflexible fibrils of the protein α -synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.
Hydrophobic-Interaction-Induced Stiffening of α-Synuclein Fibril Networks.
Semerdzhiev, Slav A; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M A E
2018-05-18
In water, networks of semiflexible fibrils of the protein α-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.
A group evolving-based framework with perturbations for link prediction
NASA Astrophysics Data System (ADS)
Si, Cuiqi; Jiao, Licheng; Wu, Jianshe; Zhao, Jin
2017-06-01
Link prediction is a ubiquitous application in many fields which uses partially observed information to predict absence or presence of links between node pairs. The group evolving study provides reasonable explanations on the behaviors of nodes, relations between nodes and community formation in a network. Possible events in group evolution include continuing, growing, splitting, forming and so on. The changes discovered in networks are to some extent the result of these events. In this work, we present a group evolving-based characterization of node's behavioral patterns, and via which we can estimate the probability they tend to interact. In general, the primary aim of this paper is to offer a minimal toy model to detect missing links based on evolution of groups and give a simpler explanation on the rationality of the model. We first introduce perturbations into networks to obtain stable cluster structures, and the stable clusters determine the stability of each node. Then fluctuations, another node behavior, are assumed by the participation of each node to its own belonging group. Finally, we demonstrate that such characteristics allow us to predict link existence and propose a model for link prediction which outperforms many classical methods with a decreasing computational time in large scales. Encouraging experimental results obtained on real networks show that our approach can effectively predict missing links in network, and even when nearly 40% of the edges are missing, it also retains stationary performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Ukkusuri, Satish V.
We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less
Aziz, H. M. Abdul; Ukkusuri, Satish V.
2017-06-29
We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less
Business cycles' correlation and systemic risk of the Japanese supplier-customer network.
Krichene, Hazem; Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi
2017-01-01
This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms' attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network.
Business cycles’ correlation and systemic risk of the Japanese supplier-customer network
Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi
2017-01-01
This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms’ attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network. PMID:29059233
Low Power Multi-Hop Networking Analysis in Intelligent Environments.
Etxaniz, Josu; Aranguren, Gerardo
2017-05-19
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.
Low Power Multi-Hop Networking Analysis in Intelligent Environments
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847
Wang, Danhong; Buckner, Randy L.
2013-01-01
Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza
2011-01-01
Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Rahmani, Amirreza; Mesbahi, Mehran; Fathpour, Nanaz; Hadaegh, Fred Y.
2008-01-01
In this work, we develop an approach to formation estimation by explicitly characterizing formation's system-theoretic attributes in terms of the underlying inter-spacecraft information-exchange network. In particular, we approach the formation observer/estimator design by relaxing the accessibility to the global state information by a centralized observer/estimator- and in turn- providing an analysis and synthesis framework for formation observers/estimators that rely on local measurements. The noveltyof our approach hinges upon the explicit examination of the underlying distributed spacecraft network in the realm of guidance, navigation, and control algorithmic analysis and design. The overarching goal of our general research program, some of whose results are reported in this paper, is the development of distributed spacecraft estimation algorithms that are scalable, modular, and robust to variations inthe topology and link characteristics of the formation information exchange network. In this work, we consider the observability of a spacecraft formation from a single observation node and utilize the agreement protocol as a mechanism for observing formation states from local measurements. Specifically, we show how the symmetry structure of the network, characterized in terms of its automorphism group, directly relates to the observability of the corresponding multi-agent system The ramification of this notion of observability over networks is then explored in the context of distributed formation estimation.
NASA Astrophysics Data System (ADS)
Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi
Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
Zhang, Rui; Yao, Enjian; Yang, Yang
2017-01-01
Introducing electric vehicles (EVs) into urban transportation network brings higher requirement on travel time reliability and charging reliability. Specifically, it is believed that travel time reliability is a key factor influencing travelers’ route choice. Meanwhile, due to the limited cruising range, EV drivers need to better learn about the required energy for the whole trip to make decisions about whether charging or not and where to charge (i.e., charging reliability). Since EV energy consumption is highly related to travel speed, network uncertainty affects travel time and charging demand estimation significantly. Considering the network uncertainty resulted from link degradation, which influences the distribution of travel demand on transportation network and the energy demand on power network, this paper aims to develop a reliability-based network equilibrium framework for accommodating degradable road conditions with the addition of EVs. First, based on the link travel time distribution, the mean and variance of route travel time and monetary expenses related to energy consumption are deduced, respectively. And the charging time distribution of EVs with charging demand is also estimated. Then, a nested structure is considered to deal with the difference of route choice behavior derived by the different uncertainty degrees between the routes with and without degradable links. Given the expected generalized travel cost and a psychological safety margin, a traffic assignment model with the addition of EVs is formulated. Subsequently, a heuristic solution algorithm is developed to solve the proposed model. Finally, the effects of travelers’ risk attitude, network degradation degree, and EV penetration rate on network performance are illustrated through an example network. The numerical results show that the difference of travelers’ risk attitudes does have impact on the route choice, and the widespread adoption of EVs can cut down the total system travel cost effectively when the transportation network is more reliable. PMID:28886167
Zhang, Rui; Yao, Enjian; Yang, Yang
2017-01-01
Introducing electric vehicles (EVs) into urban transportation network brings higher requirement on travel time reliability and charging reliability. Specifically, it is believed that travel time reliability is a key factor influencing travelers' route choice. Meanwhile, due to the limited cruising range, EV drivers need to better learn about the required energy for the whole trip to make decisions about whether charging or not and where to charge (i.e., charging reliability). Since EV energy consumption is highly related to travel speed, network uncertainty affects travel time and charging demand estimation significantly. Considering the network uncertainty resulted from link degradation, which influences the distribution of travel demand on transportation network and the energy demand on power network, this paper aims to develop a reliability-based network equilibrium framework for accommodating degradable road conditions with the addition of EVs. First, based on the link travel time distribution, the mean and variance of route travel time and monetary expenses related to energy consumption are deduced, respectively. And the charging time distribution of EVs with charging demand is also estimated. Then, a nested structure is considered to deal with the difference of route choice behavior derived by the different uncertainty degrees between the routes with and without degradable links. Given the expected generalized travel cost and a psychological safety margin, a traffic assignment model with the addition of EVs is formulated. Subsequently, a heuristic solution algorithm is developed to solve the proposed model. Finally, the effects of travelers' risk attitude, network degradation degree, and EV penetration rate on network performance are illustrated through an example network. The numerical results show that the difference of travelers' risk attitudes does have impact on the route choice, and the widespread adoption of EVs can cut down the total system travel cost effectively when the transportation network is more reliable.
Local Estimators for Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Nabi, Marzieh
2011-01-01
A formation estimation architecture for formation flying builds upon the local information exchange among multiple local estimators. Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are needed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms should rely on a local information-exchange network, relaxing the assumptions on existing algorithms. In this research, it was shown that only local observability is required to design a formation estimator and control law. The approach relies on breaking up the overall information-exchange network into sequence of local subnetworks, and invoking an agreement-type filter to reach consensus among local estimators within each local network. State estimates were obtained by a set of local measurements that were passed through a set of communicating Kalman filters to reach an overall state estimation for the formation. An optimization approach was also presented by means of which diffused estimates over the network can be incorporated in the local estimates obtained by each estimator via local measurements. This approach compares favorably with that obtained by a centralized Kalman filter, which requires complete knowledge of the raw measurement available to each estimator.
Link prediction in the network of global virtual water trade
NASA Astrophysics Data System (ADS)
Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-04-01
Through the international food-trade, water resources are 'virtually' transferred from the country of production to the country of consumption. The international food-trade, thus, implies a network of virtual water flows from exporting to importing countries (i.e., nodes). Given the dynamical behavior of the network, where food-trade relations (i.e., links) are created and dismissed every year, link prediction becomes a challenge. In this study, we propose a novel methodology for link prediction in the virtual water network. The model aims at identifying the main factors (among 17 different variables) driving the creation of a food-trade relation between any two countries, along the period between 1986 and 2011. Furthermore, the model can be exploited to investigate the network configuration in the future, under different possible (climatic and demographic) scenarios. The model grounds the existence of a link between any two nodes on the link weight (i.e., the virtual water flow): a link exists when the nodes exchange a minimum (fixed) volume of virtual water. Starting from a set of potential links between any two nodes, we fit the associated virtual water flows (both the real and the null ones) by means of multivariate linear regressions. Then, links with estimated flows higher than a minimum value (i.e., threshold) are considered active-links, while the others are non-active ones. The discrimination between active and non-active links through the threshold introduces an error (called link-prediction error) because some real links are lost (i.e., missed links) and some non-existing links (i.e., spurious links) are inevitably introduced in the network. The major drivers are those significantly minimizing the link-prediction error. Once the structure of the unweighted virtual water network is known, we apply, again, linear regressions to assess the major factors driving the fluxes traded along (modelled) active-links. Results indicate that, on the one hand, population and fertilizer use, together with link properties (such as the distance between nodes), are the major factors driving the links creation; on the other hand, population, distance, and gross domestic product are essential to model the flux entity. The results are promising since the model is able to correctly predict the 85% of the 16422 food-trade links (15% are missed), by spuriously adding to the real network only the 5% of non-existing links. The link-prediction error, evaluated as the sum of the percentage of missed and spurious links, is around 20% and it is constant over the study period. Only the 0.01% of the global virtual water flow is traded along missed links and an even lower flow is added by the spurious links (0.003%).
Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho
2008-10-01
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.
Network Model-Assisted Inference from Respondent-Driven Sampling Data
Gile, Krista J.; Handcock, Mark S.
2015-01-01
Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328
Network Model-Assisted Inference from Respondent-Driven Sampling Data.
Gile, Krista J; Handcock, Mark S
2015-06-01
Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.
How to estimate the signs' configuration in the directed signed social networks?
NASA Astrophysics Data System (ADS)
Guo, Long; Gao, Fujuan; Jiang, Jian
2017-02-01
Inspired by the ensemble theory in statistical mechanics, we introduce a reshuffling approach to empirical analyze signs' configuration in the directed signed social networks of Epinions and Slashdots. In our reshuffling approach, each negative link has the reshuffling probability prs to exchange its sign with another positive link chosen randomly. Many reshuffled networks with different signs' configuration are built under different prss. For each reshuffled network, the entropies of the self social status are calculated and the opinion formation of the majority-rule model is analyzed. We find that Souts reach their own minimum values and the order parameter |m* | reaches its maximum value in the networks of Epinions and Slashdots without the reshuffling operation. Namely, individuals share the homogeneous properties of self social status and dynamic status in the real directed signed social networks. Our present work provides some interesting tools and perspective to understand the signs' configuration in signed social networks, especially in the online affiliation networks.
Active influence in dynamical models of structural balance in social networks
NASA Astrophysics Data System (ADS)
Summers, Tyler H.; Shames, Iman
2013-07-01
We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.
A Framework for Dimensioning VDL-2 Air-Ground Networks
NASA Technical Reports Server (NTRS)
Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven
2014-01-01
This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.
Knowlton, Chris; Meliza, C Daniel; Margoliash, Daniel; Abarbanel, Henry D I
2014-06-01
Estimating the behavior of a network of neurons requires accurate models of the individual neurons along with accurate characterizations of the connections among them. Whereas for a single cell, measurements of the intracellular voltage are technically feasible and sufficient to characterize a useful model of its behavior, making sufficient numbers of simultaneous intracellular measurements to characterize even small networks is infeasible. This paper builds on prior work on single neurons to explore whether knowledge of the time of spiking of neurons in a network, once the nodes (neurons) have been characterized biophysically, can provide enough information to usefully constrain the functional architecture of the network: the existence of synaptic links among neurons and their strength. Using standardized voltage and synaptic gating variable waveforms associated with a spike, we demonstrate that the functional architecture of a small network of model neurons can be established.
The degree-related clustering coefficient and its application to link prediction
NASA Astrophysics Data System (ADS)
Liu, Yangyang; Zhao, Chengli; Wang, Xiaojie; Huang, Qiangjuan; Zhang, Xue; Yi, Dongyun
2016-07-01
Link prediction plays a significant role in explaining the evolution of networks. However it is still a challenging problem that has been addressed only with topological information in recent years. Based on the belief that network nodes with a great number of common neighbors are more likely to be connected, many similarity indices have achieved considerable accuracy and efficiency. Motivated by the natural assumption that the effect of missing links on the estimation of a node's clustering ability could be related to node degree, in this paper, we propose a degree-related clustering coefficient index to quantify the clustering ability of nodes. Unlike the classical clustering coefficient, our new coefficient is highly robust when the observed bias of links is considered. Furthermore, we propose a degree-related clustering ability path (DCP) index, which applies the proposed coefficient to the link prediction problem. Experiments on 12 real-world networks show that our proposed method is highly accurate and robust compared with four common-neighbor-based similarity indices (Common Neighbors(CN), Adamic-Adar(AA), Resource Allocation(RA), and Preferential Attachment(PA)), and the recently introduced clustering ability (CA) index.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2016-07-01
The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.
Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Jennings, Esther H.; Sergui, John S.
2013-01-01
A large-scale network that supports a large number of users can have an aggregate data rate of hundreds of Mbps at any time. High-fidelity simulation of a large-scale network might be too complicated and memory-intensive for typical commercial-off-the-shelf (COTS) tools. Unlike a large commercial wide-area-network (WAN) that shares diverse network resources among diverse users and has a complex topology that requires routing mechanism and flow control, the ground communication links of a space network operate under the assumption of a guaranteed dedicated bandwidth allocation between specific sparse endpoints in a star-like topology. This work solved the network design problem of estimating the bandwidths of a ground network architecture option that offer different service classes to meet the latency requirements of different user data types. In this work, a top-down analysis and simulation approach was created to size the bandwidths of a store-and-forward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. These techniques were used to estimate the WAN bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network. A new analytical approach, called the "leveling scheme," was developed to model the store-and-forward mechanism of the network data flow. The term "leveling" refers to the spreading of data across a longer time horizon without violating the corresponding latency requirement of the data type. Two versions of the leveling scheme were developed: 1. A straightforward version that simply spreads the data of each data type across the time horizon and doesn't take into account the interactions among data types within a pass, or between data types across overlapping passes at a network node, and is inherently sub-optimal. 2. Two-state Markov leveling scheme that takes into account the second order behavior of the store-and-forward mechanism, and the interactions among data types within a pass. The novelty of this approach lies in the modeling of the store-and-forward mechanism of each network node. The term store-and-forward refers to the data traffic regulation technique in which data is sent to an intermediate network node where they are temporarily stored and sent at a later time to the destination node or to another intermediate node. Store-and-forward can be applied to both space-based networks that have intermittent connectivity, and ground-based networks with deterministic connectivity. For groundbased networks, the store-and-forward mechanism is used to regulate the network data flow and link resource utilization such that the user data types can be delivered to their destination nodes without violating their respective latency requirements.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.
Etxaniz, Josu; Aranguren, Gerardo
2017-04-30
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294
Geier, Christian; Lehnertz, Klaus
2017-02-01
Nodes in large-scale epileptic networks that are crucial for seizure facilitation and termination can be regarded as potential targets for individualized focal therapies. Graph-theoretical approaches based on centrality concepts can help to identify such important nodes, however, they may be influenced by the way networks are derived from empirical data. Here we investigate evolving functional epileptic brain networks during 82 focal seizures with different anatomical onset locations that we derive from multichannel intracranial electroencephalographic recordings from 51 patients. We demonstrate how the various methodological steps (from the recording montage via node and link inference to the assessment of node centralities) affect importance estimation and discuss their impact on the interpretability of findings in the context of pathophysiological aspects of seizure dynamics.
Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks
NASA Astrophysics Data System (ADS)
Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang
2013-08-01
Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.
Networks as Renormalized Models for Emergent Behavior in Physical Systems
NASA Astrophysics Data System (ADS)
Paczuski, Maya
2005-09-01
Networks are paradigms for describing complex biological, social and technological systems. Here I argue that networks provide a coherent framework to construct coarsegrained models for many different physical systems. To elucidate these ideas, I discuss two long-standing problems. The first concerns the structure and dynamics of magnetic fields in the solar corona, as exemplified by sunspots that startled Galileo almost 400 years ago. We discovered that the magnetic structure of the corona embodies a scale free network, with spots at all scales. A network model representing the three-dimensional geometry of magnetic fields, where links rewire and nodes merge when they collide in space, gives quantitative agreement with available data, and suggests new measurements. Seismicity is addressed in terms of relations between events without imposing space-time windows. A metric estimates the correlation between any two earthquakes. Linking strongly correlated pairs, and ignoring pairs with weak correlation organizes the spatio-temporal process into a sparse, directed, weighted network. New scaling laws for seismicity are found. For instance, the aftershock decay rate decreases as ~ 1/t in time up to a correlation time, tomori. An estimate from the data gives tomori to be about one year for small magnitude 3 earthquakes, about 1400 years for the Landers event, and roughly 26,000 years for the earthquake causing the 2004 Asian tsunami. Our results confirm Kagan's conjecture that aftershocks can rumble on for centuries.
Optimizing interconnections to maximize the spectral radius of interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian
2017-03-01
The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.
Proactive schema based link lifetime estimation and connectivity ratio.
Bachir, Bouamoud; Ali, Ouacha; Ahmed, Habbani; Mohamed, Elkoutbi
2014-01-01
The radio link between a pair of wireless nodes is affected by a set of random factors such as transmission range, node mobility, and environment conditions. The properties of such radio links are continually experienced when nodes status balances between being reachable and being unreachable; thereby on completion of each experience the statistical distribution of link lifetime is updated. This aspect is emphasized in mobile ad hoc network especially when it is deployed in some fields that require intelligent processing of data information such as aerospace domain.
Kohler, Philipp; Schmidt, Axel J; Cavassini, Matthias; Furrer, Hansjakob; Calmy, Alexandra; Battegay, Manuel; Bernasconi, Enos; Ledergerber, Bruno; Vernazza, Pietro
2015-11-28
To describe the HIV care cascade for Switzerland in the year 2012. Six levels were defined: (i) HIV-infected, (ii) HIV-diagnosed, (iii) linked to care, (iv) retained in care, (v) on antiretroviral treatment (ART), and (vi) with suppressed viral load. We used data from the Swiss HIV Cohort Study (SHCS) complemented by a nationwide survey among SHCS physicians to estimate the number of HIV-patients not registered in the cohort. We also used Swiss ART sales data to estimate the number of patients treated outside the SHCS network. Based on the number of patients retained in care, we inferred the estimates for levels (i) to (iii) from previously published data. We estimate that (i) 15 200 HIV-infected individuals lived in Switzerland in 2012 (margins of uncertainty, 13 400-19 300). Of those, (ii) 12 300 (81%) were diagnosed, (iii) 12 200 (80%) linked, and (iv) 11 900 (79%) retained in care. Broadly based on SHCS network data, (v) 10 800 (71%) patients were receiving ART, and (vi) 10 400 (68%) had suppressed (<200 copies/ml) viral loads. The vast majority (95%) of patients retained in care were followed within the SHCS network, with 76% registered in the cohort. Our estimate for HIV-infected individuals in Switzerland is substantially lower than previously reported, halving previous national HIV prevalence estimates to 0.2%. In Switzerland in 2012, 91% of patients in care were receiving ART, and 96% of patients on ART had suppressed viral load, meeting recent UNAIDS/WHO targets.
NASA Astrophysics Data System (ADS)
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2016-04-01
The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.
Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin
2011-03-01
In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate themore » effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.« less
Improvement of the Asia-Pacific TWSTFT network solutions by using DPN results.
Lin, Huang-Tien; Huang, Yi-Jiun; Liao, Chia-Shu; Chu, Fang-Dar; Tseng, Wen-Hung
2012-03-01
Two major time and frequency transfer techniques, two-way satellite time and frequency transfer (TWSTFT) and global navigation satellite systems (GNSS: GPS, GALILEO, GLONASS, etc.), are used for the generation of Coordinated Universal Time (UTC)/International Atomic Time (TAI). These time and frequency transfer links comprise a worldwide network and the utilization of the highly redundant time and frequency data is an important topic. Two methods, either TW-only network (i.e., TWSTFT) or single-link combination of TW and Global Positioning System (GPS), have been developed for combining the redundant data from different techniques. In our previous study, we have proposed a feasible method, utilizing full time-transfer network data, to improve the results of TWSTFT network. The National Institute of Information and Communications Technology (NICT) has recently developed a software-based two-way time-transfer modem using a dual pseudo-random noise (DPN) signal. The first international DPN TWSTFT experiment, using these modems, was performed between NICT (Japan) and Telecommunication Laboratories (TL; Taiwan)and its ability to improve the time transfer precision was demonstrated. In comparison with the conventional NICT–TLTWSTFT link, the DPN time transfer results have higher precision and lower diurnal effects. The estimation also shows that DPN is comparable to GPS precise point positioning (PPP).Because the DPN results show better performance than the conventional TWSTFT results, we would adopt the DPN data for the NICT–TL link and solve the TW+DPN network solutions by using our proposed method. The concept of this application is similar to the so-called multi-technique-network time/frequency transfer. The encouraging results confirm that the TWSTFT network performance can benefit from DPN data by improving short-term stabilities and reducing diurnal effects.The results of TW+PPP network solutions are also illustrated.
Country-wide rainfall maps from cellular communication networks
Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko
2013-01-01
Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal’s attenuation between transmitter and receiver. Here, we show how one such a network can be used to retrieve the space–time dynamics of rainfall for an entire country (The Netherlands, ∼35,500 km2), based on an unprecedented number of links (∼2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrates the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. PMID:23382210
Air Force Research Laboratory Resident Associateship Program Continuation
2014-12-04
2011-7/17/2012 United States Received Veremyev, Alexander Fedorovich Pasiliao, Eduardo Lewis 8/1/2012-7/31/2013 Russia Sensors Directorate Aga...mass and damping on their modal characteristics. 5 Aerodynamic loads were estimated from the wind -tunnel test data, where the angle of attack of the... Wireless Networks; Throughput Optimization for Cognitive Radio Network with Slowly Varying Channels. 2 Capacity Optimization of MIMO Links with
Estimation of Global Network Statistics from Incomplete Data
Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan
2014-01-01
Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183
Estimating the Importance of Terrorists in a Terror Network
NASA Astrophysics Data System (ADS)
Elhajj, Ahmed; Elsheikh, Abdallah; Addam, Omar; Alzohbi, Mohamad; Zarour, Omar; Aksaç, Alper; Öztürk, Orkun; Özyer, Tansel; Ridley, Mick; Alhajj, Reda
While criminals may start their activities at individual level, the same is in general not true for terrorists who are mostly organized in well established networks. The effectiveness of a terror network could be realized by watching many factors, including the volume of activities accomplished by its members, the capabilities of its members to hide, and the ability of the network to grow and to maintain its influence even after the loss of some members, even leaders. Social network analysis, data mining and machine learning techniques could play important role in measuring the effectiveness of a network in general and in particular a terror network in support of the work presented in this chapter. We present a framework that employs clustering, frequent pattern mining and some social network analysis measures to determine the effectiveness of a network. The clustering and frequent pattern mining techniques start with the adjacency matrix of the network. For clustering, we utilize entries in the table by considering each row as an object and each column as a feature. Thus features of a network member are his/her direct neighbors. We maintain the weight of links in case of weighted network links. For frequent pattern mining, we consider each row of the adjacency matrix as a transaction and each column as an item. Further, we map entries into a 0/1 scale such that every entry whose value is greater than zero is assigned the value one; entries keep the value zero otherwise. This way we can apply frequent pattern mining algorithms to determine the most influential members in a network as well as the effect of removing some members or even links between members of a network. We also investigate the effect of adding some links between members. The target is to study how the various members in the network change role as the network evolves. This is measured by applying some social network analysis measures on the network at each stage during the development. We report some interesting results related to two benchmark networks: the first is 9/11 and the second is Madrid bombing.
Kuwae, Tomohiro; Miyoshi, Eiichi; Hosokawa, Shinya; Ichimi, Kazuhiko; Hosoya, Jun; Amano, Tatsuya; Moriya, Toshifumi; Kondoh, Michio; Ydenberg, Ronald C; Elner, Robert W
2012-04-01
Food webs are comprised of a network of trophic interactions and are essential to elucidating ecosystem processes and functions. However, the presence of unknown, but critical networks hampers understanding of complex and dynamic food webs in nature. Here, we empirically demonstrate a missing link, both critical and variable, by revealing that direct predator-prey relationships between shorebirds and biofilm are widespread and mediated by multiple ecological and evolutionary determinants. Food source mixing models and energy budget estimates indicate that the strength of the missing linkage is dependent on predator traits (body mass and foraging action rate) and the environment that determines food density. Morphological analyses, showing that smaller bodied species possess more developed feeding apparatus to consume biofilm, suggest that the linkage is also phylogenetically dependent and affords a compelling re-interpretation of niche differentiation. We contend that exploring missing links is a necessity for revealing true network structure and dynamics. © 2012 Blackwell Publishing Ltd/CNRS.
Towards a TWSTFT network time transfer
NASA Astrophysics Data System (ADS)
Jiang, Z.
2008-12-01
TWSTFT (Two Way Satellite Time and Frequency Transfer, TW hereafter) is a major technique used in TAI (International Atomic Time) generation. More than two-thirds of TAI clocks and almost all the primary frequency standards are transferred using TW. Up to now, the only geometry in TAI time transfer is single-link. However, the TAI TW time transfer data are highly redundant. In general, for an N-point network, there are N(N - 1)/2 independently measured links. Among them, only N - 1 will be used. We then have (N2 - 3N + 2)/2 redundant links. As a function of N, the redundant measurements increase quickly (cf figure 1 and table 1). At present, for the European-American network N = 13, but only 12 out of a total of 78 measured links are used in TAI. For the Asia-Pacific regions, N = 8. Full use of the high redundancy is an effective way to improve TAI without new cost. The sum of three TW links that form a closed triangle is the triangle closure. Theoretically a closure is expected to be zero if there are no measurement errors, namely the triangle closure condition. A non-zero closure is a true error and an index of the time link quality. A redundant link sets a geometric constraint. There are (N2 - 3N + 2)/2 independent conditions in a network. In 2006, Jiang and Petit (Proc. EFTF 2006 pp 468-75) proposed a mathematical model to adjust the closures to zero by global network processing. In consequence, time transfer between any two points through any link(s) in the network gives exactly the same result with the same uncertainty. This is the so-called network time transfer. In this paper, the author introduces his recent works on completing the network model by adding the calibration, the uncertainty estimation and the quality assessment using GPS PPP (time transfer by precise point positioning (PPP hereafter)) (Kouba and Héroux 2001 GPS Solut. 5 12-28, Ray and Senior 2005 Metrologia 42 215-32, Orgiazzi et al 2005 Proc. IEEE FCS 2005 pp 337-45, Defraigne et al 2007 Proc. EFTF 2007 pp 909-13, Petit and Jiang 2008 Int. J. Navig. Obs. 2008 1-8). As an independent technique with higher short-term stability, PPP is then a good reference to evaluate the improvement in the network time transfer. The gain is at least 30%. The new method also gives a solution for the high redundancy in the TAI international TW time transfer network. The TAI software Tsoft is operational to perform the network time transfer.
Assessing the weather monitoring capabilities of cellular microwave link networks
NASA Astrophysics Data System (ADS)
Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch
2016-04-01
Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide, we are currently integrating our approach into open source online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322-1331. Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V. (2015) Commercial microwave links instead of rain gauges: fiction or reality? Water Science & Technology, 71(1), 31. Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS15/050/OHK1/1T/11.
Flow motifs reveal limitations of the static framework to represent human interactions
NASA Astrophysics Data System (ADS)
Rocha, Luis E. C.; Blondel, Vincent D.
2013-04-01
Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Properties of interaction networks underlying the minority game.
Caridi, Inés
2014-11-01
The minority game is a well-known agent-based model with no explicit interaction among its agents. However, it is known that they interact through the global magnitudes of the model and through their strategies. In this work we have attempted to formalize the implicit interactions among minority game agents as if they were links on a complex network. We have defined the link between two agents by quantifying the similarity between them. This link definition is based on the information of the instance of the game (the set of strategies assigned to each agent at the beginning) without any dynamic information on the game and brings about a static, unweighed and undirected network. We have analyzed the structure of the resulting network for different parameters, such as the number of agents (N) and the agent's capacity to process information (m), always taking into account games with two strategies per agent. In the region of crowd effects of the model, the resulting networks structure is a small-world network, whereas in the region where the behavior of the minority game is the same as in a game of random decisions, networks become a random network of Erdos-Renyi. The transition between these two types of networks is slow, without any peculiar feature of the network in the region of the coordination among agents. Finally, we have studied the resulting static networks for the full strategy minority game model, a maximal instance of the minority game in which all possible agents take part in the game. We have explicitly calculated the degree distribution of the full strategy minority game network and, on the basis of this analytical result, we have estimated the degree distribution of the minority game network, which is in accordance with computational results.
Novel method for water vapour monitoring using wireless communication networks measurements
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2010-09-01
We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).
Inference of scale-free networks from gene expression time series.
Daisuke, Tominaga; Horton, Paul
2006-04-01
Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.
2017-12-01
For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.
How People Interact in Evolving Online Affiliation Networks
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.
2012-07-01
The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.
Arterial link travel time estimation using loop detector data : phase 1
DOT National Transportation Integrated Search
1997-11-01
The envisioned operational tests of Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) in the Minneapolis/St. Paul area call for the provision of timely and reliable travel times over an entire rod network. Un...
Real-time estimation of incident delay in dynamic and stochastic networks
DOT National Transportation Integrated Search
1997-01-01
The ability to predict the link travel times is a necessary requirement for most intelligent transportation systems (ITS) applications such as route guidance systems. In an urban traffic environment, these travel times are dynamic and stochastic and ...
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Leijnse, H.; Overeem, A.
2017-12-01
Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.
The Structure and Evolution of Buyer-Supplier Networks
Mizuno, Takayuki; Souma, Wataru; Watanabe, Tsutomu
2014-01-01
In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf's law). We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms). This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks – shocks affecting only a particular firm – through customer-supplier chains. PMID:25000368
The structure and evolution of buyer-supplier networks.
Mizuno, Takayuki; Souma, Wataru; Watanabe, Tsutomu
2014-01-01
In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf's law). We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms). This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks - shocks affecting only a particular firm - through customer-supplier chains.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.
2017-12-01
The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a temperate climate (the Netherlands), and from a subtropical climate (Brazil). We hope that RAINLINK will promote the application of rainfall monitoring using microwave links in poorly gauged regions around the world. We invite researchers to contribute to RAINLINK to make the code more generally applicable to data from different networks and climates.
Comparison of large-scale human brain functional and anatomical networks in schizophrenia.
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O
2017-01-01
Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.
