Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...
2017-08-25
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Gupta, Manan; Joshi, Amitabh; Vidya, T N C
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.
Joshi, Amitabh; Vidya, T. N. C.
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
Density estimates of monarch butterflies overwintering in central Mexico
Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031
Density estimates of monarch butterflies overwintering in central Mexico
Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657
Density estimation using the trapping web design: A geometric analysis
Link, W.A.; Barker, R.J.
1994-01-01
Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan
2012-01-01
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614
Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard
2018-01-01
Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129
An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.
Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len
2016-01-01
Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.
A spatial mark–resight model augmented with telemetry data
Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.
2013-01-01
Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.
A geographic analysis of population density thresholds in the influenza pandemic of 1918-19.
Chandra, Siddharth; Kassens-Noor, Eva; Kuljanin, Goran; Vertalka, Joshua
2013-02-20
Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918-19 in India, where over 15 million people died in the short span of less than one year. Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918-19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold.
A geographic analysis of population density thresholds in the influenza pandemic of 1918–19
2013-01-01
Background Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918–19 in India, where over 15 million people died in the short span of less than one year. Methods Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918–19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. Results The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). Conclusions This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold. PMID:23425498
Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A
2013-09-01
New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities. © 2012 The Royal Entomological Society.
Brassine, Eléanor; Parker, Daniel
2015-01-01
Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species. PMID:26698574
Brassine, Eléanor; Parker, Daniel
2015-01-01
Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100 km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species.
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Blackwell, Bradley F; Seamans, Thomas W; White, Randolph J; Patton, Zachary J; Bush, Rachel M; Cepek, Jonathan D
2004-04-01
Oral rabies vaccination (ORV) baiting programs for control of raccoon (Procyon lotor) rabies in the USA have been conducted or are in progress in eight states east of the Mississippi River. However, data specific to the relationship between raccoon population density and the minimum density of baits necessary to significantly elevate rabies immunity are few. We used the 22-km2 US National Aeronautics and Space Administration Plum Brook Station (PBS) in Erie County, Ohio, USA, to evaluate the period of exposure for placebo vaccine baits placed at a density of 75 baits/km2 relative to raccoon population density. Our objectives were to 1) estimate raccoon population density within the fragmented forest, old-field, and industrial landscape at PBS: and 2) quantify the time that placebo, Merial RABORAL V-RG vaccine baits were available to raccoons. From August through November 2002 we surveyed raccoon use of PBS along 19.3 km of paved-road transects by using a forward-looking infrared camera mounted inside a vehicle. We used Distance 3.5 software to calculate a probability of detection function by which we estimated raccoon population density from transect data. Estimated population density on PBS decreased from August (33.4 raccoons/km2) through November (13.6 raccoons/km2), yielding a monthly mean of 24.5 raccoons/km2. We also quantified exposure time for ORV baits placed by hand on five 1-km2 grids on PBS from September through October. An average 82.7% (SD = 4.6) of baits were removed within 1 wk of placement. Given raccoon population density, estimates of bait removal and sachet condition, and assuming 22.9% nontarget take, the baiting density of 75/ km2 yielded an average of 3.3 baits consumed per raccoon and the sachet perforated.
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
Mating systems of Cuphea laminuligera and Cuphea lutea.
Krueger, S K; Knapp, S J
1991-08-01
In this paper, the mating systems of experimental populations of C. laminuligera and C. lutea are described. Outcrossing rates (t) were estimated for four populations of C. laminuligera and three populations of C. lutea using allozyme phenotypes of open-pollinated individual plant families. Populations were grown at densities of 1.0 × 1.0 m (low) and 0.04 × 0.3 m (high). Pollen and ovule frequencies and single locus and multilocus outcrossing rates were estimated for each population using the mixed-mating model. Multilocus estimates of t ranged from 0.83 to 0.98 and 1.00 to 1.01 for low and high density populations of C. laminuligera, respectively, and 0.17 to 0.26 and 0.36 to 0.54 for low and high density populations of C. lutea, respectively. C. laminuligera is predominantly allogamous; however, selfing rates as great as 17% were observed for this species. C. lutea is predominantly autogamous, but outcrossing rates as great as 54% were observed for this species. Outcrossing rates increased as density increased within C. lutea populations.
Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem
Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.
2016-01-01
The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study demonstrate the need for comprehensive management designed to support CYE population growth and increased connectivity and gene flow with other populations.
Dietary niche variation and its relationship to lizard population density.
Novosolov, Maria; Rodda, Gordon H; Gainsbury, Alison M; Meiri, Shai
2018-01-01
Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators
Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.
2003-01-01
Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this “blind” test allowed us to evaluate the influence of expertise and experience in calculating density estimates in comparison to simply using default values in programs CAPTURE and DISTANCE. While the rodent sample sizes were considerably smaller than the recommended minimum for good model results, we found that several models performed well empirically, including the web-based uniform and half-normal models in program DISTANCE, and the grid-based models Mb and Mbh in program CAPTURE (with AÌ‚ adjusted by species-specific full mean maximum distance moved (MMDM) values). These models produced accurate DÌ‚ values (with 95% confidence intervals that included the true D values) and exhibited acceptable bias but poor precision. However, in linear regression analyses comparing each model's DÌ‚ values to the true D values over the range of observed test densities, only the web-based uniform model exhibited a regression slope near 1.0; all other models showed substantial slope deviations, indicating biased estimates at higher or lower density values. In addition, the grid-based DÌ‚ analyses using full MMDM values for WÌ‚ area adjustments required a number of theoretical assumptions of uncertain validity, and we therefore viewed their empirical successes with caution. Finally, density estimates from the independent analysts were highly variable, but estimates from web-based approaches had smaller mean square errors and better achieved confidence-interval coverage of D than did grid-based approaches. Our results support the contention that web-based approaches for density estimation of small-mammal populations are both theoretically and empirically superior to grid-based approaches, even when sample size is far less than often recommended. In view of the increasing need for standardized environmental measures for comparisons among ecosystems and through time, analytical models based on distance sampling appear to offer accurate density estimation approaches for research studies involving small-mammal abundances.
Ehlers Smith, David A; Ehlers Smith, Yvette C
2013-08-01
Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.
Rayan, D Mark; Mohamad, Shariff Wan; Dorward, Leejiah; Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Christopher, Wong Chai Thiam; Traeholt, Carl; Magintan, David
2012-12-01
The endangered Asian tapir (Tapirus indicus) is threatened by large-scale habitat loss, forest fragmentation and increased hunting pressure. Conservation planning for this species, however, is hampered by a severe paucity of information on its ecology and population status. We present the first Asian tapir population density estimate from a camera trapping study targeting tigers in a selectively logged forest within Peninsular Malaysia using a spatially explicit capture-recapture maximum likelihood based framework. With a trap effort of 2496 nights, 17 individuals were identified corresponding to a density (standard error) estimate of 9.49 (2.55) adult tapirs/100 km(2) . Although our results include several caveats, we believe that our density estimate still serves as an important baseline to facilitate the monitoring of tapir population trends in Peninsular Malaysia. Our study also highlights the potential of extracting vital ecological and population information for other cryptic individually identifiable animals from tiger-centric studies, especially with the use of a spatially explicit capture-recapture maximum likelihood based framework. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Population estimate of Chinese mystery snail (Bellamya chinensis) in a Nebraska reservoir
Chaine, Noelle M.; Allen, Craig R.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.
2012-01-01
The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species' impacts on freshwater ecosystems. It is be lieved that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (<3 m in depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs.
Historical US Census population data was used to estimate population density for 1930-2000 and satellite imagery from circa 1973, 1992, and 2001 was used to estimate the degree of urban development and the percent imperviousness (for 1992 and 2001) for a set of 150 small (< 13...
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
Exploring the relationship between population density and maternal health coverage.
Hanlon, Michael; Burstein, Roy; Masters, Samuel H; Zhang, Raymond
2012-11-21
Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score's calculation discounts a nation's uninhabited territory under the assumption those areas are irrelevant to service delivery. We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations' Millennial Development Goals.
Barber-Meyer, Shannon; Ryan, Daniel; Grosshuesch, David; Catton, Timothy; Malick-Wahls, Sarah
2018-01-01
core areas and averaged 52.3 (SD=8.3, range=43-59) during 2015-2017 in the larger core areas. We found no evidence for a decrease or increase in abundance during either period. Lynx density estimates were approximately 7-10 times lower than densities of lynx in northern populations at the low of the snowshoe hare (Lepus americanus) population cycle. To our knowledge, our results are the first attempt to estimate abundance, trend and density of lynx in Minnesota using non-invasive genetic capture-mark-recapture. Estimates such as ours provide useful benchmarks for future comparisons by providing a context with which to assess 1) potential changes in forest management that may affect lynx recovery and conservation, and 2) possible effects of climate change on the depth, density, and duration of annual snow cover and correspondingly, potential effects on snowshoe hares as well.
Estimating Allee dynamics before they can be observed: polar bears as a case study.
Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.
Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study
Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306
French, Benjamin; Funamoto, Sachiyo; Sugiyama, Hiromi; Sakata, Ritsu; Cologne, John; Cullings, Harry M; Mabuchi, Kiyohiko; Preston, Dale L
2018-03-29
In the Life Span Study of atomic bomb survivors, differences in urbanicity between high-dose and low-dose survivors could confound the association between radiation dose and adverse outcomes. We obtained data on the pre-bombing population distribution in Hiroshima and Nagasaki, and quantified the impact of adjustment for population density on radiation risk estimates for mortality (1950-2003) and incident solid cancer (1958-2009). Population density ranged from 4,671-14,378 and 5,748-19,149 people/km2 in urban regions of Hiroshima and Nagasaki, respectively. Radiation risk estimates for solid cancer mortality were attenuated by 5.1%, but those for all-cause mortality and incident solid cancer were unchanged. There was no overall association between population density and adverse outcomes, but there was evidence that the association between density and mortality differed by age at exposure. Among survivors 10-14 years old in 1945, there was a positive association between population density and risk of all-cause mortality (relative risk, 1.053 per 5,000 people/km2 increase, 95% confidence interval: 1.027, 1.079) and solid cancer mortality (relative risk, 1.069 per 5,000 people/km2 increase, 95% confidence interval: 1.025, 1.115). Our results suggest that radiation risk estimates from the Life Span Study are not sensitive to unmeasured confounding by urban-rural differences.
Application of adaptive cluster sampling to low-density populations of freshwater mussels
Smith, D.R.; Villella, R.F.; Lemarie, D.P.
2003-01-01
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.
Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N
2013-03-05
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
Estimating abundance and density of Amur tigers along the Sino-Russian border.
Xiao, Wenhong; Feng, Limin; Mou, Pu; Miquelle, Dale G; Hebblewhite, Mark; Goldberg, Joshua F; Robinson, Hugh S; Zhao, Xiaodan; Zhou, Bo; Wang, Tianming; Ge, Jianping
2016-07-01
As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.
2009-01-01
Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both environmental covariates and the seal abundance estimates that were developed here. An improved understanding of why vital rates change with changing population abundance will only come as we develop a better understanding of the processes affecting marine food resources in the Southern Ocean.
Characterization of a maximum-likelihood nonparametric density estimator of kernel type
NASA Technical Reports Server (NTRS)
Geman, S.; Mcclure, D. E.
1982-01-01
Kernel type density estimators calculated by the method of sieves. Proofs are presented for the characterization theorem: Let x(1), x(2),...x(n) be a random sample from a population with density f(0). Let sigma 0 and consider estimators f of f(0) defined by (1).
Escos, J.; Alados, C.L.; Emlen, John M.
1994-01-01
A stage-class population model with density-feedback term included was used to identify the most critical parameters determining the population dynamics of female Spanish ibex (Capra pyrenaica) in southern Spain. A population in the Cazorla and Segura mountains is rapidly declining, but the eastern Sierra Nevada population is growing. The stable population density obtained using estimated values of kid and adult survival (0.49 and 0.87, respectively) and with fecundity equal to 0.367 in the absence of density feedback is 12.7 or 16.82 individuals/km2, based on a non-time-lagged and a time-lagged model, respectively. Given the maximum estimate of fecundity and an adult survival rate of 0.87, a kid survival rate of at least 0.41 is required to avoid extinction. At the minimum fecundity estimate, kid survival would have to exceed 0.52. Elasticities were used to estimate the influence of variation in life-cycle parameters on the intrinsic rate of increase. Adult survival is the most critical parameter, while fecundity and juvenile survival are less important. An increase in adult survival from 0.87 to 0.91 in the Cazorla and Segura mountains population would almost stabilize the population in the absence of stochastic variation, while the same increase in the Sierra Nevada population would yield population growth of 4–5% per annum. A reduction in adult survival to 0.83 results in population decline in both cases.
Whittington, Jesse; Sawaya, Michael A
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.
NASA Astrophysics Data System (ADS)
Fujita, Kazuhiko; Otomaru, Maki; Lopati, Paeniu; Hosono, Takashi; Kayanne, Hajime
2016-03-01
Carbonate production by large benthic foraminifers is sometimes comparable to that of corals and coralline algae, and contributes to sedimentation on reef islands and beaches in the tropical Pacific. Population dynamic data, such as population density and size structure (size-frequency distribution), are vital for an accurate estimation of shell production of foraminifers. However, previous production estimates in tropical environments were based on a limited sampling period with no consideration of seasonality. In addition, no comparisons were made of various estimation methods to determine more accurate estimates. Here we present the annual gross shell production rate of Baculogypsina sphaerulata, estimated based on population dynamics studied over a 2-yr period on an ocean reef flat of Funafuti Atoll (Tuvalu, tropical South Pacific). The population density of B. sphaerulata increased from January to March, when northwest winds predominated and the study site was on the leeward side of reef islands, compared to other seasons when southeast trade winds predominated and the study site was on the windward side. This result suggested that wind-driven flows controlled the population density at the study site. The B. sphaerulata population had a relatively stationary size-frequency distribution throughout the study period, indicating no definite intensive reproductive period in the tropical population. Four methods were applied to estimate the annual gross shell production rates of B. sphaerulata. The production rates estimated by three of the four methods (using monthly biomass, life tables and growth increment rates) were in the order of hundreds of g CaCO3 m-2 yr-1 or cm-3 m-2 yr-1, and the simple method using turnover rates overestimated the values. This study suggests that seasonal surveys should be undertaken of population density and size structure as these can produce more accurate estimates of shell productivity of large benthic foraminifers.
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Green, David S.; Levi, Taal
2018-01-01
Pacific martens (Martes caurina humboldtensis) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to influence land-use decisions on public and private lands, but no estimates of population size, density, or viability of remnant marten populations are available for evaluating their conservation status. We used GPS and VHF telemetry and spatial mark-resight to estimate home ranges, density, and population size of Pacific martens in the Oregon Dunes National Recreation Area, central coast Oregon, USA. We then estimated population viability at differing levels of human-caused mortality (e.g., vehicle mortality). Marten home ranges were small on average (females = 0.8 km2, males 1.5 km2) and density (1.13 martens/1 km2) was the highest reported for North American populations (M. caurina, M. americana). We estimated 71 adult martens (95% CRI [41–87]) across two subpopulations separated by a large barrier (Umpqua River). Using population viability analysis, extinction risk for a subpopulation of 30 martens, approximately the size of the subpopulation south of the Umpqua River, ranged from 32% to 99% with two or three annual human-caused mortalities within 30 years. Absent population expansion, limiting human-caused mortalities will likely have the greatest conservation impact. PMID:29637018
[Krigle estimation and its simulated sampling of Chilo suppressalis population density].
Yuan, Zheming; Bai, Lianyang; Wang, Kuiwu; Hu, Xiangyue
2004-07-01
In order to draw up a rational sampling plan for the larvae population of Chilo suppressalis, an original population and its two derivative populations, random population and sequence population, were sampled and compared with random sampling, gap-range-random sampling, and a new systematic sampling integrated Krigle interpolation and random original position. As for the original population whose distribution was up to aggregative and dependence range in line direction was 115 cm (6.9 units), gap-range-random sampling in line direction was more precise than random sampling. Distinguishing the population pattern correctly is the key to get a better precision. Gap-range-random sampling and random sampling are fit for aggregated population and random population, respectively, but both of them are difficult to apply in practice. Therefore, a new systematic sampling named as Krigle sample (n = 441) was developed to estimate the density of partial sample (partial estimation, n = 441) and population (overall estimation, N = 1500). As for original population, the estimated precision of Krigle sample to partial sample and population was better than that of investigation sample. With the increase of the aggregation intensity of population, Krigel sample was more effective than investigation sample in both partial estimation and overall estimation in the appropriate sampling gap according to the dependence range.
High urban population density of birds reflects their timing of urbanization.
Møller, Anders Pape; Diaz, Mario; Flensted-Jensen, Einar; Grim, Tomas; Ibáñez-Álamo, Juan Diego; Jokimäki, Jukka; Mänd, Raivo; Markó, Gábor; Tryjanowski, Piotr
2012-11-01
Living organisms generally occur at the highest population density in the most suitable habitat. Therefore, invasion of and adaptation to novel habitats imply a gradual increase in population density, from that at or below what was found in the ancestral habitat to a density that may reach higher levels in the novel habitat following adaptation to that habitat. We tested this prediction of invasion biology by analyzing data on population density of breeding birds in their ancestral rural habitats and in matched nearby urban habitats that have been colonized recently across a continental latitudinal gradient. We estimated population density in the two types of habitats using extensive point census bird counts, and we obtained information on the year of urbanization when population density in urban habitats reached levels higher than that of the ancestral rural habitat from published records and estimates by experienced ornithologists. Both the difference in population density between urban and rural habitats and the year of urbanization were significantly repeatable when analyzing multiple populations of the same species across Europe. Population density was on average 30 % higher in urban than in rural habitats, although density reached as much as 100-fold higher in urban habitats in some species. Invasive urban bird species that colonized urban environments over a long period achieved the largest increases in population density compared to their ancestral rural habitats. This was independent of whether species were anciently or recently urbanized, providing a unique cross-validation of timing of urban invasions. These results suggest that successful invasion of urban habitats was associated with gradual adaptation to these habitats as shown by a significant increase in population density in urban habitats over time.
Exploring the relationship between population density and maternal health coverage
2012-01-01
Background Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. Methods We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score’s calculation discounts a nation’s uninhabited territory under the assumption those areas are irrelevant to service delivery. Results We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Conclusions Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations’ Millennial Development Goals. PMID:23170895
Challenges of DNA-based mark-recapture studies of American black bears
Settlage, K.E.; Van Manen, F.T.; Clark, J.D.; King, T.L.
2008-01-01
We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p >0.20) and population estimates with a low coefficient of variation (CV <20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark–recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark–recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Jesenšek, Dušan; Crivelli, Alain J.
2018-01-01
We develop a general framework that combines long-term tag–recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004–2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event. PMID:29657746
Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J
2018-03-01
We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.
Econometric studies of urban population density: a survey.
Mcdonald, J F
1989-01-01
This paper presents the 1st reasonably comprehensive survey of empirical research of urban population densities since the publication of the book by Edmonston in 1975. The survey summarizes contributions to empirical knowledge that have been made since 1975 and points toward possible areas for additional research. The paper also provides a brief interpretative intellectual history of the topic. It begins with a personal overview of research in the field. The next section discusses econometric issues that arise in the estimation of population density functions in which density is a function only of a distance to the central business district of the urban area. Section 4 summarizes the studies of a single urban area that went beyond the estimation of simple distance-density functions, and Section 5 discusses studies that sought to explain the variations across urban areas in population density patterns. McDonald refers to the standard theory of urban population density throughout the paper. This basic model is presented in the textbook by Mills and Hamilton and it is assumed that the reader is familiar with the model.
Demography of the Pacific walrus (Odobenus rosmarus divergens): 1974-2006
Taylor, Rebecca L.; Udevitz, Mark S.
2015-01-01
Global climate change may fundamentally alter population dynamics of many species for which baseline population parameter estimates are imprecise or lacking. Historically, the Pacific walrus is thought to have been limited by harvest, but it may become limited by global warming-induced reductions in sea ice. Loss of sea ice, on which walruses rest between foraging bouts, may reduce access to food, thus lowering vital rates. Rigorous walrus survival rate estimates do not exist, and other population parameter estimates are out of date or have well-documented bias and imprecision. To provide useful population parameter estimates we developed a Bayesian, hidden process demographic model of walrus population dynamics from 1974 through 2006 that combined annual age-specific harvest estimates with five population size estimates, six standing age structure estimates, and two reproductive rate estimates. Median density independent natural survival was high for juveniles (0.97) and adults (0.99), and annual density dependent vital rates rose from 0.06 to 0.11 for reproduction, 0.31 to 0.59 for survival of neonatal calves, and 0.39 to 0.85 for survival of older calves, concomitant with a population decline. This integrated population model provides a baseline for estimating changing population dynamics resulting from changing harvests or sea ice.
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris
2017-01-01
Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.
Estimations of population density for selected periods between the Neolithic and AD 1800.
Zimmermann, Andreas; Hilpert, Johanna; Wendt, Karl Peter
2009-04-01
Abstract We describe a combination of methods applied to obtain reliable estimations of population density using archaeological data. The combination is based on a hierarchical model of scale levels. The necessary data and methods used to obtain the results are chosen so as to define transfer functions from one scale level to another. We apply our method to data sets from western Germany that cover early Neolithic, Iron Age, Roman, and Merovingian times as well as historical data from AD 1800. Error margins and natural and historical variability are discussed. Our results for nonstate societies are always lower than conventional estimations compiled from the literature, and we discuss the reasons for this finding. At the end, we compare the calculated local and global population densities with other estimations from different parts of the world.
The scaling of contact rates with population density for the infectious disease models.
Hu, Hao; Nigmatulina, Karima; Eckhoff, Philip
2013-08-01
Contact rates and patterns among individuals in a geographic area drive transmission of directly-transmitted pathogens, making it essential to understand and estimate contacts for simulation of disease dynamics. Under the uniform mixing assumption, one of two mechanisms is typically used to describe the relation between contact rate and population density: density-dependent or frequency-dependent. Based on existing evidence of population threshold and human mobility patterns, we formulated a spatial contact model to describe the appropriate form of transmission with initial growth at low density and saturation at higher density. We show that the two mechanisms are extreme cases that do not capture real population movement across all scales. Empirical data of human and wildlife diseases indicate that a nonlinear function may work better when looking at the full spectrum of densities. This estimation can be applied to large areas with population mixing in general activities. For crowds with unusually large densities (e.g., transportation terminals, stadiums, or mass gatherings), the lack of organized social contact structure deviates the physical contacts towards a special case of the spatial contact model - the dynamics of kinetic gas molecule collision. In this case, an ideal gas model with van der Waals correction fits well; existing movement observation data and the contact rate between individuals is estimated using kinetic theory. A complete picture of contact rate scaling with population density may help clarify the definition of transmission rates in heterogeneous, large-scale spatial systems. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Mark-recapture using tetracycline and genetics reveal record-high bear density
Peacock, E.; Titus, K.; Garshelis, D.L.; Peacock, M.M.; Kuc, M.
2011-01-01
We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics. Copyright ?? 2011 The Wildlife Society.
Cetacean Density Estimation from Novel Acoustic Datasets by Acoustic Propagation Modeling
2014-09-30
hydrophone, to estimate the population density of false killer whales (Pseudorca crassidens) off of the Kona coast of the Island of Hawai’i... killer whale , suffers from interaction with the fisheries industry and its population has been reported to have declined in the past 20 years. Studies...of abundance estimate of false killer whales in Hawai’i through mark recapture methods will provide comparable results to the ones obtained by this
Camera traps and activity signs to estimate wild boar density and derive abundance indices.
Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave
2018-04-01
Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
Temporal variation in bird counts within a Hawaiian rainforest
Simon, John C.; Pratt, T.K.; Berlin, Kim E.; Kowalsky, James R.; Fancy, S.G.; Hatfield, J.S.
2002-01-01
We studied monthly and annual variation in density estimates of nine forest bird species along an elevational gradient in an east Maui rainforest. We conducted monthly variable circular-plot counts for 36 consecutive months along transects running downhill from timberline. Density estimates were compared by month, year, and station for all resident bird species with sizeable populations, including four native nectarivores, two native insectivores, a non-native insectivore, and two non-native generalists. We compared densities among three elevational strata and between breeding and nonbreeding seasons. All species showed significant differences in density estimates among months and years. Three native nectarivores had higher density estimates within their breeding season (December-May) and showed decreases during periods of low nectar production following the breeding season. All insectivore and generalist species except one had higher density estimates within their March-August breeding season. Density estimates also varied with elevation for all species, and for four species a seasonal shift in population was indicated. Our data show that the best time to conduct counts for native forest birds on Maui is January-February, when birds are breeding or preparing to breed, counts are typically high, variability in density estimates is low, and the likelihood for fair weather is best. Temporal variations in density estimates documented in our study site emphasize the need for consistent, well-researched survey regimens and for caution when drawing conclusions from, or basing management decisions on, survey data.
Mercader, R J; Siegert, N W; McCullough, D G
2012-02-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.
Effects of urban sprawl on obesity.
Zhao, Zhenxiang; Kaestner, Robert
2010-12-01
In this paper, we examine the effect of changes in population density-urban sprawl-between 1970 and 2000 on BMI and obesity of residents in metropolitan areas in the U.S. We address the possible endogeneity of population density by using a two-step instrumental variables approach. We exploit the plausibly exogenous variation in population density caused by the expansion of the U.S. Interstate Highway System, which largely followed the original 1947 plan for the Interstate Highway System. We find a negative association between population density and obesity, and estimates are robust across a wide range of specifications. Estimates indicate that if the average metropolitan area had not experienced the decline in the proportion of population living in dense areas over the last 30 years, the rate of obesity would have been reduced by approximately 13%. Copyright © 2010 Elsevier B.V. All rights reserved.
Estimating snow leopard population abundance using photography and capture-recapture techniques
Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.
2006-01-01
Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.
NASA Astrophysics Data System (ADS)
Engstrom, R.; Soundararajan, V.; Newhouse, D.