A Novel Decision Support Tool to Develop Link Driving Schedules for Moves.
DOT National Transportation Integrated Search
2015-01-01
A system or user level strategy that aims to reduce emissions from transportation networks requires a rigorous assessment of emissions inventory for the system to justify its effectiveness. It is important to estimate the total emissions for a transp...
A Comparison of Atmospheric Quantities Determined from Advanced WVR and Weather Analysis Data
NASA Astrophysics Data System (ADS)
Morabito, D.; Wu, L.; Slobin, S.
2017-05-01
Lower frequency bands used for deep space communications (e.g., 2.3 GHz and 8.4 GHz) are oversubscribed. Thus, NASA has become interested in using higher frequency bands (e.g., 26 GHz and 32 GHz) for telemetry, making use of the available wider bandwidth. However, these bands are more susceptible to atmospheric degradation. Currently, flight projects tend to be conservative in preparing their communications links by using worst-case or conservative assumptions, which result in nonoptimum data return. We previously explored the use of weather forecasting over different weather condition scenarios to determine more optimal values of atmospheric attenuation and atmospheric noise temperature for use in telecommunications link design. In this article, we present the results of a comparison of meteorological parameters (columnar water vapor and liquid water content) estimated from multifrequency Advanced Water Vapor Radiometer (AWVR) data with those estimated from weather analysis tools (FNL). We find that for the Deep Space Network's Goldstone and Madrid tracking sites, the statistics are in reasonable agreement between the two methods. We can then use the statistics of these quantities based on FNL runs to estimate statistics of atmospheric signal degradation for tracking sites that do not have the benefit of possessing multiyear WVR data sets, such as those of the NASA Near-Earth Network (NEN). The resulting statistics of atmospheric attenuation and atmospheric noise temperature increase can then be used in link budget calculations.
Rainfall estimation using microwave links. Results from an experimental setup in Luxembourg
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Matgen, Patrick; Pfister, Laurent
2010-05-01
Microwave links represent a valid alternative to traditional rainfall estimation methods. They are commonly used in mobile phone communication, and they constitute built-in widely distributed networks. Due to their ability of providing high temporal and spatial resolution measurements, their use is particularly suitable in urban settings. We here show results from an experimental setup in Luxembourg City, where two dual frequency links have been installed. The links cover a distance of about 4km, and measure power attenuation at 1 min. timestep. The links have been equipped with several recording raingauges, which measure rainfall in real-time communicating through a wireless connection. This set-up has been used to analyze in detail the mapping between attenuation and rainfall intensity, and gain insights into the potential accuracy of these instruments. In addition, we investigated the relation between rainfall and discharge response of the urban area of Luxembourg, which shows the potential utility of high frequency rainfall measurements for urban environments.
A routing protocol based on energy and link quality for Internet of Things applications.
Machado, Kássio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A F; Neto, Augusto; Souza, José Neuman de
2013-02-04
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications
Machado, Kassio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A. F.; Neto, Augusto; de Souza, José Neuman
2013-01-01
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare,environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols. PMID:23385410
First Evaluation of Rainfall Derived from Commercial Microwave Links in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Rios Gaona, M. F.; Overeem, A.; Leijnse, H.; Raupach, T.
2017-12-01
Rainfall estimation from commercial microwave link (CML) networks has gained a lot of attention from the hydrometeorological community in the last decade. Path-averaged rainfall intensities can be retrieved from the signal attenuation between cell phone towers. Such a technique offers rainfall retrievals at high spatiotemporal resolutions. High spatiotemporal rainfall measurements are highly important for urban hydrology, given the often deadly impact of flash floods to society. This study evaluates CML rainfall retrievals for a subtropical climate. Rainfall estimation for subtropical climates is highly relevant, since many countries with few surface rainfall observations are located in such areas. The evaluation is done for the Brazilian city of São Paulo. RAINLINK (the open-source algorithm) retrieves rainfall intensities from attenuation measurements. We evaluated CMLs in the São Paulo metropolitan area for 81 days between October 2014 and January 2015. The evaluation was done against a dense automatic gauge network. High correlations (>0.9) and low biases ( 30%) are obtained, especially for short CMLs.
Geomorphological origin of recession curves
NASA Astrophysics Data System (ADS)
Biswal, Basudev; Marani, Marco
2010-12-01
We identify a previously undetected link between the river network morphology and key recession curves properties through a conceptual-physical model of the drainage process of the riparian unconfined aquifer. We show that the power-law exponent, α, of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. Using Digital Terrain Models and daily discharge observations from 67 US basins we find that geomorphologic α estimates match well the values obtained from recession curves analyses. Finally, we argue that the link between recession flows and network morphology points to an important role of low-flow discharges in shaping the channel network.
Respondent-Driven Sampling: An Assessment of Current Methodology.
Gile, Krista J; Handcock, Mark S
2010-08-01
Respondent-Driven Sampling (RDS) employs a variant of a link-tracing network sampling strategy to collect data from hard-to-reach populations. By tracing the links in the underlying social network, the process exploits the social structure to expand the sample and reduce its dependence on the initial (convenience) sample.The current estimators of population averages make strong assumptions in order to treat the data as a probability sample. We evaluate three critical sensitivities of the estimators: to bias induced by the initial sample, to uncontrollable features of respondent behavior, and to the without-replacement structure of sampling.Our analysis indicates: (1) that the convenience sample of seeds can induce bias, and the number of sample waves typically used in RDS is likely insufficient for the type of nodal mixing required to obtain the reputed asymptotic unbiasedness; (2) that preferential referral behavior by respondents leads to bias; (3) that when a substantial fraction of the target population is sampled the current estimators can have substantial bias.This paper sounds a cautionary note for the users of RDS. While current RDS methodology is powerful and clever, the favorable statistical properties claimed for the current estimates are shown to be heavily dependent on often unrealistic assumptions. We recommend ways to improve the methodology.
Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco
2012-01-01
In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228
Novel method for fog monitoring using cellular networks infrastructures
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2012-08-01
A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.
2014-01-01
Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely defined, as in challenge 2. Importantly, we found that aggregating independent parameter predictions and network topology across submissions creates a solution that can be better than the one from the best-performing submission. PMID:24507381
Urban rainfall estimation employing commercial microwave links
NASA Astrophysics Data System (ADS)
Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire
2015-04-01
Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.
The Sociospatial Network: Risk and the Role of Place in the Transmission of Infectious Diseases.
Logan, James J; Jolly, Ann M; Blanford, Justine I
2016-01-01
Control of sexually transmitted infections and blood-borne pathogens is challenging due to their presence in groups exhibiting complex social interactions. In particular, sharing injection drug use equipment and selling sex (prostitution) puts people at high risk. Previous work examining the involvement of risk behaviours in social networks has suggested that social and geographic distance of persons within a group contributes to these pathogens' endemicity. In this study, we examine the role of place in the connectedness of street people, selected by respondent driven sampling, in the transmission of blood-borne and sexually transmitted pathogens. A sample of 600 injection drug users, men who have sex with men, street youth and homeless people were recruited in Winnipeg, Canada from January to December, 2009. The residences of participants and those of their social connections were linked to each other and to locations where they engaged in risk activity. Survey responses identified 101 unique sites where respondents participated in injection drug use or sex transactions. Risk sites and respondents' residences were geocoded, with residence representing the individuals. The sociospatial network and estimations of geographic areas most likely to be frequented were mapped with network graphs and spatially using a Geographic Information System (GIS). The network with the most nodes connected 7.7% of respondents; consideration of the sociospatial network increased this to 49.7%. The mean distance between any two locations in the network was within 3.5 kilometres. Kernel density estimation revealed key activity spaces where the five largest networks overlapped. Here, the combination of spatial and social entities in network analysis defines the overlap of vulnerable populations in risk space, over and above the person to person links. Implications of this work are far reaching, not just for understanding transmission dynamics of sexually transmitted infections by identifying activity "hotspots" and their intersection with each social network, but also for the spread of other diseases (e.g. tuberculosis) and targeting prevention services.
The role of endogenous and exogenous mechanisms in the formation of R&D networks
NASA Astrophysics Data System (ADS)
Tomasello, Mario V.; Perra, Nicola; Tessone, Claudio J.; Karsai, Márton; Schweitzer, Frank
2014-07-01
We develop an agent-based model of strategic link formation in Research and Development (R&D) networks. Empirical evidence has shown that the growth of these networks is driven by mechanisms which are both endogenous to the system (that is, depending on existing alliances patterns) and exogenous (that is, driven by an exploratory search for newcomer firms). Extant research to date has not investigated both mechanisms simultaneously in a comparative manner. To overcome this limitation, we develop a general modeling framework to shed light on the relative importance of these two mechanisms. We test our model against a comprehensive dataset, listing cross-country and cross-sectoral R&D alliances from 1984 to 2009. Our results show that by fitting only three macroscopic properties of the network topology, this framework is able to reproduce a number of micro-level measures, including the distributions of degree, local clustering, path length and component size, and the emergence of network clusters. Furthermore, by estimating the link probabilities towards newcomers and established firms from the data, we find that endogenous mechanisms are predominant over the exogenous ones in the network formation, thus quantifying the importance of existing structures in selecting partner firms.
Wageningen Urban Rainfall Experiment 2014 (WURex14): Experimental Setup and First Results
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Hazenberg, P.
2014-12-01
Microwave links from cellular communication networks have been shown to be able to provide valuable information concerning the space-time variability of rainfall. In particular over urban areas, where network densities are generally high, they have the potential to complement existing dedicated infrastructure to measure rainfall (gauges, radars). In addition, microwave links provide a great opportunity for ground-based rainfall measurement for those land surface areas of the world where gauges and radars are generally lacking, e.g. Africa, Latin America, and large parts of Asia. Such information is not only crucial for water management and agriculture, but also for instance for ground validation of space-borne rainfall estimates such as those provided by the recently launched core satellite of the GPM (Global Precipitation Measurement) mission. WURex14 is dedicated to address several errors and uncertainties associated with such quantitative precipitation estimates in detail. The core of the experiment is provided by two co-located microwave links installed between two major buildings on the Wageningen University campus, approximately 2 km apart: a 38 GHz commercial microwave link, kindly provided to us by T-Mobile NL, and a 38 GHz dual-polarization research microwave link from RAL. Transmitting and receiving antennas have been attached to masts installed on the roofs of the two buildings, about 30 m above the ground. This setup has been complemented with a Scintec infrared Large-Aperture Scintillometer, installed over the same path, as well as a Parsivel optical disdrometer, located close to the mast on the receiving end of the links. During the course of the experiment, a 26 GHz RAL research microwave link was added to the experimental setup. Temporal sampling of the received signals was performed at a rate of 20 Hz. In addition, two time-lapse cameras have been installed on either side of the path to monitor the wetness of the antennas as well as the state of the atmosphere. Approximately halfway along the link path a rain gauge from the KNMI operational network is located. Finally, data is available from several commercial microwave links in the vicinity of the experimental setup, as well as from the KNMI weather radars. We report on the first results from this experiment, collected during the Summer and Fall of 2014.
Wageningen Urban Rainfall Experiment 2014 (WURex14): Experimental Setup and First Results
NASA Astrophysics Data System (ADS)
van Leth, Thomas; Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Hazenberg, Pieter
2015-04-01
Microwave links from cellular communication networks have been shown to be able to provide valuable information concerning the space-time variability of rainfall. In particular over urban areas, where network densities are generally high, they have the potential to complement existing dedicated infrastructure to measure rainfall (gauges, radars). In addition, microwave links provide a great opportunity for ground-based rainfall measurement for those land surface areas of the world where gauges and radars are generally lacking, e.g. Africa, Latin America, and large parts of Asia. Such information is not only crucial for water management and agriculture, but also for instance for ground validation of space-borne rainfall estimates such as those provided by the recently launched core satellite of the GPM (Global Precipitation Measurement) mission. WURex14 is dedicated to address several errors and uncertainties associated with such quantitative precipitation estimates in detail. The core of the experiment is provided by two co-located microwave links installed between two major buildings on the Wageningen University campus, approximately 2 km apart: a 38 GHz commercial microwave link, kindly provided to us by T-Mobile NL, and a 38 GHz dual-polarization research microwave link from RAL. Transmitting and receiving antennas have been attached to masts installed on the roofs of the two buildings, about 30 m above the ground. This setup has been complemented with a Scintec infrared Large-Aperture Scintillometer, installed over the same path, as well as a Parsivel optical disdrometer, located close to the mast on the receiving end of the links. During the course of the experiment, a 26 GHz RAL research microwave link was added to the experimental setup. Temporal sampling of the received signals was performed at a rate of 20 Hz. In addition, two time-lapse cameras have been installed on either side of the path to monitor the wetness of the antennas as well as the state of the atmosphere. Approximately halfway along the link path a rain gauge from the KNMI operational network is located. Finally, data is available from several commercial microwave links in the vicinity of the experimental setup, as well as from the KNMI weather radars. We report on the first results from this experiment, collected during the Summer and Fall of 2014.
Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.
Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo
2016-01-01
In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2009-10-15
In typical road traffic corridors, freeway systems are generally well-equipped with traffic surveillance systems such as vehicle detector (VD) and/or closed circuit television (CCTV) systems in order to gather timely traffic information for traffic c...
Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks
Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo
2016-01-01
A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414
Roads at risk - traffic detours from debris flows in southern Norway
NASA Astrophysics Data System (ADS)
Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.
2014-10-01
Globalization and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g., road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load expressed as vehicle kilometers because of debris-flow related road closures. We present two scenarios demonstrating the impact of debris flows on the road network, and quantify the associated path failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and northwestern part of the study area are associated with high link failure risk. Yet options for detours on major routes are manifold, and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying of speedy delivery of services and goods.
Roads at risk: traffic detours from debris flows in southern Norway
NASA Astrophysics Data System (ADS)
Meyer, N. K.; Schwanghart, W.; Korup, O.; Nadim, F.
2015-05-01
Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.
2017-09-01
Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.
Exposure, hazard, and survival analysis of diffusion on social networks.
Wu, Jiacheng; Crawford, Forrest W; Kim, David A; Stafford, Derek; Christakis, Nicholas A
2018-04-29
Sociologists, economists, epidemiologists, and others recognize the importance of social networks in the diffusion of ideas and behaviors through human societies. To measure the flow of information on real-world networks, researchers often conduct comprehensive sociometric mapping of social links between individuals and then follow the spread of an "innovation" from reports of adoption or change in behavior over time. The innovation is introduced to a small number of individuals who may also be encouraged to spread it to their network contacts. In conjunction with the known social network, the pattern of adoptions gives researchers insight into the spread of the innovation in the population and factors associated with successful diffusion. Researchers have used widely varying statistical tools to estimate these quantities, and there is disagreement about how to analyze diffusion on fully observed networks. Here, we describe a framework for measuring features of diffusion processes on social networks using the epidemiological concepts of exposure and competing risks. Given a realization of a diffusion process on a fully observed network, we show that classical survival regression models can be adapted to estimate the rate of diffusion, and actor/edge attributes associated with successful transmission or adoption, while accounting for the topology of the social network. We illustrate these tools by applying them to a randomized network intervention trial conducted in Honduras to estimate the rate of adoption of 2 health-related interventions-multivitamins and chlorine bleach for water purification-and determine factors associated with successful social transmission. Copyright © 2018 John Wiley & Sons, Ltd.
Resilience and efficiency in transportation networks
Ganin, Alexander A.; Kitsak, Maksim; Marchese, Dayton; Keisler, Jeffrey M.; Seager, Thomas; Linkov, Igor
2017-01-01
Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by mapping intersections to nodes and road segments between the intersections to links. We built road networks for 40 of the urban areas defined by the U.S. Census Bureau. We developed and calibrated a model to evaluate traffic delays using link loads. The loads may be regarded as traffic-based centrality measures, estimating the number of individuals using corresponding road segments. Efficiency was estimated as the average annual delay per peak-period auto commuter, and modeled results were found to be close to observed data, with the notable exception of New York City. Resilience was estimated as the change in efficiency resulting from roadway disruptions and was found to vary between cities, with increased delays due to a 5% random loss of road linkages ranging from 9.5% in Los Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems that operate inefficiently under normal conditions are nevertheless resilient to disruption, whereas some more efficient cities are more fragile. The implication is that resilience, not just efficiency, should be considered explicitly in roadway project selection and justify investment opportunities related to disaster and other disruptions. PMID:29291243
NASA Technical Reports Server (NTRS)
Wolpert, David
2004-01-01
Masked proportional routing is an improved procedure for choosing links between adjacent nodes of a network for the purpose of transporting an entity from a source node ("A") to a destination node ("B"). The entity could be, for example, a physical object to be shipped, in which case the nodes would represent waypoints and the links would represent roads or other paths between waypoints. For another example, the entity could be a message or packet of data to be transmitted from A to B, in which case the nodes could be computer-controlled switching stations and the links could be communication channels between the stations. In yet another example, an entity could represent a workpiece while links and nodes could represent, respectively, manufacturing processes and stages in the progress of the workpiece towards a finished product. More generally, the nodes could represent states of an entity and the links could represent allowed transitions of the entity. The purpose of masked proportional routing and of related prior routing procedures is to schedule transitions of entities from their initial states ("A") to their final states ("B") in such a manner as to minimize a cost or to attain some other measure of optimality or efficiency. Masked proportional routing follows a distributed (in the sense of decentralized) approach to probabilistically or deterministically choosing the links. It was developed to satisfy a need for a routing procedure that 1. Does not always choose the same link(s), even for two instances characterized by identical estimated values of associated cost functions; 2. Enables a graceful transition from one set of links to another set of links as the circumstances of operation of the network change over time; 3. Is preferably amenable to separate optimization of different portions of the network; 4. Is preferably usable in a network in which some of the routing decisions are made by one or more other procedure(s); 5. Preferably does not cause an entity to visit the same node twice; and 6. Preferably can be modified so that separate entities moving from A to B do not arrive out of order.
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-01-01
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-09-03
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.
Estimating the resolution limit of the map equation in community detection
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro; Rosvall, Martin
2015-01-01
A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.
Application of commercial microwave link (CML) derived precipitation data in a hydrology model
NASA Astrophysics Data System (ADS)
Smiatek, Gerhard; Chwala, Christian; Kunstmann, Harald
2017-04-01
In 2016 very local and extremely intensive convective events caused severe flooding in the Alpine space. Despite the large number of monitoring stations most of the rainfall events were not captured accurately by the existing rain gauge network. As the number of traditional precipitation monitoring sites is in general decreasing, novel rain monitoring techniques are gaining attention. One of the new techniques is the rainfall estimation from signal attenuation in commercial microwave link (CML) networks operated by cellular phone companies. In this contribution, we use CML-derived rainfall information to improve the streamflow forecast of the distributed hydrology model WaSiM-ETH in hindcasting and nowcasting modes. Our model domain covers the complex terrain of the Ammer catchment located in the German Alps. The hydrology model is operated with a spatial resolution of 100m and with an hourly time step. We present two alternative methods of rainfall estimation from CMLs and compare the results to data from rain gauges and a weather radar. Finally, we show the impact of the rainfall data sets on the hydrology model initialization and in discharge simulations of the Ammer River for selected episodes in 2015 and 2016. We found that the densification of the observation network by the CML observations leads to a significant improvement of the model performance.
Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability
NASA Astrophysics Data System (ADS)
Kar, Soummya; Moura, José M. F.
2011-04-01
The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.
A biologically inspired network design model.
Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T S; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Mahadevan, Sankaran
2015-06-04
A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach.
A Biologically Inspired Network Design Model
Zhang, Xiaoge; Adamatzky, Andrew; Chan, Felix T.S.; Deng, Yong; Yang, Hai; Yang, Xin-She; Tsompanas, Michail-Antisthenis I.; Sirakoulis, Georgios Ch.; Mahadevan, Sankaran
2015-01-01
A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach. PMID:26041508
Verdery, Ashton M; Siripong, Nalyn; Pence, Brian W
2017-09-01
The Philippines has seen rapid increases in HIV prevalence among people who inject drugs. We study 2 neighboring cities where a linked HIV epidemic differed in timing of onset and levels of prevalence. In Cebu, prevalence rose rapidly from below 1% to 54% between 2009 and 2011 and remained high through 2013. In nearby Mandaue, HIV remained below 4% through 2011 then rose rapidly to 38% by 2013. We hypothesize that infection prevalence differences in these cities may owe to aspects of social network structure, specifically levels of network clustering. Building on previous research, we hypothesize that higher levels of network clustering are associated with greater epidemic potential. Data were collected with respondent-driven sampling among men who inject drugs in Cebu and Mandaue in 2013. We first examine sample composition using estimators for population means. We then apply new estimators of network clustering in respondent-driven sampling data to examine associations with HIV prevalence. Samples in both cities were comparable in composition by age, education, and injection locations. Dyadic needle-sharing levels were also similar between the 2 cities, but network clustering in the needle-sharing network differed dramatically. We found higher clustering in Cebu than Mandaue, consistent with expectations that higher clustering is associated with faster epidemic spread. This article is the first to apply estimators of network clustering to empirical respondent-driven samples, and it offers suggestive evidence that researchers should pay greater attention to network structure's role in HIV transmission dynamics.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Al-Hamdan, Mohammad; Estes, Maurice; Crosson, William
2007-01-01
As part of the National Environmental Public Health Tracking Network (EPHTN) the National Center for Environmental Health (NCEH) at the Centers for Disease Control and Prevention (CDC) is leading a project called Health and Environment Linked for Information Exchange (HELiX-Atlanta). The goal of developing the National Environmental Public Health Tracking Network is to improve the health of communities. Currently, few systems exist at the state or national level to concurrently track many of the exposures and health effects that might be associated with environmental hazards. An additional challenge is estimating exposure to environmental hazards such as particulate matter whose aerodynamic diameter is less than or equal to 2.5 micrometers (PM2.5). HELIX-Atlanta's goal is to examine the feasibility of building an integrated electronic health and environmental data network in five counties of Metropolitan Atlanta, GA. NASA Marshall Space Flight Center (NASA/MSFC) is collaborating with CDC to combine NASA earth science satellite observations related to air quality and environmental monitoring data to model surface estimates of PM2.5 concentrations that can be linked with clinic visits for asthma. While use of the Air Quality System (AQS) PM2.5 data alone could meet HELIX-Atlanta specifications, there are only five AQS sites in the Atlanta area, thus the spatial coverage is not ideal. We are using NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Aerosol Optical Depth (AOD) data for estimating daily ground level PM2.5 at 10 km resolution over the metropolitan Atlanta area supplementing the AQS ground observations and filling their spatial and temporal gaps.
The Role of Margin in Link Design and Optimization
NASA Technical Reports Server (NTRS)
Cheung, K.
2015-01-01
Link analysis is a system engineering process in the design, development, and operation of communication systems and networks. Link models that are mathematical abstractions representing the useful signal power and the undesirable noise and attenuation effects (including weather effects if the signal path transverses through the atmosphere) that are integrated into the link budget calculation that provides the estimates of signal power and noise power at the receiver. Then the link margin is applied which attempts to counteract the fluctuations of the signal and noise power to ensure reliable data delivery from transmitter to receiver. (Link margin is dictated by the link margin policy or requirements.) A simple link budgeting approach assumes link parameters to be deterministic values typically adopted a rule-of-thumb policy of 3 dB link margin. This policy works for most S- and X-band links due to their insensitivity to weather effects. But for higher frequency links like Ka-band, Ku-band, and optical communication links, it is unclear if a 3 dB link margin would guarantee link closure. Statistical link analysis that adopted the 2-sigma or 3-sigma link margin incorporates link uncertainties in the sigma calculation. (The Deep Space Network (DSN) link margin policies are 2-sigma for downlink and 3-sigma for uplink.) The link reliability can therefore be quantified statistically even for higher frequency links. However in the current statistical link analysis approach, link reliability is only expressed as the likelihood of exceeding the signal-to-noise ratio (SNR) threshold that corresponds to a given bit-error-rate (BER) or frame-error-rate (FER) requirement. The method does not provide the true BER or FER estimate of the link with margin, or the required signalto-noise ratio (SNR) that would meet the BER or FER requirement in the statistical sense. In this paper, we perform in-depth analysis on the relationship between BER/FER requirement, operating SNR, and coding performance curve, in the case when the channel coherence time of link fluctuation is comparable or larger than the time duration of a codeword. We compute the "true" SNR design point that would meet the BER/FER requirement by taking into account the fluctuation of signal power and noise power at the receiver, and the shape of the coding performance curve. This analysis yields a number of valuable insights on the design choices of coding scheme and link margin for the reliable data delivery of a communication system - space and ground. We illustrate the aforementioned analysis using a number of standard NASA error-correcting codes.
Ubiquitousness of link-density and link-pattern communities in real-world networks
NASA Astrophysics Data System (ADS)
Šubelj, L.; Bajec, M.
2012-01-01
Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.
Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties
Xu, Yongjun; Hu, Yuan; Li, Guoquan
2018-01-01
Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315
Video distribution system cost model
NASA Technical Reports Server (NTRS)
Gershkoff, I.; Haspert, J. K.; Morgenstern, B.
1980-01-01
A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.
Estimating National-scale Emissions using Dense Monitoring Networks
NASA Astrophysics Data System (ADS)
Ganesan, A.; Manning, A.; Grant, A.; Young, D.; Oram, D.; Sturges, W. T.; Moncrieff, J. B.; O'Doherty, S.
2014-12-01
The UK's DECC (Deriving Emissions linked to Climate Change) network consists of four greenhouse gas measurement stations that are situated to constrain emissions from the UK and Northwest Europe. These four stations are located in Mace Head (West Coast of Ireland), and on telecommunication towers at Ridge Hill (Western England), Tacolneston (Eastern England) and Angus (Eastern Scotland). With the exception of Angus, which currently only measures carbon dioxide (CO2) and methane (CH4), the remaining sites are additionally equipped to monitor nitrous oxide (N2O). We present an analysis of the network's CH4 and N2O observations from 2011-2013 and compare derived top-down regional emissions with bottom-up inventories, including a recently produced high-resolution inventory (UK National Atmospheric Emissions Inventory). As countries are moving toward national-level emissions estimation, we also address some of the considerations that need to be made when designing these national networks. One of the novel aspects of this work is that we use a hierarchical Bayesian inversion framework. This methodology, which has newly been applied to greenhouse gas emissions estimation, is designed to estimate temporally and spatially varying model-measurement uncertainties and correlation scales, in addition to fluxes. Through this analysis, we demonstrate the importance of characterizing these covariance parameters in order to properly use data from high-density monitoring networks. This UK case study highlights the ways in which this new inverse framework can be used to address some of the limitations of traditional Bayesian inverse methods.
A recurrence network approach to analyzing forced synchronization in hydrodynamic systems
NASA Astrophysics Data System (ADS)
Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.
2016-11-01
Hydrodynamically self-excited systems can lock into external forcing, but their lock-in boundaries and the specific bifurcations through which they lock in can be difficult to detect. We propose using recurrence networks to analyze forced synchronization in a hydrodynamic system: a low-density jet. We find that as the jet bifurcates from periodicity (unforced) to quasiperiodicity (weak forcing) and then to lock-in (strong forcing), its recurrence network changes from a regular distribution of links between nodes (unforced) to a disordered topology (weak forcing) and then to a regular distribution again at lock-in (strong forcing). The emergence of order at lock-in can be either smooth or abrupt depending on the specific lock-in route taken. Furthermore, we find that before lock-in, the probability distribution of links in the network is a function of the characteristic scales of the system, which can be quantified with network measures and used to estimate the proximity to the lock-in boundaries. This study shows that recurrence networks can be used (i) to detect lock-in, (ii) to distinguish between different routes to lock-in, and (iii) as an early warning indicator of the proximity of a system to its lock-in boundaries. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
An experimental analysis on OSPF-TE convergence time
NASA Astrophysics Data System (ADS)
Huang, S.; Kitayama, K.; Cugini, F.; Paolucci, F.; Giorgetti, A.; Valcarenghi, L.; Castoldi, P.
2008-11-01
Open shortest path first (OSPF) protocol is commonly used as an interior gateway protocol (IGP) in MPLS and generalized MPLS (GMPLS) networks to determine the topology over which label-switched paths (LSPs) can be established. Traffic-engineering extensions (network states such as link bandwidth information, available wavelengths, signal quality, etc) have been recently enabled in OSPF (henceforth, called OSPF-TE) to support shortest path first (SPF) tree calculation upon different purposes, thus possibly achieving optimal path computation and helping improve resource utilization efficiency. Adding these features into routing phase can exploit the OSPF robustness, and no additional network component is required to manage the traffic-engineering information. However, this traffic-engineering enhancement also complicates OSPF behavior. Since network states change frequently upon the dynamic trafficengineered LSP setup and release, the network is easily driven from a stable state to unstable operating regimes. In this paper, we focus on studying the OSPF-TE stability in terms of convergence time. Convergence time is referred to the time spent by the network to go back to steady states upon any network state change. An external observation method (based on black-box method) is employed to estimate the convergence time. Several experimental test-beds are developed to emulate dynamic LSP setup/release, re-routing upon single-link failure. The experimental results show that with OSPF-TE the network requires more time to converge compared to the conventional OSPF protocol without TE extension. Especially, in case of wavelength-routed optical network (WRON), introducing per wavelength availability and wavelength continuity constraint to OSPF-TE suffers severe convergence time and a large number of advertised link state advertisements (LSAs). Our study implies that long convergence time and large number of LSAs flooded in the network might cause scalability problems in OSPF-TE and impose limitations on OSPF-TE applications. New solutions to mitigate the s convergence time and to reduce the amount of state information are desired in the future.
Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David
2012-01-01
The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2009-04-01
We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.
Estimating 1 min rain rate distributions from numerical weather prediction
NASA Astrophysics Data System (ADS)
Paulson, Kevin S.
2017-01-01
Internationally recognized prognostic models of rain fade on terrestrial and Earth-space EHF links rely fundamentally on distributions of 1 min rain rates. Currently, in Rec. ITU-R P.837-6, these distributions are generated using the Salonen-Poiares Baptista method where 1 min rain rate distributions are estimated from long-term average annual accumulations provided by numerical weather prediction (NWP). This paper investigates an alternative to this method based on the distribution of 6 h accumulations available from the same NWPs. Rain rate fields covering the UK, produced by the Nimrod network of radars, are integrated to estimate the accumulations provided by NWP, and these are linked to distributions of fine-scale rain rates. The proposed method makes better use of the available data. It is verified on 15 NWP regions spanning the UK, and the extension to other regions is discussed.
Vanderveen, Keith B [Tracy, CA; Talbot, Edward B [Livermore, CA; Mayer, Laurence E [Davis, CA
2008-04-08
Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.
Gibson, Crystal; Perley, Lauren; Bailey, Jonathan; Barbour, Russell; Kershaw, Trace
2015-01-01
Social network and area level characteristics have been linked to substance use. We used snowball sampling to recruit 90 predominantly African American emerging adult men who provided typical locations visited (n=510). We used generalized estimating equations to examine social network and area level predictors of substance use. Lower social network quality was associated with days of marijuana use (B=-0.0037, p<0.0001) and problem alcohol use (B=-0.0050, p=0.0181). The influence of area characteristics on substance use differed between risky and non-risky spaces. Peer and area influences are important for substance use among men, and may differ for high and low risk places. PMID:26176810
NASA Astrophysics Data System (ADS)
Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke
In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.
Predicting missing links and identifying spurious links via likelihood analysis
NASA Astrophysics Data System (ADS)
Pan, Liming; Zhou, Tao; Lü, Linyuan; Hu, Chin-Kun
2016-03-01
Real network data is often incomplete and noisy, where link prediction algorithms and spurious link identification algorithms can be applied. Thus far, it lacks a general method to transform network organizing mechanisms to link prediction algorithms. Here we use an algorithmic framework where a network’s probability is calculated according to a predefined structural Hamiltonian that takes into account the network organizing principles, and a non-observed link is scored by the conditional probability of adding the link to the observed network. Extensive numerical simulations show that the proposed algorithm has remarkably higher accuracy than the state-of-the-art methods in uncovering missing links and identifying spurious links in many complex biological and social networks. Such method also finds applications in exploring the underlying network evolutionary mechanisms.
Predicting missing links and identifying spurious links via likelihood analysis
Pan, Liming; Zhou, Tao; Lü, Linyuan; Hu, Chin-Kun
2016-01-01
Real network data is often incomplete and noisy, where link prediction algorithms and spurious link identification algorithms can be applied. Thus far, it lacks a general method to transform network organizing mechanisms to link prediction algorithms. Here we use an algorithmic framework where a network’s probability is calculated according to a predefined structural Hamiltonian that takes into account the network organizing principles, and a non-observed link is scored by the conditional probability of adding the link to the observed network. Extensive numerical simulations show that the proposed algorithm has remarkably higher accuracy than the state-of-the-art methods in uncovering missing links and identifying spurious links in many complex biological and social networks. Such method also finds applications in exploring the underlying network evolutionary mechanisms. PMID:26961965
Brachmann, Johannes; Böhm, Michael; Rybak, Karin; Klein, Gunnar; Butter, Christian; Klemm, Hanno; Schomburg, Rolf; Siebermair, Johannes; Israel, Carsten; Sinha, Anil-Martin; Drexler, Helmut
2011-07-01
The Optimization of Heart Failure Management using OptiVol Fluid Status Monitoring and CareLink (OptiLink HF) study is designed to investigate whether OptiVol fluid status monitoring with an automatically generated wireless CareAlert notification via the CareLink Network can reduce all-cause death and cardiovascular hospitalizations in an HF population, compared with standard clinical assessment. Methods Patients with newly implanted or replacement cardioverter-defibrillator devices with or without cardiac resynchronization therapy, who have chronic HF in New York Heart Association class II or III and a left ventricular ejection fraction ≤35% will be eligible to participate. Following device implantation, patients are randomized to either OptiVol fluid status monitoring through CareAlert notification or regular care (OptiLink 'on' vs. 'off'). The primary endpoint is a composite of all-cause death or cardiovascular hospitalization. It is estimated that 1000 patients will be required to demonstrate superiority of the intervention group to reduce the primary outcome by 30% with 80% power. The OptiLink HF study is designed to investigate whether early detection of congestion reduces mortality and cardiovascular hospitalization in patients with chronic HF. The study is expected to close recruitment in September 2012 and to report first results in May 2014.
The Influence of Head Motion on Intrinsic Functional Connectivity MRI
Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.
2011-01-01
Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475
Effectiveness of link prediction for face-to-face behavioral networks.
Tsugawa, Sho; Ohsaki, Hiroyuki
2013-01-01
Research on link prediction for social networks has been actively pursued. In link prediction for a given social network obtained from time-windowed observation, new link formation in the network is predicted from the topology of the obtained network. In contrast, recent advances in sensing technology have made it possible to obtain face-to-face behavioral networks, which are social networks representing face-to-face interactions among people. However, the effectiveness of link prediction techniques for face-to-face behavioral networks has not yet been explored in depth. To clarify this point, here we investigate the accuracy of conventional link prediction techniques for networks obtained from the history of face-to-face interactions among participants at an academic conference. Our findings were (1) that conventional link prediction techniques predict new link formation with a precision of 0.30-0.45 and a recall of 0.10-0.20, (2) that prolonged observation of social networks often degrades the prediction accuracy, (3) that the proposed decaying weight method leads to higher prediction accuracy than can be achieved by observing all records of communication and simply using them unmodified, and (4) that the prediction accuracy for face-to-face behavioral networks is relatively high compared to that for non-social networks, but not as high as for other types of social networks.
Ran, Bin; Song, Li; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. PMID:27448326
Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
Real-time adjusting of rainfall estimates from commercial microwave links
NASA Astrophysics Data System (ADS)
Fencl, Martin; Dohnal, Michal; Bareš, Vojtěch
2017-04-01
Urban stormwater predictions require reliable rainfall information with space-time resolution higher than commonly provided by standard rainfall monitoring networks of national weather services. Rainfall data from commercial microwave links (CMLs) could fill this gap. CMLs are line-of-sight radio connections widely used by cellular operators which operate at millimeter bands, where radio waves are attenuated by raindrops. Attenuation data of each single CML in the cellular network can be remotely accessed in (near) real-time with virtually arbitrary sampling frequency and convert to rainfall intensity. Unfortunately, rainfall estimates from CMLs can be substantially biased. Fencl et al., (2017), therefore, proposed adjusting method which enables to correct for this bias. They used rain gauge (RG) data from existing rainfall monitoring networks, which would have otherwise insufficient spatial and temporal resolution for urban rainfall monitoring when used alone without CMLs. In this investigation, we further develop the method to improve its performance in a real-time setting. First, a shortcoming of the original algorithm which delivers unreliable results at the beginning of a rainfall event is overcome by introducing model parameter prior distributions estimated from previous parameter realizations. Second, weights reflecting variance between RGs are introduced into cost function, which is minimized when optimizing model parameters. Finally, RG data used for adjusting are preprocessed by moving average filter. The performance of improved adjusting method is evaluated on four short CMLs (path length < 2 km) located in the small urban catchment (2.3 km2) in Prague-Letnany (CZ). The adjusted CMLs are compared to reference rainfall calculated from six RGs in the catchment. The suggested improvements of the method lead on average to 10% higher Nash-Sutcliffe efficiency coefficient (median value 0.85) for CML adjustment to hourly RG data. Reliability of CML rainfall estimates is especially improved at the beginning of rainfall events and during strong convective rainfalls, whereas performance during longer frontal rainfalls is almost unchanged. Our results clearly demonstrate that adjusting of CMLs to existing RGs represents a viable approach with great potential for real-time applications in stormwater management. This work was supported by the project of Czech Science Foundation (GACR) No.17-16389S. References: Fencl, M., Dohnal, M., Rieckermann, J. and Bareš, V.: Gauge-Adjusted Rainfall Estimates from Commercial Microwave Links, Hydrol Earth Syst. Sci., 2017 (accepted).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Supriya
Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) andmore » the criticality index is found to be effective for one test network to identify the vulnerable nodes.« less
A novel time series link prediction method: Learning automata approach
NASA Astrophysics Data System (ADS)
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2017-09-01
Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.
Experimental Packet Radio System Design Plan
1974-03-13
specific design parameters (packet format, data rates, modulation type, spread factor, etc.) for the initial system configuration. c. Prototype...are described along with size, weight and power estimates, and projections of per- formance parameters . d. Measurement and Test. The plan...are presented covering the communications link, system parameters , and various levels of network operation and performance. This plan is a snapshot
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-01-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
NASA Astrophysics Data System (ADS)
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Predicting links based on knowledge dissemination in complex network
NASA Astrophysics Data System (ADS)
Zhou, Wen; Jia, Yifan
2017-04-01
Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.
Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction
Wang, Danhong; Buckner, Randy L.
2014-01-01
The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions. PMID:25209275
NASA Astrophysics Data System (ADS)
Zhang, Wei; Rao, Qiaomeng
2018-01-01
In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.
NASA Astrophysics Data System (ADS)
Ryu, B. Y.; Jung, H. J.; Bae, S. H.; Choi, C. U.
2013-12-01
CO2 emissions on roads in urban centers substantially affect global warming. It is important to quantify CO2 emissions in terms of the link unit in order to reduce these emissions on the roads. Therefore, in this study, we utilized real-time traffic data and attempted to develop a methodology for estimating CO2 emissions per link unit. Because of the recent development of the vehicle-to-infrastructure (V2I) communication technology, data from probe vehicles (PVs) can be collected and speed per link unit can be calculated. Among the existing emission calculation methodologies, mesoscale modeling, which is a representative modeling measurement technique, requires speed and traffic data per link unit. As it is not feasible to install fixed detectors at every link for traffic data collection, in this study, we developed a model for traffic volume estimation by utilizing the number of PVs that can be additionally collected when the PV data are collected. Multiple linear regression and an artificial neural network (ANN) were used for estimating the traffic volume. The independent variables and input data for each model are the number of PVs, travel time index (TTI), the number of lanes, and time slots. The result from the traffic volume estimate model shows that the mean absolute percentage error (MAPE) of the ANN is 18.67%, thus proving that it is more effective. The ANN-based traffic volume estimation served as the basis for the calculation of emissions per link unit. The daily average emissions for Daejeon, where this study was based, were 2210.19 ton/day. By vehicle type, passenger cars accounted for 71.28% of the total emissions. By road, Gyeryongro emitted 125.48 ton/day, accounting for 5.68% of the total emission, the highest percentage of all roads. In terms of emissions per kilometer, Hanbatdaero had the highest emission volume, with 7.26 ton/day/km on average. This study proves that real-time traffic data allow an emissions estimate in terms of the link unit. Furthermore, an analysis of CO2 emissions can support traffic management to make decisions related to the reduction of carbon emissions.
Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks
NASA Astrophysics Data System (ADS)
Ma, Xiaoke; Sun, Penggang; Wang, Yu
2018-04-01
Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T + 1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.
Efficient network disintegration under incomplete information: the comic effect of link prediction
NASA Astrophysics Data System (ADS)
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-03-01
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.
Efficient network disintegration under incomplete information: the comic effect of link prediction.
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-03-10
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the "comic effect" of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.
Efficient network disintegration under incomplete information: the comic effect of link prediction
Tan, Suo-Yi; Wu, Jun; Lü, Linyuan; Li, Meng-Jun; Lu, Xin
2016-01-01
The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the “comic effect” of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized. PMID:26960247
Effectiveness of Link Prediction for Face-to-Face Behavioral Networks
Tsugawa, Sho; Ohsaki, Hiroyuki
2013-01-01
Research on link prediction for social networks has been actively pursued. In link prediction for a given social network obtained from time-windowed observation, new link formation in the network is predicted from the topology of the obtained network. In contrast, recent advances in sensing technology have made it possible to obtain face-to-face behavioral networks, which are social networks representing face-to-face interactions among people. However, the effectiveness of link prediction techniques for face-to-face behavioral networks has not yet been explored in depth. To clarify this point, here we investigate the accuracy of conventional link prediction techniques for networks obtained from the history of face-to-face interactions among participants at an academic conference. Our findings were (1) that conventional link prediction techniques predict new link formation with a precision of 0.30–0.45 and a recall of 0.10–0.20, (2) that prolonged observation of social networks often degrades the prediction accuracy, (3) that the proposed decaying weight method leads to higher prediction accuracy than can be achieved by observing all records of communication and simply using them unmodified, and (4) that the prediction accuracy for face-to-face behavioral networks is relatively high compared to that for non-social networks, but not as high as for other types of social networks. PMID:24339956
Identifying influential directors in the United States corporate governance network
NASA Astrophysics Data System (ADS)
Huang, Xuqing; Vodenska, Irena; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene
2011-10-01
The influence of directors has been one of the most engaging topics recently, but surprisingly little research has been done to quantitatively evaluate the influence and power of directors. We analyze the structure of the US corporate governance network for the 11-year period 1996-2006 based on director data from the Investor Responsibility Research Center director database, and we develop a centrality measure named the influence factor to estimate the influence of directors quantitatively. The US corporate governance network is a network of directors with nodes representing directors and links between two directors representing their service on common company boards. We assume that information flows in the network through information-sharing processes among linked directors. The influence factor assigned to a director is based on the level of information that a director obtains from the entire network. We find that, contrary to commonly accepted belief that directors of large companies, measured by market capitalization, are the most powerful, in some instances, the directors who are influential do not necessarily serve on boards of large companies. By applying our influence factor method to identify the influential people contained in the lists created by popular magazines such as Fortune, Networking World, and Treasury and Risk Management, we find that the influence factor method is consistently either the best or one of the two best methods in identifying powerful people compared to other general centrality measures that are used to denote the significance of a node in complex network theory.
Identifying influential directors in the United States corporate governance network.
Huang, Xuqing; Vodenska, Irena; Wang, Fengzhong; Havlin, Shlomo; Stanley, H Eugene
2011-10-01
The influence of directors has been one of the most engaging topics recently, but surprisingly little research has been done to quantitatively evaluate the influence and power of directors. We analyze the structure of the US corporate governance network for the 11-year period 1996-2006 based on director data from the Investor Responsibility Research Center director database, and we develop a centrality measure named the influence factor to estimate the influence of directors quantitatively. The US corporate governance network is a network of directors with nodes representing directors and links between two directors representing their service on common company boards. We assume that information flows in the network through information-sharing processes among linked directors. The influence factor assigned to a director is based on the level of information that a director obtains from the entire network. We find that, contrary to commonly accepted belief that directors of large companies, measured by market capitalization, are the most powerful, in some instances, the directors who are influential do not necessarily serve on boards of large companies. By applying our influence factor method to identify the influential people contained in the lists created by popular magazines such as Fortune, Networking World, and Treasury and Risk Management, we find that the influence factor method is consistently either the best or one of the two best methods in identifying powerful people compared to other general centrality measures that are used to denote the significance of a node in complex network theory.
Routing of radioactive shipments in networks with time-varying costs and curfews
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowler, L.A.; Mahmassani, H.S.
This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipmentmore » must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.« less
Brain Network Analysis from High-Resolution EEG Signals
NASA Astrophysics Data System (ADS)
de Vico Fallani, Fabrizio; Babiloni, Fabio
Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an effective methodology improving the comprehension of the complex interactions in the brain.
Routing to preserve energy in wireless networks
NASA Astrophysics Data System (ADS)
Block, Frederick J., IV
Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages increase energy consumption. We investigate the effects of time-varying interference on the lifetime of ad hoc networks. It is shown that there is a tradeoff between packet delay and node lifetime. We show that it is possible to design the system to perform well under a wide variety of channel conditions.
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang
2016-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.
Simulation Model for Scenario Optimization of the Ready-Mix Concrete Delivery Problem
NASA Astrophysics Data System (ADS)
Galić, Mario; Kraus, Ivan
2016-12-01
This paper introduces a discrete simulation model for solving routing and network material flow problems in construction projects. Before the description of the model a detailed literature review is provided. The model is verified using a case study of solving the ready-mix concrete network flow and routing problem in metropolitan area in Croatia. Within this study real-time input parameters were taken into account. Simulation model is structured in Enterprise Dynamics simulation software and Microsoft Excel linked with Google Maps. The model is dynamic, easily managed and adjustable, but also provides good estimation for minimization of costs and realization time in solving discrete routing and material network flow problems.
Estimation of Flux Between Interacting Nodes on Huge Inter-Firm Networks
NASA Astrophysics Data System (ADS)
Tamura, Koutarou; Miura, Wataru; Takayasu, Misako; Takayasu, Hideki; Kitajima, Satoshi; Goto, Hayato
We analyze Japanese inter-firm network data showing scale-free properties as an example of a real complex network. The data contains information on money flow (annual transaction volume) between about 7000 pairs of firms. We focus on this money-flow data and investigate the correlation between various quantities such as sales or link numbers. We find that the flux from a buyer to a supplier is given by the product of the fractional powers of both sales with different exponents. This result indicates that the principle of detailed balance does not hold in the real transport of money; therefore, random walk type transport models such as PageRank are not suitable.
Using minimal spanning trees to compare the reliability of network topologies
NASA Technical Reports Server (NTRS)
Leister, Karen J.; White, Allan L.; Hayhurst, Kelly J.
1990-01-01
Graph theoretic methods are applied to compute the reliability for several types of networks of moderate size. The graph theory methods used are minimal spanning trees for networks with bi-directional links and the related concept of strongly connected directed graphs for networks with uni-directional links. A comparison is conducted of ring networks and braided networks. The case is covered where just the links fail and the case where both links and nodes fail. Two different failure modes for the links are considered. For one failure mode, the link no longer carries messages. For the other failure mode, the link delivers incorrect messages. There is a description and comparison of link-redundancy versus path-redundancy as methods to achieve reliability. All the computations are carried out by means of a fault tree program.
Flood quantile estimation at ungauged sites by Bayesian networks
NASA Astrophysics Data System (ADS)
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.
Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks
NASA Astrophysics Data System (ADS)
Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min
2015-10-01
Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.
Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks
Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S.
2017-01-01
Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a=(u,v) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages. PMID:28771201
Zhu, Junxing; Zhang, Jiawei; Wu, Quanyuan; Jia, Yan; Zhou, Bin; Wei, Xiaokai; Yu, Philip S
2017-08-03
Nowadays, people are usually involved in multiple heterogeneous social networks simultaneously. Discovering the anchor links between the accounts owned by the same users across different social networks is crucial for many important inter-network applications, e.g., cross-network link transfer and cross-network recommendation. Many different supervised models have been proposed to predict anchor links so far, but they are effective only when the labeled anchor links are abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious. To overcome such a problem and utilize the numerous unlabeled anchor links in model building, in this paper, we introduce the active learning based anchor link prediction problem. Different from the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled anchor link a = ( u , v ) is identified as positive (i.e., existing), all the other unlabeled anchor links incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be rewarding in the active anchor link prediction problem. Various novel anchor link information gain measures are defined in this paper, based on which several constraint active anchor link prediction methods are introduced. Extensive experiments have been done on real-world social network datasets to compare the performance of these methods with state-of-art anchor link prediction methods. The experimental results show that the proposed Mean-entropy-based Constrained Active Learning (MC) method can outperform other methods with significant advantages.
NASA Astrophysics Data System (ADS)
Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil
2017-01-01
Disruptions to transportation networks by natural hazard events cause direct losses (e.g. by physical damage) and indirect socio-economic losses via travel delays and decreased transportation efficiency. The severity and spatial distribution of these losses varies according to user travel demands and which links, nodes or infrastructure assets are physically disrupted. Increasing transport network resilience, for example by targeted mitigation strategies, requires the identification of the critical network segments which if disrupted would incur undesirable or unacceptable socio-economic impacts. Here, these impacts are assessed on a national road transportation network by coupling hazard data with a transport network model. This process is illustrated using a case study of landslide hazards on the road network of Scotland. A set of possible landslide-prone road segments is generated using landslide susceptibility data. The results indicate that at least 152 road segments are susceptible to landslides, which could cause indirect economic losses exceeding £35 k for each day of closure. In addition, previous estimates for historic landslide events might be significant underestimates. For example, the estimated losses for the 2007 A83 ‘Rest and Be Thankful’ landslide are £80 k day-1, totalling £1.2 million over a 15 day closure, and are ˜60% greater than previous estimates. The spatial distribution of impact to road users is communicated in terms of ‘extended hazard impact footprints’. These footprints reveal previously unknown exposed communities and unanticipated spatial patterns of severe disruption. Beyond cost-benefit analyses for landslide mitigation efforts, the approach implemented is applicable to other natural hazards (e.g. flooding), combinations of hazards, or even other network disruption events.
Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.
Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo
2018-05-18
Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hotchkiss, E. R.
2017-12-01
Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C transport, transformations, and fate when scaling patterns and processes in inland waters.
Revealing how network structure affects accuracy of link prediction
NASA Astrophysics Data System (ADS)
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-08-01
Link prediction plays an important role in network reconstruction and network evolution. The network structure affects the accuracy of link prediction, which is an interesting problem. In this paper we use common neighbors and the Gini coefficient to reveal the relation between them, which can provide a good reference for the choice of a suitable link prediction algorithm according to the network structure. Moreover, the statistical analysis reveals correlation between the common neighbors index, Gini coefficient index and other indices to describe the network structure, such as Laplacian eigenvalues, clustering coefficient, degree heterogeneity, and assortativity of network. Furthermore, a new method to predict missing links is proposed. The experimental results show that the proposed algorithm yields better prediction accuracy and robustness to the network structure than existing currently used methods for a variety of real-world networks.
Brachmann, Johannes; Böhm, Michael; Rybak, Karin; Klein, Gunnar; Butter, Christian; Klemm, Hanno; Schomburg, Rolf; Siebermair, Johannes; Israel, Carsten; Sinha, Anil-Martin; Drexler, Helmut
2011-01-01
Aims The Optimization of Heart Failure Management using OptiVol Fluid Status Monitoring and CareLink (OptiLink HF) study is designed to investigate whether OptiVol fluid status monitoring with an automatically generated wireless CareAlert notification via the CareLink Network can reduce all-cause death and cardiovascular hospitalizations in an HF population, compared with standard clinical assessment. Methods Patients with newly implanted or replacement cardioverter-defibrillator devices with or without cardiac resynchronization therapy, who have chronic HF in New York Heart Association class II or III and a left ventricular ejection fraction ≤35% will be eligible to participate. Following device implantation, patients are randomized to either OptiVol fluid status monitoring through CareAlert notification or regular care (OptiLink ‘on' vs. ‘off'). The primary endpoint is a composite of all-cause death or cardiovascular hospitalization. It is estimated that 1000 patients will be required to demonstrate superiority of the intervention group to reduce the primary outcome by 30% with 80% power. Conclusion The OptiLink HF study is designed to investigate whether early detection of congestion reduces mortality and cardiovascular hospitalization in patients with chronic HF. The study is expected to close recruitment in September 2012 and to report first results in May 2014. ClinicalTrials.gov Identifier: NCT00769457 PMID:21555324
Cluster Based Location-Aided Routing Protocol for Large Scale Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Wang, Yi; Dong, Liang; Liang, Taotao; Yang, Xinyu; Zhang, Deyun
Routing algorithms with low overhead, stable link and independence of the total number of nodes in the network are essential for the design and operation of the large-scale wireless mobile ad hoc networks (MANET). In this paper, we develop and analyze the Cluster Based Location-Aided Routing Protocol for MANET (C-LAR), a scalable and effective routing algorithm for MANET. C-LAR runs on top of an adaptive cluster cover of the MANET, which can be created and maintained using, for instance, the weight-based distributed algorithm. This algorithm takes into consideration the node degree, mobility, relative distance, battery power and link stability of mobile nodes. The hierarchical structure stabilizes the end-to-end communication paths and improves the networks' scalability such that the routing overhead does not become tremendous in large scale MANET. The clusterheads form a connected virtual backbone in the network, determine the network's topology and stability, and provide an efficient approach to minimizing the flooding traffic during route discovery and speeding up this process as well. Furthermore, it is fascinating and important to investigate how to control the total number of nodes participating in a routing establishment process so as to improve the network layer performance of MANET. C-LAR is to use geographical location information provided by Global Position System to assist routing. The location information of destination node is used to predict a smaller rectangle, isosceles triangle, or circle request zone, which is selected according to the relative location of the source and the destination, that covers the estimated region in which the destination may be located. Thus, instead of searching the route in the entire network blindly, C-LAR confines the route searching space into a much smaller estimated range. Simulation results have shown that C-LAR outperforms other protocols significantly in route set up time, routing overhead, mean delay and packet collision, and simultaneously maintains low average end-to-end delay, high success delivery ratio, low control overhead, as well as low route discovery frequency.
A link prediction method for heterogeneous networks based on BP neural network
NASA Astrophysics Data System (ADS)
Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu
2018-04-01
Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity
NASA Astrophysics Data System (ADS)
Manfredi, S.; Di Tucci, E.; Latora, V.
2018-02-01
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity.
Manfredi, S; Di Tucci, E; Latora, V
2018-02-09
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
A generalized theory of preferential linking
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
NASA Astrophysics Data System (ADS)
Fencl, Martin; Jörg, Rieckermann; Vojtěch, Bareš
2015-04-01
Commercial microwave links (MWL) are point-to-point radio systems which are used in backhaul networks of cellular operators. For several years, they have been suggested as rainfall sensors complementary to rain gauges and weather radars, because, first, they operate at frequencies where rain drops represent significant source of attenuation and, second, cellular networks almost completely cover urban and rural areas. Usually, path-average rain rates along a MWL are retrieved from the rain-induced attenuation of received MWL signals with a simple model based on a power law relationship. The model is often parameterized based on the characteristics of a particular MWL, such as frequency, polarization and the drop size distribution (DSD) along the MWL. As information on the DSD is usually not available in operational conditions, the model parameters are usually considered constant. Unfortunately, this introduces bias into rainfall estimates from MWL. In this investigation, we propose a generic method to eliminate this bias in MWL rainfall estimates. Specifically, we search for attenuation statistics which makes it possible to classify rain events into distinct groups for which same power-law parameters can be used. The theoretical attenuation used in the analysis is calculated from DSD data using T-Matrix method. We test the validity of our approach on observations from a dedicated field experiment in Dübendorf (CH) with a 1.85-km long commercial dual-polarized microwave link transmitting at a frequency of 38 GHz, an autonomous network of 5 optical distrometers and 3 rain gauges distributed along the path of the MWL. The data is recorded at a high temporal resolution of up to 30s. It is further tested on data from an experimental catchment in Prague (CZ), where 14 MWLs, operating at 26, 32 and 38 GHz frequencies, and reference rainfall from three RGs is recorded every minute. Our results suggest that, for our purpose, rain events can be nicely characterized based on only the maximum rain-induced attenuation of an event. Based on our experimental data, optimal results were achieved by classifying the rain events into three distinct groups with different power-law parameters for each group. In general, the classification of rain events based on attenuation data enables to substantially reduce bias in MWL rainfall estimates due to the power-law model. Thus, when using MWLs for rainfall estimation, reference rain events should be first classified and model parameters of a power-law retrieval model should be fitted for each of class separately. However, this at least requires rainfall data in sub-hourly resolution. It seems very promising to further investigate methods to adjust local MWL rainfall estimates to rainfall observations from traditional sensors. Messer, H., Zinevich, A., Alpert, P., 2006: Environmental Monitoring by Wireless Communication Networks. Science 312, 713-713. doi:10.1126/science.1120034 Fencl, M., Rieckermann, J., Sýkora, P., Stránský D. and Bareš V. 2014: Commercial microwave links instead of rain gauges - fiction or reality? Wat. Sci. Tech., in press doi:10.2166/wst.2014.466 Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS13/127/OHK1/2T/11.
Modeling of an intelligent pressure sensor using functional link artificial neural networks.
Patra, J C; van den Bos, A
2000-01-01
A capacitor pressure sensor (CPS) is modeled for accurate readout of applied pressure using a novel artificial neural network (ANN). The proposed functional link ANN (FLANN) is a computationally efficient nonlinear network and is capable of complex nonlinear mapping between its input and output pattern space. The nonlinearity is introduced into the FLANN by passing the input pattern through a functional expansion unit. Three different polynomials such as, Chebyschev, Legendre and power series have been employed in the FLANN. The FLANN offers computational advantage over a multilayer perceptron (MLP) for similar performance in modeling of the CPS. The prime aim of the present paper is to develop an intelligent model of the CPS involving less computational complexity, so that its implementation can be economical and robust. It is shown that, over a wide temperature variation ranging from -50 to 150 degrees C, the maximum error of estimation of pressure remains within +/- 3%. With the help of computer simulation, the performance of the three types of FLANN models has been compared to that of an MLP based model.
NASA Astrophysics Data System (ADS)
Chwala, Christian; Keis, Felix; Kunstmann, Harald
2016-03-01
The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open-source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to 1 s. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real-time transfer to our database. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine ski resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of 1 s. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.
NASA Astrophysics Data System (ADS)
Chwala, C.; Keis, F.; Kunstmann, H.
2015-11-01
The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted- and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to one second. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real time transfer to our data base. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine skiing resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of one second. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.
NASA Astrophysics Data System (ADS)
Boose, Yvonne; Doumounia, Ali; Chwala, Christian; Moumouni, Sawadogo; Zougmoré, François; Kunstmann, Harald
2017-04-01
The number of rain gauges is declining worldwide. A recent promising method for alternative precipitation measurements is to derive rain rates from the attenuation of the microwave signal between remote antennas of mobile phone base stations, so called commercial microwave links (CMLs). In European countries, such as Germany, the CML technique can be used as a complementary method to the existing gauge and radar networks improving their products, for example, in mountainous terrain and urban areas. In West African countries, where a dense gauge or radar network is absent, the number of mobile phone users is rapidly increasing and so are the CML networks. Hence, the CML-derived precipitation measurements have high potential for applications such as flood warning and support of agricultural planning in this region. For typical CML bandwidths (10-40 GHz), the relationship of attenuation to rain rate is quasi-linear. However, also humidity, wet antennas or electronic noise can lead to signal interference. To distinguish these fluctuations from actual attenuation due to rain, a temporal wet (rain event occurred)/ dry (no rain event) classification is usually necessary. In dense CML networks this is possible by correlating neighboring CML time series. Another option is to use the correlation between signal time series of different frequencies or bidirectional signals. The CML network in rural areas is typically not dense enough for correlation analysis and often only one polarization and one frequency are available along a CML. In this work we therefore use cloud cover information derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer onboard the geostationary satellite METEOSAT for a wet (pixels along link are cloud covered)/ dry (no cloud along link) classification. We compare results for CMLs in Burkina Faso and Germany, which differ meteorologically (rain rate and duration, droplet size distributions) and technically (CML frequencies, lengths, signal level) and use rain gauge data as ground truth for validation.