2017-12-01
In this study we examine how well multiple population density and built up estimates that utilize satellite data compare in Sri Lanka. The population relationship is examined at the Gram Niladhari (GN) level, the lowest administrative unit in Sri Lanka from the 2011 census. For this study we have two spatial domains, the whole country and a 3,500km2 sub-sample, for which we have complete high spatial resolution imagery coverage. For both the entire country and the sub-sample we examine how consistent are the existing publicly available measures of population constructed from satellite imagery at predicting population density? For just the sub-sample we examine how well do a suite of values derived from high spatial resolution satellite imagery predict population density and how does our built up area estimate compare to other publicly available estimates. Population measures were obtained from the Sri Lankan census, and were downloaded from Facebook, WorldPoP, GPW, and Landscan. Percentage built-up area at the GN level was calculated from three sources: Facebook, Global Urban Footprint (GUF), and the Global Human Settlement Layer (GHSL). For the sub-sample we have derived a variety of indicators from the high spatial resolution imagery. Using deep learning convolutional neural networks, an object oriented, and a non-overlapping block, spatial feature approach. Variables calculated include: cars, shadows (a proxy for building height), built up area, and buildings, roof types, roads, type of agriculture, NDVI, Pantex, and Histogram of Oriented Gradients (HOG) and others. Results indicate that population estimates are accurate at the higher, DS Division level but not necessarily at the GN level. Estimates from Facebook correlated well with census population (GN correlation of 0.91) but measures from GPW and WorldPop are more weakly correlated (0.64 and 0.34). Estimates of built-up area appear to be reliable. In the 32 DSD-subsample, Facebook's built- up area measure is highly correlated with our built-up measure (correlation of 0.9). Preliminary regression results based on variables selected from Lasso-regressions indicate that satellite indicators have exceptionally strong predictive power in predicting GN level population level and density with an out of sample r-squared of 0.75 and 0.72 respectively.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Muñoz, Eliana M; Ortega, Angela M; Bock, Brian C; Páez, Vivian P
2003-03-01
We studied the demography and nesting ecology of two populations of Iguana iguana that face heavy exploitation and habitat modification in the Momposina Depression, Colombia. Lineal transect data was analyzed using the Fourier model to provide estimates of social group densities, which was found to differ both within and among populations (1.05-6.0 groups/ha). Mean group size and overall iguana density estimates varied between populations as well (1.5-13.7 iguanas/ha). The density estimates were far lower than those reported from more protected areas in Panama and Venezuela. Iguana densities were consistently higher in sites located along rivers (2.5 iguanas/group) than in sites along the margin of marshes, probably due to vegetational differences (1.5 iguanas/group). There was no correlation between density estimates and estimates of relative abundance (number of iguanas seen/hour/person) due to differing detectabilities of iguana groups among sites. The adult sex ratio (1:2.5 males:females) agreed well with other reports in the literature based upon observation of adult social groups, and probably results from the polygynous mating system in this species rather than a real demographic skew. Nesting in this population occurs from the end of January through March and hatching occurs between April and May. We monitored 34 nests, which suffered little vertebrate predation, perhaps due to the lack of a complete vertebrate fauna in this densely inhabited area, but nests suffered from inundation, cattle trampling, and infestation by phorid fly larvae. Clutch sizes in these populations were lower than all other published reports except for the iguana population on the highly xeric island of Curaçao, implying that adult females in our area are unusually small. We argue that this is more likely the result of the exploitation of these populations rather than an adaptive response to environmentally extreme conditions.
Whittington, Jesse; Sawaya, Michael A.
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262
Predicting Grizzly Bear Density in Western North America
Mowat, Garth; Heard, Douglas C.; Schwarz, Carl J.
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552
Predicting grizzly bear density in western North America.
Mowat, Garth; Heard, Douglas C; Schwarz, Carl J
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.
Bird population density estimated from acoustic signals
Dawson, D.K.; Efford, M.G.
2009-01-01
Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant number of songbird species. ?? 2009 British Ecological Society.
Ávila-Nájera, Dulce María; Chávez, Cuauhtémoc; Lazcano-Barrero, Marco A; Pérez-Elizalde, Sergio; Alcántara-Carbajal, José Luis
2015-09-01
Wildlife density estimates provide an idea of the current state of populations, and in some cases, reflect the conservation status of ecosystems, essential aspects for effective management actions. In Mexico, several regions have been identified as high priority areas for the conservation of species that have some level of risk, like the Yucatan Peninsula (YP), where the country has the largest population of jaguars. However, little is known about the current status of threatened and endangered felids, which coexist in the Northeastern portion of the Peninsula. Our objective was to estimate the wild cats' density population over time at El Eden Ecological Reserve (EEER) and its surrounding areas. Camera trap surveys over four years (2008, 2010, 2011 and 2012) were conducted, and data were obtained with the use of capture-recapture models for closed populations (CAPTURE + MMDM or 1/2 MMDM), and the spatially explicit capture-recapture model (SPACECAP). The species studied were jaguar (Panthera onca), puma (Puma concolor), ocelot (Leopardus pardalis), jaguarundi (Puma yaguaroundi) and margay (Leopardus wiedii). Capture frequency was obtained for all five species and the density for three (individuals/100km2). The density estimated with The Mean Maximum Distance Moved (MMDM), CAPTURE, ranged from 1.2 to 2.6 for jaguars, from 1.7 to 4.3 for pumas and from 1.4 to 13.8 for ocelots. The density estimates in SPACECAP ranged from 0.7 to 3.6 for jaguars, from 1.8 to 5.2 for pumas and 2.1 to 5.1 for ocelots. Spatially explicit capture recapture (SECR) methods in SPACECAP were less likely to overestimate densities, making it a useful tool in the planning and decision making process for the conservation of these species. The Northeastern portion of the Yucatan Peninsula maintains high populations of cats, the EEER and its surrounding areas are valuable sites for the conservation of this group of predators. Rev. Biol.
Hearn, Andrew J; Ross, Joanna; Bernard, Henry; Bakar, Soffian Abu; Hunter, Luke T B; Macdonald, David W
2016-01-01
The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches.
Hearn, Andrew J.; Ross, Joanna; Bernard, Henry; Bakar, Soffian Abu; Hunter, Luke T. B.; Macdonald, David W.
2016-01-01
The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches. PMID:27007219
Estimating population density and connectivity of American mink using spatial capture-recapture
Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.
2016-01-01
Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.
Estimating population density and connectivity of American mink using spatial capture-recapture.
Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P
2016-06-01
Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.
Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba
2004-01-01
Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.
Judge, Seth W.; Camp, Richard J.; Hart, Patrick J.; Kichman, Scott T.
2018-01-01
Endangered Hawai‘i ʻĀkepas (Loxops coccineus) are endemic to Hawai‘i island, where they occur in five spatially distinct populations. Data concerning the status and population trends of these unique Hawaiian honeycreepers are crucial for assessing the effectiveness of recovery and management actions. In 2016, we used point‐transect distance sampling to estimate the abundance of Hawai‘i ʻĀkepas in portions of Hawai‘i Volcanoes National Park (HAVO) and the Kaʻū Forest Reserve (KFR) on Mauna Loa volcano. We then compiled the survey data from four other populations to provide a global population estimate. In our HAVO and KFR study area, we mapped habitat classes to determine the population densities in each habitat. Densities were highest (1.03 birds/ha) in open‐canopy montane ʻōhiʻa (Metrosideros polymorpha) woodland. In contrast, densities of the largest ʻĀkepa population on Mauna Kea volcano were highest in closed‐canopy ʻōhiʻa and koa (Acacia koa) forest where the species is dependent on nest cavities in tall (> 15 m), large (> 50‐cm diameter at breast height) trees. We surveyed potential nesting habitat in HAVO and KFR and found only one cavity in the short‐stature montane ʻōhiʻa woodland and five cavities in the tall‐stature forest. Differences in densities between the Mauna Kea and Mauna Loa populations suggest that Hawai‘i ʻĀkepas may exhibit different foraging and nesting behaviors in the two habitats. The estimated overall population density in the HAVO and KFR study area was 0.52 birds/ha, which equates to 3663 (95% CI 1725–6961) birds in their 11,377‐ha population range. We calculated a global population of 16,428 (95% CI 10,065–25,198) birds, which is similar to an estimate of 13,892 (95% CI 10,315–17,469) birds made in 1986. Our results suggest that populations are stable to increasing in the two largest populations, but the three other populations are smaller (range = 77–1443 birds) and trends for those populations are unknown.
Jensen, Elizabeth T; Hoffman, Kate; Shaheen, Nicholas J; Genta, Robert M; Dellon, Evan S
2014-05-01
Eosinophilic esophagitis (EoE) is an increasingly prevalent chronic disease arising from an allergy/immune-mediated process. Generally, the risk of atopic disease differs in rural and urban environments. The relationship between population density and EoE is unknown. Our aim was to assess the relationship between EoE and population density. We conducted a cross-sectional, case-control study of patients with esophageal biopsies in a US national pathology database between January 2009 and June 2012 to assess the relationship between population density and EoE. Using geographic information systems, the population density (individuals per square mile) was determined for each patient zip code. The odds of esophageal eosinophilia and EoE were estimated for each quintile of population density and adjusted for potential confounders. Sensitivity analyses were conducted with varying case definitions and to evaluate the potential for bias from endoscopy volume and patient factors. Of 292,621 unique patients in the source population, 89,754 had normal esophageal biopsies and 14,381 had esophageal eosinophilia with ≥15 eosinophils per high-power field. The odds of having esophageal eosinophilia increased with decreasing population density (P for trend <0.001). Compared with those in the highest quintile of population density, odds of having esophageal eosinophilia were significantly higher among those in the lowest quintile of population density (adjusted odds ratio (aOR) 1.27, 95% confidence interval (CI): 1.18, 1.36). A similar dose-response trend was observed across case definitions with increased odds of EoE in the lowest population density quintile (aOR 1.59, 95% CI: 1.45-1.76). Estimates were robust to sensitivity analyses. Population density is strongly and inversely associated with esophageal eosinophilia and EoE. This association is robust to varying case definitions and adjustment factors. Environmental exposures that are more prominent in rural areas may be relevant to the pathogenesis of EoE.
Jensen, Elizabeth T.; Hoffman, Kate; Shaheen, Nicholas J.; Genta, Robert M.; Dellon, Evan S.
2015-01-01
Objectives Eosinophilic esophagitis (EoE) is an increasingly prevalent chronic disease arising from an allergy/immune-mediated process. Generally, the risk of atopic disease differs in rural and urban environments. The relationship between population density and EoE is unknown. Our aim was to assess the relationship between EoE and population density. Methods : We conducted a cross-sectional, case-control study of patients with esophageal biopsies in a U.S. national pathology database between January 2009 and June 2012 to assess the relationship between population density and EoE. Using Geographic Information Systems (GIS), the population density (individuals/mile2) was determined for each patient zip code. The odds of esophageal eosinophilia and EoE were estimated for each quintile of population density and adjusted for potential confounders. Sensitivity analyses were conducted with varying case definitions and to evaluate the potential for bias from endoscopy volume and patient factors. Results Of 292,621 unique patients in the source population, 89,754 had normal esophageal biopsies and 14,381 had esophageal eosinophilia with ≥15 eosinophils per high-power field (eos/hpf). The odds of esophageal eosinophilia increased with decreasing population density (p for trend < 0.001). Compared to those in the highest quintile of population density, odds of esophageal eosinophilia were significantly higher amongst those in the lowest quintile of population density (aOR 1.27, 95% CI: 1.18, 1.36). A similar dose-response trend was observed across case definitions with odds of EoE increased in the lowest population density quintile (aOR 1.59, 95% CI: 1.45-1.76). Estimates were robust to sensitivity analyses. Conclusions Population density is strongly and inversely associated with esophageal eosinophilia and EoE. This association is robust to varying case definitions and adjustment factors. Environmental exposures more prominent in rural areas may be relevant to the pathogenesis of EoE. PMID:24667575
Cheyne, Susan M; Thompson, Claire J H; Phillips, Abigail C; Hill, Robyn M C; Limin, Suwido H
2008-01-01
We demonstrate that although auditory sampling is a useful tool, this method alone will not provide a truly accurate indication of population size, density and distribution of gibbons in an area. If auditory sampling alone is employed, we show that data collection must take place over a sufficient period to account for variation in calling patterns across seasons. The population of Hylobates albibarbis in the Sabangau catchment, Central Kalimantan, Indonesia, was surveyed from July to December 2005 using methods established previously. In addition, auditory sampling was complemented by detailed behavioural data on six habituated groups within the study area. Here we compare results from this study to those of a 1-month study conducted in 2004. The total population of the Sabangau catchment is estimated to be about in the tens of thousands, though numbers, distribution and density for the different forest subtypes vary considerably. We propose that future density surveys of gibbons must include data from all forest subtypes where gibbons are found and that extrapolating from one forest subtype is likely to yield inaccurate density and population estimates. We also propose that auditory census be carried out by using at least three listening posts (LP) in order to increase the area sampled and the chances of hearing groups. Our results suggest that the Sabangau catchment contains one of the largest remaining contiguous populations of Bornean agile gibbon.
Nonparametric estimation of plant density by the distance method
Patil, S.A.; Burnham, K.P.; Kovner, J.L.
1979-01-01
A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.
Estimation of tiger densities in India using photographic captures and recaptures
Karanth, U.; Nichols, J.D.
1998-01-01
Previously applied methods for estimating tiger (Panthera tigris) abundance using total counts based on tracks have proved unreliable. In this paper we use a field method proposed by Karanth (1995), combining camera-trap photography to identify individual tigers based on stripe patterns, with capture-recapture estimators. We developed a sampling design for camera-trapping and used the approach to estimate tiger population size and density in four representative tiger habitats in different parts of India. The field method worked well and provided data suitable for analysis using closed capture-recapture models. The results suggest the potential for applying this methodology for estimating abundances, survival rates and other population parameters in tigers and other low density, secretive animal species with distinctive coat patterns or other external markings. Estimated probabilities of photo-capturing tigers present in the study sites ranged from 0.75 - 1.00. The estimated mean tiger densities ranged from 4.1 (SE hat= 1.31) to 11.7 (SE hat= 1.93) tigers/100 km2. The results support the previous suggestions of Karanth and Sunquist (1995) that densities of tigers and other large felids may be primarily determined by prey community structure at a given site.
Black bear density in Glacier National Park, Montana
Stetz, Jeff B.; Kendall, Katherine C.; Macleod, Amy C.
2013-01-01
We report the first abundance and density estimates for American black bears (Ursus americanus) in Glacier National Park (NP),Montana, USA.We used data from 2 independent and concurrent noninvasive genetic sampling methods—hair traps and bear rubs—collected during 2004 to generate individual black bear encounter histories for use in closed population mark–recapture models. We improved the precision of our abundance estimate by using noninvasive genetic detection events to develop individual-level covariates of sampling effort within the full and one-half mean maximum distance moved (MMDM) from each bear’s estimated activity center to explain capture probability heterogeneity and inform our estimate of the effective sampling area.Models including the one-halfMMDMcovariate received overwhelming Akaike’s Information Criterion support suggesting that buffering our study area by this distance would be more appropriate than no buffer or the full MMDM buffer for estimating the effectively sampled area and thereby density. Our modelaveraged super-population abundance estimate was 603 (95% CI¼522–684) black bears for Glacier NP. Our black bear density estimate (11.4 bears/100 km2, 95% CI¼9.9–13.0) was consistent with published estimates for populations that are sympatric with grizzly bears (U. arctos) and without access to spawning salmonids. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
The impact of roads on the demography of grizzly bears in Alberta.
Boulanger, John; Stenhouse, Gordon B
2014-01-01
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.
The Impact of Roads on the Demography of Grizzly Bears in Alberta
2014-01-01
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species. PMID:25532035
Estimating numbers of greater prairie-chickens using mark-resight techniques
Clifton, A.M.; Krementz, D.G.
2006-01-01
Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.
Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations
2013-09-30
passive acoustic monitoring: Correcting humpback whale call detections for site-specific and time-dependent environmental characteristics ,” JASA Exp...marine mammal species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in...minimize the variance of the density estimates, 3) to apply the numerical modeling methods for humpback whale vocalizations to understand distortions
Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations
2014-09-30
species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in the Southern...of the density estimates, 3) to apply the numerical modeling methods for humpback whale vocalizations to understand distortions caused by...obtained. The specific approach being followed to accomplish objectives 1-4 above is listed below. 1) Detailed numerical modeling of humpback whale
Predicting Intra-Urban Population Densities in Africa using SAR and Optical Remote Sensing Data
NASA Astrophysics Data System (ADS)
Linard, C.; Steele, J.; Forget, Y.; Lopez, J.; Shimoni, M.
2017-12-01
The population of Africa is predicted to double over the next 40 years, driving profound social, environmental and epidemiological changes within rapidly growing cities. Estimations of within-city variations in population density must be improved in order to take urban heterogeneities into account and better help urban research and decision making, especially for vulnerability and health assessments. Satellite remote sensing offers an effective solution for mapping settlements and monitoring urbanization at different spatial and temporal scales. In Africa, the urban landscape is covered by slums and small houses, where the heterogeneity is high and where the man-made materials are natural. Innovative methods that combine optical and SAR data are therefore necessary for improving settlement mapping and population density predictions. An automatic method was developed to estimate built-up densities using recent and archived optical and SAR data and a multi-temporal database of built-up densities was produced for 48 African cities. Geo-statistical methods were then used to study the relationships between census-derived population densities and satellite-derived built-up attributes. Best predictors were combined in a Random Forest framework in order to predict intra-urban variations in population density in any large African city. Models show significant improvement of our spatial understanding of urbanization and urban population distribution in Africa in comparison to the state of the art.
Marine mammal tracks from two-hydrophone acoustic recordings made with a glider
NASA Astrophysics Data System (ADS)
Küsel, Elizabeth T.; Munoz, Tessa; Siderius, Martin; Mellinger, David K.; Heimlich, Sara
2017-04-01
A multinational oceanographic and acoustic sea experiment was carried out in the summer of 2014 off the western coast of the island of Sardinia, Mediterranean Sea. During this experiment, an underwater glider fitted with two hydrophones was evaluated as a potential tool for marine mammal population density estimation studies. An acoustic recording system was also tested, comprising an inexpensive, off-the-shelf digital recorder installed inside the glider. Detection and classification of sounds produced by whales and dolphins, and sometimes tracking and localization, are inherent components of population density estimation from passive acoustics recordings. In this work we discuss the equipment used as well as analysis of the data obtained, including detection and estimation of bearing angles. A human analyst identified the presence of sperm whale (Physeter macrocephalus) regular clicks as well as dolphin clicks and whistles. Cross-correlating clicks recorded on both data channels allowed for the estimation of the direction (bearing) of clicks, and realization of animal tracks. Insights from this bearing tracking analysis can aid in population density estimation studies by providing further information (bearings), which can improve estimates.
DS — Software for analyzing data collected using double sampling
Bart, Jonathan; Hartley, Dana
2011-01-01
DS analyzes count data to estimate density or relative density and population size when appropriate. The software is available at http://iwcbm.dev4.fsr.com/IWCBM/default.asp?PageID=126. The software was designed to analyze data collected using double sampling, but it also can be used to analyze index data. DS is not currently configured to apply distance methods or methods based on capture-recapture theory. Double sampling for the purpose of this report means surveying a sample of locations with a rapid method of unknown accuracy and surveying a subset of these locations using a more intensive method assumed to yield unbiased estimates. "Detection ratios" are calculated as the ratio of results from rapid surveys on intensive plots to the number actually present as determined from the intensive surveys. The detection ratios are used to adjust results from the rapid surveys. The formula for density is (results from rapid survey)/(estimated detection ratio from intensive surveys). Population sizes are estimated as (density)(area). Double sampling is well-established in the survey sampling literature—see Cochran (1977) for the basic theory, Smith (1995) for applications of double sampling in waterfowl surveys, Bart and Earnst (2002, 2005) for discussions of its use in wildlife studies, and Bart and others (in press) for a detailed account of how the method was used to survey shorebirds across the arctic region of North America. Indices are surveys that do not involve complete counts of well-defined plots or recording information to estimate detection rates (Thompson and others, 1998). In most cases, such data should not be used to estimate density or population size but, under some circumstances, may be used to compare two densities or estimate how density changes through time or across space (Williams and others, 2005). The Breeding Bird Survey (Sauer and others, 2008) provides a good example of an index survey. Surveyors record all birds detected but do not record any information, such as distance or whether each bird is recorded in subperiods, that could be used to estimate detection rates. Nonetheless, the data are widely used to estimate temporal trends and spatial patterns in abundance (Sauer and others, 2008). DS produces estimates of density (or relative density for indices) by species and stratum. Strata are usually defined using region and habitat but other variables may be used, and the entire study area may be classified as a single stratum. Population size in each stratum and for the entire study area also is estimated for each species. For indices, the estimated totals generally are only useful if (a) plots are surveyed so that densities can be calculated and extrapolated to the entire study area and (b) if the detection rates are close to 1.0. All estimates are accompanied by standard errors (SE) and coefficients of variation (CV, that is, SE/estimate).
Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius
Dunstan, Andrew; Bradshaw, Corey J. A.; Marshall, Justin
2011-01-01
The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6–77.4 km−2) dominated by males (83∶17 male∶female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide. PMID:21347360
A log-linear model approach to estimation of population size using the line-transect sampling method
Anderson, D.R.; Burnham, K.P.; Crain, B.R.
1978-01-01
The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.
Evaluation of line transect sampling based on remotely sensed data from underwater video
Bergstedt, R.A.; Anderson, D.R.
1990-01-01
We used underwater video in conjunction with the line transect method and a Fourier series estimator to make 13 independent estimates of the density of known populations of bricks lying on the bottom in shallows of Lake Huron. The pooled estimate of density (95.5 bricks per hectare) was close to the true density (89.8 per hectare), and there was no evidence of bias. Confidence intervals for the individual estimates included the true density 85% of the time instead of the nominal 95%. Our results suggest that reliable estimates of the density of objects on a lake bed can be obtained by the use of remote sensing and line transect sampling theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Robert N; White, Devin A; Urban, Marie L
2013-01-01
The Population Density Tables (PDT) project at the Oak Ridge National Laboratory (www.ornl.gov) is developing population density estimates for specific human activities under normal patterns of life based largely on information available in open source. Currently, activity based density estimates are based on simple summary data statistics such as range and mean. Researchers are interested in improving activity estimation and uncertainty quantification by adopting a Bayesian framework that considers both data and sociocultural knowledge. Under a Bayesian approach knowledge about population density may be encoded through the process of expert elicitation. Due to the scale of the PDT effort whichmore » considers over 250 countries, spans 40 human activity categories, and includes numerous contributors, an elicitation tool is required that can be operationalized within an enterprise data collection and reporting system. Such a method would ideally require that the contributor have minimal statistical knowledge, require minimal input by a statistician or facilitator, consider human difficulties in expressing qualitative knowledge in a quantitative setting, and provide methods by which the contributor can appraise whether their understanding and associated uncertainty was well captured. This paper introduces an algorithm that transforms answers to simple, non-statistical questions into a bivariate Gaussian distribution as the prior for the Beta distribution. Based on geometric properties of the Beta distribution parameter feasibility space and the bivariate Gaussian distribution, an automated method for encoding is developed that responds to these challenging enterprise requirements. Though created within the context of population density, this approach may be applicable to a wide array of problem domains requiring informative priors for the Beta distribution.« less
Evaluating population expansion of black bears using spatial capture-recapture
Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.
2017-01-01
The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses.
Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?
Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.
2005-01-01
In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to model disease explicitly. ?? 2005 by the Ecological Society of America.
Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.
Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko
2017-06-01
Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.
A new approach on seismic mortality estimations based on average population density
NASA Astrophysics Data System (ADS)
Zhu, Xiaoxin; Sun, Baiqing; Jin, Zhanyong
2016-12-01
This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering the population density. In China, however, the data are not always available, especially when it comes to the very urgent relief situation in the disaster. And the population density varies greatly from region to region. This motivates the development of empirical models that use historical death data to provide the path to analyze the death tolls for earthquakes. The present paper employs the average population density to predict the final death tolls in earthquakes using a case-based reasoning model from realistic perspective. To validate the forecasting results, historical data from 18 large-scale earthquakes occurred in China are used to estimate the seismic morality of each case. And a typical earthquake case occurred in the northwest of Sichuan Province is employed to demonstrate the estimation of final death toll. The strength of this paper is that it provides scientific methods with overall forecast errors lower than 20 %, and opens the door for conducting final death forecasts with a qualitative and quantitative approach. Limitations and future research are also analyzed and discussed in the conclusion.
A hierarchical model for spatial capture-recapture data
Royle, J. Andrew; Young, K.V.
2008-01-01
Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.
Robinson, Hugh S.; Ruth, Toni K.; Gude, Justin A.; Choate, David; DeSimone, Rich; Hebblewhite, Mark; Matchett, Marc R.; Mitchell, Michael S.; Murphy, Kerry; Williams, Jim
2015-01-01
To be most effective, the scale of wildlife management practices should match the range of a particular species’ movements. For this reason, combined with our inability to rigorously or regularly census mountain lion populations, several authors have suggested that mountain lions be managed in a source-sink or metapopulation framework. We used a combination of resource selection functions, mortality estimation, and dispersal modeling to estimate cougar population levels in Montana statewide and potential population level effects of planned harvest levels. Between 1980 and 2012, 236 independent mountain lions were collared and monitored for research in Montana. From these data we used 18,695 GPS locations collected during winter from 85 animals to develop a resource selection function (RSF), and 11,726 VHF and GPS locations from 142 animals along with the locations of 6343 mountain lions harvested from 1988–2011 to validate the RSF model. Our RSF model validated well in all portions of the State, although it appeared to perform better in Montana Fish, Wildlife and Parks (MFWP) Regions 1, 2, 4 and 6, than in Regions 3, 5, and 7. Our mean RSF based population estimate for the total population (kittens, juveniles, and adults) of mountain lions in Montana in 2005 was 3926, with almost 25% of the entire population in MFWP Region 1. Estimates based on a high and low reference population estimates produce a possible range of 2784 to 5156 mountain lions statewide. Based on a range of possible survival rates we estimated the mountain lion population in Montana to be stable to slightly increasing between 2005 and 2010 with lambda ranging from 0.999 (SD = 0.05) to 1.02 (SD = 0.03). We believe these population growth rates to be a conservative estimate of true population growth. Our model suggests that proposed changes to female harvest quotas for 2013–2015 will result in an annual statewide population decline of 3% and shows that, due to reduced dispersal, changes to harvest in one management unit may affect population growth in neighboring units where smaller or even no changes were made. Uncertainty regarding dispersal levels and initial population density may have a significant effect on predictions at a management unit scale (i.e. 2000 km2), while at a regional scale (i.e. 50,000 km2) large differences in initial population density result in relatively small changes in population growth rate, and uncertainty about dispersal may not be as influential. Doubling the presumed initial density from a low estimation of 2.19 total animals per 100 km2 resulted in a difference in annual population growth rate of only 2.6% statewide when compared to high density of 4.04 total animals per 100 km2 (low initial population estimate λ = 0.99, while high initial population estimate λ = 1.03). We suggest modeling tools such as this may be useful in harvest planning at a regional and statewide level.
Population density estimated from locations of individuals on a passive detector array
Efford, Murray G.; Dawson, Deanna K.; Borchers, David L.
2009-01-01
The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture–recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement ("proximity" detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.
Ellison, Aaron M.; Jackson, Scott
2015-01-01
Herpetologists and conservation biologists frequently use convenient and cost-effective, but less accurate, abundance indices (e.g., number of individuals collected under artificial cover boards or during natural objects surveys) in lieu of more accurate, but costly and destructive, population size estimators to detect and monitor size, state, and trends of amphibian populations. Although there are advantages and disadvantages to each approach, reliable use of abundance indices requires that they be calibrated with accurate population estimators. Such calibrations, however, are rare. The red back salamander, Plethodon cinereus, is an ecologically useful indicator species of forest dynamics, and accurate calibration of indices of salamander abundance could increase the reliability of abundance indices used in monitoring programs. We calibrated abundance indices derived from surveys of P. cinereus under artificial cover boards or natural objects with a more accurate estimator of their population size in a New England forest. Average densities/m2 and capture probabilities of P. cinereus under natural objects or cover boards in independent, replicate sites at the Harvard Forest (Petersham, Massachusetts, USA) were similar in stands dominated by Tsuga canadensis (eastern hemlock) and deciduous hardwood species (predominantly Quercus rubra [red oak] and Acer rubrum [red maple]). The abundance index based on salamanders surveyed under natural objects was significantly associated with density estimates of P. cinereus derived from depletion (removal) surveys, but underestimated true density by 50%. In contrast, the abundance index based on cover-board surveys overestimated true density by a factor of 8 and the association between the cover-board index and the density estimates was not statistically significant. We conclude that when calibrated and used appropriately, some abundance indices may provide cost-effective and reliable measures of P. cinereus abundance that could be used in conservation assessments and long-term monitoring at Harvard Forest and other northeastern USA forests. PMID:26020008
Evaluation of trapping-web designs
Lukacs, P.M.; Anderson, D.R.; Burnham, K.P.