Lee, Laura J; Symanski, Elaine; Lupo, Philip J; Tinker, Sarah C; Razzaghi, Hilda; Pompeii, Lisa A; Hoyt, Adrienne T; Canfield, Mark A; Chan, Wenyaw
2016-02-01
Knowledge of the prevalence of work-related physical activities, sedentary behaviors, and emotional stressors among pregnant women is limited, and the extent to which these exposures vary by maternal characteristics remains unclear. Data on mothers of 6,817 infants without major birth defects, with estimated delivery during 1997 through 2009 who worked during pregnancy were obtained from the National Birth Defects Prevention Study. Information on multiple domains of occupational exposures was gathered by linking mother's primary job to the Occupational Information Network Version 9.0. The most frequent estimated physical activity associated with jobs during pregnancy was standing. Of 6,337 mothers, 31.0% reported jobs associated with standing for ≥75% of their time. There was significant variability in estimated occupational exposures by maternal age, race/ethnicity, and educational level. Our findings augment existing literature on occupational physical activities, sedentary behaviors, emotional stressors, and occupational health disparities during pregnancy. © 2015 Wiley Periodicals, Inc.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Enhancing robustness of interdependent network by adding connectivity and dependence links
NASA Astrophysics Data System (ADS)
Cui, Pengshuai; Zhu, Peidong; Wang, Ke; Xun, Peng; Xia, Zhuoqun
2018-05-01
Enhancing robustness of interdependent networks by adding connectivity links has been researched extensively, however, few of them are focusing on adding both connectivity and dependence links to enhance robustness. In this paper, we aim to study how to allocate the limited costs reasonably to add both connectivity and dependence links. Firstly, we divide the attackers into stubborn attackers and smart attackers according to whether would they change their attack modes with the changing of network structure; Then by simulations, link addition strategies are given separately according to different attackers, with which we can allocate the limited costs to add connectivity links and dependence links reasonably and achieve more robustness than only adding connectivity links or dependence links. The results show that compared to only adding connectivity links or dependence links, allocating the limited resources reasonably and adding both connectivity links and dependence links could bring more robustness to the interdependent networks.
Context-based retrieval of functional modules in protein-protein interaction networks.
Dobay, Maria Pamela; Stertz, Silke; Delorenzi, Mauro
2017-03-27
Various techniques have been developed for identifying the most probable interactants of a protein under a given biological context. In this article, we dissect the effects of the choice of the protein-protein interaction network (PPI) and the manipulation of PPI settings on the network neighborhood of the influenza A virus (IAV) network, as well as hits in genome-wide small interfering RNA screen results for IAV host factors. We investigate the potential of context filtering, which uses text mining evidence linked to PPI edges, as a complement to the edge confidence scores typically provided in PPIs for filtering, for obtaining more biologically relevant network neighborhoods. Here, we estimate the maximum performance of context filtering to isolate a Kyoto Encyclopedia of Genes and Genomes (KEGG) network Ki from a union of KEGG networks and its network neighborhood. The work gives insights on the use of human PPIs in network neighborhood approaches for functional inference. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
Computing the Envelope for Stepwise Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2001-01-01
Estimating tight resource level is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with noises equal to the events and edges equal to the necessary predecessor links between events. The incremental solution of a staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. The staged algorithm has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible for use in the inner loop of search-based scheduling algorithms.
Projection-based circular constrained state estimation and fusion over long-haul links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Rao, Nageswara S.
In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance ofmore » these methods in the long-haul tracking environment using a simple example.« less
Novel method for water vapour monitoring using wireless communication networks measurements
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2009-04-01
We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface station humidity measurements.
Utility-Based Link Recommendation in Social Networks
ERIC Educational Resources Information Center
Li, Zhepeng
2013-01-01
Link recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networking platforms. Salient examples of link recommendation include "people you may know"' on Facebook and "who to follow" on Twitter. A social networking platform has two types of stakeholder:…
LinkMind: link optimization in swarming mobile sensor networks.
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070
An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm
Lu, Guangquan; Xiong, Ying; Wang, Yunpeng
2016-01-01
The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration. PMID:27768732
Link prediction in multiplex online social networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž
2017-02-01
Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.
Link prediction in multiplex online social networks.
Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž
2017-02-01
Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.
Yang, Qinmin; Jagannathan, Sarangapani
2012-04-01
In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.
RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry.
Kulka, Ulrike; Abend, Michael; Ainsbury, Elizabeth; Badie, Christophe; Barquinero, Joan Francesc; Barrios, Lleonard; Beinke, Christina; Bortolin, Emanuela; Cucu, Alexandra; De Amicis, Andrea; Domínguez, Inmaculada; Fattibene, Paola; Frøvig, Anne Marie; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Jaworska, Alicja; Kriehuber, Ralf; Lindholm, Carita; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Meschini, Roberta; Mörtl, Simone; Della Monaca, Sara; Monteiro Gil, Octávia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Patrono, Clarice; Piqueret-Stephan, Laure; Port, Matthias; Prieto, María Jesus; Quintens, Roel; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sáfrány, Géza; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Thierens, Hubert; Turai, Istvan; Trompier, François; Valente, Marco; Vaz, Pedro; Voisin, Philippe; Vral, Anne; Woda, Clemens; Zafiropoulos, Demetre; Wojcik, Andrzej
2017-01-01
A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.
SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks
NASA Astrophysics Data System (ADS)
Lin, Likun
Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS) is proposed and evaluated for improving network spectral efficiency.
Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks
Jiao, Yang; Torquato, Salvatore
2012-01-01
Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation, and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance (NMR) relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Yeong and Torquato [J. Chem. Phys. 106, 8814 (1997)]. We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations to link other physical properties to the transport properties of collagen networks is also discussed. PMID:22683739
Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols
NASA Technical Reports Server (NTRS)
Schoolcraft, Joshua; Wilson, Keith
2011-01-01
Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.
A new mutually reinforcing network node and link ranking algorithm
Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.
2015-01-01
This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958
Effect of retransmission and retrodiction on estimation and fusion in long-haul sensor networks
Liu, Qiang; Wang, Xin; Rao, Nageswara S. V.; ...
2016-01-01
In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as target tracking. In this work, we study the scenario where sensors take measurements of one or more dynamic targets and send state estimates of the targets to a fusion center via satellite links. The severe loss and delay inherent over the satellite channels reduce the number of estimates successfully arriving at the fusion center, thereby limiting the potential fusion gain and resulting in suboptimal accuracy performance of the fused estimates. In addition, the errors in target-sensor data association can alsomore » degrade the estimation performance. To mitigate the effect of imperfect communications on state estimation and fusion, we consider retransmission and retrodiction. The system adopts certain retransmission-based transport protocols so that lost messages can be recovered over time. Besides, retrodiction/smoothing techniques are applied so that the chances of incurring excess delay due to retransmission are greatly reduced. We analyze the extent to which retransmission and retrodiction can improve the performance of delay-sensitive target tracking tasks under variable communication loss and delay conditions. Lastly, simulation results of a ballistic target tracking application are shown in the end to demonstrate the validity of our analysis.« less
Wageningen Urban Rainfall Experiment 2014 (WURex14): Experimental setup and preliminary results
NASA Astrophysics Data System (ADS)
van Leth, Thomas C.; Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Hazenberg, Pieter; Berne, Alexis
2016-04-01
Microwave links from cellular communication networks have been shown to be able to provide valuable information concerning the space-time variability of rainfall. In particular over urban areas, where network densities are generally high, they have the potential to complement existing dedicated infrastructure to measure rainfall (gauges, radars). In addition, microwave links provide a great opportunity for ground-based rainfall measurement for those land surface areas of the world where gauges and radars are generally lacking. Such information is not only crucial for water management and agriculture, but also for instance for ground validation of space-borne rainfall estimates such as those provided by the GPM (Global Precipitation Measurement) mission. WURex14 is dedicated to address several errors and uncertainties associated with such quantitative precipitation estimates in detail. The core of the experiment is provided by three co-located microwave links installed between two major buildings on the Wageningen University campus, approximately 2 km apart: a 38 GHz commercial microwave link, provided by T-Mobile NL, and 26 GHz and 38 GHz (dual-polarization) research microwave links from RAL. Transmitting and receiving antennas have been attached to masts installed on the roofs of the two buildings, about 30 m above the ground. This setup has been complemented with a Scintec infrared Large-Aperture Scintillometer, installed over the same path, as well as 5 Parsivel optical disdrometers and an automated rain gauge positioned at several locations along the path. Temporal sampling of the received signals was performed at a rate of 20 Hz. The setup is being monitored by time-lapse cameras to assess the state of the antennas as well as the atmosphere. Finally, data is available from the KNMI weather radars and an automated weather station situated just outside Wageningen. The experiment has been active between August 2014 and December 2015. We give a global overview of the preliminary results.
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; De Siena, L.
2015-12-01
The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.
Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki
2006-01-01
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.
Prediction of missing links and reconstruction of complex networks
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Jun; Zeng, An
2016-04-01
Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.
Study on SOC wavelet analysis for LiFePO4 battery
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.
Maximizing synchronizability of duplex networks
NASA Astrophysics Data System (ADS)
Wei, Xiang; Emenheiser, Jeffrey; Wu, Xiaoqun; Lu, Jun-an; D'Souza, Raissa M.
2018-01-01
We study the synchronizability of duplex networks formed by two randomly generated network layers with different patterns of interlayer node connections. According to the master stability function, we use the smallest nonzero eigenvalue and the eigenratio between the largest and the second smallest eigenvalues of supra-Laplacian matrices to characterize synchronizability on various duplexes. We find that the interlayer linking weight and linking fraction have a profound impact on synchronizability of duplex networks. The increasingly large inter-layer coupling weight is found to cause either decreasing or constant synchronizability for different classes of network dynamics. In addition, negative node degree correlation across interlayer links outperforms positive degree correlation when most interlayer links are present. The reverse is true when a few interlayer links are present. The numerical results and understanding based on these representative duplex networks are illustrative and instructive for building insights into maximizing synchronizability of more realistic multiplex networks.
Gravitational wave searches using the DSN (Deep Space Network)
NASA Technical Reports Server (NTRS)
Nelson, S. J.; Armstrong, J. W.
1988-01-01
The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.
Forecasting Construction Cost Index based on visibility graph: A network approach
NASA Astrophysics Data System (ADS)
Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong
2018-03-01
Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.
Dynamics of history-dependent epidemics in temporal networks
NASA Astrophysics Data System (ADS)
Sunny, Albert; Kotnis, Bhushan; Kuri, Joy
2015-08-01
The structural properties of temporal networks often influence the dynamical processes that occur on these networks, e.g., bursty interaction patterns have been shown to slow down epidemics. In this paper, we investigate the effect of link lifetimes on the spread of history-dependent epidemics. We formulate an analytically tractable activity-driven temporal network model that explicitly incorporates link lifetimes. For Markovian link lifetimes, we use mean-field analysis for computing the epidemic threshold, while the effect of non-Markovian link lifetimes is studied using simulations. Furthermore, we also study the effect of negative correlation between the number of links spawned by an individual and the lifetimes of those links. Such negative correlations may arise due to the finite cognitive capacity of the individuals. Our investigations reveal that heavy-tailed link lifetimes slow down the epidemic, while negative correlations can reduce epidemic prevalence. We believe that our results help shed light on the role of link lifetimes in modulating diffusion processes on temporal networks.
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Dupont, C; Gonnaud, F; Touzet, S; Luciani, F; Perié, M-A; Molenat, F; Evrard, A; Fernandez, M-P; Roy, J; Rudigoz, R-C
2008-11-01
Early prenatal interview has needed the implementation of a new communication tool between follow-up pregnancy professionals: a link sheet filled and carried by patients. To assess the utilization of link sheet by trained professionals, the contribution of the interview and the patient acceptation of the link sheet. Descriptive survey from the database of link sheets returned by professionals to Aurore perinatal network and semi-guided interviews with 100 randomized patients. One thousand one hundred and nineteen link sheets were sent to Aurore perinatal network by 55 professionals out of 78 trained. For primipare, precocious prenatal interview contribution has concerned health care security (60%) and emotional security (56%). For multipare, this contribution has concerned mainly emotional security (80%). No interviewed patient has refused link sheet principle. Link sheet principle, like implemented by Aurore perinatal network, seems pertinent to professionals and patients but it constitutes only one of the elements of network elaboration of personalized care.
An Optimized Handover Scheme with Movement Trend Awareness for Body Sensor Networks
Sun, Wen; Zhang, Zhiqiang; Ji, Lianying; Wong, Wai-Choong
2013-01-01
When a body sensor network (BSN) that is linked to the backbone via a wireless network interface moves from one coverage zone to another, a handover is required to maintain network connectivity. This paper presents an optimized handover scheme with movement trend awareness for BSNs. The proposed scheme predicts the future position of a BSN user using the movement trend extracted from the historical position, and adjusts the handover decision accordingly. Handover initiation time is optimized when the unnecessary handover rate is estimated to meet the requirement and the outage probability is minimized. The proposed handover scheme is simulated in a BSN deployment area in a hospital environment in UK. Simulation results show that the proposed scheme reduces the outage probability by 22% as compared with the existing hysteresis-based handover scheme under the constraint of acceptable handover rate. PMID:23736852
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
Thompson, Dawn; Regev, Aviv; Roy, Sushmita
2015-01-01
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
The SECOQC quantum key distribution network in Vienna
NASA Astrophysics Data System (ADS)
Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J. F.; Fasel, S.; Fossier, S.; Fürst, M.; Gautier, J.-D.; Gay, O.; Gisin, N.; Grangier, P.; Happe, A.; Hasani, Y.; Hentschel, M.; Hübel, H.; Humer, G.; Länger, T.; Legré, M.; Lieger, R.; Lodewyck, J.; Lorünser, T.; Lütkenhaus, N.; Marhold, A.; Matyus, T.; Maurhart, O.; Monat, L.; Nauerth, S.; Page, J.-B.; Poppe, A.; Querasser, E.; Ribordy, G.; Robyr, S.; Salvail, L.; Sharpe, A. W.; Shields, A. J.; Stucki, D.; Suda, M.; Tamas, C.; Themel, T.; Thew, R. T.; Thoma, Y.; Treiber, A.; Trinkler, P.; Tualle-Brouri, R.; Vannel, F.; Walenta, N.; Weier, H.; Weinfurter, H.; Wimberger, I.; Yuan, Z. L.; Zbinden, H.; Zeilinger, A.
2009-07-01
In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network, and realizes end-to-end secure transport of key material between these destinations. The paper also illustrates the operation of the network in a number of typical exploitation regimes and gives an initial estimate of the network transmission capacity, defined as the maximum amount of key that can be exchanged, or alternatively the amount of information that can be transmitted with information theoretic security, between two arbitrary nodes.
Trust estimation of the semantic web using semantic web clustering
NASA Astrophysics Data System (ADS)
Shirgahi, Hossein; Mohsenzadeh, Mehran; Haj Seyyed Javadi, Hamid
2017-05-01
Development of semantic web and social network is undeniable in the Internet world these days. Widespread nature of semantic web has been very challenging to assess the trust in this field. In recent years, extensive researches have been done to estimate the trust of semantic web. Since trust of semantic web is a multidimensional problem, in this paper, we used parameters of social network authority, the value of pages links authority and semantic authority to assess the trust. Due to the large space of semantic network, we considered the problem scope to the clusters of semantic subnetworks and obtained the trust of each cluster elements as local and calculated the trust of outside resources according to their local trusts and trust of clusters to each other. According to the experimental result, the proposed method shows more than 79% Fscore that is about 11.9% in average more than Eigen, Tidal and centralised trust methods. Mean of error in this proposed method is 12.936, that is 9.75% in average less than Eigen and Tidal trust methods.
Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C
2006-02-28
We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.
Betweenness centrality in a weighted network
NASA Astrophysics Data System (ADS)
Wang, Huijuan; Hernandez, Javier Martin; van Mieghem, Piet
2008-04-01
When transport in networks follows the shortest paths, the union of all shortest path trees G∪SPT can be regarded as the “transport overlay network.” Overlay networks such as peer-to-peer networks or virtual private networks can be considered as a subgraph of G∪SPT . The traffic through the network is examined by the betweenness Bl of links in the overlay G∪SPT . The strength of disorder can be controlled by, e.g., tuning the extreme value index α of the independent and identically distributed polynomial link weights. In the strong disorder limit (α→0) , all transport flows over a critical backbone, the minimum spanning tree (MST). We investigate the betweenness distributions of wide classes of trees, such as the MST of those well-known network models and of various real-world complex networks. All these trees with different degree distributions (e.g., uniform, exponential, or power law) are found to possess a power law betweenness distribution Pr[Bl=j]˜j-c . The exponent c seems to be positively correlated with the degree variance of the tree and to be insensitive of the size N of a network. In the weak disorder regime, transport in the network traverses many links. We show that a link with smaller link weight tends to carry more traffic. This negative correlation between link weight and betweenness depends on α and the structure of the underlying topology.
Future large broadband switched satellite communications networks
NASA Technical Reports Server (NTRS)
Staelin, D. H.; Harvey, R. R.
1979-01-01
Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.
Overlapping Community Detection based on Network Decomposition
NASA Astrophysics Data System (ADS)
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Rickman, Douglas; Mohammad, Al-Hamdan; Crosson, William; Estes, Maurice, Jr.; Limaye, Ashutosh; Qualters, Judith
2008-01-01
Describes the public health surveillance efforts of NASA, in a joint effort with the Center for Disease Control (CDC). NASA/MSFC and the CDC are partners in linking nvironmental and health data to enhance public health surveillance. The use of NASA technology creates value - added geospatial products from existing environmental data sources to facilitate public health linkages. The venture sought to provide remote sensing data for the 5-country Metro-Atlanta area and to integrate this environmental data with public health data into a local network, in an effort to prevent and control environmentally related health effects. Remote sensing data used environmental data (Environmental Protection Agency [EPA] Air Quality System [AQS] ground measurements and MODIS Aerosol Optical Depth [AOD]) to estimate airborne particulate matter over Atlanta, and linked this data with health data related to asthma. The study proved the feasibility of linking environmental data (MODIS particular matter estimates and AQS) with health data (asthma). Algorithms were developed for QC, bias removal, merging MODIS and AQS particulate matter data, as well as for other applications. Additionally, a Business Associate Agreement was negotiated for a health care provider to enable sharing of Protected Health Information.
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Kurths, Jürgen
2013-04-01
Statistical analysis of dependencies amongst paleoclimate data helps to infer on the climatic processes they reflect. Three key challenges have to be addressed, however: the datasets are heterogeneous in time (i) and space (ii), and furthermore time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. To address these issues in a flexible way we developed the paleoclimate network framework, inspired by the increasing application of complex networks in climate research. Nodes in the paleoclimate network represent a paleoclimate archive, and an associated time series. Links between these nodes are assigned, if these time series are significantly similar. Therefore, the base of the paleoclimate network is formed by linear and nonlinear estimators for Pearson correlation, mutual information and event synchronization, which quantify similarity from irregularly sampled time series. Age uncertainties are propagated into the final network analysis using time series ensembles which reflect the uncertainty. We discuss how spatial heterogeneity influences the results obtained from network measures, and demonstrate the power of the approach by inferring teleconnection variability of the Asian summer monsoon for the past 1000 years.
Robustness of weighted networks
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Cassi, Davide
2018-01-01
Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.
Network Reconstruction Using Nonparametric Additive ODE Models
Henderson, James; Michailidis, George
2014-01-01
Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative estimation. PMID:24732037
NASA Astrophysics Data System (ADS)
Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo
2015-11-01
Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively implement neighbourhood-based link prediction entirely in the bipartite domain.
Measuring the value of accurate link prediction for network seeding.
Wei, Yijin; Spencer, Gwen
2017-01-01
The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.
Network formation: neighborhood structures, establishment costs, and distributed learning.
Chasparis, Georgios C; Shamma, Jeff S
2013-12-01
We consider the problem of network formation in a distributed fashion. Network formation is modeled as a strategic-form game, where agents represent nodes that form and sever unidirectional links with other nodes and derive utilities from these links. Furthermore, agents can form links only with a limited set of neighbors. Agents trade off the benefit from links, which is determined by a distance-dependent reward function, and the cost of maintaining links. When each agent acts independently, trying to maximize its own utility function, we can characterize “stable” networks through the notion of Nash equilibrium. In fact, the introduced reward and cost functions lead to Nash equilibria (networks), which exhibit several desirable properties such as connectivity, bounded-hop diameter, and efficiency (i.e., minimum number of links). Since Nash networks may not necessarily be efficient, we also explore the possibility of “shaping” the set of Nash networks through the introduction of state-based utility functions. Such utility functions may represent dynamic phenomena such as establishment costs (either positive or negative). Finally, we show how Nash networks can be the outcome of a distributed learning process. In particular, we extend previous learning processes to so-called “state-based” weakly acyclic games, and we show that the proposed network formation games belong to this class of games.
Dynamics of social balance on networks
NASA Astrophysics Data System (ADS)
Antal, T.; Krapivsky, P. L.; Redner, S.
2005-09-01
We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links are friendly—as the propensity p for friendly links in an update event passes through 1/2 . A finite network always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the network quickly reaches a balanced final state.
Archer, Charles J; Faraj, Ahmad A; Inglett, Todd A; Ratterman, Joseph D
2013-04-16
Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.
EEG functional connectivity, axon delays and white matter disease.
Nunez, Paul L; Srinivasan, Ramesh; Fields, R Douglas
2015-01-01
Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.
Kouyi, G Lipeme; Fraisse, D; Rivière, N; Guinot, V; Chocat, B
2009-01-01
Many investigations have been carried out in order to develop models which allow the linking of complex physical processes involved in urban flooding. The modelling of the interactions between overland flows on streets and flooding flows from rivers and sewer networks is one of the main objectives of recent and current research programs in hydraulics and urban hydrology. This paper outlines the original one-dimensional linking of heavy rainfall-runoff in urban areas and flooding flows from rivers and sewer networks under the RIVES project framework (Estimation of Scenario and Risks of Urban Floods). The first part of the paper highlights the capacity of Canoe software to simulate the street flows. In the second part, we show the original method of connection which enables the modelling of interactions between processes in urban flooding. Comparisons between simulated results and the results of Despotovic et al. or Gomez & Mur show a good agreement for the calibrated one-dimensional connection model. The connection operates likes a manhole with the orifice/weir coefficients used as calibration parameters. The influence of flooding flows from river was taken into account as a variable water depth boundary condition.
Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks
2017-01-01
throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH
The vulnerability of the global container shipping network to targeted link disruption
NASA Astrophysics Data System (ADS)
Viljoen, Nadia M.; Joubert, Johan W.
2016-11-01
Using complex network theory to describe the relational geography of maritime networks has provided great insights regarding their hierarchy and evolution over the past two decades. Unlike applications in other transport fields, notably air transport, complex network theory has had limited application in studying the vulnerability of maritime networks. This study uses targeted link disruption to investigate the strategy specific vulnerability of the network. Although nodal infrastructure such as ports can render a network vulnerable as a result of labour strikes, trade embargoes or natural disasters, it is the shipping lines connecting the ports that are more probably disrupted, either from within the industry, or outside. In this paper, we apply and evaluate two link-based disruption strategies on the global container shipping network, one based on link betweenness, and the other on link salience, to emulate the impact of large-scale service reconfiguration affecting priority links. The results show that the network is by and large robust to such reconfiguration. Meanwhile the flexibility of the network is reduced by both strategies, but to a greater degree by betweenness, resulting in a reduction of transshipment and dynamic rerouting potential amongst the busiest port regions. The results further show that the salience strategy is highly effective in reducing the commonality of shortest path sets, thereby diminishing opportunities for freight consolidation and scale economies.
A communications model for an ISAS to NASA span link
NASA Technical Reports Server (NTRS)
Green, James L.; Mcguire, Robert E.; Lopez-Swafford, Brian
1987-01-01
The authors propose that an initial computer-to-computer communication link use the public packet switched networks (PPSN) Venus-P in Japan and TELENET in the U.S. When the traffic warrants it, this link would then be upgraded to a dedicated leased line that directly connects into the Space Physics Analysis Network (SPAN). The proposed system of hardware and software will easily support migration to such a dedicated link. It therefore provides a cost effective approach to the network problem. Once a dedicated line becomes operation it is suggested that the public networks link and continue to coexist, providing a backup capability.
Topology control algorithm for wireless sensor networks based on Link forwarding
NASA Astrophysics Data System (ADS)
Pucuo, Cairen; Qi, Ai-qin
2018-03-01
The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.
Accuracy test for link prediction in terms of similarity index: The case of WS and BA models
NASA Astrophysics Data System (ADS)
Ahn, Min-Woo; Jung, Woo-Sung
2015-07-01
Link prediction is a technique that uses the topological information in a given network to infer the missing links in it. Since past research on link prediction has primarily focused on enhancing performance for given empirical systems, negligible attention has been devoted to link prediction with regard to network models. In this paper, we thus apply link prediction to two network models: The Watts-Strogatz (WS) model and Barabási-Albert (BA) model. We attempt to gain a better understanding of the relation between accuracy and each network parameter (mean degree, the number of nodes and the rewiring probability in the WS model) through network models. Six similarity indices are used, with precision and area under the ROC curve (AUC) value as the accuracy metrics. We observe a positive correlation between mean degree and accuracy, and size independence of the AUC value.
Dafny, Leemore S; Hendel, Igal; Marone, Victoria; Ody, Christopher
2017-09-01
Anecdotal reports and systematic research highlight the prevalence of narrow-network plans on the Affordable Care Act's health insurance Marketplaces. At the same time, Marketplace premiums in the period 2014-16 were much lower than projected by the Congressional Budget Office in 2009. Using detailed data on the breadth of both hospital and physician networks, we studied the prevalence of narrow networks and quantified the association between network breadth and premiums. Controlling for many potentially confounding factors, we found that a plan with narrow physician and hospital networks was 16 percent cheaper than a plan with broad networks for both, and that narrowing the breadth of just one type of network was associated with a 6-9 percent decrease in premiums. Narrow-network plans also have a sizable impact on federal outlays, as they depress the premium of the second-lowest-price silver plan, to which subsidy amounts are linked. Holding all else constant, we estimate that federal subsidies would have been 10.8 percent higher in 2014 had Marketplaces required all plans to offer broad provider networks. Narrow networks are a promising source of potential savings for other segments of the commercial insurance market. Project HOPE—The People-to-People Health Foundation, Inc.
Lee, Laura J.; Symanski, Elaine; Lupo, Philip J.; Tinker, Sarah C.; Razzaghi, Hilda; Pompeii, Lisa A.; Hoyt, Adrienne T.; Canfield, Mark A.; Chan, Wenyaw
2016-01-01
Background Knowledge of the prevalence of work-related physical activities, sedentary behaviors, and emotional stressors among pregnant women is limited, and the extent to which these exposures vary by maternal characteristics remains unclear. Methods Data on mothers of 6,817 infants without major birth defects, with estimated delivery during 1997 through 2009 who worked during pregnancy were obtained from the ‘National Birth Defects Prevention Study. Information on multiple domains of occupational exposures was gathered by linking mother’s primary job to the Occupational Information Network Version 9.0. Results The most frequent estimated physical activity associated with jobs during pregnancy was standing. Of 6,337 mothers, 31.0% reported jobs associated with standing for ≥ 75% of their time. There was significant variability in estimated occupational exposures by maternal age, race/ethnicity, and educational level. Conclusions Our findings augment existing literature on occupational physical activities, sedentary behaviors, emotional stressors, and occupational health disparities during pregnancy. PMID:26681357
Potential Theory for Directed Networks
Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao
2013-01-01
Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979
Matching-centrality decomposition and the forecasting of new links in networks.
Rohr, Rudolf P; Naisbit, Russell E; Mazza, Christian; Bersier, Louis-Félix
2016-02-10
Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching-centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network. © 2016 The Author(s).
Matching–centrality decomposition and the forecasting of new links in networks
Rohr, Rudolf P.; Naisbit, Russell E.; Mazza, Christian; Bersier, Louis-Félix
2016-01-01
Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching–centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network. PMID:26842568
Bridging: Locating Critical Connectors in a Network
Valente, Thomas W.; Fujimoto, Kayo
2010-01-01
This paper proposes several measures for bridging in networks derived from Granovetter's (1973) insight that links which reduce distances in a network are important structural bridges. Bridging is calculated by systematically deleting links and calculating the resultant changes in network cohesion (measured as the inverse average path length). The average change for each node's links provides an individual level measure of bridging. We also present a normalized version which controls for network size and a network level bridging index. Bridging properties are demonstrated on hypothetical networks, empirical networks, and a set of 100 randomly generated networks to show how the bridging measure correlates with existing network measures such as degree, personal network density, constraint, closeness centrality, betweenness centrality, and vitality. Bridging and the accompanying methodology provide a family of new network measures useful for studying network structure, network dynamics, and network effects on substantive behavioral phenomenon. PMID:20582157
A network model framework for prioritizing wetland conservation in the Great Plains
Albanese, Gene; Haukos, David A.
2017-01-01
ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.
Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selectedmore » link to the adjacent compute node connected to the compute node through the selected link.« less
Improving TWSTFT short-term stability by network time transfer.
Tseng, Wen-Hung; Lin, Shinn-Yan; Feng, Kai-Ming; Fujieda, M; Maeno, H
2010-01-01
Two-way satellite time and frequency transfer (TWSTFT) is one of the major techniques to compare the atomic time scales between timing laboratories. As more and more TWSTFT measurements have been performed, the large number of point-to-point 2-way time transfer links has grown to be a complex network. For future improvement of the TWSTFT performance, it is important to reduce measurement noise of the TWSTFT results. One method is using TWSTFT network time transfer. The Asia-Pacific network is an exceptional case of simultaneous TWSTFT measurements. Some indirect links through relay stations show better shortterm stabilities than the direct link because the measurement noise may be neutralized in a simultaneous measurement network. In this paper, the authors propose a feasible method to improve the short-term stability by combining the direct and indirect links in the network. Through the comparisons of time deviation (TDEV), the results of network time transfer exhibit clear improved short-term stabilities. For the links used to compare 2 hydrogen masers, the average gain of TDEV at averaging times of 1 h is 22%. As TWSTFT short-term stability can be improved by network time transfer, the network may allow a larger number of simultaneously transmitting stations.
An efficient link prediction index for complex military organization
NASA Astrophysics Data System (ADS)
Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing
2017-03-01
Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.
Heuristic approaches for energy-efficient shared restoration in WDM networks
NASA Astrophysics Data System (ADS)
Alilou, Shahab
In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared-path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.
An evidential link prediction method and link predictability based on Shannon entropy
NASA Astrophysics Data System (ADS)
Yin, Likang; Zheng, Haoyang; Bian, Tian; Deng, Yong
2017-09-01
Predicting missing links is of both theoretical value and practical interest in network science. In this paper, we empirically investigate a new link prediction method base on similarity and compare nine well-known local similarity measures on nine real networks. Most of the previous studies focus on the accuracy, however, it is crucial to consider the link predictability as an initial property of networks itself. Hence, this paper has proposed a new link prediction approach called evidential measure (EM) based on Dempster-Shafer theory. Moreover, this paper proposed a new method to measure link predictability via local information and Shannon entropy.
The CASA Dallas Fort Worth Remote Sensing Network ICT for Urban Disaster Mitigation
NASA Astrophysics Data System (ADS)
Chandrasekar, Venkatachalam; Chen, Haonan; Philips, Brenda; Seo, Dong-jun; Junyent, Francesc; Bajaj, Apoorva; Zink, Mike; Mcenery, John; Sukheswalla, Zubin; Cannon, Amy; Lyons, Eric; Westbrook, David
2013-04-01
The dual-polarization X-band radar network developed by the U.S. National Science Foundation Engineering Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) has shown great advantages for observing and prediction of hazardous weather events in the lower atmosphere (1-3 km above ground level). The network is operating though a scanning methodology called DCAS, distributed collaborative adaptive sensing, which is designed to focus on particular interesting regions of the atmosphere and disseminate information for decision-making to multiple end-users, such as emergency managers and policy analysts. Since spring 2012, CASA and the North Central Texas Council of Governments (NCTCOG) have embarked the development of Dallas Fort Worth (DFW) urban remote sensing network, including 8-node of dual-polarization X-band radars, in the populous DFW Metroplex (pop. 6.3 million in 2010). The main goal of CASA DFW urban demonstration network is to protect the safety and prosperity of humans and ecosystems through research activities that include: 1) to demonstrate the DCAS operation paradigm developed by CASA; 2) to create high-resolution, three-dimensional mapping of the meteorological conditions; 3) to help the local emergency managers issue impacts-based warnings and forecasts for severe wind, tornado, hail, and flash flood hazards. The products of this radar network will include single and multi-radar data, vector wind retrieval, quantitative precipitation estimation and nowcasting, and numerical weather predictions. In addition, the high spatial and temporal resolution rainfall products from CASA can serve as a reliable data input for distributed hydrological models in urban area. This paper presents the information and communication link between radars, rainfall product generation, hydrologic model link and end user community in the Dallas Fort Worth Urban Network. Specific details of the Information and Communication Technologies (ICT) between the various subsystems are presented.
NASA Astrophysics Data System (ADS)
Yasami, Yasser; Safaei, Farshad
2018-02-01
The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.
Safety in numbers? Tackling domestic abuse in couples and network therapies.
Galvani, Sarah A
2007-03-01
Family, network or couples-based therapies have been helping to support people with substance problems for decades. Their value in supporting a person to change their alcohol or drug use is clear. However, as links between substance use and domestic abuse are increasingly recognised, these approaches need to reflect on the potential safety risks they present to people taking part. The prevalence of domestic abuse among people receiving drug and alcohol services is considerably higher than general population estimates, yet this does not appear to have been adequately addressed in network therapies. This article suggests that this needs to change and that safety of service users needs to be at least as important as the intervention itself. It offers for debate a number of potential safety issues raised by network therapies where there is evidence of domestic abuse; it provides examples of three approaches used to marshal social and network support in substance interventions; and offers a number of suggestions for how network therapies can ensure their use remains safe and supportive where there is domestic abuse.
NASA Astrophysics Data System (ADS)
de la Mata, Tamara; Llano, Carlos
2013-07-01
Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.
2012-12-01
We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource management in the basin.
A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links
NASA Astrophysics Data System (ADS)
Türker, Ilker; Sulak, Eyüb Ekmel
2018-02-01
Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.
NASA Astrophysics Data System (ADS)
Mazurek, Przemysław
2013-09-01
Matchmoving (Match Moving) is the process used for the estimation of camera movements for further integration of acquired video image with computer graphics. The estimation of movements is possible using pattern recognition, 2D and 3D tracking algorithms. The main problem for the workflow is the partial occlusion of markers by the actor, because manual rotoscoping is necessary for fixing of the chroma-keyed footage. In the paper, the partial occlusion problem is solved using the invented, selectively active electronic markers. The sensor network with multiple infrared links detects occlusion state (no-occlusion, partial, full) and switch LED's based markers.
Predicting missing links in complex networks based on common neighbors and distance
Yang, Jinxuan; Zhang, Xiao-Dong
2016-01-01
The algorithms based on common neighbors metric to predict missing links in complex networks are very popular, but most of these algorithms do not account for missing links between nodes with no common neighbors. It is not accurate enough to reconstruct networks by using these methods in some cases especially when between nodes have less common neighbors. We proposed in this paper a new algorithm based on common neighbors and distance to improve accuracy of link prediction. Our proposed algorithm makes remarkable effect in predicting the missing links between nodes with no common neighbors and performs better than most existing currently used methods for a variety of real-world networks without increasing complexity. PMID:27905526
MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna
In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system
Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua
2018-05-01
This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.
Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
NASA Astrophysics Data System (ADS)
Khan, Akhtar Nawaz
2017-11-01
Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.
A new way to improve the robustness of complex communication networks by allocating redundancy links
NASA Astrophysics Data System (ADS)
Shi, Chunhui; Peng, Yunfeng; Zhuo, Yue; Tang, Jieying; Long, Keping
2012-03-01
We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks.
Archer, Charles J.; Faraj, Ahmad A.; Inglett, Todd A.; Ratterman, Joseph D.
2012-10-23
Methods, apparatus, and products are disclosed for providing nearest neighbor point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: identifying each link in the global combining network for each compute node of the operational group; designating one of a plurality of point-to-point class routing identifiers for each link such that no compute node in the operational group is connected to two adjacent compute nodes in the operational group with links designated for the same class routing identifiers; and configuring each compute node of the operational group for point-to-point communications with each adjacent compute node in the global combining network through the link between that compute node and that adjacent compute node using that link's designated class routing identifier.
Porous Cross-Linked Polyimide-Urea Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2015-01-01
Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.
Effect of link oriented self-healing on resilience of networks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2016-08-01
Many real, complex systems, such as the human brain and skin with their biological networks or intelligent material systems consisting of composite functional liquids, exhibit a noticeable capability of self-healing. Here, we study a network model with arbitrary degree distributions possessing natural link oriented recovery mechanisms, whereby a failed link can be recovered if its two end nodes maintain a sufficient proportion of functional links. These mechanisms are pertinent for many spontaneous healing and manual repair phenomena, interpolating smoothly between complete healing and no healing scenarios. We show that the self-healing strategies have profound impact on resilience of homogeneous and heterogeneous networks employing a percolation threshold, fraction of giant cluster, and link robustness index. The self-healing effect induces distinct resilience characteristics for scale-free networks under random failures and intentional attacks, and a resilience crossover has been observed at certain level of self-healing. Our work highlights the significance of understanding the competition between healing and collapsing in the resilience of complex networks.
Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks
NASA Astrophysics Data System (ADS)
Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei
According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.
NASA Astrophysics Data System (ADS)
Costa, A.; Molnar, P.; Schmitt, R. J. P.
2017-12-01
The grain size distribution (GSD) of river bed sediment results from the long term balance between transport capacity and sediment supply. Changes in climate and human activities may alter the spatial distribution of transport capacity and sediment supply along channels and hence impact local bedload transport and GSD. The effects of changed flow are not easily inferable due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, and the network-scale control on local sediment supply. We present a network-scale model for fractional sediment transport to quantify the impact of hydropower (HP) operations on river network GSD. We represent the river network as a series of connected links for which we extract the geometric characteristics from satellite images and a digital elevation model. We assign surface roughness based on the channel bed GSD. Bed shear stress is estimated at link-scale under the assumptions of rectangular prismatic cross sections and normal flow. The mass balance between sediment supply and transport capacity, computed with the Wilcock and Crowe model, determines transport rates of multiple grain size classes and the resulting GSD. We apply the model to the upper Rhone basin, a large Alpine basin in Switzerland. Since 1960s, changed flow conditions due to HP operations and sediment storage behind dams have potentially altered the sediment transport of the basin. However, little is known on the magnitude and spatial distribution of these changes. We force the model with time series of daily discharge derived with a spatially distributed hydrological model for pre and post HP scenarios. We initialize GSD under the assumption that coarse grains (d90) are mobilized only during mean annual maximum flows, and on the basis of ratios between d90 and characteristic diameters estimated from field measurements. Results show that effects of flow regulation vary significantly in space and in time and are grain size dependent. HP operations led to an overall reduction of sediment transport at network scale, especially in summer and for coarser grains, leading to a general coarsening of the river bed sediments at the upstream reaches. The model allows investigating the impact of modified HP operations and climate change projections on sediment dynamics at the network scale.
Aerosol profiling using the ceilometer network of the German Meteorological Service
NASA Astrophysics Data System (ADS)
Flentje, H.; Heese, B.; Reichardt, J.; Thomas, W.
2010-08-01
The German Meteorological Service (DWD) operates about 52 lidar ceilometers within its synoptic observations network, covering Germany. These affordable low-power lidar systems provide spatially and temporally high resolved aerosol backscatter profiles which can operationally provide quasi 3-D distributions of particle backscatter intensity. Intentionally designed for cloud height detection, recent significant improvements allow following the development of the boundary layer and to detect denser particle plumes in the free tropospere like volcanic ash, Saharan dust or fire smoke. Thus the network builds a powerful aerosol plume alerting and tracking system. If auxiliary aerosol information is available, the particle backscatter coefficient, the extinction coefficient and even particle mass concentrations may be estimated, with however large uncertainties. Therefore, large synergistic benefit is achieved if the ceilometers are linked to existing lidar networks like EARLINET or integrated into WMO's envisioined Global Aerosol Lidar Observation Network GALION. To this end, we demonstrate the potential and limitations of ceilometer networks by means of three representative aerosol episodes over Europe, namely Sahara dust, Mediterranean fire smoke and, more detailed, the Icelandic Eyjafjoll volcano eruption from mid April 2010 onwards. The DWD (Jenoptik CHM15k) lidar ceilometer network tracked the Eyjafjoll ash layers over Germany and roughly estimated peak extinction coefficients and mass concentrations on 17 April of 4-6(± 2) 10-4 m-1 and 500-750(± 300) μg/m-3, respectively, based on co-located aerosol optical depth, nephelometer (scattering coefficient) and particle mass concentration measurements. Though large, the uncertainties are small enough to let the network suit for example as aviation advisory tool, indicating whether the legal flight ban threshold of presently 2 mg/m3 is imminent to be exceeded.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... seeks comment on the scope of its ancillary authority with regard to the matters described in this NOI... networks. For example, to what extent are core and edge network links protected with ``dark'' backup links...
Extracting functionally feedforward networks from a population of spiking neurons
Vincent, Kathleen; Tauskela, Joseph S.; Thivierge, Jean-Philippe
2012-01-01
Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABAA receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits. PMID:23091458
Extracting functionally feedforward networks from a population of spiking neurons.
Vincent, Kathleen; Tauskela, Joseph S; Thivierge, Jean-Philippe
2012-01-01
Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABA(A) receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits.
Enns, Eva A; Brandeau, Margaret L
2015-04-21
For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two "preventive" approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two "reactive" approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdös-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdös-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing which nodes are initially infected by comparing the performance improvement achieved by reactive over preventive strategies. We find that such information is most valuable for moderate budget levels, with increasing value as disease spread becomes more likely (due to either increased connectedness of the network or increased infectiousness of the disease). Copyright © 2015 Elsevier Ltd. All rights reserved.
Brandeau, Margaret L.
2015-01-01
For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two “preventive” approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two “reactive” approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdős-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdős-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing which nodes are initially infected by comparing the performance improvement achieved by reactive over preventive strategies. We find that such information is most valuable for moderate budget levels, with increasing value as disease spread becomes more likely (due to either increased connectedness of the network or increased infectiousness of the disease). PMID:25698229
A Game Theoretic Framework for Power Control in Wireless Sensor Networks (POSTPRINT)
2010-02-01
which the sensor nodes compute based on past observations. Correspondingly, Pe can only be estimated; for example, with a noncoherent FSK modula...bit error probability for the link (i ! j) is given by some inverse function of j. For example, with noncoherent FSK modulation scheme, Pe ¼ 0:5e j...show the results for two different modulation schemes: DPSK and noncoherent PSK. As expected, with improvement in channel condition, i.e., with increase
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.
Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2010-08-02
We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Lu, Zhe-Ming; Cassi, Davide; Scotognella, Francesco
2018-02-01
Complex network response to node loss is a central question in different fields of science ranging from physics, sociology, biology to ecology. Previous studies considered binary networks where the weight of the links is not accounted for. However, in real-world networks the weights of connections can be widely different. Here, we analyzed the response of real-world road traffic complex network of Beijing, the most prosperous city in China. We produced nodes removal attack simulations using classic binary node features and we introduced weighted ranks for node importance. We measured the network functioning during nodes removal with three different parameters: the size of the largest connected cluster (LCC), the binary network efficiency (Bin EFF) and the weighted network efficiency (Weg EFF). We find that removing nodes according to weighted rank, i.e. considering the weight of the links as a number of taxi flows along the roads, produced in general the highest damage in the system. Our results show that: (i) in order to model Beijing road complex networks response to nodes (intersections) failure, it is necessary to consider the weight of the links; (ii) to discover the best attack strategy, it is important to use nodes rank accounting links weight.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng
2017-10-01
So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.
Reliability analysis of degradable networks with modified BPR
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Zhou, Chao-Fan; Jia, Bin; Zhu, Hua-Bing
2017-12-01
In this paper, the effect of the speed limit on degradable networks with capacity restrictions and the forced flow is investigated. The link performance function considering the road capacity is proposed. Additionally, the probability density distribution and the cumulative distribution of link travel time are introduced in the degradable network. By the mean of distinguishing the value of the speed limit, four cases are discussed, respectively. Means and variances of link travel time and route one of the degradable road network are calculated. Besides, by the mean of performing numerical simulation experiments in a specific network, it is found that the speed limit strategy can reduce the travel time budget and mean travel time of link and route. Moreover, it reveals that the speed limit strategy can cut down variances of the travel time of networks to some extent.
Mixed-method Exploration of Social Network Links to Participation
Kreider, Consuelo M.; Bendixen, Roxanna M.; Mann, William C.; Young, Mary Ellen; McCarty, Christopher
2015-01-01
The people who regularly interact with an adolescent form that youth's social network, which may impact participation. We investigated the relationship of social networks to participation using personal network analysis and individual interviews. The sample included 36 youth, age 11 – 16 years. Nineteen had diagnoses of learning disability, attention disorder, or high-functioning autism and 17 were typically developing. Network analysis yielded 10 network variables, of which 8 measured network composition and 2 measured network structure, with significant links to at least one measure of participation using the Children's Assessment of Participation and Enjoyment (CAPE). Interviews from youth in the clinical group yielded description of strategies used to negotiate social interactions, as well as processes and reasoning used to remain engaged within social networks. Findings contribute to understanding the ways social networks are linked to youth participation and suggest the potential of social network factors for predicting rehabilitation outcomes. PMID:26594737
Lamontagne, Marie-Eve
2013-01-01
Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.
Attitude Estimation in Fractionated Spacecraft Cluster Systems
NASA Technical Reports Server (NTRS)
Hadaegh, Fred Y.; Blackmore, James C.
2011-01-01
An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.
Time synchronization of new-generation BDS satellites using inter-satellite link measurements
NASA Astrophysics Data System (ADS)
Pan, Junyang; Hu, Xiaogong; Zhou, Shanshi; Tang, Chengpan; Guo, Rui; Zhu, Lingfeng; Tang, Guifeng; Hu, Guangming
2018-01-01
Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4 cm and 1 cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3 ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3 ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86 ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57 ns (RMS), which is a significant improvement by a factor of 3-4.
Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks.
Katiravan, Jeevaa; Sylvia, D; Rao, D Srinivasa
2015-01-01
In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.
Reliable Broadcast under Cascading Failures in Interdependent Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Sisi; Lee, Sangkeun; Chinthavali, Supriya
Reliable broadcast is an essential tool to disseminate information among a set of nodes in the presence of failures. We present a novel study of reliable broadcast in interdependent networks, in which the failures in one network may cascade to another network. In particular, we focus on the interdependency between the communication network and power grid network, where the power grid depends on the signals from the communication network for control and the communication network depends on the grid for power. In this paper, we build a resilient solution to handle crash failures in the communication network that may causemore » cascading failures and may even partition the network. In order to guarantee that all the correct nodes deliver the messages, we use soft links, which are inactive backup links to non-neighboring nodes that are only active when failures occur. At the core of our work is a fully distributed algorithm for the nodes to predict and collect the information of cascading failures so that soft links can be maintained to correct nodes prior to the failures. In the presence of failures, soft links are activated to guarantee message delivery and new soft links are built accordingly for long term robustness. Our evaluation results show that the algorithm achieves low packet drop rate and handles cascading failures with little overhead.« less
Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks
Katiravan, Jeevaa; Sylvia, D.; Rao, D. Srinivasa
2015-01-01
In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network. PMID:26167529
Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections
NASA Technical Reports Server (NTRS)
Tchorowski, Nicole; Murawski, Robert
2014-01-01
New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option, such as during real time transmissions, the SLE implementation cannot support high data rate communication.
Joint Improvised Explosive Device Defeat Organization
2009-01-01
searches increased exponentially. Palantir . Developed to provide C-IED network analysts with a collaborative link analysis tool, Palantir is used for...share data between teams and between other link analysis applications. Palantir outputs portray linked nodal networks, histogram data, and timeline...views. During FY 2008, the Palantir system was accessed by over 160 people investigating IED networks. Analyses by these people supported over
Interference Cognizant Network Scheduling
NASA Technical Reports Server (NTRS)
Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)
2017-01-01
Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.
Link prediction based on local community properties
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao
2016-09-01
The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.
NASA Astrophysics Data System (ADS)
Stahn, Kirsten; Lehnertz, Klaus
2017-12-01
We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.
Archer, Charles Jens [Rochester, MN; Musselman, Roy Glenn [Rochester, MN; Peters, Amanda [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Swartz, Brent Allen [Chippewa Falls, WI; Wallenfelt, Brian Paul [Eden Prairie, MN
2011-10-04
A massively parallel nodal computer system periodically collects and broadcasts usage data for an internal communications network. A node sending data over the network makes a global routing determination using the network usage data. Preferably, network usage data comprises an N-bit usage value for each output buffer associated with a network link. An optimum routing is determined by summing the N-bit values associated with each link through which a data packet must pass, and comparing the sums associated with different possible routes.
On the Hipparcos Link to the ICRF derived from VLA and MERLIN radio astrometry
NASA Astrophysics Data System (ADS)
Hering, R.; Walter, H. G.
2007-06-01
Positions and proper motions obtained from observations by the very large array (VLA) and the multi-element radio-linked interferometer network (MERLIN) are used to establish the link of the Hipparcos Celestial Reference Frame (HCRF) to the International Celestial Reference Frame (ICRF). The VLA and MERLIN data are apparently the latest ones published in the literature. Their mean epoch at around 2001 is about 10 years after the epoch of the Hipparcos catalogue and, therefore, the data are considered suitable to check the Hipparcos link established at epoch 1991.25. The parameters of the link, i.e., the angles of frame orientation and the angular rates of frame rotation, are estimated by fitting these parameters to the differences of the optical and radio positions and proper motions of stars common to the Hipparcos catalogue and the VLA and MERLIN data. Both the estimates of the angles of orientation and the angular rates of rotation show nearly consistent but insignificant results for all samples of stars treated. We conclude that not only the size of the samples of 9 15 stars is too small, but also that the accuracy of the radio positions and, above all, of the radio proper motions is insufficient, the latter being based on early-epoch star positions of low accuracy. The present observational data at epoch 2001 suggest that maintenance of the Hipparcos frame is not feasible at this stage.
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan
2018-02-01
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.
Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area
NASA Astrophysics Data System (ADS)
Guillemot, C.; Langbein, J. O.; Murray, J. R.
2012-12-01
The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and automatically select the "next best" station to use as reference. We are also working towards minimizing the loss of streamed data during concurrent data downloads by improving file management on the GPS receivers.
An energy-efficient rate adaptive media access protocol (RA-MAC) for long-lived sensor networks.
Hu, Wen; Chen, Quanjun; Corke, Peter; O'Rourke, Damien
2010-01-01
We introduce an energy-efficient Rate Adaptive Media Access Control (RA-MAC) algorithm for long-lived Wireless Sensor Networks (WSNs). Previous research shows that the dynamic and lossy nature of wireless communications is one of the major challenges to reliable data delivery in WSNs. RA-MAC achieves high link reliability in such situations by dynamically trading off data rate for channel gain. The extra gain that can be achieved reduces the packet loss rate which contributes to reduced energy expenditure through a reduced numbers of retransmissions. We achieve this at the expense of raw bit rate which generally far exceeds the application's link requirement. To minimize communication energy consumption, RA-MAC selects the optimal data rate based on the estimated link quality at each data rate and an analytical model of the energy consumption. Our model shows how the selected data rate depends on different channel conditions in order to minimize energy consumption. We have implemented RA-MAC in TinyOS for an off-the-shelf sensor platform (the TinyNode) on top of a state-of-the-art WSN Media Access Control Protocol, SCP-MAC, and evaluated its performance by comparing our implementation with the original SCP-MAC using both simulation and experiment.
Joint transfer of time and frequency signals and multi-point synchronization via fiber network
NASA Astrophysics Data System (ADS)
Nan, Cheng; Wei, Chen; Qin, Liu; Dan, Xu; Fei, Yang; You-Zhen, Gui; Hai-Wen, Cai
2016-01-01
A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimentally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8×10-14 at 1 s and 2.0×10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropolitan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0×10-14 averaged in 1 s and 1.4×10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3×10-14 and 1.7×10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61405227).
A constraint optimization based virtual network mapping method
NASA Astrophysics Data System (ADS)
Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen
2013-03-01
Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-11-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.
Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea
2016-01-01
Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285
Node similarity within subgraphs of protein interaction networks
NASA Astrophysics Data System (ADS)
Penner, Orion; Sood, Vishal; Musso, Gabriel; Baskerville, Kim; Grassberger, Peter; Paczuski, Maya
2008-06-01
We propose a biologically motivated quantity, twinness, to evaluate local similarity between nodes in a network. The twinness of a pair of nodes is the number of connected, labeled subgraphs of size n in which the two nodes possess identical neighbours. The graph animal algorithm is used to estimate twinness for each pair of nodes (for subgraph sizes n=4 to n=12) in four different protein interaction networks (PINs). These include an Escherichia coli PIN and three Saccharomyces cerevisiae PINs - each obtained using state-of-the-art high-throughput methods. In almost all cases, the average twinness of node pairs is vastly higher than that expected from a null model obtained by switching links. For all n, we observe a difference in the ratio of type A twins (which are unlinked pairs) to type B twins (which are linked pairs) distinguishing the prokaryote E. coli from the eukaryote S. cerevisiae. Interaction similarity is expected due to gene duplication, and whole genome duplication paralogues in S. cerevisiae have been reported to co-cluster into the same complexes. Indeed, we find that these paralogous proteins are over-represented as twins compared to pairs chosen at random. These results indicate that twinness can detect ancestral relationships from currently available PIN data.
Self-aligning LED-based optical link
NASA Astrophysics Data System (ADS)
Shen, Thomas C.; Drost, Robert J.; Rzasa, John R.; Sadler, Brian M.; Davis, Christopher C.
2016-09-01
The steady advances in light-emitting diode (LED) technology have motivated the use of LEDs in optical wireless communication (OWC) applications such as indoor local area networks (LANs) and communication between mobile platforms (e.g., robots, vehicles). In contrast to traditional radio frequency (RF) wireless communication, OWC utilizes electromagnetic spectrum that is largely unregulated and unrestricted. OWC communication may be especially useful in RF-denied environments, in which RF communication may be prohibited or undesirable. However, OWC does present some challenges, including the need to maintain alignment between potentially moving nodes. We describe a novel system for link alignment that is composed of a hyperboloidal mirror, camera, and gimbal. The experimental system is able to use the mirror and camera to detect an LED beacon of a neighboring node and estimate its bearing (azimuth and elevation), point the gimbal towards the beacon, and establish an optical link.
Impact of observational incompleteness on the structural properties of protein interaction networks
NASA Astrophysics Data System (ADS)
Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin
2007-01-01
The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.
NASA Astrophysics Data System (ADS)
Zdravković, Nemanja; Cvetkovic, Aleksandra; Milic, Dejan; Djordjevic, Goran T.
2017-09-01
This paper analyses end-to-end packet error rate (PER) of a free-space optical decode-and-forward cooperative network over a gamma-gamma atmospheric turbulence channel in the presence of temporary random link blockage. Closed-form analytical expressions for PER are derived for the cases with and without transmission links being prone to blockage. Two cooperation protocols (denoted as 'selfish' and 'pilot-adaptive') are presented and compared, where the latter accounts for the presence of blockage and adapts transmission power. The influence of scintillation, link distance, average transmitted signal power, network topology and probability of an uplink and/or internode link being blocked are discussed when the destination applies equal gain combining. The results show that link blockage caused by obstacles can degrade system performance, causing an unavoidable PER floor. The implementation of the pilot-adaptive protocol improves performance when compared to the selfish protocol, diminishing internode link blockage and lowering the PER floor, especially for larger networks.
Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Gao, Jay L.; Mills, David
2010-01-01
Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.
Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling
2013-01-01
Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models.more » One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.« less
Dielectric monitoring of carbon nanotube network formation in curing thermosetting nanocomposites
NASA Astrophysics Data System (ADS)
Battisti, A.; Skordos, A. A.; Partridge, I. K.
2009-08-01
This paper focuses on monitoring of carbon nanotube (CNT) network development during the cure of unsaturated polyester nanocomposites by means of electrical impedance spectroscopy. A phenomenological model of the dielectric response is developed using equivalent circuit analysis. The model comprises two parallel RC elements connected in series, each of them giving rise to a semicircular arc in impedance complex plane plots. An established inverse modelling methodology is utilized for the estimation of the parameters of the corresponding equivalent circuit. This allows a quantification of the evolution of two separate processes corresponding to the two parallel RC elements. The high frequency process, which is attributed to CNT aggregates, shows a monotonic decrease in characteristic time during the cure. In contrast, the low frequency process, which corresponds to inter-aggregate phenomena, shows a more complex behaviour explained by the interplay between conductive network development and the cross-linking of the polymer.
Networked Airborne Communications Using Adaptive Multi Beam Directional Links
2016-03-05
Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach
2012-01-01
Computational approaches to generate hypotheses from biomedical literature have been studied intensively in recent years. Nevertheless, it still remains a challenge to automatically discover novel, cross-silo biomedical hypotheses from large-scale literature repositories. In order to address this challenge, we first model a biomedical literature repository as a comprehensive network of biomedical concepts and formulate hypotheses generation as a process of link discovery on the concept network. We extract the relevant information from the biomedical literature corpus and generate a concept network and concept-author map on a cluster using Map-Reduce frame-work. We extract a set of heterogeneous features such as random walk based features, neighborhood features and common author features. The potential number of links to consider for the possibility of link discovery is large in our concept network and to address the scalability problem, the features from a concept network are extracted using a cluster with Map-Reduce framework. We further model link discovery as a classification problem carried out on a training data set automatically extracted from two network snapshots taken in two consecutive time duration. A set of heterogeneous features, which cover both topological and semantic features derived from the concept network, have been studied with respect to their impacts on the accuracy of the proposed supervised link discovery process. A case study of hypotheses generation based on the proposed method has been presented in the paper. PMID:22759614
Scaling of peak flows with constant flow velocity in random self-similar networks
Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.
2011-01-01
A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs.
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.
Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di
2017-12-05
Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.
NewAge: a semi-distributed hydrological model as a dynamical system, and something more.
NASA Astrophysics Data System (ADS)
Rigon, Riccardo; Franceschi, Silvia; Antonello, Andrea; Endrizzi, Stefano; Formetta, Giuseppe
2010-05-01
We describe and analyse the performances of the semi-distributed hydrological model NewAGE. This model itself is made-up of five main parts: the radiation budget estimation, the snow modelling, the evapotranspiration part, the hillslope runoff budget and the runoff aggregation in the river network, and finally the flood propagation. The model concept is based on the idea the elementary units are the hillslopes for each one the model gives the estimates of the prognostic simulated variables (one estimate for variable). Each "hillslope" does not need to coincide to the real hillslope, and can actually cover a small basin, up to some square kilometres. It constitutes the elementary "grid" element of the model. Each "hillslope" is connected to the others by the channel network. In turn, this is represented by an oriented graph, whose links are numbered through a generalisation of the Pfafstetter ordering. The topological partition of the basin is performed by a proper set of tools in JGrass. The mass budget for each hillslope is performed according to a suitable modification of Duffy (1996) dynamical model of hillslope runoff. Discharge in each link of the river network is evaluated according to Cuencas (2005). Radiation is calculated accounting for the sub-hillslope-variability in accord to a suitable scheme described in this contribution. Evapotranspiration estimation uses the Penman-Monteith formula, and includes hillslope variability in land use, soil cover and hydrological state. Flood wave propagation for the main streams can be estimated with a solver of the 1D de Saint Venant equation. Snow is modelled by a custom implementation of the Utah Energy Balance concepts. This model can simulate all the parts of the hydrological cycle, but besides being also a model of the physical processes, it also implements the infrastructure dealing with human works and reservoirs. These modelling parts are supported by appropriate ancillary modules for the treatment of the meteorological data. The various pieces of NewAGE are implemented as code components according the the OpenMI 1.4 standard, and interface to the users by means of the GIS system JGrass. It is distributed under the GPL3 license. Here we report here about two case studies made up of the model regarding the two rivers Passirio and Adige with outlet in Bozen, and covering respectively the discharge and the snow cover estimation. This last is compared to MODIS product.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Method development estimating ambient mercury concentration from monitored mercury wet deposition
NASA Astrophysics Data System (ADS)
Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.
2013-05-01
Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.
On the influence of latency estimation on dynamic group communication using overlays
NASA Astrophysics Data System (ADS)
Vik, Knut-Helge; Griwodz, Carsten; Halvorsen, Pål
2009-01-01
Distributed interactive applications tend to have stringent latency requirements and some may have high bandwidth demands. Many of them have also very dynamic user groups for which all-to-all communication is needed. In online multiplayer games, for example, such groups are determined through region-of-interest management in the application. We have investigated a variety of group management approaches for overlay networks in earlier work and shown that several useful tree heuristics exist. However, these heuristics require full knowledge of all overlay link latencies. Since this is not scalable, we investigate the effects that latency estimation techqniues have ton the quality of overlay tree constructions. We do this by evaluating one example of our group management approaches in Planetlab and examing how latency estimation techqniues influence their quality. Specifically, we investigate how two well-known latency estimation techniques, Vivaldi and Netvigator, affect the quality of tree building.