2005-01-01
The trapping web is a method for estimating the density and abundance of animal populations. A Monte Carlo simulation study is performed to explore performance of the trapping web for estimating animal density under a variety of web designs and animal behaviours. The trapping performs well when animals have home ranges, even if the home ranges are large relative to trap spacing. Webs should contain at least 90 traps. Trapping should continue for 5-7 occasions. Movement rates have little impact on density estimates when animals are confined to home ranges. Estimation is poor when animals do not have home ranges and movement rates are rapid. The trapping web is useful for estimating the density of animals that are hard to detect and occur at potentially low densities. ?? CSIRO 2005.
Density estimation in a wolverine population using spatial capture-recapture models
Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin
2011-01-01
Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.
Population-level effects of the mysid, Americamysis bahia, exposed to varying thiobencarb concentrations were estimated using stage-structured matrix models. A deterministic density-independent matrix model estimated the decrease in population growth rate, l, with increas...
Relationships between human population density and burned area at continental and global scales.
Bistinas, Ioannis; Oom, Duarte; Sá, Ana C L; Harrison, Sandy P; Prentice, I Colin; Pereira, José M C
2013-01-01
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.
Relationships between Human Population Density and Burned Area at Continental and Global Scales
Bistinas, Ioannis; Oom, Duarte; Sá, Ana C. L.; Harrison, Sandy P.; Prentice, I. Colin; Pereira, José M. C.
2013-01-01
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning. PMID:24358108
Su, Nan-Yao; Lee, Sang-Hee
2008-04-01
Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.
Assessing tiger population dynamics using photographic capture-recapture sampling
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.
2006-01-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Assessing tiger population dynamics using photographic capture-recapture sampling.
Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E
2006-11-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Density estimation in tiger populations: combining information for strong inference
Gopalaswamy, Arjun M.; Royle, J. Andrew; Delampady, Mohan; Nichols, James D.; Karanth, K. Ullas; Macdonald, David W.
2012-01-01
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture–recapture data. The model, which combined information, provided the most precise estimate of density (8.5 ± 1.95 tigers/100 km2 [posterior mean ± SD]) relative to a model that utilized only one data source (photographic, 12.02 ± 3.02 tigers/100 km2 and fecal DNA, 6.65 ± 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
Density estimation in tiger populations: combining information for strong inference.
Gopalaswamy, Arjun M; Royle, J Andrew; Delampady, Mohan; Nichols, James D; Karanth, K Ullas; Macdonald, David W
2012-07-01
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture-recapture data. The model, which combined information, provided the most precise estimate of density (8.5 +/- 1.95 tigers/100 km2 [posterior mean +/- SD]) relative to a model that utilized only one data source (photographic, 12.02 +/- 3.02 tigers/100 km2 and fecal DNA, 6.65 +/- 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
Ray, Chris; Saracco, James; Holmgren, Mandy; Wilkerson, Robert; Siegel, Rodney; Jenkins, Kurt J.; Ransom, Jason I.; Happe, Patricia J.; Boetsch, John; Huff, Mark
2017-01-01
Monitoring species in National Parks facilitates inference regarding effects of climate change on population dynamics because parks are relatively unaffected by other forms of anthropogenic disturbance. Even at early points in a monitoring program, identifying climate covariates of population density can suggest vulnerabilities to future change. Monitoring landbird populations in parks during the breeding season brings the added benefit of allowing a comparative approach to inference across a large suite of species with diverse requirements. For example, comparing resident and migratory species that vary in exposure to non-park habitats can reveal the relative importance of park effects, such as those related to local climate. We monitored landbirds using breeding-season point-count data collected during 2005–2014 in three wilderness areas of the Pacific Northwest (Mount Rainier, North Cascades, and Olympic National Parks). For 39 species, we estimated recent trends in population density while accounting for individual detection probability using Bayesian hierarchical N-mixture models. Our analyses integrated several recent developments in N-mixture modeling, incorporating interval and distance sampling to estimate distinct components of detection probability while also accommodating count intervals of varying duration, annual variation in the length and number of point-count transects, spatial autocorrelation, random effects, and covariates of detection and density. As covariates of density, we considered metrics of precipitation and temperature hypothesized to affect breeding success. We also considered effects of park and elevational stratum on trend. Regardless of model structure, we estimated stable or increasing densities during 2005–2014 for most populations. Mean trends across species were positive for migrants in every park and for residents in one park. A recent snowfall deficit in this region might have contributed to the positive trend, because population density varied inversely with precipitation-as-snow for both migrants and residents. Densities varied directly but much more weakly with mean spring temperature. Our approach exemplifies an analytical framework for estimating trends from point-count data, and for assessing the role of climatic and other spatiotemporal variables in driving those trends. Understanding population trends and the factors that drive them is critical for adaptive management and resource stewardship in the context of climate change.
Optimum nonparametric estimation of population density based on ordered distances
Patil, S.A.; Kovner, J.L.; Burnham, Kenneth P.
1982-01-01
The asymptotic mean and error mean square are determined for the nonparametric estimator of plant density by distance sampling proposed by Patil, Burnham and Kovner (1979, Biometrics 35, 597-604. On the basis of these formulae, a bias-reduced version of this estimator is given, and its specific form is determined which gives minimum mean square error under varying assumptions about the true probability density function of the sampled data. Extension is given to line-transect sampling.
Takeshita, Kazutaka; Ikeda, Takashi; Takahashi, Hiroshi; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko; Kaji, Koichi
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered.
Hierarchical models for estimating density from DNA mark-recapture studies
Gardner, B.; Royle, J. Andrew; Wegan, M.T.
2009-01-01
Genetic sampling is increasingly used as a tool by wildlife biologists and managers to estimate abundance and density of species. Typically, DNA is used to identify individuals captured in an array of traps ( e. g., baited hair snares) from which individual encounter histories are derived. Standard methods for estimating the size of a closed population can be applied to such data. However, due to the movement of individuals on and off the trapping array during sampling, the area over which individuals are exposed to trapping is unknown, and so obtaining unbiased estimates of density has proved difficult. We propose a hierarchical spatial capture-recapture model which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to (via movement) and detection by traps. Detection probability is modeled as a function of each individual's distance to the trap. We applied this model to a black bear (Ursus americanus) study conducted in 2006 using a hair-snare trap array in the Adirondack region of New York, USA. We estimated the density of bears to be 0.159 bears/km2, which is lower than the estimated density (0.410 bears/km2) based on standard closed population techniques. A Bayesian analysis of the model is fully implemented in the software program WinBUGS.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.
Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M
2011-02-06
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.
2011-01-01
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630
Brennan, Angela K.; Cross, Paul C.; Higgs, Megan D.; Edwards, W. Henry; Scurlock, Brandon M.; Creel, Scott
2014-01-01
Understanding how animal density is related to pathogen transmission is important to develop effective disease control strategies, but requires measuring density at a scale relevant to transmission. However, this is not straightforward or well-studied among large mammals with group sizes that range several orders of magnitude or aggregation patterns that vary across space and time. To address this issue, we examined spatial variation in elk (Cervus canadensis) aggregation patterns and brucellosis across 10 regions in the Greater Yellowstone Area where previous studies suggest the disease may be increasing. We hypothesized that rates of increasing brucellosis would be better related to the frequency of large groups than mean group size or population density, but we examined whether other measures of density would also explain rising seroprevalence. To do this, we measured wintering elk density and group size across multiple spatial and temporal scales from monthly aerial surveys. We used Bayesian hierarchical models and 20 years of serologic data to estimate rates of increase in brucellosis within the 10 regions, and to examine the linear relationships between these estimated rates of increase and multiple measures of aggregation. Brucellosis seroprevalence increased over time in eight regions (one region showed an estimated increase from 0.015 in 1991 to 0.26 in 2011), and these rates of increase were positively related to all measures of aggregation. The relationships were weaker when the analysis was restricted to areas where brucellosis was present for at least two years, potentially because aggregation was related to disease-establishment within a population. Our findings suggest that (1) group size did not explain brucellosis increases any better than population density and (2) some elk populations may have high densities with small groups or lower densities with large groups, but brucellosis is likely to increase in either scenario. In this case, any one control method such as reducing population density or group size may not be sufficient to reduce transmission. This study highlights the importance of examining the density-transmission relationship at multiple scales and across populations before broadly applying disease control strategies.
Fagerstone, Kathleen A.; Biggins, Dean E.
1986-01-01
Black-footed ferrets (Mustela nigripes) are dependent on prairie dogs (Cynomys spp.) for food and on their burrows for shelter and rearing young. A stable prairie dog population may therefore be the most important factor determining the survival of ferrets. A rapid method of determining prairie dog density would be useful for assessing prairie dog density in colonies currently occupied by ferrets and for selecting prairie dog colonies in other areas for ferret translocation. This study showed that visual counts can provide a rapid density estimate. Visual counts of white-tailed prairie dogs (Cynomys leucurus) were significantly correlated (r = 0.95) with mark-recapture population density estimates on two study areas near Meeteetse, Wyoming. Suggestions are given for use of visual counts.
Wallace, Dorothy; Prosper, Olivia; Savos, Jacob; Dunham, Ann M; Chipman, Jonathan W; Shi, Xun; Ndenga, Bryson; Githeko, Andrew
2017-03-01
A dynamical model of Anopheles gambiae larval and adult populations is constructed that matches temperature-dependent maturation times and mortality measured experimentally as well as larval instar and adult mosquito emergence data from field studies in the Kenya Highlands. Spectral classification of high-resolution satellite imagery is used to estimate household density. Indoor resting densities collected over a period of one year combined with predictions of the dynamical model give estimates of both aquatic habitat and total adult mosquito densities. Temperature and precipitation patterns are derived from monthly records. Precipitation patterns are compared with average and extreme habitat estimates to estimate available aquatic habitat in an annual cycle. These estimates are coupled with the original model to produce estimates of adult and larval populations dependent on changing aquatic carrying capacity for larvae and changing maturation and mortality dependent on temperature. This paper offers a general method for estimating the total area of aquatic habitat in a given region, based on larval counts, emergence rates, indoor resting density data, and number of households.Altering the average daily temperature and the average daily rainfall simulates the effect of climate change on annual cycles of prevalence of An. gambiae adults. We show that small increases in average annual temperature have a large impact on adult mosquito density, whether measured at model equilibrium values for a single square meter of habitat or tracked over the course of a year of varying habitat availability and temperature. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Duangchantrasiri, Somphot; Umponjan, Mayuree; Simcharoen, Saksit; Pattanavibool, Anak; Chaiwattana, Soontorn; Maneerat, Sompoch; Kumar, N Samba; Jathanna, Devcharan; Srivathsa, Arjun; Karanth, K Ullas
2016-06-01
Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km(2) with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km(2) , abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade. © 2015 Society for Conservation Biology.
DENSITY: software for analysing capture-recapture data from passive detector arrays
Efford, M.G.; Dawson, D.K.; Robbins, C.S.
2004-01-01
A general computer-intensive method is described for fitting spatial detection functions to capture-recapture data from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the population density of 10 species of breeding birds sampled by mist-netting in deciduous forest at Patuxent Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ? 0.6 ha-1 mean ? SE) appeared to decline over time (slope -0.41 ? 0.15 ha-1y-1). The mean precision of annual estimates for all 10 species pooled was acceptable (CV(D) = 14%). Spatial analysis of closed-population capture-recapture data highlighted deficiencies in non-spatial methodologies. For example, effective trapping area cannot be assumed constant when detection probability is variable. Simulation may be used to evaluate alternative designs for mist net arrays where density estimation is a study goal.
McGarvey, Richard; Burch, Paul; Matthews, Janet M
2016-01-01
Natural populations of plants and animals spatially cluster because (1) suitable habitat is patchy, and (2) within suitable habitat, individuals aggregate further into clusters of higher density. We compare the precision of random and systematic field sampling survey designs under these two processes of species clustering. Second, we evaluate the performance of 13 estimators for the variance of the sample mean from a systematic survey. Replicated simulated surveys, as counts from 100 transects, allocated either randomly or systematically within the study region, were used to estimate population density in six spatial point populations including habitat patches and Matérn circular clustered aggregations of organisms, together and in combination. The standard one-start aligned systematic survey design, a uniform 10 x 10 grid of transects, was much more precise. Variances of the 10 000 replicated systematic survey mean densities were one-third to one-fifth of those from randomly allocated transects, implying transect sample sizes giving equivalent precision by random survey would need to be three to five times larger. Organisms being restricted to patches of habitat was alone sufficient to yield this precision advantage for the systematic design. But this improved precision for systematic sampling in clustered populations is underestimated by standard variance estimators used to compute confidence intervals. True variance for the survey sample mean was computed from the variance of 10 000 simulated survey mean estimates. Testing 10 published and three newly proposed variance estimators, the two variance estimators (v) that corrected for inter-transect correlation (ν₈ and ν(W)) were the most accurate and also the most precise in clustered populations. These greatly outperformed the two "post-stratification" variance estimators (ν₂ and ν₃) that are now more commonly applied in systematic surveys. Similar variance estimator performance rankings were found with a second differently generated set of spatial point populations, ν₈ and ν(W) again being the best performers in the longer-range autocorrelated populations. However, no systematic variance estimators tested were free from bias. On balance, systematic designs bring more narrow confidence intervals in clustered populations, while random designs permit unbiased estimates of (often wider) confidence interval. The search continues for better estimators of sampling variance for the systematic survey mean.
Sutherland, Chris; Royle, Andy
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
Estimating abundance: Chapter 27
Royle, J. Andrew
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
De Azevedo, Letícia Henrique; Maeda, Enzo Yuji; Inomoto, Mário Massayuki; De Moraes, Gilberto José
2014-02-01
Litchi (Litchi chinensis Sonnerat) is native to Southeast Asia, where most of the world cultivation of this crop is done. Its commercial cultivation in Brazil is recent and concentrated in the state of São Paulo. This crop has been severely damaged in Asia and Brazil by the litchi erineum mite, Aceria litchii (Keifer) (Eriophyidae). The objectives of this study were the adaptation of a method to estimate the density of A. litchii, an evaluation of the population dynamics of this pest and of its associated predators in the state of São Paulo, and an estimation of its injury levels to litchi trees. To estimate the density of A. litchii, an adaptation of a method commonly used to evaluate nematode densities in plant roots was performed. This method was shown to be adequate for the estimation of the number of A. litchii, and it might also be useful for similar evaluations of other erineum forming mites. Field samples to determine the pest population dynamics were collected monthly from August 2011 to July 2012. Sampled leaves were examined under a stereomicroscope for removal of predators and subsequent extraction ofA. litchii by the adapted method. A. litchii reached maximum densities in November 2011 and June 2012, being found at low densities between January and March 2012. The pattern of variation of A. litchii injury levels was similar to that of the density of A. litchii. The main predatory mite co-occurring with A. litchii was the phytoseiid Phytoseius intermedius Evans and McFarlane. However, high injury levels due toA. litchii suggest that the predator was unable to prevent visible damages to the trees, indicating that control activities should be adopted by growers.
Boersen, Mark R.; Clark, Joseph D.; King, Tim L.
2003-01-01
The Recovery Plan for the federally threatened Louisiana black bear (Ursus americanus luteolus) mandates that remnant populations be estimated and monitored. In 1999 we obtained genetic material with barbed-wire hair traps to estimate bear population size and genetic diversity at the 329-km2 Tensas River Tract, Louisiana. We constructed and monitored 122 hair traps, which produced 1,939 hair samples. Of those, we randomly selected 116 subsamples for genetic analysis and used up to 12 microsatellite DNA markers to obtain multilocus genotypes for 58 individuals. We used Program CAPTURE to compute estimates of population size using multiple mark-recapture models. The area of study was almost entirely circumscribed by agricultural land, thus the population was geographically closed. Also, study-area boundaries were biologically discreet, enabling us to accurately estimate population density. Using model Chao Mh to account for possible effects of individual heterogeneity in capture probabilities, we estimated the population size to be 119 (SE=29.4) bears, or 0.36 bears/km2. We were forced to examine a substantial number of loci to differentiate between some individuals because of low genetic variation. Despite the probable introduction of genes from Minnesota bears in the 1960s, the isolated population at Tensas exhibited characteristics consistent with inbreeding and genetic drift. Consequently, the effective population size at Tensas may be as few as 32, which warrants continued monitoring or possibly genetic augmentation.
Census-independent population mapping in northern Nigeria
Weber, Eric M.; Seaman, Vincent Y.; Stewart, Robert N.; ...
2017-10-21
Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areasmore » within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. As a result, used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.« less
Census-independent population mapping in northern Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Eric M.; Seaman, Vincent Y.; Stewart, Robert N.
Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areasmore » within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. As a result, used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.« less
Estimating black bear density using DNA data from hair snares
Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.
2010-01-01
DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.
Estimation of demographic parameters in a tiger population from long-term camera trap data
Karanth, K. Ullas; Nichols, James D.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas
2011-01-01
Chapter 7 (Karanth et al.) illustrated the use of camera trapping in combination with closed population capture–recapture (CR) models to estimate densities of tigers Panthera tigris. Such estimates can be very useful for investigating variation across space for a particular species (e.g., Karanth et al. 2004) or variation among species at a specific location. In addition, estimates of density continued at the same site(s) over multiple years are very useful for understanding and managing populations of large carnivores. Such multi-year studies can yield estimates of rates of change in abundance. Additionally, because the fates of marked individuals are tracked through time, biologists can delve deeper into factors driving changes in abundance such as rates of survival, recruitment and movement (Williams et al. 2002). Fortunately, modern CR approaches permit the modeling of populations that change between sampling occasions as a result of births, deaths, immigration and emigration (Pollock et al. 1990; Nichols 1992). Some of these early “open population” models focused on estimation of survival rates and, to a lesser extent, abundance, but more recent models permit estimation of recruitment and movement rates as well.
Buckley, Cara; Nekaris, K A I; Husson, Simon John
2006-10-01
Few data are available on gibbon populations in peat-swamp forest. In order to assess the importance of this habitat for gibbon conservation, a population of Hylobates agilis albibarbis was surveyed in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. This is an area of about 5,500 km(2) of selectively logged peat-swamp forest, which was formally gazetted as a national park during 2005. The study was conducted during June and July 2004 using auditory sampling methods. Five sample areas were selected and each was surveyed for four consecutive days by three teams of researchers at designated listening posts. Researchers recorded compass bearings of, and estimated distances to, singing groups. Nineteen groups were located. Population density is estimated to be 2.16 (+/-0.46) groups/km(2). Sightings occurring either at the listening posts or that were obtained by tracking in on calling groups yielded a mean group size of 3.4 individuals, hence individual gibbon density is estimated to be 7.4 (+/-1.59) individuals/km(2). The density estimates fall at the mid-range of those calculated for other gibbon populations, thus suggesting that peat-swamp forest is an important habitat for gibbon conservation in Borneo. A tentative extrapolation of results suggests a potential gibbon population size of 19,000 individuals within the mixed-swamp forest habitat sub-type in the Sabangau. This represents one of the largest remaining continuous populations of Bornean agile gibbons. The designation of the Sabangau forest as a national park will hopefully address the problem of illegal logging and hunting in the region. Further studies should note any difference in gibbon density post protection.
Use of geographic information systems in rabies vaccination campaigns.
Grisi-Filho, José Henrique de Hildebrand e; Amaku, Marcos; Dias, Ricardo Augusto; Montenegro Netto, Hildebrando; Paranhos, Noemia Tucunduva; Mendes, Maria Cristina Novo Campos; Ferreira Neto, José Soares; Ferreira, Fernando
2008-12-01
To develop a method to assist in the design and assessment of animal rabies control campaigns. A methodology was developed based on geographic information systems to estimate the animal (canine and feline) population and density per census tract and per subregion (known as "Subprefeituras") in the city of São Paulo (Southeastern Brazil) in 2002. The number of vaccination units in a given region was estimated to achieve a certain proportion of vaccination coverage. Census database was used for the human population, as well as estimates ratios of dog:inhabitant and cat:inhabitant. Estimated figures were 1,490,500 dogs and 226,954 cats in the city, i.e. an animal population density of 1138.14 owned animals per km(2). In the 2002 campaign, 926,462 were vaccinated, resulting in a vaccination coverage of 54%. The estimated number of vaccination units to be able to reach a 70%-vaccination coverage, by vaccinating 700 animals per unit on average, was 1,729. These estimates are presented as maps of animal density according to census tracts and "Subprefeituras". The methodology used in the study may be applied in a systematic way to the design and evaluation of rabies vaccination campaigns, enabling the identification of areas of critical vaccination coverage.
A parametric generalization of the Hayne estimator for line transect sampling
Burnham, Kenneth P.
1979-01-01
The Hayne model for line transect sampling is generalized by using an elliptical (rather than circular) flushing model for animal detection. By assuming the ration of major and minor axes lengths is constant for all animals, a model results which allows estimation of population density based directly upon sighting distances and sighting angles. The derived estimator of animal density is a generalization of the Hayne estimator for line transect sampling.
Kabaria, Caroline W; Gilbert, Marius; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2017-01-26
Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.
Takeshita, Kazutaka; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered. PMID:27711181
Fouracre, David; Smith, Graham C.
2017-01-01
Policy development, implementation, and effective contingency response rely on a strong evidence base to ensure success and cost-effectiveness. Where this includes preventing the establishment or spread of zoonotic or veterinary diseases infecting companion cats and dogs, descriptions of the structure and density of the populations of these pets are useful. Similarly, such descriptions may help in supporting diverse fields of study such as; evidence-based veterinary practice, veterinary epidemiology, public health and ecology. As well as maps of where pets are, estimates of how many may rarely, or never, be seen by veterinarians and might not be appropriately managed in the event of a disease outbreak are also important. Unfortunately both sources of evidence are absent from the scientific and regulatory literatures. We make this first estimate of the structure and density of pet populations by using the most recent national population estimates of cats and dogs across Great Britain and subdividing these spatially, and categorically across ownership classes. For the spatial model we used the location and size of veterinary practises across GB to predict the local density of pets, using client travel time to define catchments around practises, and combined this with residential address data to estimate the rate of ownership. For the estimates of pets which may provoke problems in managing a veterinary or zoonotic disease we reviewed the literature and defined a comprehensive suite of ownership classes for cats and dogs, collated estimates of the sub-populations for each ownership class as well as their rates of interaction and produced a coherent scaled description of the structure of the national population. The predicted density of pets varied substantially, with the lowest densities in rural areas, and the highest in the centres of large cities where each species could exceed 2500 animals.km-2. Conversely, the number of pets per household showed the opposite relationship. Both qualitative and quantitative validation support key assumptions in the model structure and suggest the model is useful at predicting the populations of cats at geographical scales important for decision-making, although it also indicates where further research may improve model performance. In the event of an animal health crisis, it appears that almost all dogs could be brought under control rapidly. For cats, a substantial and unknown number might never be bought under control and would be less likely to receive veterinary support to facilitate surveillance and disease management; we estimate this to be at least 1.5 million cats. In addition, the lack of spare capacity to care for unowned cats in welfare organisations suggests that any increase in their rate of acquisition of cats, or any decrease in the rate of re-homing might provoke problems during a period of crisis. PMID:28403172
Developing population models with data from marked individuals
Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,
2016-01-01
Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.
ESTIMATING IMPERVIOUS COVER FROM REGIONALLY AVAILABLE DATA
The objective of this study is to compare and evaluate the reliability of different approaches for estimating impervious cover including three empirical formulations for estimating impervious cover from population density data, estimation from categorized land cover data, and to ...
Kyes, Randall C; Iskandar, Entang; Onibala, Jane; Paputungan, Umar; Laatung, Sylvia; Huettmann, Falk
2013-01-01
The Sulawesi black macaque (Macaca nigra) population at Tangkoko Nature Reserve in North Sulawesi, Indonesia has been the focus of periodic study for over 30 years. The population has shown considerable decline during much of that time. Here we present the results of a long-term population survey of the Tangkoko M. nigra, conducted over the past decade, to provide updated information and on-going assessment of the population. Line-transect sampling was conducted annually from 1999 to 2002 and 2005 to 2011 along the same transect during a 2- to 3-week survey period. Although further decline in the population was observed at the outset of the survey, over the subsequent 12-year period we have seen stability in the population parameters with evidence of modest increases in both group and population density. During the 1999-2002 survey periods, there was a mean group density of 3.6 groups/km(2) and a mean population density of 39.8 individuals/km(2) . During 2005-2011, mean group density increased to 3.8 groups/km(2) and mean population density was 51.4 individuals/km(2) . The 2011 survey data indicated an estimated group density of 4.3 groups/km(2) and a population density of 61.5 individuals/km(2) . Given that our transect was located in the core of the Tangkoko reserve, our density estimates should be limited to that area of the reserve. One explanation for the apparent stabilization of the population may be tied to the increasing and sustained number of training and research programs being conducted at the reserve. This collective effort by local and international groups may be helping to reduce illegal activity in the reserve (i.e., hunting and habitat destruction) and generate greater awareness of this critically endangered species. Without the continued vigilance afforded by the existing research and training programs and the support and involvement of the local people, the M. nigra at the Tangkoko Nature Reserve will likely face further decline. © 2012 Wiley Periodicals, Inc.
Analysing designed experiments in distance sampling
Stephen T. Buckland; Robin E. Russell; Brett G. Dickson; Victoria A. Saab; Donal N. Gorman; William M. Block
2009-01-01
Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer's ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates...
Camera trapping estimates of density and survival of fishers (Martes pennanti)
Mark J. Jordan; Reginald H. Barrett; Kathryn L. Purcell
2011-01-01
Developing efficient monitoring strategies for species of conservation concern is critical to ensuring their persistence. We have developed a method using camera traps to estimate density and survival in mesocarnivores and tested it on a population of fishers Martes pennanti in an area of approximately 300 km2 of the southern...
Methods: This study is an examination of the relationship between stream flashiness and watershed-scale estimates of percent imperviousness, degree of urban development, and population density for 150 watersheds with long-term USGS National Water Information System (NWIS) histori...
The fish community of a small impoundment in upstate New York
McCoy, C. Mead; Madenjian, Charles P.; Adams, Jean V.; Harman, Willard N.