Li, Fan; Li, Xinying; Yu, Jianjun; Chen, Lin
2014-09-22
We experimentally demonstrated the transmission of 79.86-Gb/s discrete-Fourier-transform spread 32 QAM discrete multi-tone (DFT-spread 32 QAM-DMT) signal over 20-km standard single-mode fiber (SSMF) utilizing directly modulated laser (DML). The experimental results show DFT-spread effectively reduces Peak-to-Average Power Ratio (PAPR) of DMT signal, and also well overcomes narrowband interference and high frequencies power attenuation. We compared different types of training sequence (TS) symbols and found that the optimized TS for channel estimation is the symbol with digital BPSK/QPSK modulation format due to its best performance against optical link noise during channel estimation.
Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy.
Youssofzadeh, Vahab; Agler, William; Tenney, Jeffrey R; Kadis, Darren S
2018-06-04
Absence seizures are thought to be linked to abnormal interplays between regions of a thalamocortical network. However, the complexity of this widespread network makes characterizing the functional interactions among various brain regions challenging. Using whole-brain functional connectivity and network analysis of magnetoencephalography (MEG) data, we explored pre-treatment brain hubs ("highly connected nodes") of patients aged 6 to 12 years with childhood absence epilepsy. We analyzed ictal MEG data of 74 seizures from 16 patients. We employed a time-domain beamformer technique to estimate MEG sources in broadband (1-40 Hz) where the greatest power changes between ictal and preictal periods were identified. A phase synchrony measure, phase locking value, and a graph theory metric, eigenvector centrality (EVC), were utilized to quantify voxel-level connectivity and network hubs of ictal > preictal periods, respectively. A volumetric atlas containing 116 regions of interests (ROIs) was utilized to summarize the network measures. ROIs with EVC (z-score) > 1.96 were reported as critical hubs. ROIs analysis revealed functional-anatomical hubs in a widespread network containing bilateral precuneus (right/left, z = 2.39, 2.18), left thalamus (z = 2.28), and three anterior cerebellar subunits of lobule "IV-V" (z = 3.9), vermis "IV-V" (z = 3.57), and lobule "III" (z = 2.03). Findings suggest that highly connected brain areas or hubs are present in focal cortical, subcortical, and cerebellar regions during absence seizures. Hubs in thalami, precuneus and cingulate cortex generally support a theory of rapidly engaging and bilaterally distributed networks of cortical and subcortical regions responsible for seizures generation, whereas hubs in anterior cerebellar regions may be linked to terminating motor automatisms frequently seen during typical absence seizures. Whole-brain network connectivity is a powerful analytic tool to reveal focal components of absence seizures in MEG. Our investigations can lead to a better understanding of the pathophysiology of CAE. Copyright © 2018 Elsevier B.V. All rights reserved.
Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger
2013-04-22
For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.
Multispecialty physician networks in Ontario.
Stukel, Therese A; Glazier, Richard H; Schultz, Susan E; Guan, Jun; Zagorski, Brandon M; Gozdyra, Peter; Henry, David A
2013-01-01
Large multispecialty physician group practices, with a central role for primary care practitioners, have been shown to achieve high-quality, low-cost care for patients with chronic disease. We assessed the extent to which informal multispecialty physician networks in Ontario could be identified by using health administrative data to exploit natural linkages among patients, physicians, and hospitals based on existing patient flow. We linked each Ontario resident to his or her usual provider of primary care over the period from fiscal year 2008/2009 to fiscal year 2010/2011. We linked each specialist to the hospital where he or she performed the most inpatient services. We linked each primary care physician to the hospital where most of his or her ambulatory patients were admitted for non-maternal medical care. Each resident was then linked to the same hospital as his or her usual provider of primary care. We computed "loyalty" as the proportion of care to network residents provided by physicians and hospitals within their network. Smaller clusters were aggregated to create networks based on a minimum population size, distance, and loyalty. Networks were not constrained geographically. We identified 78 multispecialty physician networks, comprising 12,410 primary care physicians, 14,687 specialists, and 175 acute care hospitals serving a total of 12,917,178 people. Median network size was 134,723 residents, 125 primary care physicians, and 143 specialists. Virtually all eligible residents were linked to a usual provider of primary care and to a network. Most specialists (93.5%) and primary care physicians (98.2%) were linked to a hospital. Median network physician loyalty was 68.4% for all physician visits and 81.1% for primary care visits. Median non-maternal admission loyalty was 67.4%. Urban networks had lower loyalties and were less self-contained but had more health care resources. We demonstrated the feasibility of identifying informal multispecialty physician networks in Ontario on the basis of patterns of health care-seeking behaviour. Networks were reasonably self-contained, in that individual residents received most of their care from providers within their respective networks. Formal constitution of networks could foster accountability for efficient, integrated care through care management tools and quality improvement, the ideas behind "accountable care organizations."
2011-01-01
Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by using our reconstructed network. Conclusions The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network reconstruction algorithms significantly improves both detection of new links and reduces that rate of false positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links with promising biological significance for isobutanol stress and other conditions. PMID:21668997
Community detection in complex networks using link prediction
NASA Astrophysics Data System (ADS)
Cheng, Hui-Min; Ning, Yi-Zi; Yin, Zhao; Yan, Chao; Liu, Xin; Zhang, Zhong-Yuan
2018-01-01
Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detection algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baselines. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.
Joint brain connectivity estimation from diffusion and functional MRI data
NASA Astrophysics Data System (ADS)
Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.
2015-03-01
Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).
Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions.
Ye, Bao-Fen; Zhao, Yuan-Jin; Cheng, Yao; Li, Ting-Ting; Xie, Zhuo-Ying; Zhao, Xiang-Wei; Gu, Zhong-Ze
2012-09-28
We have developed a robust method for the visual detection of heavy metal ions (such as Hg(2+) and Pb(2+)) by using aptamer-functionalized colloidal photonic crystal hydrogel (CPCH) films. The CPCHs were derived from a colloidal crystal array of monodisperse silica nanoparticles, which were polymerized within the polyacrylamide hydrogel. The heavy metal ion-responsive aptamers were then cross-linked in the hydrogel network. During detection, the specific binding of heavy metal ions and cross-linked single-stranded aptamers in the hydrogel network caused the hydrogel to shrink, which was detected as a corresponding blue shift in the Bragg diffraction peak position of the CPCHs. The shift value could be used to estimate, quantitatively, the amount of the target ion. It was demonstrated that our CPCH aptasensor could screen a wide concentration range of heavy metal ions with high selectivity and reversibility. In addition, these aptasensors could be rehydrated from dried gels for storage and aptamer protection. It is anticipated that our technology may also be used in the screening of a broad range of metal ions in food, drugs and the environment.
Lamontagne, Marie-Eve
2013-01-01
Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281
DOT National Transportation Integrated Search
2010-05-31
In this research project, transportation flexibility and reliability concepts are extended and applied : to a new method for identifying the most critical links in a road network. Current transportation : management practices typically utilize locali...
Kreakie, B J; Hychka, K C; Belaire, J A; Minor, E; Walker, H A
2016-02-01
Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago (n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.
NASA Astrophysics Data System (ADS)
Kreakie, B. J.; Hychka, K. C.; Belaire, J. A.; Minor, E.; Walker, H. A.
2016-02-01
Social network analysis (SNA) is based on a conceptual network representation of social interactions and is an invaluable tool for conservation professionals to increase collaboration, improve information flow, and increase efficiency. We present two approaches to constructing internet-based social networks, and use an existing traditional (survey-based) case study to illustrate in a familiar context the deviations in methods and results. Internet-based approaches to SNA offer a means to overcome institutional hurdles to conducting survey-based SNA, provide unique insight into an institution's web presences, allow for easy snowballing (iterative process that incorporates new nodes in the network), and afford monitoring of social networks through time. The internet-based approaches differ in link definition: hyperlink is based on links on a website that redirect to a different website and relatedness links are based on a Google's "relatedness" operator that identifies pages "similar" to a URL. All networks were initiated with the same start nodes [members of a conservation alliance for the Calumet region around Chicago ( n = 130)], but the resulting networks vary drastically from one another. Interpretation of the resulting networks is highly contingent upon how the links were defined.
Computer hardware fault administration
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-09-14
Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.
Structural Preferential Attachment: Network Organization beyond the Link
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.
2011-10-01
We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.
Emergence of fractal scaling in complex networks
NASA Astrophysics Data System (ADS)
Wei, Zong-Wen; Wang, Bing-Hong
2016-09-01
Some real-world networks are shown to be fractal or self-similar. It is widespread that such a phenomenon originates from the repulsion between hubs or disassortativity. Here we show that this common belief fails to capture the causality. Our key insight to address it is to pinpoint links critical to fractality. Those links with small edge betweenness centrality (BC) constitute a special architecture called fractal reference system, which gives birth to the fractal structure of those reported networks. In contrast, a small amount of links with high BC enable small-world effects, hiding the intrinsic fractality. With enough of such links removed, fractal scaling spontaneously arises from nonfractal networks. Our results provide a multiple-scale view on the structure and dynamics and place fractality as a generic organizing principle of complex networks on a firmer ground.
An auxiliary optimization method for complex public transit route network based on link prediction
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian
2018-02-01
Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.
Indoor communications networks realized through hybrid free-space optical and Wi-Fi links
NASA Astrophysics Data System (ADS)
Liverman, Spencer; Wang, Qiwei; Chu, Yu-Chung; Borah, Anindita; Wang, Songtao; Natarajan, Arun; Nguyen, Thinh; Wang, Alan X.
2018-01-01
Recently, free-space optical (FSO) networks have been investigated as a potential replacement for traditional WiFi networks due to their large bandwidth potentials. However, FSO networks often suffer from a lack of mobility. We present a hybrid free-space optical and radio frequency (RF) system that we have named WiFO, which seamlessly integrates free-space optical links with pre-existing WiFi networks. The free-space optical link in this system utilizes infrared LEDs operating at a wavelength of 850nm and is capable of transmitting 50Mbps over a three-meter distance. In this hybrid system, optical transmitters are embedded periodically throughout the ceiling of a workspace. Each transmitter directs an optical signal downward in a diffuse light cone, establishing a line of sight optical link. Line of sight communications links have an intrinsic physical layer of security due to the fact that a user must be directly in the path of transmission to access the link; however, this feature also poses a challenge for mobility. In our system, if the free-space optical link is interrupted, a control algorithm redirects traffic over a pre-existing WiFi link ensuring uninterrupted transmissions. After data packets are received, acknowledgments are sent back to a central access point via a WiFi link. As the demand for wireless bandwidth continues to increase exponentially, utilizing the unregulated bandwidth contained within optical spectrum will become necessary. Our fully functional hybrid free-space optical and WiFi prototype system takes full advantage of the untapped bandwidth potential in the optical spectrum, while also maintaining the mobility inherent in WiFi networks.
Vulnerability analysis methods for road networks
NASA Astrophysics Data System (ADS)
Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš
2014-05-01
Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate steps can be taken in order to make it more resilient. Performing such an analysis of network break-ups requires consideration of the network as a whole, ideally identifying all the cases generated by simultaneous closure of multiple links and evaluating them using various criteria. The spatial distribution of settlements, important companies and the overall population in the nodes of the network are several factors, apart from the topology of the network which could be taken into account when computing vulnerability indices and identifying the weakest links and/or weakest link combinations. However, even for small networks (i.e., hundreds of nodes and links), the problem of break-up identification becomes extremely difficult to resolve. The naive approaches of the brute force examination consequently fail and more elaborated algorithms have to be applied. We address the problem of evaluating the vulnerability of road networks in our work by simulating the impacts of the simultaneous closure of multiple roads/links. We present an ongoing work on a sophisticated algorithm focused on the identification of network break-ups and evaluating them by various criteria.
Meta-path based heterogeneous combat network link prediction
NASA Astrophysics Data System (ADS)
Li, Jichao; Ge, Bingfeng; Yang, Kewei; Chen, Yingwu; Tan, Yuejin
2017-09-01
The combat system-of-systems in high-tech informative warfare, composed of many interconnected combat systems of different types, can be regarded as a type of complex heterogeneous network. Link prediction for heterogeneous combat networks (HCNs) is of significant military value, as it facilitates reconfiguring combat networks to represent the complex real-world network topology as appropriate with observed information. This paper proposes a novel integrated methodology framework called HCNMP (HCN link prediction based on meta-path) to predict multiple types of links simultaneously for an HCN. More specifically, the concept of HCN meta-paths is introduced, through which the HCNMP can accumulate information by extracting different features of HCN links for all the six defined types. Next, an HCN link prediction model, based on meta-path features, is built to predict all types of links of the HCN simultaneously. Then, the solution algorithm for the HCN link prediction model is proposed, in which the prediction results are obtained by iteratively updating with the newly predicted results until the results in the HCN converge or reach a certain maximum iteration number. Finally, numerical experiments on the dataset of a real HCN are conducted to demonstrate the feasibility and effectiveness of the proposed HCNMP, in comparison with 30 baseline methods. The results show that the performance of the HCNMP is superior to those of the baseline methods.
OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators
NASA Astrophysics Data System (ADS)
Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno
2005-06-01
The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.
NASA Astrophysics Data System (ADS)
Meyer, Nele Kristin; Schwanghart, Wolfgang; Korup, Oliver
2014-05-01
Norwegian's road network is frequently affected by debris flows. Both damage repair and traffic interruption generate high economic losses and necessitate a rigorous assessment of where losses are expected to be high and where preventive measures should be focused on. In recent studies, we have developed susceptibility and trigger probability maps that serve as input into a hazard calculation at the scale of first-order watersheds. Here we combine these results with graph theory to assess the impact of debris flows on the road network of southern Norway. Susceptibility and trigger probability are aggregated for individual road sections to form a reliability index that relates to the failure probability of a link that connects two network vertices, e.g., road junctions. We define link vulnerability as a function of traffic volume and additional link failure distance. Additional link failure distance is the extra length of the alternative path connecting the two associated link vertices in case the network link fails and is calculated by a shortest-path algorithm. The product of network reliability and vulnerability indices represent the risk index. High risk indices identify critical links for the Norwegian road network and are investigated in more detail. Scenarios demonstrating the impact of single or multiple debris flow events are run for the most important routes between seven large cities in southern Norway. First results show that the reliability of the road network is lowest in the central and north-western part of the study area. Road network vulnerability is highest in the mountainous regions in central southern Norway where the road density is low and in the vicinity of cities where the traffic volume is large. The scenarios indicate that city connections that have their shortest path via routes crossing the central part of the study area have the highest risk of route failure.
Crossover between structured and well-mixed networks in an evolutionary prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Dai, Qionglin; Cheng, Hongyan; Li, Haihong; Li, Yuting; Zhang, Mei; Yang, Junzhong
2011-07-01
In a spatial evolutionary prisoner’s dilemma game (PDG), individuals interact with their neighbors and update their strategies according to some rules. As is well known, cooperators are destined to become extinct in a well-mixed population, whereas they could emerge and be sustained on a structured network. In this work, we introduce a simple model to investigate the crossover between a structured network and a well-mixed one in an evolutionary PDG. In the model, each link j is designated a rewiring parameter τj, which defines the time interval between two successive rewiring events for link j. By adjusting the rewiring parameter τ (the mean time interval for any link in the network), we could change a structured network into a well-mixed one. For the link rewiring events, three situations are considered: one synchronous situation and two asynchronous situations. Simulation results show that there are three regimes of τ: large τ where the density of cooperators ρc rises to ρc,∞ (the value of ρc for the case without link rewiring), small τ where the mean-field description for a well-mixed network is applicable, and moderate τ where the crossover between a structured network and a well-mixed one happens.
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad; Crosson, William; Limaye, Ashutosh; Rickman, Doug; Quattrochi, Dale; Estes, Maury; Adeniyi, Kafayat; Qualters, Judith; Niskar, Amanda Sue
2006-01-01
As part of the National Environmental Public Health Tracking Network (EPHTN) the National Center for Environmental Health (NCEH) at the Centers for Disease Control and Prevention (CDC) is leading a project called Health and Environment Linked for Information Exchange (HELIX-Atlanta). The goal of developing the National Environmental Public Health Tracking Network is to improve the health of communities. Currently, few systems exist at the state or national level to concurrently track many of the exposures and health effects that might be associated with environmental hazards. An additional challenge is estimating exposure to environmental hazards such as particulate matter whose aerodynamic diameter is less than or equal to 2.5 micrometers (PM(2.5)) HELIX-Atlanta's goal is to examine the feasibility of building an integrated electronic health and environmental data network in five counties of Metropolitan Atlanta, GA (Clayton, Cobb, DeKalb, Fulton, and Gwinnett counties). Under HELIX-Atlanta, pilot projects are being conducted to develop methods to characterize exposure; link health and environmental data; analyze the relationship between health and environmental factors; and communicate findings. NASA Marshall Space Flight Center (NASA/MSFC) is collaborating with CDC to combine NASA earth science satellite observations related to air quality and environmental monitoring data to model surface estimates of PM(2.5) concentrations that can be linked with clinic visits for asthma. From 1999-2000 there were over 9,400 hospitalizations per year in Georgia with asthma as the primary diagnosis. The majority of these hospitalizations occurred in medical facilities in the five most populous Metro-Atlanta counties. Hospital charges resulting from asthma in Georgia are approximately $59 million dollars annually. There is evidence in the research literature that asthmatic persons are at increased risk of developing asthma exacerbations with exposure to environmental factors, including PM(2.5). Thus, HELIX-Atlanta is focusing on methods for characterizing population exposure to PM(2.5) for the Atlanta metropolitan area that could be used in on-going surveillance. While use of the Air Quality System, (AQS) PM(2.5) data alone could meet HELIX Atlanta, specifications, there are only five AQS sites in the Atlanta area, thus the spatial coverage is not ideal. Also, the AQS ground observations are made at time intervals ranging from one hour to six days leaving some temporal gaps. NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Aerosol Optical Depth (AOD) data have the potential for estimating daily ground level PM(2.5) at 10 km resolution over the metropolitan Atlanta area supplementing the AQS ground observations and filling their spatial and temporal gaps.
Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach
Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.
2011-01-01
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.
Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi
2014-02-10
This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.
Scalable Wrap-Around Shuffle Exchange Network with Deflection Routing
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1997-01-01
The invention in one embodiment is a communication network including plural non-blocking crossbar nodes, first apparatus for connecting the nodes in a first layer of connecting links, and second apparatus for connecting links independent of the first layer, whereby each layer is connected to the other layer at each point of the nodes. Preferably, each one of the layers of connecting links corresponds to one recirculating network topology that closes in on itself.
Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy
2013-01-01
Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial. PMID:23563395
Percolation of networks with directed dependency links
NASA Astrophysics Data System (ADS)
Niu, Dunbiao; Yuan, Xin; Du, Minhui; Stanley, H. Eugene; Hu, Yanqing
2016-04-01
The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how directed dependency links impact criticality, we employ this approach to study the percolation properties of networks with both undirected connectivity links and directed dependency links. We find that when a random network with a given degree distribution undergoes a second-order phase transition, the critical point and the unstable regime surrounding the second-order phase transition regime are determined by the proportion of nodes that do not depend on any other nodes. Moreover, we also find that the triple point and the boundary between first- and second-order transitions are determined by the proportion of nodes that depend on no more than one node. This implies that it is maybe general for multiplex network systems, some important properties of phase transitions can be determined only by a few parameters. We illustrate our findings using Erdős-Rényi networks.
Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy
2013-01-01
Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
Evidence for a Functional Hierarchy of Association Networks.
Choi, Eun Young; Drayna, Garrett K; Badre, David
2018-05-01
Patient lesion and neuroimaging studies have identified a rostral-to-caudal functional gradient in the lateral frontal cortex (LFC) corresponding to higher-order (complex or abstract) to lower-order (simple or concrete) cognitive control. At the same time, monkey anatomical and human functional connectivity studies show that frontal regions are reciprocally connected with parietal and temporal regions, forming parallel and distributed association networks. Here, we investigated the link between the functional gradient of LFC regions observed during control tasks and the parallel, distributed organization of association networks. Whole-brain fMRI task activity corresponding to four orders of hierarchical control [Badre, D., & D'Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 2082-2099, 2007] was compared with a resting-state functional connectivity MRI estimate of cortical networks [Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165, 2011]. Critically, at each order of control, activity in the LFC and parietal cortex overlapped onto a common association network that differed between orders. These results are consistent with a functional organization based on separable association networks that are recruited during hierarchical control. Furthermore, corticostriatal functional connectivity MRI showed that, consistent with their participation in functional networks, rostral-to-caudal LFC and caudal-to-rostral parietal regions had similar, order-specific corticostriatal connectivity that agreed with a striatal gating model of hierarchical rule use. Our results indicate that hierarchical cognitive control is subserved by parallel and distributed association networks, together forming multiple localized functional gradients in different parts of association cortex. As such, association networks, while connectionally organized in parallel, may be functionally organized in a hierarchy via dynamic interaction with the striatum.
A comparison of high-speed links, their commercial support and ongoing R&D activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.
Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less
A comparison of high-speed links, their commercial support and ongoing R D activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, H.L.; Barsotti, E.; Zimmermann, S.
Technological advances and a demanding market have forced the development of higher bandwidth communication standards for networks, data links and busses. Most of these emerging standards are gathering enough momentum that their widespread availability and lower prices are anticipated. The hardware and software that support the physical media for most of these links is currently available, allowing the user community to implement fairly high-bandwidth data links and networks with commercial components. Also, switches needed to support these networks are available or being developed. The commercial suppose of high-bandwidth data links, networks and switching fabrics provides a powerful base for themore » implementation of high-bandwidth data acquisition systems. A large data acquisition system like the one for the Solenoidal Detector Collaboration (SDC) at the SSC can benefit from links and networks that support an integrated systems engineering approach, for initialization, downloading, diagnostics, monitoring, hardware integration and event data readout. The issue that our current work addresses is the possibility of having a channel/network that satisfies the requirements of an integrated data acquisition system. In this paper we present a brief description of high-speed communication links and protocols that we consider of interest for high energy physic High Performance Parallel Interface (HIPPI). Serial HIPPI, Fibre Channel (FC) and Scalable Coherent Interface (SCI). In addition, the initial work required to implement an SDC-like data acquisition system is described.« less
Real time data acquisition of a countrywide commercial microwave link network
NASA Astrophysics Data System (ADS)
Chwala, Christian; Keis, Felix; Kunstmann, Harald
2015-04-01
Research in recent years has shown that data from commercial microwave link networks can provide very valuable precipitation information. Since these networks comprise the backbone of the cell phone network, they provide countrywide coverage. However acquiring the necessary data from the network operators is still difficult. Data is usually made available for researchers with a large time delay and often at irregular basis. This of course hinders the exploitation of commercial microwave link data in operational applications like QPE forecasts running at national meteorological services. To overcome this, we have developed a custom software in joint cooperation with our industry partner Ericsson. The software is installed on a dedicated server at Ericsson and is capable of acquiring data from the countrywide microwave link network in Germany. In its current first operational testing phase, data from several hundred microwave links in southern Germany is recorded. All data is instantaneously sent to our server where it is stored and organized in an emerging database. Time resolution for the Ericsson data is one minute. The custom acquisition software, however, is capable of processing higher sampling rates. Additionally we acquire and manage 1 Hz data from four microwave links operated by the skiing resort in Garmisch-Partenkirchen. We will present the concept of the data acquisition and show details of the custom-built software. Additionally we will showcase the accessibility and basic processing of real time microwave link data via our database web frontend.
Optimizing performance of hybrid FSO/RF networks in realistic dynamic scenarios
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Desai, Aniket; Baskaran, Eswaran; Milner, Stuart; Davis, Christopher
2005-08-01
Hybrid Free Space Optical (FSO) and Radio Frequency (RF) networks promise highly available wireless broadband connectivity and quality of service (QoS), particularly suitable for emerging network applications involving extremely high data rate transmissions such as high quality video-on-demand and real-time surveillance. FSO links are prone to atmospheric obscuration (fog, clouds, snow, etc) and are difficult to align over long distances due the use of narrow laser beams and the effect of atmospheric turbulence. These problems can be mitigated by using adjunct directional RF links, which provide backup connectivity. In this paper, methodologies for modeling and simulation of hybrid FSO/RF networks are described. Individual link propagation models are derived using scattering theory, as well as experimental measurements. MATLAB is used to generate realistic atmospheric obscuration scenarios, including moving cloud layers at different altitudes. These scenarios are then imported into a network simulator (OPNET) to emulate mobile hybrid FSO/RF networks. This framework allows accurate analysis of the effects of node mobility, atmospheric obscuration and traffic demands on network performance, and precise evaluation of topology reconfiguration algorithms as they react to dynamic changes in the network. Results show how topology reconfiguration algorithms, together with enhancements to TCP/IP protocols which reduce the network response time, enable the network to rapidly detect and act upon link state changes in highly dynamic environments, ensuring optimized network performance and availability.
Network exploitation using WAMI tracks
NASA Astrophysics Data System (ADS)
Rimey, Ray; Record, Jim; Keefe, Dan; Kennedy, Levi; Cramer, Chris
2011-06-01
Creating and exploiting network models from wide area motion imagery (WAMI) is an important task for intelligence analysis. Tracks of entities observed moving in the WAMI sensor data are extracted, then large numbers of tracks are studied over long time intervals to determine specific locations that are visited (e.g., buildings in an urban environment), what locations are related to other locations, and the function of each location. This paper describes several parts of the network detection/exploitation problem, and summarizes a solution technique for each: (a) Detecting nodes; (b) Detecting links between known nodes; (c) Node attributes to characterize a node; (d) Link attributes to characterize each link; (e) Link structure inferred from node attributes and vice versa; and (f) Decomposing a detected network into smaller networks. Experimental results are presented for each solution technique, and those are used to discuss issues for each problem part and its solution technique.
The structural role of weak and strong links in a financial market network
NASA Astrophysics Data System (ADS)
Garas, A.; Argyrakis, P.; Havlin, S.
2008-05-01
We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.
Analysis of Network Vulnerability Under Joint Node and Link Attacks
NASA Astrophysics Data System (ADS)
Li, Yongcheng; Liu, Shumei; Yu, Yao; Cao, Ting
2018-03-01
The security problem of computer network system is becoming more and more serious. The fundamental reason is that there are security vulnerabilities in the network system. Therefore, it’s very important to identify and reduce or eliminate these vulnerabilities before they are attacked. In this paper, we are interested in joint node and link attacks and propose a vulnerability evaluation method based on the overall connectivity of the network to defense this attack. Especially, we analyze the attack cost problem from the attackers’ perspective. The purpose is to find the set of least costs for joint links and nodes, and their deletion will lead to serious network connection damage. The simulation results show that the vulnerable elements obtained from the proposed method are more suitable for the attacking idea of the malicious persons in joint node and link attack. It is easy to find that the proposed method has more realistic protection significance.
ERIC Educational Resources Information Center
McCorkle, Denny E.; McCorkle, Yuhua Li
2012-01-01
With the rapid growth of social networking and media comes their consideration for use in the marketing classroom. Social networking skills are becoming essential for personal branding (e.g., networking, self-marketing) and corporate/product branding (e.g., marketing communication). This paper addresses the use of LinkedIn (i.e., an online…
Feedback power control strategies in wireless sensor networks with joint channel decoding.
Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio
2009-01-01
In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.
Exploiting Information Diffusion Feature for Link Prediction in Sina Weibo
NASA Astrophysics Data System (ADS)
Li, Dong; Zhang, Yongchao; Xu, Zhiming; Chu, Dianhui; Li, Sheng
2016-01-01
The rapid development of online social networks (e.g., Twitter and Facebook) has promoted research related to social networks in which link prediction is a key problem. Although numerous attempts have been made for link prediction based on network structure, node attribute and so on, few of the current studies have considered the impact of information diffusion on link creation and prediction. This paper mainly addresses Sina Weibo, which is the largest microblog platform with Chinese characteristics, and proposes the hypothesis that information diffusion influences link creation and verifies the hypothesis based on real data analysis. We also detect an important feature from the information diffusion process, which is used to promote link prediction performance. Finally, the experimental results on Sina Weibo dataset have demonstrated the effectiveness of our methods.
Exploiting Information Diffusion Feature for Link Prediction in Sina Weibo.
Li, Dong; Zhang, Yongchao; Xu, Zhiming; Chu, Dianhui; Li, Sheng
2016-01-28
The rapid development of online social networks (e.g., Twitter and Facebook) has promoted research related to social networks in which link prediction is a key problem. Although numerous attempts have been made for link prediction based on network structure, node attribute and so on, few of the current studies have considered the impact of information diffusion on link creation and prediction. This paper mainly addresses Sina Weibo, which is the largest microblog platform with Chinese characteristics, and proposes the hypothesis that information diffusion influences link creation and verifies the hypothesis based on real data analysis. We also detect an important feature from the information diffusion process, which is used to promote link prediction performance. Finally, the experimental results on Sina Weibo dataset have demonstrated the effectiveness of our methods.
Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna
2018-05-21
Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate that when there is enough data for the neural network methods to use and there are a negligible amount of disconnected nodes, those approaches outperform the baselines. At low recall levels the approaches are mostly equal but at higher recall levels and average performance at individual nodes, neural network approaches are superior. Performance at nodes without common neighbours which indicate more unexpected and perhaps more useful links account for this.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
The Dichotomy in Degree Correlation of Biological Networks
Hao, Dapeng; Li, Chuanxing
2011-01-01
Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled. PMID:22164269
Controllability of flow-conservation networks
NASA Astrophysics Data System (ADS)
Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu
2017-07-01
The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.
Software defined network architecture based research on load balancing strategy
NASA Astrophysics Data System (ADS)
You, Xiaoqian; Wu, Yang
2018-05-01
As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.
Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise
2017-03-29
Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.
Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun
2017-08-21
Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix factorization, which is called NMF 3 here. We first map the observed network into another space by kernel functions, which could get the different order organizations. Then we combine the adjacency matrix of the network with one of other organizations, which makes us obtain the objective function of our framework for link predication based on the nonnegative matrix factorization. Third, we derive an iterative algorithm to optimize the objective function, which converges to a local optimum, and we propose a fast optimization strategy for large networks. Lastly, we test the proposed framework based on two kernel functions on a series of real world networks under different sizes of training set, and the experimental results show the feasibility, effectiveness, and competitiveness of the proposed framework.
A Proposal for a Computer Network for the Indonesian Air Force’s Remote Site Radar System
1989-03-01
This thesis proposes two alternatives for a preliminary design of a computer network to support this need. It suggests how existing communication...suggests how existing communication resources such as telephones, microwave links and satellite systems can be used to support the network. The first...telephone, radio-link, microwave-link and satellite systems. The goal of this thesis is to suggest how to utilize or implement these resources to support
Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds
NASA Astrophysics Data System (ADS)
Shah, Fahad; Sukthankar, Gita
Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.