2001-01-01
Moe Pond is a dimictic impoundment with surface area of 15.6 ha, a mean depth of 1.8 m, and an unexploited fish community of only two species: brown bullhead (Ameiurus nebulosus) and golden shiner (Notemigonus crysoleucas). The age-1 and older brown bullhead population was estimated to be 4,057 individuals, based on the Schnabel capture-recapture method of population estimation. Density and biomass were respectively estimated at 260 individuals/ha and 13 kg/ha. Annual survival rate of age-2 through age-5 brown bullheads was estimated at 48%. The golden shiner length-frequency distribution was unimodal with modal length of 80 mm and maximum total length of 115 m. The golden shiner population estimate was 7,154 individuals, based on seven beach seine haul replicate samples; the density and biomass were 686 shiners/ha and 5 kg/ha, respectively. This study provides an information baseline that may be useful in understanding food web interactions and whole-pond nutrient flux.
Inference about density and temporary emigration in unmarked populations
Chandler, Richard B.; Royle, J. Andrew; King, David I.
2011-01-01
Few species are distributed uniformly in space, and populations of mobile organisms are rarely closed with respect to movement, yet many models of density rely upon these assumptions. We present a hierarchical model allowing inference about the density of unmarked populations subject to temporary emigration and imperfect detection. The model can be fit to data collected using a variety of standard survey methods such as repeated point counts in which removal sampling, double-observer sampling, or distance sampling is used during each count. Simulation studies demonstrated that parameter estimators are unbiased when temporary emigration is either "completely random" or is determined by the size and location of home ranges relative to survey points. We also applied the model to repeated removal sampling data collected on Chestnut-sided Warblers (Dendroica pensylvancia) in the White Mountain National Forest, USA. The density estimate from our model, 1.09 birds/ha, was similar to an estimate of 1.11 birds/ha produced by an intensive spot-mapping effort. Our model is also applicable when processes other than temporary emigration affect the probability of being available for detection, such as in studies using cue counts. Functions to implement the model have been added to the R package unmarked.
Point Counts of Birds: What Are We Estimating?
Douglas H. Johnson
1995-01-01
Point counts of birds are made for many reasons, including estimating local densities, determining population trends, assessing habitat preferences, and exploiting the activities of recreational birdwatchers. Problems arise unless there is a clear understanding of what point counts mean in terms of actual populations of birds. Criteria for conducting point counts...
Brown, Sandra [University of Illinois, Urbana, Illinois (USA); Iverson, Louis R. [University of Illinois, Urbana, Illinois (USA); Prasad, Anantha [University of Illinois, Urbana, Illinois (USA); Beaty, Tammy W. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Olsen, Lisa M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Cushman, Robert M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Brenkert, Antoinette L. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2001-03-01
A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam.
NASA Astrophysics Data System (ADS)
Peterson, Michael P.; Hunt, Paul; Weiß, Konrad
2018-05-01
"Air population" refers to the total number of people flying above the earth at any point in time. The total number of passengers can then be estimated by multiplying the number of seats for each aircraft by the current seat occupancy rate. Using this method, the estimated air population is determined by state for the airspace over the United States. In the interactive, real-time mapping system, maps are provided to show total air population, the density of air population (air population / area of state), and the ratio of air population to ground population.
Population decline of the Elfin-woods Warbler Setophaga angelae in eastern Puerto Rico
W.J. Arendt; S.S. Qian; K. Mineard
2013-01-01
We estimated the population density of the globally threatened Elfin-woods Warbler Setophaga angelae within two forest types at different elevations in the Luquillo Experimental Forest in north-eastern Puerto Rico. Population densities ranged from 0.01 to 0.02 individuals/ha in elfin woodland and 0.06â0.26 individuals/ha in palo colorado forest in 2006, with average...
Spatial heterogeneity in the carrying capacity of sika deer in Japan.
Iijima, Hayato; Ueno, Mayumi
2016-06-09
Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area.
Density dependence and risk of extinction in a small population of sea otters
Gerber, L.R.; Buenau, K.E.; VanBlaricom, G.
2004-01-01
Sea otters (Enhydra lutris (L.)) were hunted to extinction off the coast of Washington State early in the 20th century. A new population was established by translocations from Alaska in 1969 and 1970. The population, currently numbering at least 550 animals, A major threat to the population is the ongoing risk of majour oil spills in sea otter habitat. We apply population models to census and demographic data in order to evaluate the status of the population. We fit several density dependent models to test for density dependence and determine plausible values for the carrying capacity (K) by comparing model goodness of fit to an exponential model. Model fits were compared using Akaike Information Criterion (AIC). A significant negative relationship was found between the population growth rate and population size (r2=0.27, F=5.57, df=16, p<0.05), suggesting density dependence in Washington state sea otters. Information criterion statistics suggest that the model is the most parsimonious, followed closely by the logistic Beverton-Holt model. Values of K ranged from 612 to 759 with best-fit parameter estimates for the Beverton-Holt model including 0.26 for r and 612 for K. The latest (2001) population index count (555) puts the population at 87-92% of the estimated carrying capacity, above the suggested range for optimum sustainable population (OSP). Elasticity analysis was conducted to examine the effects of proportional changes in vital rates on the population growth rate (??). The elasticity values indicate the population is most sensitive to changes in survival rates (particularly adult survival).
Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador
Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew
2017-01-01
The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
[Effect of the population density on growth and regeneration in the snail Achatina fulica].
Sidel'nikov, A P; Stepanov, I I
2000-01-01
In the laboratory, the growth rate of the giant African snail Achatina fulica, as estimated by the weight and shell length was shown to decrease when the population density increased from 10 to 60 snails/m2 of the total terrarium area for five months. In the second experiment, when the population density increased from 48 to 193 snails/m2, the growth rate had already decreased by six weeks. In the groups with a high population density the feeding behavior was weakened, expressed by a greater amount of nonconsumed food, according to visual observations, than in the groups with lower population densities. At the population density of 10 to 60 snails/m2, the proliferative activity in the course of the optic tentacle regeneration, as expressed by the mitotic index, did not differ reliably within five months. In the second experiment, the mitotic indices at the population densities of 96 and 193 snails/m2 within 1.5 months exceeded that of 48 snails/m2. Recommendations are given concerning the population density from the viewpoint of commercial growth of the snails. It was proposed that, based on the analysis of the mechanism underlying the inhibition of feeding behavior in populations with extra high densities, one may develop a new approach to the production of chemical agents to control land snails as agricultural pests.
Everatt, Kristoffer T.; Andresen, Leah; Somers, Michael J.
2014-01-01
The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km2 vs. 3.05 lions/100 km2). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2 400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against. PMID:24914934
Everatt, Kristoffer T; Andresen, Leah; Somers, Michael J
2014-01-01
The African lion (Panthera Leo) has suffered drastic population and range declines over the last few decades and is listed by the IUCN as vulnerable to extinction. Conservation management requires reliable population estimates, however these data are lacking for many of the continent's remaining populations. It is possible to estimate lion abundance using a trophic scaling approach. However, such inferences assume that a predator population is subject only to bottom-up regulation, and are thus likely to produce biased estimates in systems experiencing top-down anthropogenic pressures. Here we provide baseline data on the status of lions in a developing National Park in Mozambique that is impacted by humans and livestock. We compare a direct density estimate with an estimate derived from trophic scaling. We then use replicated detection/non-detection surveys to estimate the proportion of area occupied by lions, and hierarchical ranking of covariates to provide inferences on the relative contribution of prey resources and anthropogenic factors influencing lion occurrence. The direct density estimate was less than 1/3 of the estimate derived from prey resources (0.99 lions/100 km² vs. 3.05 lions/100 km²). The proportion of area occupied by lions was Ψ = 0.439 (SE = 0.121), or approximately 44% of a 2,400 km2 sample of potential habitat. Although lions were strongly predicted by a greater probability of encountering prey resources, the greatest contributing factor to lion occurrence was a strong negative association with settlements. Finally, our empirical abundance estimate is approximately 1/3 of a published abundance estimate derived from opinion surveys. Altogether, our results describe a lion population held below resource-based carrying capacity by anthropogenic factors and highlight the limitations of trophic scaling and opinion surveys for estimating predator populations exposed to anthropogenic pressures. Our study provides the first empirical quantification of a population that future change can be measured against.
Grant, Evan H. Campbell; Zipkin, Elise; Scott, Sillett T.; Chandler, Richard; Royle, J. Andrew
2014-01-01
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N-mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N-mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival. We apply our model to a population of black-throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density-dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales.
Ruiz Ayma, Gabriel; Olalla Kerstupp, Alina; Macías Duarte, Alberto; Guzmán Velasco, Antonio; González Rojas, José I
2016-08-26
The western burrowing owl (Athene cunicularia hypugaea) occurs throughout western North America in various habitats such as desert, short-grass prairie and shrub-steppe, among others, where the main threat for this species is habitat loss. Range-wide declines have prompted a need for reliable estimates of its populations in Mexico, where the size of resident and migratory populations remain unknown. Our objective was to estimate the abundance and density of breeding western burrowing owl populations in Mexican prairie dog (Cynomys mexicanus) colonies in two sites located within the Chihuahuan Desert ecoregion in the states of Nuevo Leon and San Luis Potosi, Mexico. Line transect surveys were conducted from February to April of 2010 and 2011. Fifty 60 ha transects were analyzed using distance sampling to estimate owl and Mexican prairie dog populations. We estimated a population of 2026 owls (95 % CI 1756-2336) in 2010 and 2015 owls (95 % CI 1573-2317) in 2011 across 50 Mexican prairie dog colonies (20,529 ha). The results represent the first systematic attempt to provide reliable evidence related to the size of the adult owl populations, within the largest and best preserved Mexican prairie dog colonies in Mexico.
Modelling population distribution using remote sensing imagery and location-based data
NASA Astrophysics Data System (ADS)
Song, J.; Prishchepov, A. V.
2017-12-01
Detailed spatial distribution of population density is essential for city studies such as urban planning, environmental pollution and city emergency, even estimate pressure on the environment and human exposure and risks to health. However, most of the researches used census data as the detailed dynamic population distribution are difficult to acquire, especially in microscale research. This research describes a method using remote sensing imagery and location-based data to model population distribution at the function zone level. Firstly, urban functional zones within a city were mapped by high-resolution remote sensing images and POIs. The workflow of functional zones extraction includes five parts: (1) Urban land use classification. (2) Segmenting images in built-up area. (3) Identification of functional segments by POIs. (4) Identification of functional blocks by functional segmentation and weight coefficients. (5) Assessing accuracy by validation points. The result showed as Fig.1. Secondly, we applied ordinary least square and geographically weighted regression to assess spatial nonstationary relationship between light digital number (DN) and population density of sampling points. The two methods were employed to predict the population distribution over the research area. The R²of GWR model were in the order of 0.7 and typically showed significant variations over the region than traditional OLS model. The result showed as Fig.2.Validation with sampling points of population density demonstrated that the result predicted by the GWR model correlated well with light value. The result showed as Fig.3. Results showed: (1) Population density is not linear correlated with light brightness using global model. (2) VIIRS night-time light data could estimate population density integrating functional zones at city level. (3) GWR is a robust model to map population distribution, the adjusted R2 of corresponding GWR models were higher than the optimal OLS models, confirming that GWR models demonstrate better prediction accuracy. So this method provide detailed population density information for microscale citizen studies.
NASA Astrophysics Data System (ADS)
Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.
2010-03-01
We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.
Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won
2012-01-01
Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.
Sousa, André Silva Guimarães; Argolo, Poliane Sá; Gondim, Manoel Guedes Correa; de Moraes, Gilberto José; Oliveira, Anibal Ramadan
2017-08-01
The coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), is one of the main coconut pests in the American, African and parts of the Asian continents, reaching densities of several thousand mites per fruit. Diagrammatic scales have been developed to standardize the estimation of the population densities of A. guerreronis according to the estimated percentage of damage, but these have not taken into account the possible effect of fruit age, although previous studies have already reported the variation in mite numbers with fruit age. The objective of this study was to re-construct the relation between damage and mite density at different fruit ages collected in an urban coconut plantation containing the green dwarf variety ranging from the beginning to nearly the end of the infestation, as regularly seen under field conditions in northeast Brazil, in order to improve future estimates with diagrammatic scales. The percentage of damage was estimated with two diagrammatic scales on a total of 470 fruits from 1 to 5 months old, from a field at Ilhéus, Bahia, Brazil, determining the respective number of mites on each fruit. The results suggested that in estimates with diagrammatic scales: (1) fruit age has a major effect on the estimation of A. guerreronis densities, (2) fruits of different ages should be analyzed separately, and (3) regular evaluation of infestation levels should be done preferably on fruits of about 3-4 months old, which show the highest densities.
[Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].
Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A
2015-01-01
The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.
A conceptual guide to detection probability for point counts and other count-based survey methods
D. Archibald McCallum
2005-01-01
Accurate and precise estimates of numbers of animals are vitally needed both to assess population status and to evaluate management decisions. Various methods exist for counting birds, but most of those used with territorial landbirds yield only indices, not true estimates of population size. The need for valid density estimates has spawned a number of models for...
Capture-recapture of white-tailed deer using DNA from fecal pellet-groups
Goode, Matthew J; Beaver, Jared T; Muller, Lisa I; Clark, Joseph D.; van Manen, Frank T.; Harper, Craig T; Basinger, P Seth
2014-01-01
Traditional methods for estimating white-tailed deer population size and density are affected by behavioral biases, poor detection in densely forested areas, and invalid techniques for estimating effective trapping area. We evaluated a noninvasive method of capture—recapture for white-tailed deer (Odocoileus virginianus) density estimation using DNA extracted from fecal pellets as an individual marker and for gender determination, coupled with a spatial detection function to estimate density (spatially explicit capture—recapture, SECR). We collected pellet groups from 11 to 22 January 2010 at randomly selected sites within a 1-km2 area located on Arnold Air Force Base in Coffee and Franklin counties, Tennessee. We searched 703 10-m radius plots and collected 352 pellet-group samples from 197 plots over five two-day sampling intervals. Using only the freshest pellets we recorded 140 captures of 33 different animals (15M:18F). Male and female densities were 1.9 (SE = 0.8) and 3.8 (SE = 1.3) deer km-2, or a total density of 5.8 deer km-2 (14.9 deer mile-2). Population size was 20.8 (SE = 7.6) over a 360-ha area, and sex ratio was 1.0 M: 2.0 F (SE = 0.71). We found DNA sampling from pellet groups improved deer abundance, density and sex ratio estimates in contiguous landscapes which could be used to track responses to harvest or other management actions.
Krašovec, Rok; Richards, Huw; Gifford, Danna R; Hatcher, Charlie; Faulkner, Katy J; Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J; Knight, Christopher G
2017-08-01
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.
Gifford, Danna R.; Hatcher, Charlie; Faulkner, Katy J.; Belavkin, Roman V.; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J.
2017-01-01
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life. PMID:28837573
Tveraa, Torkild; Stien, Audun; Brøseth, Henrik; Yoccoz, Nigel G
2014-01-01
A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans. Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human–carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practice of compensation payments. This disagreement sustains the human–carnivore conflict. The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems. We utilized a long-term, large-scale data set to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry. Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates were much stronger than the effects of variation in lynx and wolverine densities. Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semi-domestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programmes, open access to data, herder involvement and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions. PMID:25558085
Estimating changes in urban land and urban population using refined areal interpolation techniques
NASA Astrophysics Data System (ADS)
Zoraghein, Hamidreza; Leyk, Stefan
2018-05-01
The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead, it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.
NASA Astrophysics Data System (ADS)
Zoraghein, H.; Leyk, S.; Balk, D.
2017-12-01
The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. The U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.
Cetacean Density Estimation from Novel Acoustic Datasets by Acoustic Propagation Modeling
2013-09-30
hydrophone, to estimate the population density of false killer whales (Pseudorca crassidens) off of the Kona coast of the Island of Hawai’i. OBJECTIVES...propagation due to the complexities of its environment. Moreover, the target species chosen for the proposed work, the false killer whale , suffers...estimate of false killer whales in Hawai’i through mark recapture methods will provide comparable results to the ones obtained by this project. The ultimate
Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)
USDA-ARS?s Scientific Manuscript database
The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...
Gorresen, P. Marcos; Camp, Richard J.; Brinck, Kevin W.; Farmer, Chris
2012-01-01
Point-transect surveys indicated that millerbirds were more abundant than shown by the striptransect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the pointtransect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, pointtransect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa
Forest-dweller demographics in West Kalimantan, Indonesia.
Fox, J; Atok, K
1997-03-01
This study sought to ascertain, from census and other data, the number of people living on state-claimed forest land (SCFL) in West Kalimantan in the outer islands of Indonesia. One aim was to determine why data collection is problematic. In 1990 the outer islands accounted for 38% of total population, 93% of its land mass, and 98% of its forests. 72% of the land mass of the outer islands was designated SCFL. Kalimantan has 38.5 million hectares of SCFL, while West Kalimantan has 9.2 million hectares, or 63% of the land area of the province. In 1990, 3.2 million people lived in West Kalimantan. Two sets of forest cover maps and census statistics at the village level were integrated into the geographic information system (GIS) technology by district and regency boundaries and the location of villages. The fieldwork was conducted in Sengah Temila District in Pontianak Regency and Simpang Hulu District in Ketapang Regency. Four methods were used to estimate forest populations: 1) estimating gross population density, 2) mapping forest villages, 3) adjusting density to account for uneven population distribution, and 4) estimating population densities for specific villages and generalizing to the province level. Methods 3 and 4 gave the most reasonable estimates. Population varied from 650,000 to 1 million. Government census statistics proved to be accurate representations of human population. The 1:50,000 scale of topological maps of West Kalimantan correctly identified the location of villages listed in the census. The Indonesian Ministry of Forestry's forest-planning maps and the RePPProT maps both reported similar SCFL. The GIS technology was useful in integrating data from several sources. The lack of knowledge was not due to political or institutional interests.
Wicke, Jason; Dumas, Genevieve A
2010-02-01
The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).
Polar bear aerial survey in the eastern Chukchi Sea: A pilot study
Evans, Thomas J.; Fischbach, Anthony S.; Schliebe, Scott L.; Manly, Bryan; Kalxdorff, Susanne B.; York, Geoff S.
2003-01-01
Alaska has two polar bear populations: the Southern Beaufort Sea population, shared with Canada, and the Chukchi/Bering Seas population, shared with Russia. Currently a reliable population estimate for the Chukchi/Bering Seas population does not exist. Land-based aerial and mark-recapture population surveys may not be possible in the Chukchi Sea because variable ice conditions, the limited range of helicopters, extremely large polar bear home ranges, and severe weather conditions may limit access to remote areas. Thus line-transect aerial surveys from icebreakers may be the best available tool to monitor this polar bear stock. In August 2000, a line-transect survey was conducted in the eastern Chukchi Sea and western Beaufort Sea from helicopters based on a U.S. Coast Guard icebreaker under the "Ship of Opportunity" program. The objectives of this pilot study were to estimate polar bear density in the eastern Chukchi and western Beaufort Seas and to assess the logistical feasibility of using ship-based aerial surveys to develop polar bear population estimates. Twenty-nine polar bears in 25 groups were sighted on 94 transects (8257 km). The density of bears was estimated as 1 bear per 147 km² (CV = 38%). Additional aerial surveys in late fall, using dedicated icebreakers, would be required to achieve the number of sightings, survey effort, coverage, and precision needed for more effective monitoring of population trends in the Chukchi Sea.
Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred
2013-01-01
Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230
Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi
2013-11-01
For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20-40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species.
Spatially explicit models for inference about density in unmarked or partially marked populations
Chandler, Richard B.; Royle, J. Andrew
2013-01-01
Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.
Forecasting outbreaks of the Douglas-fir tussock moth from lower crown cocoon samples.
Richard R. Mason; Donald W. Scott; H. Gene Paul
1993-01-01
A predictive technique using a simple linear regression was developed to forecast the midcrown density of small tussock moth larvae from estimates of cocoon density in the previous generation. The regression estimator was derived from field samples of cocoons and larvae taken from a wide range of nonoutbreak tussock moth populations. The accuracy of the predictions was...
Living on the edge: roe deer (Capreolus capreolus) density in the margins of its geographical range.
Valente, Ana M; Fonseca, Carlos; Marques, Tiago A; Santos, João P; Rodrigues, Rogério; Torres, Rita Tinoco
2014-01-01
Over the last decades roe deer (Capreolus capreolus) populations have increased in number and distribution throughout Europe. Such increases have profound impacts on ecosystems, both positive and negative. Therefore monitoring roe deer populations is essential for the appropriate management of this species, in order to achieve a balance between conservation and mitigation of the negative impacts. Despite being required for an effective management plan, the study of roe deer ecology in Portugal is at an early stage, and hence there is still a complete lack of knowledge of roe deer density within its known range. Distance sampling of pellet groups coupled with production and decay rates for pellet groups provided density estimates for roe deer in northeastern Portugal (Lombada National Hunting Area--LNHA, Serra de Montesinho--SM and Serra da Nogueira--SN; LNHA and SM located in Montesinho Natural Park). The estimated roe deer density using a stratified detection function was 1.23/100 ha for LNHA, 4.87/100 ha for SM and 4.25/100 ha in SN, with 95% confidence intervals (CI) of 0.68 to 2.21, 3.08 to 7.71 and 2.25 to 8.03, respectively. For the entire area, the estimated density was about 3.51/100 ha (95% CI - 2.26-5.45). This method can provide estimates of roe deer density, which will ultimately support management decisions. However, effective monitoring should be based on long-term studies that are able to detect population fluctuations. This study represents the initial phase of roe deer monitoring at the edge of its European range and intends to fill the gap in this species ecology, as the gathering of similar data over a number of years will provide the basis for stronger inferences. Monitoring should be continued, although the study area should be increased to evaluate the accuracy of estimates and assess the impact of management actions.
Christopher Asaro; C. Wayne Berisford
2001-01-01
There is considerable interest in using pheromone trap catches of the Nantucket pine tip moth, Rhyacionia frustrana (Conistock), to estimate or predict population density and damage. At six sites in the Georgia Piedmont, adult tip moths were monitored through one or more years using pheromone traps while population density and damage for each tip...
Outside and inside noise exposure in urban and suburban areas
Dwight E. Bishop; Myles A. Simpson
1977-01-01
In urban and suburban areas of the United States (away from major airports), the outdoor noise environment usually depends strongly on local vehicular traffic. By relating traffic flow to population density, a model of outdoor noise exposure has been developed for estimating the cumulative 24-hour noise exposure based upon the population density of the area. This noise...
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel
2017-05-01
The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.
Creel, Scott; Creel, Michael
2009-11-01
1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results predict a substantial reduction in the limiting effect of snow accumulation on Montana elk populations in the coming decades. If other limiting factors do not operate with greater force, population growth rates would increase substantially.
Goldberg, Joshua F; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L Scott; Wangchuk, Tshewang R; Lukacs, Paul
2015-01-01
Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010-2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the "true" explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25-15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest.
Goldberg, Joshua F.; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L. Scott; Wangchuk, Tshewang R.; Lukacs, Paul
2015-01-01
Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010–2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the “true” explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25–15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest. PMID:26536231
Density of American black bears in New Mexico
Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.; Liley, Stewart
2018-01-01
Considering advances in noninvasive genetic sampling and spatially explicit capture–recapture (SECR) models, the New Mexico Department of Game and Fish sought to update their density estimates for American black bear (Ursus americanus) populations in New Mexico, USA, to aide in setting sustainable harvest limits. We estimated black bear density in the Sangre de Cristo, Sandia, and Sacramento Mountains, New Mexico, 2012–2014. We collected hair samples from black bears using hair traps and bear rubs and used a sex marker and a suite of microsatellite loci to individually genotype hair samples. We then estimated density in a SECR framework using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We sampled the populations using 554 hair traps and 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 male, 358 female) individuals. Our density estimates varied from 16.5 bears/100 km2 (95% CI = 11.6–23.5) in the southern Sacramento Mountains to 25.7 bears/100 km2 (95% CI = 13.2–50.1) in the Sandia Mountains. Overall, detection probability at the activity center (g0) was low across all study areas and ranged from 0.00001 to 0.02. The low values of g0 were primarily a result of half of all hair samples for which genotypes were attempted failing to produce a complete genotype. We speculate that the low success we had genotyping hair samples was due to exceedingly high levels of ultraviolet (UV) radiation that degraded the DNA in the hair. Despite sampling difficulties, we were able to produce density estimates with levels of precision comparable to those estimated for black bears elsewhere in the United States.
Growth rates and variances of unexploited wolf populations in dynamic equilibria
Mech, L. David; Fieberg, John
2015-01-01
Several states have begun harvesting gray wolves (Canis lupus), and these states and various European countries are closely monitoring their wolf populations. To provide appropriate perspective for determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota, USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2 mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was 6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Nt+1/Nt, was (0.88, 1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit a density-independent model and a Ricker model to each time series, and in both cases we considered the potential for observation error. Mean growth rates from the density-independent model were close to 0 for all 3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including those describing annual variability or process variance, as providing useful summaries of the trajectories of these populations. The estimates of these natural wolf population parameters can serve as benchmarks for comparison with those of recovering wolf populations. Because our study populations were all from circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not confounded by changes in occupied area as would be the case with populations expanding their range, as are wolf populations in many states).
Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki
2010-09-01
A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.
Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J
2016-01-01
Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.
Scent Lure Effect on Camera-Trap Based Leopard Density Estimates
Braczkowski, Alexander Richard; Balme, Guy Andrew; Dickman, Amy; Fattebert, Julien; Johnson, Paul; Dickerson, Tristan; Macdonald, David Whyte; Hunter, Luke
2016-01-01
Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treatment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28–9.28 leopards/100km2) were considerably higher than estimates from spatially-explicit methods (3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted. PMID:27050816
Spatial heterogeneity in the carrying capacity of sika deer in Japan
Iijima, Hayato; Ueno, Mayumi
2016-01-01
Abstract Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area. PMID:29692470
Re-creating missing population baselines for Pacific reef sharks.
Nadon, Marc O; Baum, Julia K; Williams, Ivor D; McPherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E
2012-06-01
Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (<10%) than published estimates from surveys along small transects (<0.02 ha), which is not consistent with inverted biomass pyramids (predator biomass greater than prey biomass) reported by other researchers for pristine reefs. We examined the relation between the density of reef sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas. ©2012 Society for Conservation Biology No claim to original US government works.
Development of an adaptive harvest management program for Taiga bean geese
Johnson, Fred A.; Alhainen, Mikko; Fox, Anthony D.; Madsen, Jesper
2016-01-01
This report describes recent progress in specifying the elements of an adaptive harvest program for taiga bean goose. It describes harvest levels appropriate for first rebuilding the population of the Central Management Unit and then maintaining it near the goal specified in the AEWA International Single Species Action Plan (ISSAP). This report also provides estimates of the length of time it would take under ideal conditions (no density dependence and no harvest) to rebuild depleted populations in the Western and Eastern Management Units. We emphasize that our estimates are a first approximation because detailed demographic information is lacking for taiga bean geese. Using allometric relationships, we estimated parameters of a thetalogistic matrix population model. The mean intrinsic rate of growth was estimated as r = 0.150 (90% credible interval: 0.120 – 0.182). We estimated the mean form of density dependence as 2.361 (90% credible interval: 0.473 – 11.778), suggesting the strongest density dependence occurs when the population is near its carrying capacity. Based on expert opinion, carrying capacity (i.e., population size expected in the absence of hunting) for the Central Management Unit was estimated as K 87,900 (90% credible interval: 82,000 – 94,100). The ISSAP specifies a population goal for the Central Management Unit of 60,000 – 80,000 individuals in winter; thus, we specified a preliminary objective function as one which would minimize the difference between this goal and population size. Using the concept of stochastic dominance to explicitly account for uncertainty in demography, we determined that optimal harvest rates for 5, 10, 15, and 20-year time horizons were h = 0.00, 0.02, 0.05, and 0.06, respectively. These optima represent a tradeoff between the harvest rate and the time required to achieve and maintain a population size within desired bounds. We recognize, however, that regulation of absolute harvest rather than harvest rate is more practical, but our matrix model does not permit one to calculate an exact harvest associated with a specific harvest rate. Approximate harvests for current population size in the Central Management Unit are 0, 1,200, 2,300, and 3,500 for the 5, 10, 15, and 20-year time horizons, respectively. Populations of taiga bean geese in the Western and Eastern Units would require at least 10 and 13 years, respectively, to reach their minimum goals under the most optimistic of scenarios. The presence of harvest, density dependence, or environmental variation could extend these time frames considerably. Finally, we stress that development and implementation of internationally coordinated monitoring programs will be essential to further development and implementation of an adaptive harvest management program.
O'Connor, Kelly M; Rittenhouse, Chadwick D; Millspaugh, Joshua J; Rittenhouse, Tracy A G
2015-01-01
Box turtles (Terrapene carolina) are widely distributed but vulnerable to population decline across their range. Using distance sampling, morphometric data, and an index of carapace damage, we surveyed three-toed box turtles (Terrapene carolina triunguis) at 2 sites in central Missouri, and compared differences in detection probabilities when transects were walked by one or two observers. Our estimated turtle densities within forested cover was less at the Thomas S. Baskett Wildlife Research and Education Center, a site dominated by eastern hardwood forest (d = 1.85 turtles/ha, 95% CI [1.13, 3.03]) than at the Prairie Fork Conservation Area, a site containing a mix of open field and hardwood forest (d = 4.14 turtles/ha, 95% CI [1.99, 8.62]). Turtles at Baskett were significantly older and larger than turtles at Prairie Fork. Damage to the carapace did not differ significantly between the 2 populations despite the more prevalent habitat management including mowing and prescribed fire at Prairie Fork. We achieved improved estimates of density using two rather than one observer at Prairie Fork, but negligible differences in density estimates between the two methods at Baskett. Error associated with probability of detection decreased at both sites with the addition of a second observer. We provide demographic data on three-toed box turtles that suggest the use of a range of habitat conditions by three-toed box turtles. This case study suggests that habitat management practices and their impacts on habitat composition may be a cause of the differences observed in our focal populations of turtles.
Effect of high density on the short term Calomys musculinus spacing behaviour: A fencing experiment
NASA Astrophysics Data System (ADS)
Sommaro, Lucía V.; Steinmann, Andrea R.; Chiappero, Marina B.; Priotto, José W.
2010-05-01
We studied the short term spacing behavioural responses of corn mice ( Calomys musculinus) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2007 breeding season. The goal of this research was to test the hypothesis that spacing behaviour only operates among C. musculinus adult females. We estimated 207 home ranges to study: 1) the home range size and the overlap degree of adult males and females in relation to population density; 2) the settlement distances of juveniles to the centre of activity of their mothers and the home range overlap proportion between them and their mothers in relation to population density. We found that home range size and overlap degree in C. musculinus adults were determined by sex and density. At high population density males had significant smaller and more exclusive home ranges, and this might reflect induced territoriality derived from social restrictions. Female home range sizes remained similar irrespective of population density, and they kept exclusive home ranges in both control and experimental enclosures. Thus, females maintained their territories independent of the population density values. The settlement distances of juveniles from their mothers and the overlap proportion between them and their mothers were independent of population density. We conclude that spacing behaviour only operates among C. musculinus adult females and it could have a role in regulating population abundances limiting the number of females that acquire breeding spaces.
Hiebeler, David E; Millett, Nicholas E
2011-06-21
We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites. Copyright © 2011 Elsevier Ltd. All rights reserved.
Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.
1997-01-01
Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.
2009-12-01
1990s and only being present part of the time off the US West Coast lowering the average density present (but not reflecting an actual population ...the average density present (but not reflecting an actual population decline). 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...due to our sample representing a decreasing proportion of this growing population leading to greater variation and possibly greater susceptibility to
Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study
NASA Astrophysics Data System (ADS)
Troudi, Molka; Alimi, Adel M.; Saoudi, Samir
2008-12-01
The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.
Zipkin, Elise F; Sillett, T Scott; Grant, Evan H Campbell; Chandler, Richard B; Royle, J Andrew
2014-01-01
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N-mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N-mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival. We apply our model to a population of black-throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density-dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales. PMID:24634726
Is Bayesian Estimation Proper for Estimating the Individual's Ability? Research Report 80-3.
ERIC Educational Resources Information Center
Samejima, Fumiko
The effect of prior information in Bayesian estimation is considered, mainly from the standpoint of objective testing. In the estimation of a parameter belonging to an individual, the prior information is, in most cases, the density function of the population to which the individual belongs. Bayesian estimation was compared with maximum likelihood…
Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi
2013-01-01
For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20–40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species. PMID:24363899
Conn, Paul B.; Johnson, Devin S.; Ver Hoef, Jay M.; Hooten, Mevin B.; London, Joshua M.; Boveng, Peter L.
2015-01-01
Ecologists often fit models to survey data to estimate and explain variation in animal abundance. Such models typically require that animal density remains constant across the landscape where sampling is being conducted, a potentially problematic assumption for animals inhabiting dynamic landscapes or otherwise exhibiting considerable spatiotemporal variation in density. We review several concepts from the burgeoning literature on spatiotemporal statistical models, including the nature of the temporal structure (i.e., descriptive or dynamical) and strategies for dimension reduction to promote computational tractability. We also review several features as they specifically relate to abundance estimation, including boundary conditions, population closure, choice of link function, and extrapolation of predicted relationships to unsampled areas. We then compare a suite of novel and existing spatiotemporal hierarchical models for animal count data that permit animal density to vary over space and time, including formulations motivated by resource selection and allowing for closed populations. We gauge the relative performance (bias, precision, computational demands) of alternative spatiotemporal models when confronted with simulated and real data sets from dynamic animal populations. For the latter, we analyze spotted seal (Phoca largha) counts from an aerial survey of the Bering Sea where the quantity and quality of suitable habitat (sea ice) changed dramatically while surveys were being conducted. Simulation analyses suggested that multiple types of spatiotemporal models provide reasonable inference (low positive bias, high precision) about animal abundance, but have potential for overestimating precision. Analysis of spotted seal data indicated that several model formulations, including those based on a log-Gaussian Cox process, had a tendency to overestimate abundance. By contrast, a model that included a population closure assumption and a scale prior on total abundance produced estimates that largely conformed to our a priori expectation. Although care must be taken to tailor models to match the study population and survey data available, we argue that hierarchical spatiotemporal statistical models represent a powerful way forward for estimating abundance and explaining variation in the distribution of dynamical populations.
Zu Erbach-Schoenberg, Elisabeth; Alegana, Victor A; Sorichetta, Alessandro; Linard, Catherine; Lourenço, Christoper; Ruktanonchai, Nick W; Graupe, Bonita; Bird, Tomas J; Pezzulo, Carla; Wesolowski, Amy; Tatem, Andrew J
2016-01-01
Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates, these changes in population density will also have an impact on allocation of medical resources. Awareness of seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or distributions of commodities like bed nets.
Approximate sample sizes required to estimate length distributions
Miranda, L.E.
2007-01-01
The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.
Grizzly bear density in Glacier National Park, Montana
Kendall, K.C.; Stetz, J.B.; Roon, David A.; Waits, L.P.; Boulanger, J.B.; Paetkau, David
2008-01-01
We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.
Double sampling to estimate density and population trends in birds
Bart, Jonathan; Earnst, Susan L.
2002-01-01
We present a method for estimating density of nesting birds based on double sampling. The approach involves surveying a large sample of plots using a rapid method such as uncorrected point counts, variable circular plot counts, or the recently suggested double-observer method. A subsample of those plots is also surveyed using intensive methods to determine actual density. The ratio of the mean count on those plots (using the rapid method) to the mean actual density (as determined by the intensive searches) is used to adjust results from the rapid method. The approach works well when results from the rapid method are highly correlated with actual density. We illustrate the method with three years of shorebird surveys from the tundra in northern Alaska. In the rapid method, surveyors covered ~10 ha h-1 and surveyed each plot a single time. The intensive surveys involved three thorough searches, required ~3 h ha-1, and took 20% of the study effort. Surveyors using the rapid method detected an average of 79% of birds present. That detection ratio was used to convert the index obtained in the rapid method into an essentially unbiased estimate of density. Trends estimated from several years of data would also be essentially unbiased. Other advantages of double sampling are that (1) the rapid method can be changed as new methods become available, (2) domains can be compared even if detection rates differ, (3) total population size can be estimated, and (4) valuable ancillary information (e.g. nest success) can be obtained on intensive plots with little additional effort. We suggest that double sampling be used to test the assumption that rapid methods, such as variable circular plot and double-observer methods, yield density estimates that are essentially unbiased. The feasibility of implementing double sampling in a range of habitats needs to be evaluated.
Estimates of brown bear abundance on Kodiak Island, Alaska
Barnes, V.G.; Smith, R.B.
1998-01-01
During 1987-94 we used capture-mark-resight (CMR) methodology and rates of observation (bears/hour and bears/100 km2) of unmarked brown bears (Ursus arctos middendorffi) during intensive aerial surveys (IAS) to estimate abundance of brown bears on Kodiak Island and to establish a baseline for monitoring population trends. CMR estimates were obtained on 3 study areas; density ranged from 216-234 bears/1,000 km2 for independent animals and 292-342 bears/1,000 km2 including dependent offspring. Rates of observation during IAS ranged from 1.4-5.4 independent bears/hour and 2.9-18.0 independent bears/100 km2. Density estimates for independent bears on each IAS area were obtained by dividing mean number of bears observed during replicate surveys by estimated sightability (based on CMR-derived sightability in areas with similar habitat. Brown bear abundance on 21 geographic units of Kodiak Island and 3 nearby islands was estimated by extrapolation from CMR and IAS data using comparisons of habitat characteristics and sport harvest information. Population estimates for independent and total bears were 1,800 and 2,600. The CMR and IAS procedures offer alternative means, depending on management objective and available resources, of measuring population trend of brown bears on Kodiak Island.
Cove, Michael V.; Gardner, Beth; Simons, Theodore R.; Kays, Roland; O'Connell, Allan F.
2017-01-01
Feral and free-ranging domestic cats (Felis catus) can have strong negative effects on small mammals and birds, particularly in island ecosystems. We deployed camera traps to study free-ranging cats in national wildlife refuges and state parks on Big Pine Key and Key Largo in the Florida Keys, USA, and used spatial capture–recapture models to estimate cat abundance, movement, and activities. We also used stable isotope analyses to examine the diet of cats captured on public lands. Top population models separated cats based on differences in movement and detection with three and two latent groups on Big Pine Key and Key Largo, respectively. We hypothesize that these latent groups represent feral, semi-feral, and indoor/outdoor house cats based on the estimated movement parameters of each group. Estimated cat densities and activity varied between the two islands, with relatively high densities (~4 cats/km2) exhibiting crepuscular diel patterns on Big Pine Key and lower densities (~1 cat/km2) exhibiting nocturnal diel patterns on Key Largo. These differences are most likely related to the higher proportion of house cats on Big Pine relative to Key Largo. Carbon and nitrogen isotope ratios from hair samples of free-ranging cats (n = 43) provided estimates of the proportion of wild and anthropogenic foods in cat diets. At the population level, cats on both islands consumed mostly anthropogenic foods (>80% of the diet), but eight individuals were effective predators of wildlife (>50% of the diet). We provide evidence that cat groups within a population move different distances, exhibit different activity patterns, and that individuals consume wildlife at different rates, which all have implications for managing this invasive predator.
NASA Astrophysics Data System (ADS)
SchläPfer, Felix; Witzig, Pieter-Jan
2006-12-01
In 1997, about 140,000 citizens in 388 voting districts in the Swiss canton of Bern passed a ballot initiative to allocate about 3 million Swiss Francs annually to a canton-wide river restoration program. Using the municipal voting returns and a detailed georeferenced data set on the ecomorphological status of the rivers, we estimate models of voter support in relation to local river ecomorphology, population density, mean income, cultural background, and recent flood damage. Support of the initiative increased with increasing population density and tended to increase with increasing mean income, in spite of progressive taxation. Furthermore, we found evidence that public support increased with decreasing "naturalness" of local rivers. The model estimates may be cautiously used to predict the public acceptance of similar restoration programs in comparable regions. Moreover, the voting-based insights into the distribution of river restoration benefits provide a useful starting point for debates about appropriate financing schemes.
Automation of GIS-based population data-collection for transportation risk analysis
DOT National Transportation Integrated Search
1999-11-01
Estimation of the potential radiological risks associated with highway transport of radioactive : materials (RAM) requires input data describing population densities adjacent to all portions of : the route to be traveled. Previously, aggregated risks...
Estimating abundance of mountain lions from unstructured spatial sampling
Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.
2012-01-01
Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance x sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% Cl 182–451) to 529 (95% Cl 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities.
Estimating neuronal connectivity from axonal and dendritic density fields
van Pelt, Jaap; van Ooyen, Arjen
2013-01-01
Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density fields. PMID:24324430
Tufto, Jarle; Lande, Russell; Ringsby, Thor-Harald; Engen, Steinar; Saether, Bernt-Erik; Walla, Thomas R; DeVries, Philip J
2012-07-01
1. We develop a Bayesian method for analysing mark-recapture data in continuous habitat using a model in which individuals movement paths are Brownian motions, life spans are exponentially distributed and capture events occur at given instants in time if individuals are within a certain attractive distance of the traps. 2. The joint posterior distribution of the dispersal rate, longevity, trap attraction distances and a number of latent variables representing the unobserved movement paths and time of death of all individuals is computed using Gibbs sampling. 3. An estimate of absolute local population density is obtained simply by dividing the Poisson counts of individuals captured at given points in time by the estimated total attraction area of all traps. Our approach for estimating population density in continuous habitat avoids the need to define an arbitrary effective trapping area that characterized previous mark-recapture methods in continuous habitat. 4. We applied our method to estimate spatial demography parameters in nine species of neotropical butterflies. Path analysis of interspecific variation in demographic parameters and mean wing length revealed a simple network of strong causation. Larger wing length increases dispersal rate, which in turn increases trap attraction distance. However, higher dispersal rate also decreases longevity, thus explaining the surprising observation of a negative correlation between wing length and longevity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Critical thresholds in sea lice epidemics: evidence, sensitivity and subcritical estimation
Frazer, L. Neil; Morton, Alexandra; Krkošek, Martin
2012-01-01
Host density thresholds are a fundamental component of the population dynamics of pathogens, but empirical evidence and estimates are lacking. We studied host density thresholds in the dynamics of ectoparasitic sea lice (Lepeophtheirus salmonis) on salmon farms. Empirical examples include a 1994 epidemic in Atlantic Canada and a 2001 epidemic in Pacific Canada. A mathematical model suggests dynamics of lice are governed by a stable endemic equilibrium until the critical host density threshold drops owing to environmental change, or is exceeded by stocking, causing epidemics that require rapid harvest or treatment. Sensitivity analysis of the critical threshold suggests variation in dependence on biotic parameters and high sensitivity to temperature and salinity. We provide a method for estimating the critical threshold from parasite abundances at subcritical host densities and estimate the critical threshold and transmission coefficient for the two epidemics. Host density thresholds may be a fundamental component of disease dynamics in coastal seas where salmon farming occurs. PMID:22217721
Veerman, J Lennert; Zapata-Diomedi, Belen; Gunn, Lucy; McCormack, Gavin R; Cobiac, Linda J; Mantilla Herrera, Ana Maria; Giles-Corti, Billie; Shiell, Alan
2016-01-01
Background Studies consistently find that supportive neighbourhood built environments increase physical activity by encouraging walking and cycling. However, evidence on the cost-effectiveness of investing in built environment interventions as a means of promoting physical activity is lacking. In this study, we assess the cost-effectiveness of increasing sidewalk availability as one means of encouraging walking. Methods Using data from the RESIDE study in Perth, Australia, we modelled the cost impact and change in health-adjusted life years (HALYs) of installing additional sidewalks in established neighbourhoods. Estimates of the relationship between sidewalk availability and walking were taken from a previous study. Multistate life table models were used to estimate HALYs associated with changes in walking frequency and duration. Sensitivity analyses were used to explore the impact of variations in population density, discount rates, sidewalk costs and the inclusion of unrelated healthcare costs in added life years. Results Installing and maintaining an additional 10 km of sidewalk in an average neighbourhood with 19 000 adult residents was estimated to cost A$4.2 million over 30 years and gain 24 HALYs over the lifetime of an average neighbourhood adult resident population. The incremental cost-effectiveness ratio was A$176 000/HALY. However, sensitivity results indicated that increasing population densities improves cost-effectiveness. Conclusions In low-density cities such as in Australia, installing sidewalks in established neighbourhoods as a single intervention is unlikely to cost-effectively improve health. Sidewalks must be considered alongside other complementary elements of walkability, such as density, land use mix and street connectivity. Population density is particularly important because at higher densities, more residents are exposed and this improves the cost-effectiveness. Health gain is one of many benefits of enhancing neighbourhood walkability and future studies might consider a more comprehensive assessment of its social value (eg, social cohesion, safety and air quality). PMID:27650762
Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions.
Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z; Gao, Xin
2017-01-01
Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.
Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.
1998-01-01
Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.
Levels of taurine introgression in the current Brazilian Nelore and Gir indicine cattle populations
USDA-ARS?s Scientific Manuscript database
A high density panel of more than 777000 genome-wide single nucleotide polymorphisms (SNPs) were used to investigate the population structure of Nelore and Gir, compared to seven other populations worldwide. Principal Component Analysis and model-based ancestry estimation clearly separate the indici...
Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals
Kery, Marc; Gardner, Beth; Stoeckle, Tabea; Weber, Darius; Royle, J. Andrew
2011-01-01
Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek-rub lure sticks, extracted DNA from the samples, and identified each animals' genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture-recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home-range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap- and individual-level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture-recapture models will improve population assessments, especially for rare and elusive animals.
Simcharoen, S.; Pattanavibool, A.; Karanth, K.U.; Nichols, J.D.; Kumar, N.S.
2007-01-01
We used capture-recapture analyses to estimate the density of a tiger Panthera tigris population in the tropical forests of Huai Kha Khaeng Wildlife Sanctuary, Thailand, from photographic capture histories of 15 distinct individuals. The closure test results (z = 0.39, P = 0.65) provided some evidence in support of the demographic closure assumption. Fit of eight plausible closed models to the data indicated more support for model Mh, which incorporates individual heterogeneity in capture probabilities. This model generated an average capture probability $\\hat p$ = 0.42 and an abundance estimate of $\\widehat{N}(\\widehat{SE}[\\widehat{N}])$ = 19 (9.65) tigers. The sampled area of $\\widehat{A}(W)(\\widehat{SE}[\\widehat{A}(W)])$ = 477.2 (58.24) km2 yielded a density estimate of $\\widehat{D}(\\widehat{SE}[\\widehat{D}])$ = 3.98 (0.51) tigers per 100 km2. Huai Kha Khaeng Wildlife Sanctuary could therefore hold 113 tigers and the entire Western Forest Complex c. 720 tigers. Although based on field protocols that constrained us to use sub-optimal analyses, this estimated tiger density is comparable to tiger densities in Indian reserves that support moderate prey abundances. However, tiger densities in well-protected Indian reserves with high prey abundances are three times higher. If given adequate protection we believe that the Western Forest Complex of Thailand could potentially harbour >2,000 wild tigers, highlighting its importance for global tiger conservation. The monitoring approaches we recommend here would be useful for managing this tiger population.
42 CFR 414.410 - Phased-in implementation of competitive bidding programs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... largest MSAs by total population based on 2009 population estimates, and not already phased in as of June 1, 2008). CMS may subdivide any of the 91 MSAs with a population of greater than 8,000,000 into... population of less than 250,000. (iii) An area with low population density within an MSA not selected under...
42 CFR 414.410 - Phased-in implementation of competitive bidding programs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... largest MSAs by total population based on 2009 population estimates, and not already phased in as of June 1, 2008). CMS may subdivide any of the 91 MSAs with a population of greater than 8,000,000 into... population of less than 250,000. (iii) An area with low population density within an MSA not selected under...
42 CFR 414.410 - Phased-in implementation of competitive bidding programs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... largest MSAs by total population based on 2009 population estimates, and not already phased in as of June 1, 2008). CMS may subdivide any of the 91 MSAs with a population of greater than 8,000,000 into... population of less than 250,000. (iii) An area with low population density within an MSA not selected under...
Conservation investment for rare plants in urban environments.
Schwartz, Mark W; Smith, Lacy M; Steel, Zachary L
2013-01-01
Budgets for species conservation limit actions. Expending resources in areas of high human density is costly and generally considered less likely to succeed. Yet, coastal California contains both a large fraction of narrowly endemic at-risk plant species as well as the state's three largest metropolitan regions. Hence understanding the capacity to protect species along the highly urbanized coast is a conservation priority. We examine at-risk plant populations along California's coastline from San Diego to north of San Francisco to better understand whether there is a relationship between human population density and: i) performance of at-risk plant populations; and ii) conservation spending. Answering these questions can help focus appropriate strategic conservation investment. Rare plant performance was measured using the annualized growth rate estimate between census periods using the California Natural Diversity Database. Human density was estimated using Census Bureau statistics from the year 2000. We found strong evidence for a lack of a relationship between human population density and plant population performance in California's coastal counties. Analyzing US Endangered Species expenditure reports, we found large differences in expenditures among counties, with plants in San Diego County receiving much higher expenditures than other locations. We found a slight positive relationship between expenditures on behalf of endangered species and human density. Together these data support the argument that conservation efforts by protecting habitats within urban environments are not less likely to be successful than in rural areas. Expenditures on behalf of federally listed endangered and threatened plants do not appear to be related to proximity to human populations. Given the evidence of sufficient performance in urban environments, along with a high potential to leverage public support for nature in urban environments, expenditures in these areas appear to be an appropriate use of conservation funds.
Savanna elephant numbers are only a quarter of their expected values
Robson, Ashley S.; Trimble, Morgan J.; Purdon, Andrew; Young-Overton, Kim D.; Pimm, Stuart L.; van Aarde, Rudi J.
2017-01-01
Savannas once constituted the range of many species that human encroachment has now reduced to a fraction of their former distribution. Many survive only in protected areas. Poaching reduces the savanna elephant, even where protected, likely to the detriment of savanna ecosystems. While resources go into estimating elephant populations, an ecological benchmark by which to assess counts is lacking. Knowing how many elephants there are and how many poachers kill is important, but on their own, such data lack context. We collated savanna elephant count data from 73 protected areas across the continent estimated to hold ~50% of Africa’s elephants and extracted densities from 18 broadly stable population time series. We modeled these densities using primary productivity, water availability, and an index of poaching as predictors. We then used the model to predict stable densities given current conditions and poaching for all 73 populations. Next, to generate ecological benchmarks, we predicted such densities for a scenario of zero poaching. Where historical data are available, they corroborate or exceed benchmarks. According to recent counts, collectively, the 73 savanna elephant populations are at 75% of the size predicted based on current conditions and poaching levels. However, populations are at <25% of ecological benchmarks given a scenario of zero poaching (~967,000)—a total deficit of ~730,000 elephants. Populations in 30% of the 73 protected areas were <5% of their benchmarks, and the median current density as a percentage of ecological benchmark across protected areas was just 13%. The ecological context provided by these benchmark values, in conjunction with ongoing census projects, allow efficient targeting of conservation efforts. PMID:28414784
Hypsographic demography: The distribution of human population by altitude
Cohen, Joel E.; Small, Christopher
1998-01-01
The global distribution of the human population by elevation is quantified here. As of 1994, an estimated 1.88 × 109 people, or 33.5% of the world’s population, lived within 100 vertical meters of sea level, but only 15.6% of all inhabited land lies below 100 m elevation. The median person lived at an elevation of 194 m above sea level. Numbers of people decreased faster than exponentially with increasing elevation. The integrated population density (IPD, the number of people divided by the land area) within 100 vertical meters of sea level was significantly larger than that of any other range of elevations and represented far more people. A significant percentage of the low-elevation population lived at moderate population densities rather than at the highest densities of central large cities. Assessments of coastal hazards that focus only on large cities may substantially underestimate the number of people who could be affected. PMID:9826643
Evaluating call-count procedures for measuring local mourning dove populations
Armbruster, M.J.; Baskett, T.S.; Goforth, W.R.; Sadler, K.C.
1978-01-01
Seventy-nine mourning dove call-count runs were made on a 32-km route in Osage County, Missouri, May 1-August 31, 1971 and 1972. Circular study areas, each 61 ha, surrounding stop numbers 4 and 5, were delineated for intensive nest searches and population estimates. Tallies of cooing male doves along the entire call-count route were quite variable in repeated runs, fluctuating as much as 50 percent on consecutive days. There were no consistent relationships between numbers of cooing males tallied at stops 4 and 5 and the numbers of current nests or doves estimated to be present in the surrounding study areas. We doubt the suitability of call-count procedures to estimate precisely the densities of breeding pairs, nests or production of doves on small areas. Our findings do not dispute the usefulness of the national call-count survey as an index to relative densities of mourning doves during the breeding season over large portions of the United States, or as an index to annual population trends.
Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.
Böhning, Dankmar; Kuhnert, Ronny
2006-12-01
This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.
Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S
2017-10-01
Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.
Baird's tapir density in high elevation forests of the Talamanca region of Costa Rica.
González-Maya, José F; Schipper, Jan; Polidoro, Beth; Hoepker, Annelie; Zárrate-Charry, Diego; Belant, Jerrold L
2012-12-01
Baird's tapir (Tapirus bairdii) is currently endangered throughout its neotropical range with an expected population decline >50% in the next 30 years. We present the first density estimation of Baird's tapir for the Talamanca mountains of Costa Rica, and one of the first for the country. Ten stations with paired cameras were established in Valle del Silencio within Parque Internacional La Amistad (PILA). Seventy-seven tapir pictures of 15 individuals comprising 25 capture-recapture events were analyzed using mark-recapture techniques. The 100% minimum convex polygon of the sampled area was 5.7 km(2) and the effective sampled area using half mean maximum distances moved by tapirs was 7.16 km(2) . We estimated a tapir density of 2.93 individuals/km(2) which represents the highest density reported for this species. Intermountain valleys can represent unique and important habitats for large mammal species. However, the extent of isolation of this population, potentially constrained by steep slopes of the cordillera, remains unknown. Further genetic and movement studies are required to understand meta-population dynamics and connectivity between lowland and highland areas for Baird's tapir conservation in Costa Rica. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Evaluating sampling designs by computer simulation: A case study with the Missouri bladderpod
Morrison, L.W.; Smith, D.R.; Young, C.; Nichols, D.W.