Multispecialty physician networks in Ontario
Stukel, Therese A; Glazier, Richard H; Schultz, Susan E; Guan, Jun; Zagorski, Brandon M; Gozdyra, Peter; Henry, David A
2013-01-01
Background Large multispecialty physician group practices, with a central role for primary care practitioners, have been shown to achieve high-quality, low-cost care for patients with chronic disease. We assessed the extent to which informal multispecialty physician networks in Ontario could be identified by using health administrative data to exploit natural linkages among patients, physicians, and hospitals based on existing patient flow. Methods We linked each Ontario resident to his or her usual provider of primary care over the period from fiscal year 2008/2009 to fiscal year 2010/2011. We linked each specialist to the hospital where he or she performed the most inpatient services. We linked each primary care physician to the hospital where most of his or her ambulatory patients were admitted for non-maternal medical care. Each resident was then linked to the same hospital as his or her usual provider of primary care. We computed “loyalty” as the proportion of care to network residents provided by physicians and hospitals within their network. Smaller clusters were aggregated to create networks based on a minimum population size, distance, and loyalty. Networks were not constrained geographically. Results We identified 78 multispecialty physician networks, comprising 12 410 primary care physicians, 14 687 specialists, and 175 acute care hospitals serving a total of 12 917 178 people. Median network size was 134 723 residents, 125 primary care physicians, and 143 specialists. Virtually all eligible residents were linked to a usual provider of primary care and to a network. Most specialists (93.5%) and primary care physicians (98.2%) were linked to a hospital. Median network physician loyalty was 68.4% for all physician visits and 81.1% for primary care visits. Median non-maternal admission loyalty was 67.4%. Urban networks had lower loyalties and were less self-contained but had more health care resources. Interpretation We demonstrated the feasibility of identifying informal multispecialty physician networks in Ontario on the basis of patterns of health care–seeking behaviour. Networks were reasonably self-contained, in that individual residents received most of their care from providers within their respective networks. Formal constitution of networks could foster accountability for efficient, integrated care through care management tools and quality improvement, the ideas behind “accountable care organizations.” PMID:24348884
Suspected time errors along the satellite laser ranging network and impact on the reference frame
NASA Astrophysics Data System (ADS)
Belli, Alexandre; Exertier, Pierre; Lemoine, Frank; Zelensky, Nikita
2017-04-01
Systematic errors in the laser ranging technologies must be considered when considering the GGOS objective to maintain a network with an accuracy of 1 mm and a stability of 0.1 mm per year for the station ground coordinates in the ITRF. Range and Time biases are identified to be part of these systematic errors, for a major part, and are difficult to detect. Concerning the range bias, analysts and working groups estimate their values from LAGEOS-1 & 2 observations (c.f. Appleby et al. 2016). On the other hand, time errors are often neglected (they are presumed to be < 100 ns) and remain difficult to estimate (at this level), from using the observations of geodetic satellites passes and precise orbit determination (i.e. LAGEOS). The Time Transfer by Laser Link (T2L2) experiment on-board Jason-2 is a unique opportunity to determine, globally and independently, the synchronization of all laser stations. Because of the low altitude of Jason-2, we computed the time transfer in non-common view from the Grasse primary station to all other SLR stations. We used a method to synchronize the whole network which consists of the integration of an Ultra Stable Oscillator (USO) frequency model, in order to take care of the frequency instabilities caused by the space environment. The integration provides a model which becomes an "on-orbit" time realization which can be connected to each of the SLR stations by the ground to space laser link. We estimated time biases per station, with a repeatability of 3 - 4 ns, for 25 stations which observe T2L2 regularly. We investigated the effect on LAGEOS and Starlette orbits and we discuss the impact of time errors on the station coordinates. We show that the effects on the global POD are negligible (< 1 mm) but are at the level of 4 - 6 mm for the coordinates. We conclude and propose to introduce time errors in the future analyses (IDS and ILRS) that would lead to the computation of improved reference frame solutions.
Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests
Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna
2016-01-01
Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957
Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.
Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna
2016-06-27
Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.
Reconstructing networks from dynamics with correlated noise
NASA Astrophysics Data System (ADS)
Tam, H. C.; Ching, Emily S. C.; Lai, Pik-Yin
2018-07-01
Reconstructing the structure of complex networks from measurements of the nodes is a challenge in many branches of science. External influences are always present and act as a noise to the networks of interest. In this paper, we present a method for reconstructing networks from measured dynamics of the nodes subjected to correlated noise that cannot be approximated by a white noise. This method can reconstruct the links of both bidirectional and directed networks, the correlation time and strength of the noise, and also the relative coupling strength of the links when the coupling functions have certain properties. Our method is built upon theoretical relations between network structure and measurable quantities from the dynamics that we have derived for systems that have fixed point dynamics in the noise-free limit. Using these theoretical results, we can further explain the shortcomings of two common practices of inferring links for bidirectional networks using the Pearson correlation coefficient and the partial correlation coefficient.
Keshavarz, M; Mojra, A
2015-05-01
Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. Copyright © 2015 John Wiley & Sons, Ltd.
Prediction in complex systems: The case of the international trade network
NASA Astrophysics Data System (ADS)
Vidmer, Alexandre; Zeng, An; Medo, Matúš; Zhang, Yi-Cheng
2015-10-01
Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.
Architecture Studies Done for High-Rate Duplex Direct Data Distribution (D4) Services
NASA Technical Reports Server (NTRS)
2002-01-01
A study was sponsored to investigate a set of end-to-end system concepts for implementing a high-rate duplex direct data distribution (D4) space-to-ground communications link. The NASA Glenn Research Center is investigating these systems (both commercial and Government) as a possible method of providing a D4 communications service between NASA spacecraft in low Earth orbit and the respective principal investigators using or monitoring instruments aboard these spacecraft. Candidate commercial services were assessed regarding their near-term potential to provide a D4 type of service. The candidates included K-band and V-band geostationary orbit and nongeostationary orbit satellite relay services and direct downlink (D3) services. Internet protocol (IP) networking technologies were evaluated to enable the user-directed distribution and delivery of science data. Four realistic, near-future concepts were analyzed: 1) A duplex direct link (uplink plus downlink communication paths) between a low-Earth-orbit spacecraft and a principal-investigator-based autonomous Earth station; 2) A space-based relay using a future K-band nongeosynchronous-orbit system to handle both the uplink and downlink communication paths; 3) A hybrid link using both direct and relay services to achieve full duplex capability; 4) A dual-mode concept consisting of both a duplex direct link and a space relay duplex link operating independently. The concepts were analyzed in terms of contact time between the NASA spacecraft and the communications service and the achievable data throughput. Throughput estimates for the D4 systems were based on the infusion of advanced communications technology products (single and multibeam K-band phased-arrays and digital modems) being developed by Glenn. Cost estimates were also performed using extrapolated information from both terrestrial and current satellite communications providers. The throughput and cost estimates were used to compare the concepts.
NASA Astrophysics Data System (ADS)
Kim, T.; Brauman, K. A.; Schmitt, J.; Goodkind, A. L.; Smith, T. M.
2016-12-01
Water scarcity in US corn farming regions is a significant risk consideration for the ethanol and meat production sectors, which comprise 80% of all US corn demand. Water supply risk can lead to effects across the supply chain, affecting annual corn yields. The purpose of our study is to assess the water risk to the US's most corn-intensive sectors and companies by linking watershed depletion estimates with corn production, linked to downstream companies through a corn transport model. We use a water depletion index as an improved metric for seasonal water scarcity and a corn sourcing supply chain model based on economic cost minimization. Water depletion was calculated as the fraction of renewable (ground and surface) water consumption, with estimates of more than 75% depletion on an annual average basis indicating a significant water risk. We estimated company water risk as the amount of embedded corn coming from three categories of water stressed counties. The ethanol sector had 3.1% of sourced corn grown from counties that were more than 75% depleted while the beef sector had 14.0%. From a firm perspective, Tyson, JBS, Cargill, the top three US corn demanding companies, had 4.5%, 9.6%, 12.8% of their sourced corn respectively, coming from watersheds that are more than 75% depleted. These numbers are significantly higher than the global average of 2.2% of watersheds being classified as more than 75% depleted. Our model enables corn using industries to evaluate their supply chain risk of water scarcity through modeling corn sourcing and watershed depletion, providing the private sector a new method for risk estimation. Our results suggest corn dependent industries are already linked to water scarcity risk in disproportionate amounts due to the spatial heterogeneity of corn sourcing and water scarcity.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
A Brain Network Processing the Age of Faces
Homola, György A.; Jbabdi, Saad; Beckmann, Christian F.; Bartsch, Andreas J.
2012-01-01
Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships. PMID:23185334
Advancing reversible shape memory by tuning the polymer network architecture
Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...
2016-02-02
Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less
Motif formation and industry specific topologies in the Japanese business firm network
NASA Astrophysics Data System (ADS)
Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako
2017-05-01
Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.
Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.
2012-01-01
As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.
Kling, Daniel; Egeland, Thore; Mostad, Petter
2012-01-01
In a number of applications there is a need to determine the most likely pedigree for a group of persons based on genetic markers. Adequate models are needed to reach this goal. The markers used to perform the statistical calculations can be linked and there may also be linkage disequilibrium (LD) in the population. The purpose of this paper is to present a graphical Bayesian Network framework to deal with such data. Potential LD is normally ignored and it is important to verify that the resulting calculations are not biased. Even if linkage does not influence results for regular paternity cases, it may have substantial impact on likelihood ratios involving other, more extended pedigrees. Models for LD influence likelihoods for all pedigrees to some degree and an initial estimate of the impact of ignoring LD and/or linkage is desirable, going beyond mere rules of thumb based on marker distance. Furthermore, we show how one can readily include a mutation model in the Bayesian Network; extending other programs or formulas to include such models may require considerable amounts of work and will in many case not be practical. As an example, we consider the two STR markers vWa and D12S391. We estimate probabilities for population haplotypes to account for LD using a method based on data from trios, while an estimate for the degree of linkage is taken from the literature. The results show that accounting for haplotype frequencies is unnecessary in most cases for this specific pair of markers. When doing calculations on regular paternity cases, the markers can be considered statistically independent. In more complex cases of disputed relatedness, for instance cases involving siblings or so-called deficient cases, or when small differences in the LR matter, independence should not be assumed. (The networks are freely available at http://arken.umb.no/~dakl/BayesianNetworks.) PMID:22984448
Statistical similarity measures for link prediction in heterogeneous complex networks
NASA Astrophysics Data System (ADS)
Shakibian, Hadi; Charkari, Nasrollah Moghadam
2018-07-01
The majority of the link prediction measures in heterogeneous complex networks rely on the nodes connectivities while less attention has been paid to the importance of the nodes and paths. In this paper, we propose some new meta-path based statistical similarity measures to properly perform link prediction task. The main idea in the proposed measures is to drive some co-occurrence events in a number of co-occurrence matrices that are occurred between the visited nodes obeying a meta-path. The extracted co-occurrence matrices are analyzed in terms of the energy, inertia, local homogeneity, correlation, and information measure of correlation to determine various information theoretic measures. We evaluate the proposed measures, denoted as link energy, link inertia, link local homogeneity, link correlation, and link information measure of correlation, using a standard DBLP network data set. The results of the AUC score and Precision rate indicate the validity and accuracy of the proposed measures in comparison to the popular meta-path based similarity measures.
Fractional parentage analysis and a scale-free reproductive network of brown trout.
Koyano, Hitoshi; Serbezov, Dimitar; Kishino, Hirohisa; Schweder, Tore
2013-11-07
In this study, we developed a method of fractional parentage analysis using microsatellite markers. We propose a method for calculating parentage probability, which considers missing data and genotyping errors due to null alleles and other causes, by regarding observed alleles as realizations of random variables which take values in the set of alleles at the locus and developing a method for simultaneously estimating the true and null allele frequencies of all alleles at each locus. We then applied our proposed method to a large sample collected from a wild population of brown trout (Salmo trutta). On analyzing the data using our method, we found that the reproductive success of brown trout obeyed a power law, indicating that when the parent-offspring relationship is regarded as a link, the reproductive system of brown trout is a scale-free network. Characteristics of the reproductive network of brown trout include individuals with large bodies as hubs in the network and different power exponents of degree distributions between males and females. © 2013 Elsevier Ltd. All rights reserved.
A classifier neural network for rotordynamic systems
NASA Astrophysics Data System (ADS)
Ganesan, R.; Jionghua, Jin; Sankar, T. S.
1995-07-01
A feedforward backpropagation neural network is formed to identify the stability characteristic of a high speed rotordynamic system. The principal focus resides in accounting for the instability due to the bearing clearance effects. The abnormal operating condition of 'normal-loose' Coulomb rub, that arises in units supported by hydrodynamic bearings or rolling element bearings, is analysed in detail. The multiple-parameter stability problem is formulated and converted to a set of three-parameter algebraic inequality equations. These three parameters map the wider range of physical parameters of commonly-used rotordynamic systems into a narrow closed region, that is used in the supervised learning of the neural network. A binary-type state of the system is expressed through these inequalities that are deduced from the analytical simulation of the rotor system. Both the hidden layer as well as functional-link networks are formed and the superiority of the functional-link network is established. Considering the real time interpretation and control of the rotordynamic system, the network reliability and the learning time are used as the evaluation criteria to assess the superiority of the functional-link network. This functional-link network is further trained using the parameter values of selected rotor systems, and the classifier network is formed. The success rate of stability status identification is obtained to assess the potentials of this classifier network. The classifier network is shown that it can also be used, for control purposes, as an 'advisory' system that suggests the optimum way of parameter adjustment.
Dynamic social networks promote cooperation in experiments with humans
Rand, David G.; Arbesman, Samuel; Christakis, Nicholas A.
2011-01-01
Human populations are both highly cooperative and highly organized. Human interactions are not random but rather are structured in social networks. Importantly, ties in these networks often are dynamic, changing in response to the behavior of one's social partners. This dynamic structure permits an important form of conditional action that has been explored theoretically but has received little empirical attention: People can respond to the cooperation and defection of those around them by making or breaking network links. Here, we present experimental evidence of the power of using strategic link formation and dissolution, and the network modification it entails, to stabilize cooperation in sizable groups. Our experiments explore large-scale cooperation, where subjects’ cooperative actions are equally beneficial to all those with whom they interact. Consistent with previous research, we find that cooperation decays over time when social networks are shuffled randomly every round or are fixed across all rounds. We also find that, when networks are dynamic but are updated only infrequently, cooperation again fails. However, when subjects can update their network connections frequently, we see a qualitatively different outcome: Cooperation is maintained at a high level through network rewiring. Subjects preferentially break links with defectors and form new links with cooperators, creating an incentive to cooperate and leading to substantial changes in network structure. Our experiments confirm the predictions of a set of evolutionary game theoretic models and demonstrate the important role that dynamic social networks can play in supporting large-scale human cooperation. PMID:22084103
Link Prediction in Criminal Networks: A Tool for Criminal Intelligence Analysis
Berlusconi, Giulia; Calderoni, Francesco; Parolini, Nicola; Verani, Marco; Piccardi, Carlo
2016-01-01
The problem of link prediction has recently received increasing attention from scholars in network science. In social network analysis, one of its aims is to recover missing links, namely connections among actors which are likely to exist but have not been reported because data are incomplete or subject to various types of uncertainty. In the field of criminal investigations, problems of incomplete information are encountered almost by definition, given the obvious anti-detection strategies set up by criminals and the limited investigative resources. In this paper, we work on a specific dataset obtained from a real investigation, and we propose a strategy to identify missing links in a criminal network on the basis of the topological analysis of the links classified as marginal, i.e. removed during the investigation procedure. The main assumption is that missing links should have opposite features with respect to marginal ones. Measures of node similarity turn out to provide the best characterization in this sense. The inspection of the judicial source documents confirms that the predicted links, in most instances, do relate actors with large likelihood of co-participation in illicit activities. PMID:27104948
Robustness of spatial micronetworks
NASA Astrophysics Data System (ADS)
McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.
2015-04-01
Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.
Link-prediction to tackle the boundary specification problem in social network surveys
De Wilde, Philippe; Buarque de Lima-Neto, Fernando
2017-01-01
Diffusion processes in social networks often cause the emergence of global phenomena from individual behavior within a society. The study of those global phenomena and the simulation of those diffusion processes frequently require a good model of the global network. However, survey data and data from online sources are often restricted to single social groups or features, such as age groups, single schools, companies, or interest groups. Hence, a modeling approach is required that extrapolates the locally restricted data to a global network model. We tackle this Missing Data Problem using Link-Prediction techniques from social network research, network generation techniques from the area of Social Simulation, as well as a combination of both. We found that techniques employing less information may be more adequate to solve this problem, especially when data granularity is an issue. We validated the network models created with our techniques on a number of real-world networks, investigating degree distributions as well as the likelihood of links given the geographical distance between two nodes. PMID:28426826
A DTN-Based Multiple Access Fast Forward Service for the NASA Space Network
NASA Technical Reports Server (NTRS)
Israel, David; Davis, Faith; Marquart. Jane
2011-01-01
The NASA Space Network provides a demand access return link service capable of providing users a space link "on demand". An equivalent service in the forward link direction is not possible due to Tracking and Data Relay Spacecraft (TDRS) constraints. A Disruption Tolerant Networking (DTN)-based Multiple Access Fast Forward (MAFF) service has been proposed to provide a forward link to a user as soon as possible. Previous concept studies have identified a basic architecture and implementation approach. This paper reviews the user scenarios and benefits of an MAFF service and proposes an implementation approach based on the use of DTN protocols.
Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.
Falke, Jeffrey A.; Flitcroft, Rebecca L; Dunham, Jason B.; McNyset, Kristina M.; Hessburg, Paul F.; Reeves, Gordon H.
2015-01-01
Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River basin, Washington, USA, under current and future climate and fire scenarios. The BN was based on modeled estimates of wildfire, water temperature, and physical habitat prior to, and following, simulated fires throughout the basin. We found that bull trout population vulnerability depended on the extent to which climate effects can be at least partially offset by managing factors such as habitat connectivity and fire size. Moreover, our analysis showed that local management can significantly reduce the vulnerability of bull trout to climate change given appropriate management actions. Tools such as our BN that explicitly integrate the linked nature of climate and wildfire, and incorporate uncertainty in both input data and vulnerability estimates, will be vital in effective future management to conserve native coldwater fishes.
Influence of network topology on the swelling of polyelectrolyte nanogels.
Rizzi, L G; Levin, Y
2016-03-21
It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
NASA Astrophysics Data System (ADS)
Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
PREMER: a Tool to Infer Biological Networks.
Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R
2017-10-04
Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).
Fleischman, Ross J.; Lundquist, Mark; Jui, Jonathan; Newgard, Craig D.; Warden, Craig
2014-01-01
Objective To derive and validate a model that accurately predicts ambulance arrival time that could be implemented as a Google Maps web application. Methods This was a retrospective study of all scene transports in Multnomah County, Oregon, from January 1 through December 31, 2008. Scene and destination hospital addresses were converted to coordinates. ArcGIS Network Analyst was used to estimate transport times based on street network speed limits. We then created a linear regression model to improve the accuracy of these street network estimates using weather, patient characteristics, use of lights and sirens, daylight, and rush-hour intervals. The model was derived from a 50% sample and validated on the remainder. Significance of the covariates was determined by p < 0.05 for a t-test of the model coefficients. Accuracy was quantified by the proportion of estimates that were within 5 minutes of the actual transport times recorded by computer-aided dispatch. We then built a Google Maps-based web application to demonstrate application in real-world EMS operations. Results There were 48,308 included transports. Street network estimates of transport time were accurate within 5 minutes of actual transport time less than 16% of the time. Actual transport times were longer during daylight and rush-hour intervals and shorter with use of lights and sirens. Age under 18 years, gender, wet weather, and trauma system entry were not significant predictors of transport time. Our model predicted arrival time within 5 minutes 73% of the time. For lights and sirens transports, accuracy was within 5 minutes 77% of the time. Accuracy was identical in the validation dataset. Lights and sirens saved an average of 3.1 minutes for transports under 8.8 minutes, and 5.3 minutes for longer transports. Conclusions An estimate of transport time based only on a street network significantly underestimated transport times. A simple model incorporating few variables can predict ambulance time of arrival to the emergency department with good accuracy. This model could be linked to global positioning system data and an automated Google Maps web application to optimize emergency department resource use. Use of lights and sirens had a significant effect on transport times. PMID:23865736
Is the kinetoplast DNA a percolating network of linked rings at its critical point?
NASA Astrophysics Data System (ADS)
Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo
2015-05-01
In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.
LINKEDIN TRILOGY: Part 1. Top 10 Reasons You Should NOT Join LinkedIn Professional Network!
ERIC Educational Resources Information Center
Berk, Ronald A.
2013-01-01
Disclaimer: I have been an active "free" user of LinkedIn for 5.463 years with more than 3000 (1st degree) connections from all over the world. I have no vested interest in LinkedIn other than as a user of the services it provides. Despite the fact that LinkedIn was originally designed as a network for business professionals, not…
A Community Information Network.
ERIC Educational Resources Information Center
Consumers' Association of Canada, Ottawa (Ontario).
The possibility of creating in Canada a non-profit community information network (a set of linked data banks containing information for use by the general public) should be explored. A network to link together a set of data banks containing information for general public use would have the following merits: (1) By its effect on household…
Linking Classrooms of the Future through Interactive Telecommunications Network.
ERIC Educational Resources Information Center
Cisco, Ponney G.
This document describes an interactive television (ITV) distance education network designed to service rural schools. Phase one of the network involved the installation of over 14 miles of fiber optic cable linking two high schools, a career center, and the University of Rio Grande; phase two will bring seven high schools in economically depressed…
Community Structure of a Bank-Firm Credit Network in Japan
NASA Astrophysics Data System (ADS)
Iyetomi, Hiroshi; Matsuura, Yuki
2014-03-01
We study temporal change of community structure in a Japanese credit network formed by banks and listed firms through their financial relations over the last 30 years. The credit connectedness is regarded as a potenital source of systemic risk. Our network is a bipartite graph consisting of two species of nodes connected with bidirectional links. The direction of links is identified with that of risk flows and their weights are relative credit/loan with respect to the targets. In a partial credit network obtained only with the links pointing from firms toward banks, the city banks forms one major community in most of the time period to share risk when firms go wrong. On the other hand, a partial network only with the links from banks toward firms is decomposed into communities of similar size each of which has its own city bank, reflecting the main-bank system in Japan. Finally we take overlapping parts of the two community sets to find cores of the risk concentration in the credit network. This work was supported by JSPS KAKENHI Grant Number 22300080.
Localization Algorithm with On-line Path Loss Estimation and Node Selection
Bel, Albert; Vicario, José López; Seco-Granados, Gonzalo
2011-01-01
RSS-based localization is considered a low-complexity algorithm with respect to other range techniques such as TOA or AOA. The accuracy of RSS methods depends on the suitability of the propagation models used for the actual propagation conditions. In indoor environments, in particular, it is very difficult to obtain a good propagation model. For that reason, we present a cooperative localization algorithm that dynamically estimates the path loss exponent by using RSS measurements. Since the energy consumption is a key point in sensor networks, we propose a node selection mechanism to limit the number of neighbours of a given node that are used for positioning purposes. Moreover, the selection mechanism is also useful to discard bad links that could negatively affect the performance accuracy. As a result, we derive a practical solution tailored to the strict requirements of sensor networks in terms of complexity, size and cost. We present results based on both computer simulations and real experiments with the Crossbow MICA2 motes showing that the proposed scheme offers a good trade-off in terms of position accuracy and energy efficiency. PMID:22163992
Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.
Sendiña-Nadal, I; Danziger, M M; Wang, Z; Havlin, S; Boccaletti, S
2016-02-18
Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.
Social Networks and Health Among Older Adults in Lebanon: The Mediating Role of Support and Trust
Antonucci, Toni C.; Ajrouch, Kristine J.; Abdulrahim, Sawsan
2015-01-01
Objectives. Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Method. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Results. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one’s network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Discussion. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. PMID:25324295
Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.
2016-02-01
Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.
Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach
NASA Astrophysics Data System (ADS)
Lannes, A.; Prieur, J.-L.
2013-08-01
In global navigation satellite systems (GNSS), the problem of retrieving clock-phase biases from network data has a basic rank defect. We analyse the different ways of removing this rank defect, and define a particular strategy for obtaining these phase biases in a standard form. The minimum-constrained problem to be solved in the least-squares (LS) sense depends on some integer vector which can be fixed in an arbitrary manner. We propose to solve the problem via an undifferenced approach based on the notion of closure ambiguity. We present a theoretical justification of this closure-ambiguity approach (CAA), and the main elements for a practical implementation. The links with other methods are also established. We analyse all those methods in a unified interpretative framework, and derive functional relations between the corresponding solutions and our CAA solution. This could be interesting for many GNSS applications like real-time kinematic PPP for instance. To compare the methods providing LS estimates of clock-phase biases, we define a particular solution playing the role of reference solution. For this solution, when a phase bias is estimated for the first time, its fractional part is confined to the one-cycle width interval centred on zero; the integer-ambiguity set is modified accordingly. Our theoretical study is illustrated with some simple and generic examples; it could have applications in data processing of most GNSS networks, and particularly global networks using GPS, Glonass, Galileo, or BeiDou/Compass satellites.
A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks.
Jin, Zhigang; Wang, Ning; Su, Yishan; Yang, Qiuling
2018-02-07
Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider's sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider's trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15-33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20-58% for a typical network's setting.
CCSDS Advanced Orbiting Systems Virtual Channel Access Service for QoS MACHETE Model
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.
2011-01-01
To support various communications requirements imposed by different missions, interplanetary communication protocols need to be designed, validated, and evaluated carefully. Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in "Simulator of Space Communication Networks" (NPO-41373), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. By building abstract behavioral models of network protocols, one can validate performance after identifying the appropriate metrics of interest. The innovators have extended the MACHETE model library to include a generic link-layer Virtual Channel (VC) model supporting quality-of-service (QoS) controls based on IP streams. The main purpose of this generic Virtual Channel model addition was to interface fine-grain flow-based QoS (quality of service) between the network and MAC layers of the QualNet simulator, a commercial component of MACHETE. This software model adds the capability of mapping IP streams, based on header fields, to virtual channel numbers, allowing extended QoS handling at link layer. This feature further refines the QoS v existing at the network layer. QoS at the network layer (e.g. diffserv) supports few QoS classes, so data from one class will be aggregated together; differentiating between flows internal to a class/priority is not supported. By adding QoS classification capability between network and MAC layers through VC, one maps multiple VCs onto the same physical link. Users then specify different VC weights, and different queuing and scheduling policies at the link layer. This VC model supports system performance analysis of various virtual channel link-layer QoS queuing schemes independent of the network-layer QoS systems.
Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks
NASA Technical Reports Server (NTRS)
Birrane, Edward J. III; Burleigh, Scott C.; Cerf, Vint
2011-01-01
Challenged networks exhibit irregularities in their communication performance stemming from node mobility, power constraints, and impacts from the operating environment. These irregularities manifest as high signal propagation delay and frequent link disruption. Understanding those limits of link disruption and propagation delay beyond which core networking features fail is an ongoing area of research. Various wireless networking communities propose tools and techniques that address these phenomena. Emerging standardization activities within the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) look to build upon both this experience and scalability analysis. Successful research in this area is predicated upon identifying enablers for common communication functions (notably node discovery, duplex communication, state caching, and link negotiation) and how increased disruptions and delays affect their feasibility within the network. Networks that make fewer assumptions relating to these enablers provide more universal service. Specifically, reliance on node discovery and link negotiation results in network-specific operational concepts rather than scalable technical solutions. Fundamental to this debate are the definitions, assumptions, operational concepts, and anticipated scaling of these networks. This paper presents the commonalities and differences between delay and disruption tolerance, including support protocols and critical enablers. We present where and how these tolerances differ. We propose a set of use cases that must be accommodated by any standardized delay-tolerant network and discuss the implication of these on existing tool development.
Controlling self-sustained spiking activity by adding or removing one network link
NASA Astrophysics Data System (ADS)
Xu, Kesheng; Huang, Wenwen; Li, Baowen; Dhamala, Mukesh; Liu, Zonghua
2013-06-01
Being able to control the neuronal spiking activity in specific brain regions is central to a treatment scheme in several brain disorders such as epileptic seizures, mental depression, and Parkinson's diseases. Here, we present an approach for controlling self-sustained oscillations by adding or removing one directed network link in coupled neuronal oscillators, in contrast to previous approaches of adding stimuli or noise. We find that such networks can exhibit a variety of activity patterns such as on-off switch, sustained spikes, and short-term spikes. We derive the condition for a specific link to be the controller of the on-off effect. A qualitative analysis is provided to facilitate the understanding of the mechanism for spiking activity by adding one link. Our findings represent the first report on generating spike activity with the addition of only one directed link to a network and provide a deeper understanding of the microscopic roots of self-sustained spiking.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
Oshri, Assaf; Himelboim, Itai; Kwon, Josephine A.; Sutton, Tara E.; Mackillop, James
2015-01-01
Objective: The aim of the present study was to examine the links between severities of child abuse (physical vs. sexual), and alcohol use versus problems via social media (Facebook) peer connection structures. Method: A total of 318 undergraduate female students at a public university in the United States reported severity of child abuse experiences and current alcohol use and problems. Social network data were obtained directly from the individuals’ Facebook network. Results: Severity of childhood physical abuse was positively linked to alcohol use and problems via eigenvector centrality, whereas severity of childhood sexual abuse was negatively linked to alcohol use and problems via clustering coefficient. Conclusions: Childhood physical and sexual abuse were linked positively and negatively, respectively, to online social network patterns associated with alcohol use and problems. The study suggests the potential utility of these online network patterns as risk indices and ultimately using social media as a platform for targeted preventive interventions. PMID:26562592
Oshri, Assaf; Himelboim, Itai; Kwon, Josephine A; Sutton, Tara E; Mackillop, James
2015-11-01
The aim of the present study was to examine the links between severities of child abuse (physical vs. sexual), and alcohol use versus problems via social media (Facebook) peer connection structures. A total of 318 undergraduate female students at a public university in the United States reported severity of child abuse experiences and current alcohol use and problems. Social network data were obtained directly from the individuals' Facebook network. Severity of childhood physical abuse was positively linked to alcohol use and problems via eigenvector centrality, whereas severity of childhood sexual abuse was negatively linked to alcohol use and problems via clustering coefficient. Childhood physical and sexual abuse were linked positively and negatively, respectively, to online social network patterns associated with alcohol use and problems. The study suggests the potential utility of these online network patterns as risk indices and ultimately using social media as a platform for targeted preventive interventions.
Motion in partially and fully cross-linked F-actin networks
NASA Astrophysics Data System (ADS)
Morris, Eliza; Ehrlicher, Allen; Weitz, David
2012-02-01
Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.
Adaptive sampling in research on risk-related behaviors.