2008-01-01
To effectively manage rare populations, accurate monitoring data are critical. Yet many monitoring programs are initiated without careful consideration of whether chosen sampling designs will provide accurate estimates of population parameters. Obtaining accurate estimates is especially difficult when natural variability is high, or limited budgets determine that only a small fraction of the population can be sampled. The Missouri bladderpod, Lesquerella filiformis Rollins, is a federally threatened winter annual that has an aggregated distribution pattern and exhibits dramatic interannual population fluctuations. Using the simulation program SAMPLE, we evaluated five candidate sampling designs appropriate for rare populations, based on 4 years of field data: (1) simple random sampling, (2) adaptive simple random sampling, (3) grid-based systematic sampling, (4) adaptive grid-based systematic sampling, and (5) GIS-based adaptive sampling. We compared the designs based on the precision of density estimates for fixed sample size, cost, and distance traveled. Sampling fraction and cost were the most important factors determining precision of density estimates, and relative design performance changed across the range of sampling fractions. Adaptive designs did not provide uniformly more precise estimates than conventional designs, in part because the spatial distribution of L. filiformis was relatively widespread within the study site. Adaptive designs tended to perform better as sampling fraction increased and when sampling costs, particularly distance traveled, were taken into account. The rate that units occupied by L. filiformis were encountered was higher for adaptive than for conventional designs. Overall, grid-based systematic designs were more efficient and practically implemented than the others. ?? 2008 The Society of Population Ecology and Springer.
Demographic response of black bears at Cold Lake, Alberta, to the removal of adult males
Sargeant, Glen A.; Ruff, Robert L.
2001-01-01
Previous reports described an increase in population density following the removal of 23 adult male black bears (Ursus americanus) from a 218-km2 study area near Cold Lake, Alberta (the CLSA). This finding plays a central role in continuing debates over population regulation in bears, but has recently been criticized because density estimates were based on assumptions that were not met. Moreover, subsequent discussion has been predicated on conjecture that human exploitation had minimal influence on population dynamics. Our reanalysis supports previous descriptions of trends in bear density at Cold Lake. However, survival records revealed heavier exploitation than previously suspected. An underlying assumption of previous interpretationsCthat the Cold Lake bear population was naturally regulated near carrying capacityCno longer seems reasonable. Adult males deterred bears in other sex-age groups from using the CLSA; however, we found no evidence that birth or death rates were affected. The observed increase in local density should not be construed as a density-dependent response. Abrupt changes in local density might not have occurred if males had been removed from a larger area encompassing the CLSA.
Assessment of lesser prairie-chicken lek density relative to landscape characteristics in Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmer, Jennifer; Butler, Matthew; Ballard, Warren
My 2.5-yr Master's project accomplished the objectives of estimating lesser prairie-chicken (LPC) lek density and abundance in the Texas occupied range and modeling anthropogenic and landscape features associated with lek density by flying helicopter lek surveys for 2 field seasons and employing a line-transect distance sampling method. This project was important for several reasons. Firstly, wildlife managers and biologists have traditionally monitored LPC populations with road-based surveys that may result in biased estimates and do not provide access to privately-owned or remote property. From my aerial surveys and distance sampling, I was able to provide accurate density and abundance estimates,more » as well as new leks and I detected LPCs outside the occupied range. Secondly, recent research has indicated that energy development has the potential to impact LPCs through avoidance of tall structures, increased mortality from raptors perching on transmission lines, disturbance to nesting hens, and habitat loss/fragmentation. Given the potential wind energy development in the Texas Panhandle, spatial models of current anthropogenic and vegetative features (such as transmission lines, roads, and percent native grassland) influencing lek density were needed. This information provided wildlife managers and wind energy developers in Texas with guidelines for how change in landscape features could impact LPCs. Lastly, LPC populations have faced range-wide declines over the last century and they are currently listed as a candidate species under the Endangered Species Act. I was able to provide timely information on LPC populations in Texas that will be used during the listing process.« less
Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
Breeding population density and habitat use of Swainson's warblers in a Georgia floodplain forest
Wright, E.A.
2002-01-01
I examined density and habitat use of a Swainson's Warbler (Limnothlypis swainsonii) breeding population in Georgia. This songbird species is inadequately monitored, and may be declining due to anthropogenic alteration of floodplain forest breeding habitats. I used distance sampling methods to estimate density, finding 9.4 singing males/ha (CV = 0.298). Individuals were encountered too infrequently to produce a Iow-variance estimate, and distance sampling thus may be impracticable for monitoring this relatively rare species. I developed a set of multivariate habitat models using binary logistic regression techniques, based on measurement of 22 variables in 56 plots occupied by Swainson's Warblers and 110 unoccupied plots. Occupied areas were characterized by high stem density of cane (Arundinaria gigantea) and other shrub layer vegetation, and presence of abundant and accessible leaf litter. I recommend two habitat models, which correctly classified 87-89% of plots in cross-validation runs, for potential use in habitat assessment at other locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overy, Catherine; Blunt, N. S.; Shepherd, James J.
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less
Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data
Dorazio, Robert M.
2013-01-01
In capture-recapture and mark-resight surveys, movements of individuals both within and between sampling periods can alter the susceptibility of individuals to detection over the region of sampling. In these circumstances spatially explicit capture-recapture (SECR) models, which incorporate the observed locations of individuals, allow population density and abundance to be estimated while accounting for differences in detectability of individuals. In this paper I propose two Bayesian SECR models, one for the analysis of recaptures observed in trapping arrays and another for the analysis of recaptures observed in area searches. In formulating these models I used distinct submodels to specify the distribution of individual home-range centers and the observable recaptures associated with these individuals. This separation of ecological and observational processes allowed me to derive a formal connection between Bayes and empirical Bayes estimators of population abundance that has not been established previously. I showed that this connection applies to every Poisson point-process model of SECR data and provides theoretical support for a previously proposed estimator of abundance based on recaptures in trapping arrays. To illustrate results of both classical and Bayesian methods of analysis, I compared Bayes and empirical Bayes esimates of abundance and density using recaptures from simulated and real populations of animals. Real populations included two iconic datasets: recaptures of tigers detected in camera-trap surveys and recaptures of lizards detected in area-search surveys. In the datasets I analyzed, classical and Bayesian methods provided similar – and often identical – inferences, which is not surprising given the sample sizes and the noninformative priors used in the analyses.
Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data.
Dorazio, Robert M
2013-01-01
In capture-recapture and mark-resight surveys, movements of individuals both within and between sampling periods can alter the susceptibility of individuals to detection over the region of sampling. In these circumstances spatially explicit capture-recapture (SECR) models, which incorporate the observed locations of individuals, allow population density and abundance to be estimated while accounting for differences in detectability of individuals. In this paper I propose two Bayesian SECR models, one for the analysis of recaptures observed in trapping arrays and another for the analysis of recaptures observed in area searches. In formulating these models I used distinct submodels to specify the distribution of individual home-range centers and the observable recaptures associated with these individuals. This separation of ecological and observational processes allowed me to derive a formal connection between Bayes and empirical Bayes estimators of population abundance that has not been established previously. I showed that this connection applies to every Poisson point-process model of SECR data and provides theoretical support for a previously proposed estimator of abundance based on recaptures in trapping arrays. To illustrate results of both classical and Bayesian methods of analysis, I compared Bayes and empirical Bayes esimates of abundance and density using recaptures from simulated and real populations of animals. Real populations included two iconic datasets: recaptures of tigers detected in camera-trap surveys and recaptures of lizards detected in area-search surveys. In the datasets I analyzed, classical and Bayesian methods provided similar - and often identical - inferences, which is not surprising given the sample sizes and the noninformative priors used in the analyses.
Miller, Tom E X
2007-07-01
1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.
Sumatran tiger survival threatened by deforestation despite increasing densities in parks.
Luskin, Matthew Scott; Albert, Wido Rizki; Tobler, Mathias W
2017-12-05
The continuing development of improved capture-recapture (CR) modeling techniques used to study apex predators has also limited robust temporal and cross-site analyses due to different methods employed. We develop an approach to standardize older non-spatial CR and newer spatial CR density estimates and examine trends for critically endangered Sumatran tigers (Panthera tigris sumatrae) using a meta-regression of 17 existing densities and new estimates from our own fieldwork. We find that tiger densities were 47% higher in primary versus degraded forests and, unexpectedly, increased 4.9% per yr from 1996 to 2014, likely indicating a recovery from earlier poaching. However, while tiger numbers may have temporarily risen, the total potential island-wide population declined by 16.6% from 2000 to 2012 due to forest loss and degradation and subpopulations are significantly more fragmented. Thus, despite increasing densities in smaller parks, we conclude that there are only two robust populations left with >30 breeding females, indicating Sumatran tigers still face a high risk of extinction unless deforestation can be controlled.
Norris, Jennifer L.; Chamberlain, Michael J.; Twedt, Daniel J.
2009-01-01
Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with > 50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., > 40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed > 40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future forest management practices.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
Evaluating factors driving population densities of mayfly nymphs in Western Lake Erie
Stapanian, Martin A.; Kocovsky, Patrick; Bodamer Scarbro, Betsy L.
2017-01-01
Mayfly (Hexagenia spp.) nymphs have been widely used as indicators of water and substrate quality in lakes. Thermal stratification and the subsequent formation of benthic hypoxia may result in nymph mortality. Our goal was to identify potential associations between recent increases in temperature and eutrophication, which exacerbate hypoxic events in lakes, and mayfly populations in Lake Erie. Nymphs were collected during April–May 1999–2014. We used wind and temperature data to calculate four measures of thermal stratification, which drives hypoxic events, during summers of 1998–2013. Bottom trawl data collected during August 1998–2013 were used to estimate annual biomass of fishes known to be predators of mayfly nymphs. We used Akaike's Information Criterion to identify the best one- and two-predictor regression models of annual population densities (N/m2) of age-1 and age-2 nymphs, in which candidate predictors included the four measures of stratification, predator fish biomass, competition, and population densities of age-2 (for age-1) and age-1 (for age-2) nymphs from the previous year. Densities of both age classes of nymphs declined over the time series. Population densities of age-1 and age-2 nymphs from the previous year best predicted annual population densities of nymphs of both age classes. However, hypoxic conditions (indicated by stratification) and predation both had negative effects on annual population density of mayflies. Compared with predation, hypoxia had an inconsistent effect on annual nymph density. The increases in temperature and eutrophication in Lake Erie, which exacerbate hypoxic events, may have drastic effects on the mayfly populations.
McCreesh, Nicky; Arinaitwe, Moses; Arineitwe, Wilber; Tukahebwa, Edridah M; Booth, Mark
2014-11-12
Mathematical models can be used to identify areas at risk of increased or new schistosomiasis transmission as a result of climate change. The results of these models can be very different when parameterised to different species of host snail, which have varying temperature preferences. Currently, the experimental data needed by these models are available for only a few species of snail. The choice of density-dependent functions can also affect model results, but the effects of increasing densities on Biomphalaria populations have only previously been investigated in artificial aquariums. Laboratory experiments were conducted to estimate Biomphalaria sudanica mortality, fecundity and growth rates at ten different constant water temperatures, ranging from 13-32°C. Snail cages were used to determine the effects of snail densities on B. sudanica and B. stanleyi mortality and fecundity rates in semi-natural conditions in Lake Albert. B. sudanica survival and fecundity were highest at 20°C and 22°C respectively. Growth in shell diameter was estimated to be highest at 23°C in small and medium sized snails, but the relationship between temperature and growth was not clear. The fecundity of both B. sudanica and B. stanleyi decreased by 72-75% with a four-fold increase in population density. Increasing densities four-fold also doubled B. stanleyi mortality rates, but had no effect on the survival of B. sudanica. The optimum temperature for fecundity was lower for B. sudanica than for previously studied species of Biomphalaria. In contrast to other Biomphalaria species, B. sudanica have a distinct peak temperature for survival, as opposed to a plateau of highly suitable temperatures. For both B. stanleyi and B. sudanica, fecundity decreased with increasing population densities. This means that snail populations may experience large fluctuations in numbers, even in the absence of any external factors such as seasonal temperature changes. Survival also decreased with increasing density for B. stanleyi, in contrast to B. sudanica and other studied Biomphalaria species where only fecundity has been shown to decrease.
Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.
2012-01-01
Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057
Kanamori, Tomoko; Kuze, Noko; Bernard, Henry; Malim, Titol Peter; Kohshima, Shiro
2017-01-01
We investigated the population density of Bornean orangutans (Pongo pygmaeus morio) and fruit availability for 10 years (2005-2014), in primary lowland dipterocarp forests in the Danum Valley, Sabah, Malaysia. During the research period, two mast fruitings and three other peak fruiting events of different scales occurred in the study area. The orangutan population density, estimated every 2 months by the marked nest count method, changed between 0.3 and 4.4 ind/km 2 and the mean population density was 1.3 ind/km 2 ± SE 0.1 (n = 56). The population density increased markedly during mast and peak fruiting periods. A significant positive correlation was observed between the population density and fruit availability in the study period (Spearman, R = 0.3, P < 0.01, n = 56). During non-fruiting periods, however, no significant correlation was observed between them. These results suggest that the spatial difference in fruit availability during mast and peak fruiting periods was larger than during non-fruiting periods, and many orangutans temporarily moved to the study site from the surrounding areas seeking fruit.
Joint Inference of Population Assignment and Demographic History
Choi, Sang Chul; Hey, Jody
2011-01-01
A new approach to assigning individuals to populations using genetic data is described. Most existing methods work by maximizing Hardy–Weinberg and linkage equilibrium within populations, neither of which will apply for many demographic histories. By including a demographic model, within a likelihood framework based on coalescent theory, we can jointly study demographic history and population assignment. Genealogies and population assignments are sampled from a posterior distribution using a general isolation-with-migration model for multiple populations. A measure of partition distance between assignments facilitates not only the summary of a posterior sample of assignments, but also the estimation of the posterior density for the demographic history. It is shown that joint estimates of assignment and demographic history are possible, including estimation of population phylogeny for samples from three populations. The new method is compared to results of a widely used assignment method, using simulated and published empirical data sets. PMID:21775468
Pospahala, Richard S.; Anderson, David R.; Henny, Charles J.
1974-01-01
This report, the second in a series on a comprehensive analysis of mallard population data, provides information on mallard breeding habitat, the size and distribution of breeding populations, and indices to production. The information in this report is primarily the result of large-scale aerial surveys conducted during May and July, 1955-73. The history of the conflict in resource utilization between agriculturalists and wildlife conservation interests in the primary waterfowl breeding grounds is reviewed. The numbers of ponds present during the breeding season and the midsummer period and the effects of precipitation and temperature on the number of ponds present are analyzed in detail. No significant cycles in precipitation were detected and it appears that precipitation is primarily influenced by substantial seasonal and random components. Annual estimates (1955-73) of the number of mallards in surveyed and unsurveyed breeding areas provided estimates of the size and geographic distribution of breeding mallards in North America. The estimated size of the mallard breeding population in North America has ranged from a high of 14.4 million in 1958 to a low of 7.1 million in 1965. Generally, the mallard breeding population began to decline after the 1958 peak until 1962, and remained below 10 million birds until 1970. The decline and subsequent low level of the mallard population between 1959 and 1969 .generally coincided with a period of poor habitat conditions on the major breeding grounds. The density of mallards was highest in the Prairie-Parkland Area with an average of nearly 19.2 birds per square mile. The proportion of the continental mallard breeding population in the Prairie-Parkland Area ranged from 30% in 1962 to a high of 600/0 in 1956. The geographic distribution of breeding mallards throughout North America was significantly related to the number of May ponds in the Prairie-Parkland Area. Estimates of midsummer habitat conditions and indices to production from the July Production Survey were studied in detail. Several indices relating to production showed marked declines from west to east in the Prairie-Parkland Area, these are: (1) density of breeding mallards (per square mile and per May pond), (2) brood density (per square mile and per July pond), (3) average brood size (all species combined), and (4) brood survival from class II to class III. An index to late nesting and renesting efforts was highest during years when midsummer water conditions were good. Production rates of many ducks breeding in North America appear to be regulated by both density-dependent and density-independent factors. Spacing of birds in the Prairie-Parkland Area appeared to be a key factor in the density-dependent regulation of the population. The spacing mechanism, in conjunction with habitat conditions, influenced some birds to overfly the primary breeding grounds into less favorable habitats to the north and northwest where the production rate may be suppressed. The production rate of waterfowl in the Prairie Parkland Area seems to be independent of density (after emigration has taken place) because the production index appears to be a linear function of the number of breeding birds in the area. Similarly, the production rate of waterfowl in northern Saskatchewan and northern Manitoba appeared to be independent of density. Production indices in these northern areas appear to be a linear function of the size of the breeding population. Thus, the density and distribution of breeding ducks is probably regulated through a spacing mechanism that is at least partially dependent on measurable environmental factors. The result is a density-dependent process operating to ultimately effect the production and production rate of breeding ducks on a continent-wide basis. Continental production, and therefore the size of the fall population, is probably partially regulated by the number of birds that are distributed north and northwest into environments less favorable for successful reproduction. Thus, spacing of the birds in the Prairie-Parkland Area and the movement of a fraction of the birds out of the prime breeding areas may be key factors in the density-dependent regulation of the total mallard population.
Allometric biomass estimators for aspen-dominated ecosystems in the upper Great Lakes.
Donald A. Perala; David Alban
1993-01-01
Presents allometric estimators relating aboveground and belowground component weights to diameter measurements of more than 2,500 trees and shrubs encompassing 35 woody species samples from 8 soil series. The estimators were only weakly related to soil character but were strongly influenced by population density variation induced by silvicultural treatment.
Integrating resource selection into spatial capture-recapture models for large carnivores
Proffitt, Kelly M.; Goldberg, Joshua; Hebblewite, Mark; Russell, Robin E.; Jimenez, Ben; Robinson, Hugh S.; Pilgrim, Kristine; Schwartz, Michael K.
2015-01-01
Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and these methods are particularly applicable to large carnivores. We applied SCR models in a Bayesian framework to estimate mountain lion densities in the Bitterroot Mountains of west central Montana. We incorporate an existing resource selection function (RSF) as a density covariate to account for heterogeneity in habitat use across the study area and include data collected from harvested lions. We identify individuals through DNA samples collected by (1) biopsy darting mountain lions detected in systematic surveys of the study area, (2) opportunistically collecting hair and scat samples, and (3) sampling all harvested mountain lions. We included 80 DNA samples collected from 62 individuals in the analysis. Including information on predicted habitat use as a covariate on the distribution of activity centers reduced the median estimated density by 44%, the standard deviation by 7%, and the width of 95% credible intervals by 10% as compared to standard SCR models. Within the two management units of interest, we estimated a median mountain lion density of 4.5 mountain lions/100 km2 (95% CI = 2.9, 7.7) and 5.2 mountain lions/100 km2 (95% CI = 3.4, 9.1). Including harvested individuals (dead recovery) did not create a significant bias in the detection process by introducing individuals that could not be detected after removal. However, the dead recovery component of the model did have a substantial effect on results by increasing sample size. The ability to account for heterogeneity in habitat use provides a useful extension to SCR models, and will enhance the ability of wildlife managers to reliably and economically estimate density of wildlife populations, particularly large carnivores.
Craig M. Thompson; J. Andrew Royle; James D. Garner
2012-01-01
Wildlife management often hinges upon an accurate assessment of population density. Although undeniably useful, many of the traditional approaches to density estimation such as visual counts, livetrapping, or markârecapture suffer from a suite of methodological and analytical weaknesses. Rare, secretive, or highly mobile species exacerbate these problems through the...
Sampling western spruce budworm larvae by frequency of occurrence on lower crown branches.
R.R. Mason; R.C. Beckwith
1990-01-01
A sampling method was derived whereby budworm density can be estimated by the frequency of occurrence of larvae over a given threshold number instead of by direct counts on branch samples. The model used for converting frequencies to mean densities is appropriate for nonrandom as well as random distributions and, therefore, is applicable to all population densities of...
NASA Astrophysics Data System (ADS)
Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne
2018-02-01
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde
2018-01-25
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Population characteristics of a central Appalachian white tailed deer herd
Tyler A. Campbell; Benjamin R. Laseter; W. Mark Ford; Karl V. Miller; Karl V. Miller
2005-01-01
Reliable estimates of white-tailed deer (Odocoileus virginianus) population parameters are needed for effective population management. We used radiotelemetrv to compare survival and cause-specific mortality rates between male and female white-tailed deer and present reproductive data for a high-density deer herd in the central Appalachians of West Virginia during...
Levitan, Don R; Edmunds, Peter J; Levitan, Keeha E
2014-05-01
A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983-1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95-99% throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983-2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983-1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.
Can roads be used as transects for primate population surveys?.
Hilário, Renato R; Rodrigues, Flávio H G; Chiarello, Adriano G; Mourthé, Italo
2012-01-01
Line transect distance sampling (LTDS) can be applied to either trails or roads. However, it is likely that sampling along roads might result in biased density estimates. In this paper, we compared the results obtained with LTDS applied on trails and roads for two primate species (Callithrix penicillata and Callicebus nigrifrons) to clarify whether roads are appropriate transects to estimate densities. We performed standard LTDS surveys in two nature reserves in south-eastern Brazil. Effective strip width and population density were different between trails and roads for C. penicillata, but not for C. nigrifrons. The results suggest that roads are not appropriate for use as transects in primate surveys, at least for some species. Further work is required to fully understand this issue, but in the meantime we recommend that researchers avoid using roads as transects or treat roads and trails as covariates when sampling on roads is unavoidable. Copyright © 2012 S. Karger AG, Basel.
Nematode Damage Functions: The Problems of Experimental and Sampling Error
Ferris, H.
1984-01-01
The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865
Density estimation in wildlife surveys
Bart, Jonathan; Droege, Sam; Geissler, Paul E.; Peterjohn, Bruce G.; Ralph, C. John
2004-01-01
Several authors have recently discussed the problems with using index methods to estimate trends in population size. Some have expressed the view that index methods should virtually never be used. Others have responded by defending index methods and questioning whether better alternatives exist. We suggest that index methods are often a cost-effective component of valid wildlife monitoring but that double-sampling or another procedure that corrects for bias or establishes bounds on bias is essential. The common assertion that index methods require constant detection rates for trend estimation is mathematically incorrect; the requirement is no long-term trend in detection "ratios" (index result/parameter of interest), a requirement that is probably approximately met by many well-designed index surveys. We urge that more attention be given to defining bird density rigorously and in ways useful to managers. Once this is done, 4 sources of bias in density estimates may be distinguished: coverage, closure, surplus birds, and detection rates. Distance, double-observer, and removal methods do not reduce bias due to coverage, closure, or surplus birds. These methods may yield unbiased estimates of the number of birds present at the time of the survey, but only if their required assumptions are met, which we doubt occurs very often in practice. Double-sampling, in contrast, produces unbiased density estimates if the plots are randomly selected and estimates on the intensive surveys are unbiased. More work is needed, however, to determine the feasibility of double-sampling in different populations and habitats. We believe the tension that has developed over appropriate survey methods can best be resolved through increased appreciation of the mathematical aspects of indices, especially the effects of bias, and through studies in which candidate methods are evaluated against known numbers determined through intensive surveys.
Deepwater sculpin status and recovery in Lake Ontario
Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.; Lantry, Brian F.; Lantry, Jana R.; Holden, Jeremy P.; Yuille, Michael J.; Hoyle, James A.
2017-01-01
Deepwater sculpin are important in oligotrophic lakes as one of the few fishes that use deep profundal habitats and link invertebrates in those habitats to piscivores. In Lake Ontario the species was once abundant, however drastic declines in the mid-1900s led some to suggest the species had been extirpated and ultimately led Canadian and U.S. agencies to elevate the species' conservation status. Following two decades of surveys with no captures, deepwater sculpin were first caught in low numbers in 1996 and by the early 2000s there were indications of population recovery. We updated the status of Lake Ontario deepwater sculpin through 2016 to inform resource management and conservation. Our data set was comprised of 8431 bottom trawls sampled from 1996 to 2016, in U.S. and Canadian waters spanning depths from 5 to 225 m. Annual density estimates generally increased from 1996 through 2016, and an exponential model estimated the rate of population increase was ~ 59% per year. The mean total length and the proportion of fish greater than the estimated length at maturation (~ 116 mm) generally increased until a peak in 2013. In addition, the mean length of all deepwater sculpin captured in a trawl significantly increased with depth. Across all years examined, deepwater sculpin densities generally increased with depth, increasing sharply at depths > 150 m. Bottom trawl observations suggest the Lake Ontario deepwater sculpin population has recovered and current densities and biomass densities may now be similar to the other Great Lakes.
On estimation of time-dependent attributable fraction from population-based case-control studies.
Zhao, Wei; Chen, Ying Qing; Hsu, Li
2017-09-01
Population attributable fraction (PAF) is widely used to quantify the disease burden associated with a modifiable exposure in a population. It has been extended to a time-varying measure that provides additional information on when and how the exposure's impact varies over time for cohort studies. However, there is no estimation procedure for PAF using data that are collected from population-based case-control studies, which, because of time and cost efficiency, are commonly used for studying genetic and environmental risk factors of disease incidences. In this article, we show that time-varying PAF is identifiable from a case-control study and develop a novel estimator of PAF. Our estimator combines odds ratio estimates from logistic regression models and density estimates of the risk factor distribution conditional on failure times in cases from a kernel smoother. The proposed estimator is shown to be consistent and asymptotically normal with asymptotic variance that can be estimated empirically from the data. Simulation studies demonstrate that the proposed estimator performs well in finite sample sizes. Finally, the method is illustrated by a population-based case-control study of colorectal cancer. © 2017, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio
2017-06-01
Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.
Zhang, Nan; Beauregard, Jennifer L; Kramer, Michael R; Bécares, Laia
2017-01-01
Studies on adult racial/ethnic minority populations show that the increased concentration of racial/ethnic minorities in a neighbourhood-a so-called ethnic density effect-is associated with improved health of racial/ethnic minority residents when adjusting for area deprivation. However, this literature has focused mainly on adult populations, individual racial/ethnic groups, and single countries, with no studies focusing on children of different racial/ethnic groups or comparing across nations. This study aims to compare neighbourhood ethnic density effects on young children's cognitive and behavioural outcomes in the US and in England. We used data from two nationally representative birth cohort studies, the US Early Childhood Longitudinal Study-Birth Cohort and the UK Millennium Cohort Study, to estimate the association between own ethnic density and behavioural and cognitive development at 5 years of age. Findings show substantial heterogeneity in ethnic density effects on child outcomes within and between the two countries, suggesting that ethnic density effects may reflect the wider social and economic context. We argue that researchers should take area deprivation into account when estimating ethnic density effects and when developing policy initiatives targeted at strengthening and improving the health and development of racial and ethnic minority children.
Population ecology of polar bears in Davis Strait, Canada and Greenland
Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian
2013-01-01
Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.
Pérez-Irineo, Gabriela; Santos-Moreno, Antonio
2014-12-01
The ocelot Leopardus pardalis is of particular significance in terrestrial communities due to its ecological role within the group of small-sized felids and as a mesopredator. However, despite the reduction of ocelot habitat in Southeast Mexico, there are still very few ecological studies. This research aimed to contribute with some ecological aspects of the species in this region. For this, 29 camera trap stations were established in a rain forest in Los Chimalapas (an area of 22 km2) during a two years period (March 2011-June, 2013), in Oaxaca state, Southeast Mexico. Data allowed the estimation of the population density, activity pattern, sex ratio, residence time, and spatial distribution. Population density was calculated using Capture-Recapture Models for demographically open populations; besides, circular techniques were used to determine if nocturnal and diurnal activity varied significantly over the seasons, and Multiple Discriminant Analysis was used to determine which of the selected environmental variables best explained ocelot abundance in the region. A total of 103 ocelot records were obtained, with a total sampling effort of 8,529 trap-days. Density of 22-38 individuals/100 km2 was estimated. Ocelot population had a high proportion of transient individuals in the zone (55%), and the sex ratio was statistically equal to 1:1. Ocelot activity was more frequent at night (1:00-6:00h), but it also exhibited diurnal activity throughout the study period. Ocelot spatial distribution was positively affected by the proximity to the village as well as by the amount of prey. The ocelot population here appears to be stable, with a density similar to other regions in Central and South America, which could be attributed to the diversity of prey species and a low degree of disturbance in Los Chimalapas.
Thompson, Craig M.; Royle, J. Andrew; Garner, James D.
2012-01-01
Wildlife management often hinges upon an accurate assessment of population density. Although undeniably useful, many of the traditional approaches to density estimation such as visual counts, livetrapping, or mark–recapture suffer from a suite of methodological and analytical weaknesses. Rare, secretive, or highly mobile species exacerbate these problems through the reality of small sample sizes and movement on and off study sites. In response to these difficulties, there is growing interest in the use of non-invasive survey techniques, which provide the opportunity to collect larger samples with minimal increases in effort, as well as the application of analytical frameworks that are not reliant on large sample size arguments. One promising survey technique, the use of scat detecting dogs, offers a greatly enhanced probability of detection while at the same time generating new difficulties with respect to non-standard survey routes, variable search intensity, and the lack of a fixed survey point for characterizing non-detection. In order to account for these issues, we modified an existing spatially explicit, capture–recapture model for camera trap data to account for variable search intensity and the lack of fixed, georeferenced trap locations. We applied this modified model to a fisher (Martes pennanti) dataset from the Sierra National Forest, California, and compared the results (12.3 fishers/100 km2) to more traditional density estimates. We then evaluated model performance using simulations at 3 levels of population density. Simulation results indicated that estimates based on the posterior mode were relatively unbiased. We believe that this approach provides a flexible analytical framework for reconciling the inconsistencies between detector dog survey data and density estimation procedures.
Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.
2009-01-01
Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (<40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.
Carroll, James M.; Krementz, David G.
2014-01-01
Wilson's snipe Gallinago delicata is one of the least studied North American game birds, and information on snipe populations and abundance is mostly unknown. We conducted roadside surveys stratified at the township level in the lower Mississippi Alluvial Valley (LMAV) in Arkansas, Mississippi and Louisiana, as well as the Red River Region, and the Gulf Coastal Plain of Louisiana during winters of 2009 and 2010. We identified observer, vegetation cover, and water cover as important covariates in estimating snipe densities. We detected 2915 snipe along 814 line transects (1450 km) for 2009 and 2010 combined. We estimated snipe densities of 8.05 individuals km-2 (95% CI: 4.57-14.17) in 2009, and 2.13 individuals km-2 (95% CI: 1.47-3.08) in 2010. We used the resulting snipe density estimates within the study area to calculate abundance estimates of 1 026 431 (95% CI: 582 707-1 806 774) in 2009, and 271 590 (95% CI: 187 435-392 722) in 2010 for the LMAV. Our data indicate that a road transect survey method is effective for estimating wintering snipe density and abundance in the lower Mississippi Flyway.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter
2016-10-13
Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.
Simplified large African carnivore density estimators from track indices.
Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J
2016-01-01
The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.
Evaluating sampling strategies for larval cisco (Coregonus artedi)
Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.
2008-01-01
To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.
Evidence for predatory control of the invasive round goby
Madenjian, C.P.; Stapanian, M.A.; Witzel, L.D.; Einhouse, D.W.; Pothoven, S.A.; Whitford, H.L.
2011-01-01
We coupled bioenergetics modeling with bottom trawl survey results to evaluate the capacity of piscivorous fish in eastern Lake Erie to exert predatory control of the invading population of round goby Neogobius melanostomus. In the offshore (>20 m deep) waters of eastern Lake Erie, burbot Lota lota is a native top predator, feeding on a suite of prey fishes. The round goby invaded eastern Lake Erie during the late 1990s, and round goby population size increased dramatically during 1999–2004. According to annual bottom trawl survey results, round goby abundance in offshore waters peaked in 2004, but then declined during 2004–2008. Coincidentally, round goby became an important component of burbot diet beginning in 2003. Using bottom trawling and gill netting, we estimated adult burbot abundance and age structure in eastern Lake Erie during 2007. Diet composition and energy density of eastern Lake Erie burbot were also determined during 2007. This information, along with estimates of burbot growth, burbot mortality, burbot water temperature regime, and energy densities of prey fish from the literature, were incorporated into a bioenergetics model application to estimate annual consumption of round goby by the adult burbot population. Results indicated that the adult burbot population in eastern Lake Erie annually consumed 1,361 metric tons of round goby. Based on the results of bottom trawling, we estimated the biomass of yearling and older round goby in offshore waters eastern Lake Erie during 2007–2008 to be 2,232 metric tons. Thus, the adult burbot population was feeding on round goby at an annual rate equal to 61% of the estimated round goby standing stock. We concluded that the burbot population had high potential to exert predatory control on round goby in offshore waters of eastern Lake Erie.
The densest terrestrial vertebrate
Rodda, G.H.; Perry, G.; Rondeau, R.J.; Lazell, J.
2001-01-01
An understanding of the abundance of organisms is central to understanding ecology, but many population density estimates are unrepresentative because they were obtained from study areas chosen for the high abundance of the target species. For example, from a pool of 1072 lizard density estimates that we compiled from the literature, we sampled 303 estimates and scored each for its assessment of the degree to which the study site was representative. Less than half (45%) indicated that the study area was chosen to be representative of the population or habitat. An additional 15% reported that individual plots or transects were chosen randomly, but this often indicated only that the sample points were located randomly within a study area chosen for its high abundance of the target species. The remainder of the studies either gave no information or specified that the study area was chosen because the focal species was locally abundant.
James F. Fowler; Carolyn Hull Sieg; Shaula Hedwall
2015-01-01
Population size and density estimates have traditionally been acceptable ways to track speciesâ response to changing environments; however, species' population centroid elevation has recently been an equally important metric. Packera franciscana (Greene) W.A. Weber and A. Love (Asteraceae; San Francisco Peaks ragwort) is a single mountain endemic plant found only...
A new gridded on-road CO2 emissions inventory for the United States, 1980-2011
NASA Astrophysics Data System (ADS)
Gately, C.; Hutyra, L.; Sue Wing, I.
2013-12-01
On-road transportation is responsible for 28% of all U.S. fossil fuel CO2 emissions. However, mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories have used spatial proxies such as population and road density to downscale national or state level data, which may introduce errors where the proxy variables and actual emissions are weakly correlated. We have developed a national on-road emissions inventory product based on roadway-level traffic data obtained from the Highway Performance Monitoring System. We produce annual estimates of on-road CO2 emissions at a 1km spatial resolution for the contiguous United States for the years 1980 through 2011. For the year 2011 we also produce an hourly emissions product at the 1km scale using hourly traffic volumes from hundreds of automated traffic counters across the country. National on-road emissions rose at roughly 2% per year from 1980 to 2006, with emissions peaking at 1.71 Tg CO2 in 2007. However, while national emissions have declined 6% since the peak, we observe considerable regional variation in emissions trends post-2007. While many states show stable or declining on-road emissions, several states and metropolitan areas in the Midwest, mountain west and south had emissions increases of 3-10% from 2008 to 2011. Our emissions estimates are consistent with state-reported totals of gasoline and diesel fuel consumption. This is in contrast to on-road CO2 emissions estimated by the Emissions Database of Global Atmospheric Research (EDGAR), which we show to be inconsistent in matching on-road emissions to published fuel consumption at the scale of U.S. states, due to the non-linear relationships between emissions and EDGAR's chosen spatial proxies at these scales. Since our emissions estimates were generated independent of population density and other demographic data, we were able to conduct a panel regression analysis to estimate the relationship between these variables and on-road CO2 at various spatial scales. In the case of Massachusetts we find a non-linear relationship between emissions and population density indicating that increasing density resulted in increased emissions when density is less than 2000 persons-km-2. These results highlight the value of using an emissions inventory with high spatial and temporal resolution. At coarser spatial scales, much of the variation in population density and on-road emissions between towns is lost due to aggregation. The high spatial resolution and broad temporal scope of our CO2 estimates provides a basis for analyses to support emissions monitoring, verification and mitigation policies at regional, state and local scale.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Jiang, Jiang; DeAngelis, Donald L.; Zhang, B.; Cohen, J.E.
2014-01-01
Taylor's power law describes an empirical relationship between the mean and variance of population densities in field data, in which the variance varies as a power, b, of the mean. Most studies report values of b varying between 1 and 2. However, Cohen (2014a) showed recently that smooth changes in environmental conditions in a model can lead to an abrupt, infinite change in b. To understand what factors can influence the occurrence of an abrupt change in b, we used both mathematical analysis and Monte Carlo samples from a model in which populations of the same species settled on patches, and each population followed independently a stochastic linear birth-and-death process. We investigated how the power relationship responds to a smooth change of population growth rate, under different sampling strategies, initial population density, and population age. We showed analytically that, if the initial populations differ only in density, and samples are taken from all patches after the same time period following a major invasion event, Taylor's law holds with exponent b=1, regardless of the population growth rate. If samples are taken at different times from patches that have the same initial population densities, we calculate an abrupt shift of b, as predicted by Cohen (2014a). The loss of linearity between log variance and log mean is a leading indicator of the abrupt shift. If both initial population densities and population ages vary among patches, estimates of b lie between 1 and 2, as in most empirical studies. But the value of b declines to ~1 as the system approaches a critical point. Our results can inform empirical studies that might be designed to demonstrate an abrupt shift in Taylor's law.
Jaffé, Rodolfo; Dietemann, Vincent; Allsopp, Mike H; Costa, Cecilia; Crewe, Robin M; Dall'olio, Raffaele; DE LA Rúa, Pilar; El-Niweiri, Mogbel A A; Fries, Ingemar; Kezic, Nikola; Meusel, Michael S; Paxton, Robert J; Shaibi, Taher; Stolle, Eckart; Moritz, Robin F A
2010-04-01
Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.
Population density and racial differences in the performance of emergency medical services.
David, Guy; Harrington, Scott E
2010-07-01
This paper analyzes the existence and scope of possible racial differences/disparities in the provision of emergency medical services (EMS) response capability (time from dispatch to arrival at the scene and level of training of the responding team) using data on approximately 120,000 cardiac incidents in the state of Mississippi during 1995-2004. The conceptual framework and empirical analysis focus on the likely effects of population density on the efficient production of EMS as a local public good subject to congestion, and on the need to control adequately for population density to avoid bias in testing for racial differences. Models that control for aggregate population density at the county-level indicate "reverse" disparities: faster estimated response times for African-Americans than for whites. When a refined county-level measure of population density is used that incorporates differences in African-American and white population density by Census tract, the reverse disparity in response times disappears. There also is little or no evidence of race-related differences in the certification level of EMS responders. However, there is evidence that, controlling for response time, African-Americans on average were significantly more likely to be deceased than whites upon EMS arrival at the scene. The overall results are germane to the debate over the scope of conditioning variables that should be included when testing for racial disparities in health care.
Modeling abundance effects in distance sampling
Royle, J. Andrew; Dawson, D.K.; Bates, S.
2004-01-01
Distance-sampling methods are commonly used in studies of animal populations to estimate population density. A common objective of such studies is to evaluate the relationship between abundance or density and covariates that describe animal habitat or other environmental influences. However, little attention has been focused on methods of modeling abundance covariate effects in conventional distance-sampling models. In this paper we propose a distance-sampling model that accommodates covariate effects on abundance. The model is based on specification of the distance-sampling likelihood at the level of the sample unit in terms of local abundance (for each sampling unit). This model is augmented with a Poisson regression model for local abundance that is parameterized in terms of available covariates. Maximum-likelihood estimation of detection and density parameters is based on the integrated likelihood, wherein local abundance is removed from the likelihood by integration. We provide an example using avian point-transect data of Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two measures of habitat structure (understory cover and basal area of overstory trees). The model yields a sensible description (positive effect of understory cover, negative effect on basal area) of the relationship between habitat and Ovenbird density that can be used to evaluate the effects of habitat management on Ovenbird populations.
Assi, Valentina; Massat, Nathalie J; Thomas, Susan; MacKay, James; Warwick, Jane; Kataoka, Masako; Warsi, Iqbal; Brentnall, Adam; Warren, Ruth; Duffy, Stephen W
2015-05-15
Mammographic density is a strong risk factor for breast cancer, but its potential application in risk management is not clear, partly due to uncertainties about its interaction with other breast cancer risk factors. We aimed to quantify the impact of mammographic density on breast cancer risk in women aged 40-49 at intermediate familial risk of breast cancer (average lifetime risk of 23%), in particular in premenopausal women, and to investigate its relationship with other breast cancer risk factors in this population. We present the results from a case-control study nested with the FH01 cohort study of 6,710 women mostly aged 40-49 at intermediate familial risk of breast cancer. One hundred and three cases of breast cancer were age-matched to one or two controls. Density was measured by semiautomated interactive thresholding. Absolute density, but not percent density, was a significant risk factor for breast cancer in this population after adjusting for area of nondense tissue (OR per 10 cm(2) = 1.07, 95% CI 1.00-1.15, p = 0.04). The effect was stronger in premenopausal women, who made up the majority of the study population. Absolute density remained a significant predictor of breast cancer risk after adjusting for age at menarche, age at first live birth, parity, past or present hormone replacement therapy, and the Tyrer-Cuzick 10-year relative risk estimate of breast cancer. Absolute density can improve breast cancer risk stratification and delineation of high-risk groups alongside the Tyrer-Cuzick 10-year relative risk estimate. © 2014 UICC.
Havukainen, Liisa; Monteiro, Emygdio Leite de Araujo Fiho; Filla, Gislaine de Fatima
2011-09-01
Population density in cetaceans can be estimated through photo-identification, mark-recapture, land-based observations and visual estimative. We the aim to contribute with conservation strategies, we used line transects (distance method) to estimate the population density of the river dolphin, S. guianensis, in the estuarine region of Cananéia, Southeastern Brazil. The study, developed from May 2003 until April 2004, during dry and rainy seasons and different times of the day, included a sampling area divided into three sectors according to their proximity to the open sea: Sector I (the closest to the open sea); Sector II (with a large flow of fresh water and a salient declivity); and Sector III (with a large flow of fresh water and non salient declivity). Onboard random sampling was carried out in all three sectors, and dolphins seen from the bow to 90 degrees on both port and starboard sides, were registered along with their position and distance from the boat. The total density found was 12.41 ind/km2 (CV = 25.53%) with an average of 2.2 individuals per group for both periods of the day, morning and afternoon. Densities also varied between dry and rainy seasons, being lower in the first with 5.77 ind/km2 (CV = 27.87%) than in the second 20.28 ind/km2 (CV = 31.95%), respectively. Regarding the three sectors, a non-causal heterogeneous distribution was found: Sector I was the most populated (D = 33.10 ind/km2, CV = 13.34%), followed by Sector II (D = 7.8 ind/km2, CV = 21.07%) and Sector III (D = 3.04 ind/km2, CV = 34.04%). The aforementioned area, due to its proximity to the open sea, has the highest salinity level and therefore has the greatest chance of holding most of the marine fish schools which can be cornered by dolphins on high declivity areas during fishing activities. This suggests that food availability may be the most important factor on the river dolphin's distribution in the estuary. Similar studies will contribute to a better understanding of these populations and are essential for future conservation strategies.
A Continuous Method for Gene Flow
Palczewski, Michal; Beerli, Peter
2013-01-01
Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937
Muñoz, David J.; Miller, David A.W.; Sutherland, Chris; Grant, Evan H. Campbell
2016-01-01
The cryptic behavior and ecology of herpetofauna make estimating the impacts of environmental change on demography difficult; yet, the ability to measure demographic relationships is essential for elucidating mechanisms leading to the population declines reported for herpetofauna worldwide. Recently developed spatial capture–recapture (SCR) methods are well suited to standard herpetofauna monitoring approaches. Individually identifying animals and their locations allows accurate estimates of population densities and survival. Spatial capture–recapture methods also allow estimation of parameters describing space-use and movement, which generally are expensive or difficult to obtain using other methods. In this paper, we discuss the basic components of SCR models, the available software for conducting analyses, and the experimental designs based on common herpetological survey methods. We then apply SCR models to Red-backed Salamander (Plethodon cinereus), to determine differences in density, survival, dispersal, and space-use between adult male and female salamanders. By highlighting the capabilities of SCR, and its advantages compared to traditional methods, we hope to give herpetologists the resource they need to apply SCR in their own systems.
Factors leading to different viability predictions for a grizzly bear data set
Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.
1996-01-01
Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...
Ocelot (Leopardus pardalis) Density in Central Amazonia.
Rocha, Daniel Gomes da; Sollmann, Rahel; Ramalho, Emiliano Esterci; Ilha, Renata; Tan, Cedric K W
2016-01-01
Ocelots (Leopardus pardalis) are presumed to be the most abundant of the wild cats throughout their distribution range and to play an important role in the dynamics of sympatric small-felid populations. However, ocelot ecological information is limited, particularly for the Amazon. We conducted three camera-trap surveys during three consecutive dry seasons to estimate ocelot density in Amanã Reserve, Central Amazonia, Brazil. We implemented a spatial capture-recapture (SCR) model that shared detection parameters among surveys. A total effort of 7020 camera-trap days resulted in 93 independent ocelot records. The estimate of ocelot density in Amanã Reserve (24.84 ± SE 6.27 ocelots per 100 km2) was lower than at other sites in the Amazon and also lower than that expected from a correlation of density with latitude and rainfall. We also discuss the importance of using common parameters for survey scenarios with low recapture rates. This is the first density estimate for ocelots in the Brazilian Amazon, which is an important stronghold for the species.
Estimating animal population density using passive acoustics.
Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L
2013-05-01
Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Estimating animal population density using passive acoustics
Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L
2013-01-01
Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144
Veerman, J Lennert; Zapata-Diomedi, Belen; Gunn, Lucy; McCormack, Gavin R; Cobiac, Linda J; Mantilla Herrera, Ana Maria; Giles-Corti, Billie; Shiell, Alan
2016-09-20
Studies consistently find that supportive neighbourhood built environments increase physical activity by encouraging walking and cycling. However, evidence on the cost-effectiveness of investing in built environment interventions as a means of promoting physical activity is lacking. In this study, we assess the cost-effectiveness of increasing sidewalk availability as one means of encouraging walking. Using data from the RESIDE study in Perth, Australia, we modelled the cost impact and change in health-adjusted life years (HALYs) of installing additional sidewalks in established neighbourhoods. Estimates of the relationship between sidewalk availability and walking were taken from a previous study. Multistate life table models were used to estimate HALYs associated with changes in walking frequency and duration. Sensitivity analyses were used to explore the impact of variations in population density, discount rates, sidewalk costs and the inclusion of unrelated healthcare costs in added life years. Installing and maintaining an additional 10 km of sidewalk in an average neighbourhood with 19 000 adult residents was estimated to cost A$4.2 million over 30 years and gain 24 HALYs over the lifetime of an average neighbourhood adult resident population. The incremental cost-effectiveness ratio was A$176 000/HALY. However, sensitivity results indicated that increasing population densities improves cost-effectiveness. In low-density cities such as in Australia, installing sidewalks in established neighbourhoods as a single intervention is unlikely to cost-effectively improve health. Sidewalks must be considered alongside other complementary elements of walkability, such as density, land use mix and street connectivity. Population density is particularly important because at higher densities, more residents are exposed and this improves the cost-effectiveness. Health gain is one of many benefits of enhancing neighbourhood walkability and future studies might consider a more comprehensive assessment of its social value (eg, social cohesion, safety and air quality). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tigers and their prey: Predicting carnivore densities from prey abundance
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Link, W.A.; Hines, J.E.
2004-01-01
The goal of ecology is to understand interactions that determine the distribution and abundance of organisms. In principle, ecologists should be able to identify a small number of limiting resources for a species of interest, estimate densities of these resources at different locations across the landscape, and then use these estimates to predict the density of the focal species at these locations. In practice, however, development of functional relationships between abundances of species and their resources has proven extremely difficult, and examples of such predictive ability are very rare. Ecological studies of prey requirements of tigers Panthera tigris led us to develop a simple mechanistic model for predicting tiger density as a function of prey density. We tested our model using data from a landscape-scale long-term (1995-2003) field study that estimated tiger and prey densities in 11 ecologically diverse sites across India. We used field techniques and analytical methods that specifically addressed sampling and detectability, two issues that frequently present problems in macroecological studies of animal populations. Estimated densities of ungulate prey ranged between 5.3 and 63.8 animals per km2. Estimated tiger densities (3.2-16.8 tigers per 100 km2) were reasonably consistent with model predictions. The results provide evidence of a functional relationship between abundances of large carnivores and their prey under a wide range of ecological conditions. In addition to generating important insights into carnivore ecology and conservation, the study provides a potentially useful model for the rigorous conduct of macroecological science.
Estimating detection and density of the Andean cat in the high Andes
Reppucci, J.; Gardner, B.; Lucherini, M.
2011-01-01
The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October-December 2006 and April-June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture-recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km 2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74-0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species. ?? 2011 American Society of Mammalogists.
Estimating detection and density of the Andean cat in the high Andes
Reppucci, Juan; Gardner, Beth; Lucherini, Mauro
2011-01-01
The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October–December 2006 and April–June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture–recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74–0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species.
Peromyscus ranges at high and low population densities
Stickel, L.F.
1960-01-01
Live-trapping studies at the Patuxent Wildlife Research Center, Maryland, showed that the ranges of wood mice were larger when the population density was lower and smaller when the population density was higher. When the population density was about 1.3 male mice per acre in June 1954, the average distance recorded between traps after four or more captures was 258 feet. When the population density was about 4.1 male mice per acre in June 1957, the average distance was 119 feet. Differences were statistically significant. Females were so scarce at the low that comparisons could not be made for them. Examples from the literature also show that home range of a species may vary with population density. Other examples show that the range may vary with habitat, breeding condition and food supply. These variations in range size reduce the reliability of censuses in which relative methods are used: Lines of traps sample the population of a larger area when ranges are large than they do when ranges are small. Direct comparisons therefore will err in some degree. Error may be introduced also when line-trap data are transformed to per acre figures on the basis of home-range estimates made by area-trapping at another place or time. Variation in range size also can make it necessary to change area-trapping plans, for larger quadrants are needed when ranges are larger. It my be necessary to set traps closer together when ranges are small than when ranges are large.
Integrating resource selection into spatial capture-recapture models for large carnivores
K. M. Proffitt; J. F. Goldberg; M. Hebblewhite; R. Russell; B. S. Jimenez; H. S. Robinson; Kristine Pilgrim; Michael Schwartz
2015-01-01
Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and...
Ohiagu, C E
1979-01-01
Nest and soil populations of Trinervitermes spp. were estimated on grazed secondary savanna woodland near Mokwa cattle ranch and on primary savanna woodland, 6 km from the ranch. Nest populations were estimated by obtaining a relationship between size of nest and the number of termites in the nest and using the relationship to estimate populations in measured nests within the study area.Mound populations of T. geminatus, by far the most abundant species, were 222 m -2 at a mound density of 232 ha -1 at the ranch, and 225 m -2 at a mound density of 175 ha -1 on primary savanna woodland. The mound population at the ranch represented a fresh weight biomass of 1.089 g m -2 . Changes in abundance of the mound population of T. geminatus were correlated with breeding and foraging cycles. Maximum numbers (388 m -2 , 2.03 g m -2 ) in August/September were reduced by the flight of alates and loss of foragers to predators; thereafter, the population continued to decrease (126 m -2 , 0.57 g m -2 ) until the cessation of foraging in April/May and numbers of larvae and nymphs began to increase. Soil and mound sampling in primary and secondary savanna showed that although T. geminatus is a mound inhabiting species, two thirds of the mound plus soil population was outside the mounds giving a total population of 737 m -2 (3.08 g m -2 ). Alate production was estimated at 15.5 m -2 (0.19 g m -2 ) and neuter production at 367 m -2 (1.66 g m -2 ); production/biomass ratio was 1.0 T. togoensis (total population of 21 m -2 ) and T. occidentalis (200 m -2 ) had 90-96% of the total numbers outside the mounds, indicating that these two species were primarily subterranean.
Artim, J M; Sikkel, P C
2016-08-01
Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.
Spatially explicit population estimates for black bears based on cluster sampling
Humm, J.; McCown, J. Walter; Scheick, B.K.; Clark, Joseph D.
2017-01-01
We estimated abundance and density of the 5 major black bear (Ursus americanus) subpopulations (i.e., Eglin, Apalachicola, Osceola, Ocala-St. Johns, Big Cypress) in Florida, USA with spatially explicit capture-mark-recapture (SCR) by extracting DNA from hair samples collected at barbed-wire hair sampling sites. We employed a clustered sampling configuration with sampling sites arranged in 3 × 3 clusters spaced 2 km apart within each cluster and cluster centers spaced 16 km apart (center to center). We surveyed all 5 subpopulations encompassing 38,960 km2 during 2014 and 2015. Several landscape variables, most associated with forest cover, helped refine density estimates for the 5 subpopulations we sampled. Detection probabilities were affected by site-specific behavioral responses coupled with individual capture heterogeneity associated with sex. Model-averaged bear population estimates ranged from 120 (95% CI = 59–276) bears or a mean 0.025 bears/km2 (95% CI = 0.011–0.44) for the Eglin subpopulation to 1,198 bears (95% CI = 949–1,537) or 0.127 bears/km2 (95% CI = 0.101–0.163) for the Ocala-St. Johns subpopulation. The total population estimate for our 5 study areas was 3,916 bears (95% CI = 2,914–5,451). The clustered sampling method coupled with information on land cover was efficient and allowed us to estimate abundance across extensive areas that would not have been possible otherwise. Clustered sampling combined with spatially explicit capture-recapture methods has the potential to provide rigorous population estimates for a wide array of species that are extensive and heterogeneous in their distribution.