Thompson, Steven K; Collins, Linda M
2002-11-01
This article introduces adaptive sampling designs to substance use researchers. Adaptive sampling is particularly useful when the population of interest is rare, unevenly distributed, hidden, or hard to reach. Examples of such populations are injection drug users, individuals at high risk for HIV/AIDS, and young adolescents who are nicotine dependent. In conventional sampling, the sampling design is based entirely on a priori information, and is fixed before the study begins. By contrast, in adaptive sampling, the sampling design adapts based on observations made during the survey; for example, drug users may be asked to refer other drug users to the researcher. In the present article several adaptive sampling designs are discussed. Link-tracing designs such as snowball sampling, random walk methods, and network sampling are described, along with adaptive allocation and adaptive cluster sampling. It is stressed that special estimation procedures taking the sampling design into account are needed when adaptive sampling has been used. These procedures yield estimates that are considerably better than conventional estimates. For rare and clustered populations adaptive designs can give substantial gains in efficiency over conventional designs, and for hidden populations link-tracing and other adaptive procedures may provide the only practical way to obtain a sample large enough for the study objectives.
NASA Astrophysics Data System (ADS)
Stanley, Kieran; O'Doherty, Simon; Young, Dickon; Grant, Aoife; Manning, Alistair; Simmonds, Peter; Oram, Dave; Sturges, Bill; Derwent, Richard
2016-04-01
Real-time, high-frequency measurement networks are essential for investigating the emissions of gases linked with climate change and stratospheric ozone depletion. These networks can be used to verify greenhouse gas (GHG) and ozone depleting substances (ODS) emission inventories for the Kyoto and Montreal Protocols. Providing accurate and reliable country- and region-specific emissions to the atmosphere are critical for reporting to the UN agencies. The United Kingdom Deriving Emissions linked to Climate Change (UK DECC) Network, operating since 2012, is distinguished by its capability to measure at high-frequency, the influence of all of the important species in the Kyoto and Montreal Protocols from the UK, Ireland and Continental Europe. Data obtained from the UK DECC network are also fed into the European Integrated Carbon Observation System (ICOS). This presentation will give an overview of the UK DECC Network, detailing the analytical techniques used to determine the suite of GHGs and ODSs, as well as the calibration strategy used within the network. Interannual results of key GHGs from the network will also be presented.
Information dynamics algorithm for detecting communities in networks
NASA Astrophysics Data System (ADS)
Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro
2012-11-01
The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.
Fast Katz and Commuters: Efficient Estimation of Social Relatedness in Large Networks
NASA Astrophysics Data System (ADS)
Esfandiar, Pooya; Bonchi, Francesco; Gleich, David F.; Greif, Chen; Lakshmanan, Laks V. S.; On, Byung-Won
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and a quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing.
(In)visible threats? The third-person effect in perceptions of the influence of Facebook.
Paradise, Angela; Sullivan, Meghan
2012-01-01
The popularity of Facebook has generated numerous discussions on the individual-level effects of social networking. However, we know very little about people's perceptions of the effects of the most popular social networking site, Facebook. The current investigation reports the findings from a survey designed to help us better understand young people's estimates of the perceived negative effects of Facebook use on themselves and others in regard to three outcome categories: (1) personal relationships, (2) future employment opportunities, and (3) privacy. Congruent with Davidson's third-person effect theory, respondents, when asked about the three outcome categories, believed that the use of Facebook had a larger negative impact on others (e.g., "your closest friends," "younger people," "people in your Facebook network of friends," and "Facebook users in general") than on themselves. Overall, results were inconclusive when it came to the link between the third-person perceptual gap and support for enhanced regulation of Facebook. Implications and limitations of this research are discussed.
Fast katz and commuters : efficient estimation of social relatedness in large networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
On, Byung-Won; Lakshmanan, Laks V. S.; Greif, Chen
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and amore » quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing.« less
NASA Technical Reports Server (NTRS)
Hall, Brendan (Inventor); Bonk, Ted (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor); DeLay, Benjamin F. (Inventor)
2017-01-01
Systems and methods for systematic hybrid network scheduling for multiple traffic classes with host timing and phase constraints are provided. In certain embodiments, a method of scheduling communications in a network comprises scheduling transmission of virtual links pertaining to a first traffic class on a global schedule to coordinate transmission of the virtual links pertaining to the first traffic class across all transmitting end stations on the global schedule; and scheduling transmission of each virtual link pertaining to a second traffic class on a local schedule of the respective transmitting end station from which each respective virtual link pertaining to the second traffic class is transmitted such that transmission of each virtual link pertaining to the second traffic class is coordinated only at the respective end station from which each respective virtual link pertaining to the second traffic class is transmitted.
Epidemics in networks: a master equation approach
NASA Astrophysics Data System (ADS)
Cotacallapa, M.; Hase, M. O.
2016-02-01
A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.
ZERO: probabilistic routing for deploy and forget Wireless Sensor Networks.
Vilajosana, Xavier; Llosa, Jordi; Pacho, Jose Carlos; Vilajosana, Ignasi; Juan, Angel A; Vicario, Jose Lopez; Morell, Antoni
2010-01-01
As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called "hot spot" problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this "hot spot" problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.
Scalability enhancement of AODV using local link repairing
NASA Astrophysics Data System (ADS)
Jain, Jyoti; Gupta, Roopam; Bandhopadhyay, T. K.
2014-09-01
Dynamic change in the topology of an ad hoc network makes it difficult to design an efficient routing protocol. Scalability of an ad hoc network is also one of the important criteria of research in this field. Most of the research works in ad hoc network focus on routing and medium access protocols and produce simulation results for limited-size networks. Ad hoc on-demand distance vector (AODV) is one of the best reactive routing protocols. In this article, modified routing protocols based on local link repairing of AODV are proposed. Method of finding alternate routes for next-to-next node is proposed in case of link failure. These protocols are beacon-less, means periodic hello message is removed from the basic AODV to improve scalability. Few control packet formats have been changed to accommodate suggested modification. Proposed protocols are simulated to investigate scalability performance and compared with basic AODV protocol. This also proves that local link repairing of proposed protocol improves scalability of the network. From simulation results, it is clear that scalability performance of routing protocol is improved because of link repairing method. We have tested protocols for different terrain area with approximate constant node densities and different traffic load.
Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric
2015-05-13
Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.
Functional connectivity associated with social networks in older adults: A resting-state fMRI study.
Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M
2017-06-01
Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.
Dong, Guangheng; Lin, Xiao; Hu, Yanbo; Xie, Chunming; Du, Xiaoxia
2015-03-17
Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD.
Triadic Relations in a Game of Pachisi
ERIC Educational Resources Information Center
Wu, Zhaohui; Choi, Thomas Y.
2013-01-01
A triad is the smallest network form where one can study how a link affects a link or a node affects a link indirectly connected. Through triads, one can glimpse the more complex relational dynamics in larger networks. Studies of various triadic relationships have gained growing interest among OM scholars in recent years as both researchers and…
Problems in the design of multifunction meteor-radar networks
NASA Astrophysics Data System (ADS)
Nechitailenko, V. A.; Voloshchuk, Iu. I.
The design of meteor-radar networks is examined in connection with the need to conduct experiments on a mass scale in meteor geophysics and astronomy. Attention is given to network architecture features and procedures of communication-path selection in the organization of information transfer, with allowance for the features of the meteor communication link. The meteor link is considered as the main means to ensure traffic in the meteor-radar network.
Wang, Xuwen; Nie, Sen; Wang, Binghong
2015-01-01
Networks with dependency links are more vulnerable when facing the attacks. Recent research also has demonstrated that the interdependent groups support the spreading of cooperation. We study the prisoner's dilemma games on spatial networks with dependency links, in which a fraction of individual pairs is selected to depend on each other. The dependency individuals can gain an extra payoff whose value is between the payoff of mutual cooperation and the value of temptation to defect. Thus, this mechanism reflects that the dependency relation is stronger than the relation of ordinary mutual cooperation, but it is not large enough to cause the defection of the dependency pair. We show that the dependence of individuals hinders, promotes and never affects the cooperation on regular ring networks, square lattice, random and scale-free networks, respectively. The results for the square lattice and regular ring networks are demonstrated by the pair approximation.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-04-07
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-01-01
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835
Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe
2018-05-08
Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.
Crowdsourcing-Assisted Radio Environment Database for V2V Communication.
Katagiri, Keita; Sato, Koya; Fujii, Takeo
2018-04-12
In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation.
Crowdsourcing-Assisted Radio Environment Database for V2V Communication †
Katagiri, Keita; Fujii, Takeo
2018-01-01
In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation. PMID:29649174
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
NASA Astrophysics Data System (ADS)
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Linking Fine-Scale Observations and Model Output with Imagery at Multiple Scales
NASA Astrophysics Data System (ADS)
Sadler, J.; Walthall, C. L.
2014-12-01
The development and implementation of a system for seasonal worldwide agricultural yield estimates is underway with the international Group on Earth Observations GeoGLAM project. GeoGLAM includes a research component to continually improve and validate its algorithms. There is a history of field measurement campaigns going back decades to draw upon for ways of linking surface measurements and model results with satellite observations. Ground-based, in-situ measurements collected by interdisciplinary teams include yields, model inputs and factors affecting scene radiation. Data that is comparable across space and time with careful attention to calibration is essential for the development and validation of agricultural applications of remote sensing. Data management to ensure stewardship, availability and accessibility of the data are best accomplished when considered an integral part of the research. The expense and logistical challenges of field measurement campaigns can be cost-prohibitive and because of short funding cycles for research, access to consistent, stable study sites can be lost. The use of a dedicated staff for baseline data needed by multiple investigators, and conducting measurement campaigns using existing measurement networks such as the USDA Long Term Agroecosystem Research network can fulfill these needs and ensure long-term access to study sites.
Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G
2017-06-01
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Link Scheduling Algorithm with Interference Prediction for Multiple Mobile WBANs
Le, Thien T. T.
2017-01-01
As wireless body area networks (WBANs) become a key element in electronic healthcare (e-healthcare) systems, the coexistence of multiple mobile WBANs is becoming an issue. The network performance is negatively affected by the unpredictable movement of the human body. In such an environment, inter-WBAN interference can be caused by the overlapping transmission range of nearby WBANs. We propose a link scheduling algorithm with interference prediction (LSIP) for multiple mobile WBANs, which allows multiple mobile WBANs to transmit at the same time without causing inter-WBAN interference. In the LSIP, a superframe includes the contention access phase using carrier sense multiple access with collision avoidance (CSMA/CA) and the scheduled phase using time division multiple access (TDMA) for non-interfering nodes and interfering nodes, respectively. For interference prediction, we define a parameter called interference duration as the duration during which disparate WBANs interfere with each other. The Bayesian model is used to estimate and classify the interference using a signal to interference plus noise ratio (SINR) and the number of neighboring WBANs. The simulation results show that the proposed LSIP algorithm improves the packet delivery ratio and throughput significantly with acceptable delay. PMID:28956827
NASA Astrophysics Data System (ADS)
Ram Prabhakar, J.; Ragavan, K.
2013-07-01
This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.
Tomini, Florian; Tomini, Sonila M; Groot, Wim
2016-12-01
Networks of family and friends are a source of support and are generally associated with higher life satisfaction values among older adults. On the other hand, older adults who are satisfied with their life may be more able to develop and maintain a wider social network. For this reason, the causal link between size and composition of the social networks and satisfaction with life is yet to be explored. This paper investigates the effect of the 'size', (number of family and friends, and network) and the 'composition' (the proportion of friends over total number of persons) of the social network on life satisfaction among older adults (50+). Moreover, we also investigate the patterns of this relation between different European countries. Data from the 4 th wave of Survey of Health, Ageing and Retirement in Europe and an instrumental variable approach are used to estimate the extent of the relation between life satisfaction and size and composition of social networks. Respondents in Western and Northern European (WNE) countries report larger networks than respondents in Eastern and Southern European (ESE) countries. However, the positive relationship between network size and life satisfaction is consistent across countries. On the other hand, the share of friends in the network appears to be generally negatively related to satisfaction with life, though results are not statistically significant for all countries. Apparently, a larger personal network is important for older adults (50+) to be more satisfied with life. Our results suggest that this relation is particularly positive if the network is comprised of family members.
NASA Astrophysics Data System (ADS)
Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca
2016-04-01
The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in fractured rock, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (lengths, apertures, orientations and densities) is fundamental to the estimation of permeability and fluid flow, which are of primary importance in a number of contexts including: hydrocarbon production from fractured reservoirs; geothermal energy extraction; and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. Our work links outcrop fracture data to modelled fracture networks in order to numerically predict bulk permeability. We collected outcrop data from a highly fractured upper Miocene biosiliceous mudstone formation, cropping out along the coastline north of Santa Cruz (California, USA). Using outcrop fracture networks as analogues for subsurface fracture systems has several advantages, because key fracture attributes such as spatial arrangements and lengths can be effectively measured only on outcrops [1]. However, a limitation when dealing with outcrop data is the relative sparseness of natural data due to the intrinsic finite size of the outcrops. We make use of a statistical approach for the overall workflow, starting from data collection with the Circular Windows Method [2]. Then we analyse the data statistically using Maximum Likelihood Estimators, which provide greater accuracy compared to the more commonly used Least Squares linear regression when investigating distribution of fracture attributes. Finally, we estimate the bulk permeability of the fractured rock mass using Oda's tensorial approach [3]. The higher quality of this statistical analysis is fundamental: better statistics of the fracture attributes means more accurate permeability estimation, since the fracture attributes feed directly into the permeability calculations. The application of Maximum Likelihood Estimators can have important consequences, especially when we aim to predict the tendency of fracture attributes towards smaller and larger scales than those observed, in order to build consistent, useable models from outcrop observations. The procedures presented here aim to understand whether the average permeability of a fracture network can be predicted, reducing its uncertainties; and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models, which can then be easily up-scaled into larger areas or volumes. Gale et al. "Natural Fracture in shale: A review and new observations", AAPG Bulletin 98.11 (2014). Mauldon et al. "Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces", Journal of Structural Geology, 23 (2001). Oda "Permeability tensor for discontinuous rock masses", Geotechnique 35.4 (1985).
Bruun, Jesper; Bearden, Ian G
2014-01-01
Studies of the time development of empirical networks usually investigate late stages where lasting connections have already stabilized. Empirical data on early network history are rare but needed for a better understanding of how social network topology develops in real life. Studying students who are beginning their studies at a university with no or few prior connections to each other offers a unique opportunity to investigate the formation and early development of link patterns and community structure in social networks. During a nine week introductory physics course, first year physics students were asked to identify those with whom they communicated about problem solving in physics during the preceding week. We use these students' self reports to produce time dependent student interaction networks. We investigate these networks to elucidate possible effects of different student attributes in early network formation. Changes in the weekly number of links show that while roughly half of all links change from week to week, students also reestablish a growing number of links as they progress through their first weeks of study. Using the Infomap community detection algorithm, we show that the networks exhibit community structure, and we use non-network student attributes, such as gender and end-of-course grade to characterize communities during their formation. Specifically, we develop a segregation measure and show that students structure themselves according to gender and pre-organized sections (in which students engage in problem solving and laboratory work), but not according to end-of-coure grade. Alluvial diagrams of consecutive weeks' communities show that while student movement between groups are erratic in the beginning of their studies, they stabilize somewhat towards the end of the course. Taken together, the analyses imply that student interaction networks stabilize quickly and that students establish collaborations based on who is immediately available to them and on observable personal characteristics.
Koch, Kathrin; Myers, Nicholas E; Göttler, Jens; Pasquini, Lorenzo; Grimmer, Timo; Förster, Stefan; Manoliu, Andrei; Neitzel, Julia; Kurz, Alexander; Förstl, Hans; Riedl, Valentin; Wohlschläger, Afra M; Drzezga, Alexander; Sorg, Christian
2015-12-01
Amyloid-β pathology (Aβ) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aβ-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aβ-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aβ-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aβ-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aβ-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aβ-pathology with cognitive impairment in early AD. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
2015-11-11
reliable data message delivery. The basic mechanism of link-based routing schemes is the broadcasting of a control message (called a “ hello ”) to all of its...short- est path route to a destination by using the set of ex- changed hello messages between users of the network. With sufficiently high frequency... hello messages are suc- cessfully exchanged across a high error link, and since this link is of longer distance, it gets used to build a shortest path
2015-09-07
reliable data message delivery. The basic mechanism of link-based routing schemes is the broadcasting of a control message (called a “ hello ”) to all of its...short- est path route to a destination by using the set of ex- changed hello messages between users of the network. With sufficiently high frequency... hello messages are suc- cessfully exchanged across a high error link, and since this link is of longer distance, it gets used to build a shortest path
Linking Individual and Collective Behavior in Adaptive Social Networks
NASA Astrophysics Data System (ADS)
Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.
2016-03-01
Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.
Offdiagonal complexity: A computationally quick complexity measure for graphs and networks
NASA Astrophysics Data System (ADS)
Claussen, Jens Christian
2007-02-01
A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.
Overload-based cascades on multiplex networks and effects of inter-similarity
Zhou, Dong
2017-01-01
Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems. PMID:29252988
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
E-Center: A Collaborative Platform for Wide Area Network Users
NASA Astrophysics Data System (ADS)
Grigoriev, M.; DeMar, P.; Tierney, B.; Lake, A.; Metzger, J.; Frey, M.; Calyam, P.
2012-12-01
The E-Center is a social collaborative web-based platform for assisting network users in understanding network conditions across network paths of interest to them. It is designed to give a user the necessary tools to isolate, identify, and resolve network performance-related problems. E-Center provides network path information on a link-by-link level, as well as from an end-to-end perspective. In addition to providing current and recent network path data, E-Center is intended to provide a social media environment for them to share issues, ideas, concerns, and problems. The product has a modular design that accommodates integration of other network services that make use of the same network path and performance data.
Model of community emergence in weighted social networks
NASA Astrophysics Data System (ADS)
Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.
2009-04-01
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.
Efficient weighting strategy for enhancing synchronizability of complex networks
NASA Astrophysics Data System (ADS)
Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan
2018-04-01
Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.
Evolving network with different edges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Jie; Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699; Ge Yizhi
2007-10-15
We propose a scale-free network similar to Barabasi-Albert networks but with two different types of edges. This model is based on the idea that in many cases there are more than one kind of link in a network and when a new node enters the network both old nodes and different kinds of links compete to obtain it. The degree distribution of both the total degree and the degree of each type of edge is analyzed and found to be scale-free. Simulations are shown to confirm these results.
The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks
NASA Astrophysics Data System (ADS)
Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy
Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.
Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki
2014-01-13
Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.
Impact of nonlinearity phenomenon FWM in DWDM optical link considering dispersive fiber
NASA Astrophysics Data System (ADS)
Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.
2013-12-01
The increasing demand of network traffic requires new research centers; improve their communications networks, due to the excessive use of mobile and portable devices wanting to have greater access to the network by downloading interactive content quickly and effectively. For our case analyze optical network link through simulation results assuming a DWDM (Dense wavelength Division Multiplexing) optical link, considering the nonlinearity phenomenon FWM (Four Mixed Wavelength) in order to compare their performance, assuming transmission bit rates to 2.5 Gbps and 10 Gbps, using three primary wavelengths of 1450 nm, 1550 nm and 1650 nm for the transmission of information, whose separation is 100 GHz to generate 16 channels or user information. Tests were conducted to analyze optical amplifiers EDFAs link robustness at a maximum distance of 200 km and identify parameters OSNR, SNR and BER, for a robust and effective transmission
Nariai, N; Kim, S; Imoto, S; Miyano, S
2004-01-01
We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.
Reaction-diffusion processes and metapopulation models on duplex networks
NASA Astrophysics Data System (ADS)
Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong
2013-03-01
Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.
Architecture and design of optical path networks utilizing waveband virtual links
NASA Astrophysics Data System (ADS)
Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi
2016-02-01
We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.
Multinetwork of international trade: A commodity-specific analysis
NASA Astrophysics Data System (ADS)
Barigozzi, Matteo; Fagiolo, Giorgio; Garlaschelli, Diego
2010-04-01
We study the topological properties of the multinetwork of commodity-specific trade relations among world countries over the 1992-2003 period, comparing them with those of the aggregate-trade network, known in the literature as the international-trade network (ITN). We show that link-weight distributions of commodity-specific networks are extremely heterogeneous and (quasi) log normality of aggregate link-weight distribution is generated as a sheer outcome of aggregation. Commodity-specific networks also display average connectivity, clustering, and centrality levels very different from their aggregate counterpart. We also find that ITN complete connectivity is mainly achieved through the presence of many weak links that keep commodity-specific networks together and that the correlation structure existing between topological statistics within each single network is fairly robust and mimics that of the aggregate network. Finally, we employ cross-commodity correlations between link weights to build hierarchies of commodities. Our results suggest that on the top of a relatively time-invariant “intrinsic” taxonomy (based on inherent between-commodity similarities), the roles played by different commodities in the ITN have become more and more dissimilar, possibly as the result of an increased trade specialization. Our approach is general and can be used to characterize any multinetwork emerging as a nontrivial aggregation of several interdependent layers.
How people make friends in social networking sites—A microscopic perspective
NASA Astrophysics Data System (ADS)
Hu, Haibo; Wang, Xiaofan
2012-02-01
We study the detailed growth of a social networking site with full temporal information by examining the creation process of each friendship relation that can collectively lead to the macroscopic properties of the network. We first study the reciprocal behavior of users, and find that link requests are quickly responded to and that the distribution of reciprocation intervals decays in an exponential form. The degrees of inviters/accepters are slightly negatively correlative with reciprocation time. In addition, the temporal feature of the online community shows that the distributions of intervals of user behaviors, such as sending or accepting link requests, follow a power law with a universal exponent, and peaks emerge for intervals of an integral day. We finally study the preferential selection and linking phenomena of the social networking site and find that, for the former, a linear preference holds for preferential sending and reception, and for the latter, a linear preference also holds for preferential acceptance, creation, and attachment. Based on the linearly preferential linking, we put forward an analyzable network model which can reproduce the degree distribution of the network. The research framework presented in the paper could provide a potential insight into how the micro-motives of users lead to the global structure of online social networks.
The Mobile Internet -The Next Big Thing. Electrons & Photons: You Need Both! (BRIEFING CHARTS)
2007-03-05
Links Network Centric Warfighting Comms Wired & Wireless Links 20th Century 21th Century The Military Comms Problem Network Centric Operationst t i ti...Small Unit Operations TEL Underwater Vehicles & Towed Arrays RC-135V Rivet Joint Tier II+ UAV Global Hawk E-2C Hawkeye Networked Manned and Unmanned...RF Front-End Solutions ● >20 DARPA/MTO RF Programs across the spectrum - RF & Mixed Signal Electronics - Analog & Digital Photonics Enables Network
Social networks and health among older adults in Lebanon: the mediating role of support and trust.
Webster, Noah J; Antonucci, Toni C; Ajrouch, Kristine J; Abdulrahim, Sawsan
2015-01-01
Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one's network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Bayesian method for inferring transmission chains in a partially observed epidemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Ray, Jaideep
2008-10-01
We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less
Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding
Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio
2009-01-01
In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536
Decentralized Routing and Diameter Bounds in Entangled Quantum Networks
NASA Astrophysics Data System (ADS)
Gyongyosi, Laszlo; Imre, Sandor
2017-04-01
Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.
Rayner, Genevieve; Jackson, Graeme; Wilson, Sarah
2016-02-01
This systematic review sources the latest neuroimaging evidence for the role of cognition-related brain networks in depression, and relates their abnormal functioning to symptoms of the disorder. Using theoretically informed and rigorous inclusion criteria, we integrate findings from 59 functional neuroimaging studies of adults with unipolar depression using a narrative approach. Results demonstrate that two distinct neurocognitive networks, the autobiographic memory network (AMN) and the cognitive control network (CCN), are central to the symptomatology of depression. Specifically, hyperactivity of the introspective AMN is linked to pathological brooding, self-blame, rumination. Anticorrelated under-engagement of the CCN is associated with indecisiveness, negative automatic thoughts, poor concentration, distorted cognitive processing. Downstream effects of this imbalance include reduced regulation of networks linked to the vegetative and affective symptoms of depression. The configurations of these networks can change between individuals and over time, plausibly accounting for both the variable presentation of depressive disorders and their fluctuating course. Framing depression as a disorder of neurocognitive networks directly links neurobiology to psychiatric practice, aiding researchers and clinicians alike. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.
Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido
2018-03-23
Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.
ERIC Educational Resources Information Center
Gerard, Joseph G.
2012-01-01
Getting students to network with one another can be one of the biggest challenges in college courses, despite being a highly important function of higher education. Networking can, in fact, lead to that first job or to professional advancement, and technology can improve the success of individual and institutional efforts. This article describes…
Efficiency estimation method of three-wired AC to DC line transfer
NASA Astrophysics Data System (ADS)
Solovev, S. V.; Bardanov, A. I.
2018-05-01
The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
NASA Astrophysics Data System (ADS)
Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi
2017-01-01
Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.
Statistically Validated Networks in Bipartite Complex Systems
Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.
2011-01-01
Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved. PMID:21483858
NASA Astrophysics Data System (ADS)
Li, Yixiao; Zhang, Lin; Huang, Chaogeng; Shen, Bin
2016-06-01
Failures of real-world infrastructure networks due to natural disasters often originate in a certain region, but this feature has seldom been considered in theoretical models. In this article, we introduce a possible failure pattern of geographical networks-;regional failure;-by which nodes and edges within a region malfunction. Based on a previous spatial network model (Louf et al., 2013), we study the robustness of geographical networks against regional failure, which is measured by the fraction of nodes that remain in the largest connected component, via simulations. A small-area failure results in a large reduction of their robustness measure. Furthermore, we investigate two pre-deployed mechanisms to enhance their robustness: One is to extend the cost-benefit growth mechanism of the original network model by adding more than one link in a growth step, and the other is to strengthen the interconnection of hubs in generated networks. We measure the robustness-enhancing effects of both mechanisms on the basis of their costs, i.e., the amount of excessive links and the induced geographical length. The latter mechanism is better than the former one if a normal level of costs is considered. When costs exceed a certain level, the former has an advantage. Because the costs of excessive links affect the investment decision of real-world infrastructure networks, it is practical to enhance their robustness by adding more links between hubs. These results might help design robust geographical networks economically.
Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks
NASA Astrophysics Data System (ADS)
Din, Der-Rong; Huang, Jen-Shen
2014-03-01
As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.
Characterization of topological structure on complex networks.
Nakamura, Ikuo
2003-10-01
Characterizing the topological structure of complex networks is a significant problem especially from the viewpoint of data mining on the World Wide Web. "Page rank" used in the commercial search engine Google is such a measure of authority to rank all the nodes matching a given query. We have investigated the page-rank distribution of the real Web and a growing network model, both of which have directed links and exhibit a power law distributions of in-degree (the number of incoming links to the node) and out-degree (the number of outgoing links from the node), respectively. We find a concentration of page rank on a small number of nodes and low page rank on high degree regimes in the real Web, which can be explained by topological properties of the network, e.g., network motifs, and connectivities of nearest neighbors.
Berlow, Eric L.; Knapp, Roland A.; Ostoja, Steven M.; Williams, Richard J.; McKenny, Heather; Matchett, John R.; Guo, Qinghau; Fellers, Gary M.; Kleeman, Patrick; Brooks, Matthew L.; Joppa, Lucas
2013-01-01
A central challenge of conservation biology is using limited data to predict rare species occurrence and identify conservation areas that play a disproportionate role in regional persistence. Where species occupy discrete patches in a landscape, such predictions require data about environmental quality of individual patches and the connectivity among high quality patches. We present a novel extension to species occupancy modeling that blends traditionalpredictions of individual patch environmental quality with network analysis to estimate connectivity characteristics using limited survey data. We demonstrate this approach using environmental and geospatial attributes to predict observed occupancy patterns of the Yosemite toad (Anaxyrus (= Bufo) canorus) across >2,500 meadows in Yosemite National Park (USA). A. canorus, a Federal Proposed Species, breeds in shallow water associated with meadows. Our generalized linear model (GLM) accurately predicted ~84% of true presence-absence data on a subset of data withheld for testing. The predicted environmental quality of each meadow was iteratively ‘boosted’ by the quality of neighbors within dispersal distance. We used this park-wide meadow connectivity network to estimate the relative influence of an individual Meadow’s ‘environmental quality’ versus its ‘network quality’ to predict: a) clusters of high quality breeding meadows potentially linked by dispersal, b) breeding meadows with high environmental quality that are isolated from other such meadows, c) breeding meadows with lower environmental quality where long-term persistence may critically depend on the network neighborhood, and d) breeding meadows with the biggest impact on park-wide breeding patterns. Combined with targeted data on dispersal, genetics, disease, and other potential stressors, these results can guide designation of core conservation areas for A. canorus in Yosemite National Park.
Retweets as a Predictor of Relationships among Users on Social Media.
Tsugawa, Sho; Kito, Kosuke
2017-01-01
Link prediction is the problem of detecting missing links or predicting future link formation in a network. Application of link prediction to social media, such as Twitter and Facebook, is useful both for developing novel services and for sociological analyses. While most existing research on link prediction uses only the social network topology for the prediction, in social media, records of user activities such as posting, replying, and reposting are available. These records are expected to reflect user interest, and so incorporating them should improve link prediction. However, research into link prediction using the records of user activities is still in its infancy, and the effectiveness of such records for link prediction has not been fully explored. In this study, we focus in particular on records of reposting as a promising source that could be useful for link prediction, and investigate their effectiveness for link prediction on the popular social media platform Twitter. Our results show that (1) the prediction accuracy of techniques using reposting records is higher than that of popular topology-based techniques such as common neighbors and resource allocation for actively retweeting users, (2) the accuracy of link prediction techniques that use network topology alone can be improved by incorporating reposting records.
Retweets as a Predictor of Relationships among Users on Social Media
Kito, Kosuke
2017-01-01
Link prediction is the problem of detecting missing links or predicting future link formation in a network. Application of link prediction to social media, such as Twitter and Facebook, is useful both for developing novel services and for sociological analyses. While most existing research on link prediction uses only the social network topology for the prediction, in social media, records of user activities such as posting, replying, and reposting are available. These records are expected to reflect user interest, and so incorporating them should improve link prediction. However, research into link prediction using the records of user activities is still in its infancy, and the effectiveness of such records for link prediction has not been fully explored. In this study, we focus in particular on records of reposting as a promising source that could be useful for link prediction, and investigate their effectiveness for link prediction on the popular social media platform Twitter. Our results show that (1) the prediction accuracy of techniques using reposting records is higher than that of popular topology-based techniques such as common neighbors and resource allocation for actively retweeting users, (2) the accuracy of link prediction techniques that use network topology alone can be improved by incorporating reposting records. PMID:28107489