Jiao, Jichao; Li, Fei; Deng, Zhongliang; Ma, Wenjing
2017-03-28
Considering the installation cost and coverage, the received signal strength indicator (RSSI)-based indoor positioning system is widely used across the world. However, the indoor positioning performance, due to the interference of wireless signals that are caused by the complex indoor environment that includes a crowded population, cannot achieve the demands of indoor location-based services. In this paper, we focus on increasing the signal strength estimation accuracy considering the population density, which is different to the other RSSI-based indoor positioning methods. Therefore, we propose a new wireless signal compensation model considering the population density, distance, and frequency. First of all, the number of individuals in an indoor crowded scenario can be calculated by our convolutional neural network (CNN)-based human detection approach. Then, the relationship between the population density and the signal attenuation is described in our model. Finally, we use the trilateral positioning principle to realize the pedestrian location. According to the simulation and tests in the crowded scenarios, the proposed model increases the accuracy of the signal strength estimation by 1.53 times compared to that without considering the human body. Therefore, the localization accuracy is less than 1.37 m, which indicates that our algorithm can improve the indoor positioning performance and is superior to other RSSI models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy
Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less
Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob
2016-02-01
Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits.
The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse.
Uesugi, R; Kunimoto, Y; Osakabe, Mh
2009-02-01
The fine-scale genetic structure of Tetranychus urticae Koch was studied to estimate local gene flow within a rose tree habitat in a commercial greenhouse using seven microsatellite markers. Two beds of rose trees with different population densities were selected and 18 consecutive quadrats of 1.2 m length were sequentially established in each bed. Heterozygote deficiency was positive within quadrats, which was most likely a result of the Wahlund effect because the mites usually form small breeding colonies. Low population density and frequent inbreeding could also accelerate genetic differentiation among the breeding colonies. A short-range (2.4-3.6 m) positive autocorrelation and clear genetic cline among quadrat populations was detected within a bed. This suggests that gene flow was limited to a short range even if population density was substantially increased. Therefore, large-scale dispersal such as aerial dispersal contributed very little to gene flow in the greenhouse.
Somershoe, S.G.; Twedt, D.J.; Reid, B.
2006-01-01
We combined Breeding Bird Survey point count protocol and distance sampling to survey spring migrant and breeding birds in Vicksburg National Military Park on 33 days between March and June of 2003 and 2004. For 26 of 106 detected species, we used program DISTANCE to estimate detection probabilities and densities from 660 3-min point counts in which detections were recorded within four distance annuli. For most species, estimates of detection probability, and thereby density estimates, were improved through incorporation of the proportion of forest cover at point count locations as a covariate. Our results suggest Breeding Bird Surveys would benefit from the use of distance sampling and a quantitative characterization of habitat at point count locations. During spring migration, we estimated that the most common migrant species accounted for a population of 5000-9000 birds in Vicksburg National Military Park (636 ha). Species with average populations of 300 individuals during migration were: Blue-gray Gnatcatcher (Polioptila caerulea), Cedar Waxwing (Bombycilla cedrorum), White-eyed Vireo (Vireo griseus), Indigo Bunting (Passerina cyanea), and Ruby-crowned Kinglet (Regulus calendula). Of 56 species that bred in Vicksburg National Military Park, we estimated that the most common 18 species accounted for 8150 individuals. The six most abundant breeding species, Blue-gray Gnatcatcher, White-eyed Vireo, Summer Tanager (Piranga rubra), Northern Cardinal (Cardinalis cardinalis), Carolina Wren (Thryothorus ludovicianus), and Brown-headed Cowbird (Molothrus ater), accounted for 5800 individuals.
Kuletz, Kathy J.; Speckman, Suzann G.; Piatt, John F.; Labunski, E.A.
2011-01-01
Lower Cook Inlet (LCI) in south-central Alaska is unusual among the breeding areas of Kittlitz's Murrelet Brachyramphus brevirostris because of human impacts on the marine and terrestrial environments and because of the lack of tidewater glaciers. In LCI the Kittlitz's Murrelet co-exists with the more abundant Marbled Murrelet, which complicates abundance estimates because of the difficulty of species identification. We compared survey data for an area with overlapping coverage in LCI (Core area) in 1993 (June) and from 1996 to 1999 (July-early August). Within this LCI Core area, the surveys in 1996-1999 estimated ~1600 Kittlitz's Murrelets and ~17 000 Marbled Murrelets, including prorated unidentified murrelets. The Kittlitz's Murrelet population declined between 1993 and 1999 at 26% per annum (84% overall). Simultaneously, Marbled Murrelets declined by 12% per annum (56% overall), though the decline was not statistically significant. Declines were estimated conservatively because the 1993 survey was conducted in June, when both murrelet species are less abundant on the water. We also surveyed Kachemak Bay, a large embayment of LCI, during mid-summer (July) of 2005-2007 and estimated a population of 2047 Kittlitz's Murrelets (SD 1120, n = 3 years) residing primarily in the inner bay. Marbled Murrelets numbered 11 040 (SD 1306) and were found throughout the bay. On one transect set in inner Kachemak Bay, Kittlitz's Murrelet density in late summer (1-16 August) declined 7.5% per annum between 1988 and 2007 (n = 6 years), and Marbled Murrelet density increased 4.9% per annum. On two other transect sets in the inner bay, however, neither murrelet species showed a change in density between 1996 and 2007. Inner Kachemak Bay is a persistent hotspot for Kittlitz's Murrelet and may attract murrelets from LCI and beyond. We recommend monitoring murrelet populations in Kachemak Bay, although Kittlitz's Murrelets likely move between the main body of Cook Inlet and Kachemak Bay, and a complete LCI survey is needed to gauge regional population trends.
NASA Astrophysics Data System (ADS)
Loehman, R.; Heinsch, F. A.; Mills, J. N.; Wagoner, K.; Running, S.
2003-12-01
Recent predictive models for hantavirus pulmonary syndrome (HPS) have used remotely sensed spectral reflectance data to characterize risk areas with limited success. We present an alternative method using gross primary production (GPP) from the MODIS sensor to estimate the effects of biomass accumulation on population density of Peromyscus maniculatus (deer mouse), the principal reservoir species for Sin Nombre virus (SNV). The majority of diagnosed HPS cases in North America are attributed to SNV, which is transmitted to humans through inhalation of excretions and secretions from infected rodents. A logistic model framework is used to evaluate MODIS GPP, temperature, and precipitation as predictors of P. maniculatus density at established trapping sites across the western United States. Rodent populations are estimated using monthly minimum number alive (MNA) data for 2000 through 2002. Both local meteorological data from nearby weather stations and 1.25 degree x 1 degree gridded data from the NASA DAO were used in the regression model to determine the spatial sensitivity of the response. MODIS eight-day GPP data (1-km resolution) were acquired and binned to monthly average and monthly sum GPP for 3km x 3km grids surrounding each rodent trapping site. The use of MODIS GPP to forecast HPS risk may result in a marked improvement over past reflectance-based risk area characterizations. The MODIS GPP product provides a vegetation dynamics estimate that is unique to disease models, and targets the fundamental ecological processes responsible for increased rodent density and amplified disease risk.
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants from important onion populations from major production regions world-wide and the likely progenitor of onion, Allium vavilovii. Genotypes at 1226 SNPs were used to estimate genetic relati...
USDA-ARS?s Scientific Manuscript database
Recent reports of global declines in pollinator species imply an urgent need to assess native pollinator population sizes and density dependent benefits for linked plants. Here, we estimated effective population sizes (Ne) of four native bumblebee species, Bombus balteatus, B. flavifrons, B. bifariu...
Comparison of methods to estimate population densities of black-tailed prairie dogs
Kieth E. Severson; Glenn E. Plumb
1999-01-01
Recent reintroduction of the black-footed ferret (Mustela nigripes) in west-central South Dakota has focused new attention on black-tailed prairie dogs (Cynomys ludovicanus), because prairie dog colonies provide essential habitat for ferrets. Currently, management agencies are assessing prairie dog populations by counting active...
Survival and harvest-related mortality of white-tailed deer in Massachusetts
Mcdonald, John E.; DeStefano, Stephen; Gaughan, Christopher; Mayer, Michael; Woytek, William A.; Christensen, Sonja; Fuller, Todd K.
2011-01-01
We monitored 142 radiocollared adult (≥1.0 yr old) white-tailed deer (Odocoileus virginianus) in 3 study areas of Massachusetts, USA, to estimate annual survival and mortality due to legal hunting. We then applied these rates to deer harvest information to estimate deer population trends over time, and compared these to trends derived solely from harvest data estimates. Estimated adult female survival rates were similar (0.82–0.86), and uniformly high, across 3 management zones in Massachusetts that differed in landscape composition, human density, and harvest regulations. Legal hunting accounted for 16–29% of all adult female mortality. Estimated adult male survival rates varied from 0.55 to 0.79, and legal hunting accounted for 40–75% of all mortality. Use of composite hunting mortality rates produced realistic estimates for adult deer populations in 2 zones, but not for the third, where estimation was hindered by regulatory restrictions on antlerless deer harvest. In addition, the population estimates we calculated were generally higher than those derived from population reconstruction, likely due to relatively low harvest pressure. Legal harvest may not be the dominant form of deer mortality in developed landscapes; thus, estimates of populations or trends that rely solely on harvest data will likely be underestimates.
Evaluating a fish monitoring protocol using state-space hierarchical models
Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald
2012-01-01
Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.
Spiridonova, S I; Mukusheva, M K; Shubina, O A; Solomatin, V M; Epifanova, I E
2008-01-01
The results are presented from estimation of spatial distribution of 137Cs and 90Sr contamination densities in the areas of horses and sheep grazing within the Semipalatinsk Test Site. Dose burdens to various cohorts of the population living within the STS and consuming contaminated animal products are predicted. Doses of shepherds in the most contaminated pasture areas have been found to exceed the accepted limit (1 mSv/y). The conclusion is made about the need for further studies on the risk assessment of the STS population exposure above the accepted limits.
Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.
2013-01-01
Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.
Evaluating immunocontraception for managing suburban white-tailed deer in Irondequoit, New York
Rudolph, B.A.; Porter, W.F.; Underwood, H.B.
2000-01-01
Immunocontraception is frequently proposed as an alternative to lethal removal of females for deer management. However, little information is available for evaluating the potential of applying immunocontraceptives to free-ranging populations. Our objectives were to estimate effort required to apply porcine zona pellucida (PZP) to individual deer and assess the utility of using immunocontraception to control growth of deer populations. The study was conducted in a 43-km2 suburban community with about 400 deer. Effort per deer was measured as time required to capture and mark deer, and then to apply booster immunocontraceptive treatments by remote injection. Estimates of numbers of females to treat to control population growth were based on the generalized sustained-yield (SY) model adapted for contraception of females. The SY curve was calibrated using data on deer abundance acquired from aerial population surveys and nutritional condition of females removed by a concurrent culling program. Effort was influenced by 4 factors: deer population density, approachability of individual deer, access to private and public land, and efficacy of the contraceptive treatment. Effort and deer density were inversely related. Cumulative effort for treatment increased exponentially because some deer were more difficult to approach than others. Potential of using immunocontraception at low deer population densities (<25% ecological carrying capacity) is limited by the interaction of the proportion of breeding-age females in the population and treatment efficacy, as well as encounter rates. Immunocontraception has the best potential for holding suburban deer populations between 30 and 70% of ecological carrying capacity, but is likely to be useful only in localized populations when the number of females to be treated is small (e.g., <200 deer).
Problems with sampling desert tortoises: A simulation analysis based on field data
Freilich, J.E.; Camp, R.J.; Duda, J.J.; Karl, A.E.
2005-01-01
The desert tortoise (Gopherus agassizii) was listed as a U.S. threatened species in 1990 based largely on population declines inferred from mark-recapture surveys of 2.59-km2 (1-mi2) plots. Since then, several census methods have been proposed and tested, but all methods still pose logistical or statistical difficulties. We conducted computer simulations using actual tortoise location data from 2 1-mi2 plot surveys in southern California, USA, to identify strengths and weaknesses of current sampling strategies. We considered tortoise population estimates based on these plots as "truth" and then tested various sampling methods based on sampling smaller plots or transect lines passing through the mile squares. Data were analyzed using Schnabel's mark-recapture estimate and program CAPTURE. Experimental subsampling with replacement of the 1-mi2 data using 1-km2 and 0.25-km2 plot boundaries produced data sets of smaller plot sizes, which we compared to estimates from the 1-mi 2 plots. We also tested distance sampling by saturating a 1-mi 2 site with computer simulated transect lines, once again evaluating bias in density estimates. Subsampling estimates from 1-km2 plots did not differ significantly from the estimates derived at 1-mi2. The 0.25-km2 subsamples significantly overestimated population sizes, chiefly because too few recaptures were made. Distance sampling simulations were biased 80% of the time and had high coefficient of variation to density ratios. Furthermore, a prospective power analysis suggested limited ability to detect population declines as high as 50%. We concluded that poor performance and bias of both sampling procedures was driven by insufficient sample size, suggesting that all efforts must be directed to increasing numbers found in order to produce reliable results. Our results suggest that present methods may not be capable of accurately estimating desert tortoise populations.
Jensen, Gitte Høj; Madsen, Jesper; Johnson, Fred A.; Tamstorf, Mikkel P.
2014-01-01
The Svalbard-breeding population of pink-footed geese Anser brachyrhynchus has increased during the last decades and is giving rise to agricultural conflicts along their migration route, as well as causing grazing impacts on tundra vegetation. An adaptive flyway management plan has been implemented, which will be based on predictive population models including environmental variables expected to affect goose population development, such as weather conditions on the breeding grounds. A local study in Svalbard showed that snow cover prior to egg laying is a crucial factor for the reproductive output of pink-footed geese, and MODIS satellite images provided a useful estimator of snow cover. In this study, we up-scaled the analysis to the population level by examining various measures of snow conditions and compared them with the overall breeding success of the population as indexed by the proportion of juveniles in the autumn population. As explanatory variables, we explored MODIS images, satellite-based radar measures of onset of snow melt, winter NAO index, and the May temperature sum and May thaw days. To test for the presence of density dependence, we included the number of adults in the population. For 2000–2011, MODIS-derived snow cover (available since 2000) was the strongest indicator of breeding conditions. For 1981–2011, winter NAO and May thaw days had equal weight. Interestingly, there appears to have been a phase shift from density-dependent to density-independent reproduction, which is consistent with a hypothesis of released breeding potential due to the recent advancement of spring in Svalbard.
Reeve, John D; Frantz, Alain C; Dawson, Deborah A; Burke, Terry; Roper, Timothy J
2008-09-01
1. Urban and rural populations of animals can differ in their behaviour, both in order to meet their ecological requirements and due to the constraints imposed by different environments. The study of urban populations can therefore offer useful insights into the behavioural flexibility of a species as a whole, as well as indicating how the species in question adapts to a specifically urban environment. 2. The genetic structure of a population can provide information about social structure and movement patterns that is difficult to obtain by other means. Using non-invasively collected hair samples, we estimated the population size of Eurasian badgers Meles meles in the city of Brighton, England, and calculated population-specific parameters of genetic variability and sex-specific rates of outbreeding and dispersal. 3. Population density was high in the context of badger densities reported throughout their range. This was due to a high density of social groups rather than large numbers of individuals per group. 4. The allelic richness of the population was low compared with other British populations. However, the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements suggest that, on a local scale, the population was outbred. Although members of both sexes visited other groups, there was a trend for more females to make intergroup movements. 5. The results reveal that urban badgers can achieve high densities and suggest that while some population parameters are similar between urban and rural populations, the frequency of intergroup movements is higher among urban badgers. In a wider context, these results demonstrate the ability of non-invasive genetic sampling to provide information about the population density, social structure and behaviour of urban wildlife.
Marriage and parenthood in relation to obesogenic neighborhood trajectories: The CARDIA Study
Boone-Heinonen, Janne; Howard, Annie Green; Meyer, Katie; Lewis, Cora E.; Kiefe, Catarina I.; Laroche, Helena H.; Gunderson, Erica P.; Gordon-Larsen, Penny
2015-01-01
Marriage and parenthood are associated with weight gain and residential mobility. Little is known about how obesity-relevant environmental contexts differ according to family structure. We estimated trajectories of neighborhood poverty, population density, and density of fast food restaurants, supermarkets, and commercial and public physical activity facilities for adults from a biracial cohort (CARDIA, n=4,174, aged 25–50) over 13 years (1992–93 through 2005–06) using latent growth curve analysis. We estimated associations of marriage, parenthood, and race with the observed neighborhood trajectories. Married participants tended to live in neighborhoods with lower poverty, population density, and availability of all types of food and physical activity amenities. Parenthood was similarly but less consistently related to neighborhood characteristics. Marriage and parenthood were more strongly related to neighborhood trajectories in whites (versus blacks), who, in prior studies, exhibit weaker associations between neighborhood characteristics and health. Greater understanding of how interactive family and neighborhood environments contribute to healthy living is needed. PMID:26093081
Inferred fish behavior its implications for hydroacoustic surveys in nearshore habitats
DuFour, Mark R.; Mayer, Christine M.; Qian, Song S.; Vandergoot, Christopher; Kraus, Richard T.; Kocovsky, Patrick; Warner, David M.
2018-01-01
Population availability and vessel avoidance effects on hydroacoustic abundance estimates may be scale dependent; therefore, it is important to evaluate these biases across systems. We performed an inter-ship comparison survey to determine the effect of vessel size, day-night period, depth, and environmental gradients on walleye (Sander vitreus) density estimates in Lake Erie, an intermediate-scaled system. Consistent near-bottom depth distributions coupled with horizontal fish movements relative to vessel paths indicated avoidance behavior contributed to higher walleye densities from smaller vessels in shallow water (i.e., <15 m), although the difference decreased with increasing depth. Diel bank migrations in response to seasonally varying onshore-to-offshore environmental gradients likely contributed to day-night differences in densities between sampling locations and seasons. Spatial and unexplained variation accounted for a high proportion of total variation; however, increasing sampling intensity can mitigate effects on precision. Therefore, researchers should minimize systematic avoidance and availability related biases (i.e., vessel and day-night period) to improve population abundance estimates. Quantifying availability and avoidance behavior effects and partitioning sources of variation provides informed flexibility for designing future hydroacoustic surveys in shallow-water nearshore environments.
Lewandoski, S. A.; Guy, Christopher S.; Zale, Alexander V.; Gerrity, Paul C.; Deromedi, J. W.; Johnson, K.M.; Skates, D. L.
2017-01-01
Burbot, Lota lota (Linnaeus), is a regionally popular sportfish in the Wind River drainage of Wyoming, USA, at the southern boundary of the range of the species. Recent declines in burbot abundances were hypothesised to be caused by overexploitation, entrainment in irrigation canals and habitat loss. This study addressed the overexploitation hypothesis using tagging data to generate reliable exploitation, abundance and density estimates from a multistate capture–recapture model that accounted for incomplete angler reporting and tag loss. Exploitation rate μ was variable among the study lakes and inversely correlated with density. Exploitation thresholds μ40 associated with population densities remaining above 40% of carrying capacity were generated to characterise risk of overharvest using exploitation and density estimates from tagging data and a logistic surplus-production model parameterised with data from other burbot populations. Bull Lake (μ = 0.06, 95% CI: 0.03–0.11; μ40 = 0.18) and Torrey Lake (μ = 0.02, 95% CI: 0.00–0.11; μ40 = 0.18) had a low risk of overfishing, Upper Dinwoody Lake had intermediate risk (μ = 0.08, 95% CI: 0.02–0.32; μ40 = 0.18) and Lower Dinwoody Lake had high risk (μ = 0.32, 95% CI: 0.10–0.67; μ40 = 0.08). These exploitation and density estimates can be used to guide sustainable management of the Wind River drainage recreational burbot fishery and inform management of other burbot fisheries elsewhere.
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Effects of host-plant population size and plant sex on a specialist leaf-miner
NASA Astrophysics Data System (ADS)
Bañuelos, María-José; Kollmann, Johannes
2011-03-01
Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.
Estimating Lion Abundance using N-mixture Models for Social Species
Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.
2016-01-01
Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283
Estimating Lion Abundance using N-mixture Models for Social Species.
Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E
2016-10-27
Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.
Extracting galactic structure parameters from multivariated density estimation
NASA Technical Reports Server (NTRS)
Chen, B.; Creze, M.; Robin, A.; Bienayme, O.
1992-01-01
Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.
Sub-sampling genetic data to estimate black bear population size: A case study
Tredick, C.A.; Vaughan, M.R.; Stauffer, D.F.; Simek, S.L.; Eason, T.
2007-01-01
Costs for genetic analysis of hair samples collected for individual identification of bears average approximately US$50 [2004] per sample. This can easily exceed budgetary allowances for large-scale studies or studies of high-density bear populations. We used 2 genetic datasets from 2 areas in the southeastern United States to explore how reducing costs of analysis by sub-sampling affected precision and accuracy of resulting population estimates. We used several sub-sampling scenarios to create subsets of the full datasets and compared summary statistics, population estimates, and precision of estimates generated from these subsets to estimates generated from the complete datasets. Our results suggested that bias and precision of estimates improved as the proportion of total samples used increased, and heterogeneity models (e.g., Mh[CHAO]) were more robust to reduced sample sizes than other models (e.g., behavior models). We recommend that only high-quality samples (>5 hair follicles) be used when budgets are constrained, and efforts should be made to maximize capture and recapture rates in the field.
Estimating means and variances: The comparative efficiency of composite and grab samples.
Brumelle, S; Nemetz, P; Casey, D
1984-03-01
This paper compares the efficiencies of two sampling techniques for estimating a population mean and variance. One procedure, called grab sampling, consists of collecting and analyzing one sample per period. The second procedure, called composite sampling, collectsn samples per period which are then pooled and analyzed as a single sample. We review the well known fact that composite sampling provides a superior estimate of the mean. However, it is somewhat surprising that composite sampling does not always generate a more efficient estimate of the variance. For populations with platykurtic distributions, grab sampling gives a more efficient estimate of the variance, whereas composite sampling is better for leptokurtic distributions. These conditions on kurtosis can be related to peakedness and skewness. For example, a necessary condition for composite sampling to provide a more efficient estimate of the variance is that the population density function evaluated at the mean (i.e.f(μ)) be greater than[Formula: see text]. If[Formula: see text], then a grab sample is more efficient. In spite of this result, however, composite sampling does provide a smaller estimate of standard error than does grab sampling in the context of estimating population means.
Density estimation in wildlife surveys
Jonathan Bart; Sam Droege; Paul Geissler; Bruce Peterjohn; C. John Ralph
2004-01-01
Several authors have recently discussed the problems with using index methods to estimate trends in population size. Some have expressed the view that index methods should virtually never be used. Others have responded by defending index methods and questioning whether better alternatives exist. We suggest that index methods are often a costeffective component of valid...
Head, Josephine S; Boesch, Christophe; Robbins, Martha M; Rabanal, Luisa I; Makaga, Loïc; Kühl, Hjalmar S
2013-09-01
Wildlife managers are urgently searching for improved sociodemographic population assessment methods to evaluate the effectiveness of implemented conservation activities. These need to be inexpensive, appropriate for a wide spectrum of species and straightforward to apply by local staff members with minimal training. Furthermore, conservation management would benefit from single approaches which cover many aspects of population assessment beyond only density estimates, to include for instance social and demographic structure, movement patterns, or species interactions. Remote camera traps have traditionally been used to measure species richness. Currently, there is a rapid move toward using remote camera trapping in density estimation, community ecology, and conservation management. Here, we demonstrate such comprehensive population assessment by linking remote video trapping, spatially explicit capture-recapture (SECR) techniques, and other methods. We apply it to three species: chimpanzees Pan troglodytes troglodytes, gorillas Gorilla gorilla gorilla, and forest elephants Loxodonta cyclotis in Loango National Park, Gabon. All three species exhibited considerable heterogeneity in capture probability at the sex or group level and density was estimated at 1.72, 1.2, and 1.37 individuals per km(2) and male to female sex ratios were 1:2.1, 1:3.2, and 1:2 for chimpanzees, gorillas, and elephants, respectively. Association patterns revealed four, eight, and 18 independent social groups of chimpanzees, gorillas, and elephants, respectively: key information for both conservation management and studies on the species' ecology. Additionally, there was evidence of resident and nonresident elephants within the study area and intersexual variation in home range size among elephants but not chimpanzees. Our study highlights the potential of combining camera trapping and SECR methods in conducting detailed population assessments that go far beyond documenting species diversity patterns or estimating single species population size. Our study design is widely applicable to other species and spatial scales, and moderately trained staff members can collect and process the required data. Furthermore, assessments using the same method can be extended to include several other ecological, behavioral, and demographic aspects: fission and fusion dynamics and intergroup transfers, birth and mortality rates, species interactions, and ranging patterns.
Head, Josephine S; Boesch, Christophe; Robbins, Martha M; Rabanal, Luisa I; Makaga, Loïc; Kühl, Hjalmar S
2013-01-01
Wildlife managers are urgently searching for improved sociodemographic population assessment methods to evaluate the effectiveness of implemented conservation activities. These need to be inexpensive, appropriate for a wide spectrum of species and straightforward to apply by local staff members with minimal training. Furthermore, conservation management would benefit from single approaches which cover many aspects of population assessment beyond only density estimates, to include for instance social and demographic structure, movement patterns, or species interactions. Remote camera traps have traditionally been used to measure species richness. Currently, there is a rapid move toward using remote camera trapping in density estimation, community ecology, and conservation management. Here, we demonstrate such comprehensive population assessment by linking remote video trapping, spatially explicit capture–recapture (SECR) techniques, and other methods. We apply it to three species: chimpanzees Pan troglodytes troglodytes, gorillas Gorilla gorilla gorilla, and forest elephants Loxodonta cyclotis in Loango National Park, Gabon. All three species exhibited considerable heterogeneity in capture probability at the sex or group level and density was estimated at 1.72, 1.2, and 1.37 individuals per km2 and male to female sex ratios were 1:2.1, 1:3.2, and 1:2 for chimpanzees, gorillas, and elephants, respectively. Association patterns revealed four, eight, and 18 independent social groups of chimpanzees, gorillas, and elephants, respectively: key information for both conservation management and studies on the species' ecology. Additionally, there was evidence of resident and nonresident elephants within the study area and intersexual variation in home range size among elephants but not chimpanzees. Our study highlights the potential of combining camera trapping and SECR methods in conducting detailed population assessments that go far beyond documenting species diversity patterns or estimating single species population size. Our study design is widely applicable to other species and spatial scales, and moderately trained staff members can collect and process the required data. Furthermore, assessments using the same method can be extended to include several other ecological, behavioral, and demographic aspects: fission and fusion dynamics and intergroup transfers, birth and mortality rates, species interactions, and ranging patterns. PMID:24101982
van Kuijk, Silvy M; García-Suikkanen, Carolina; Tello-Alvarado, Julio C; Vermeer, Jan; Hill, Catherine M
2015-01-01
We calculated the population density of the critically endangered Callicebus oenanthe in the Ojos de Agua Conservation Concession, a dry forest area in the department of San Martin, Peru. Results showed significant differences (p < 0.01) in group densities between forest boundaries (16.5 groups/km2, IQR = 21.1-11.0) and forest interior (4.0 groups/km2, IQR = 5.0-0.0), suggesting the 2,550-ha area harbours roughly 1,150 titi monkeys. This makes Ojos de Agua an important cornerstone in the conservation of the species, because it is one of the largest protected areas where the species occurs. © 2016 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnthouse, L. W.; Van Winkle, W.; Golumbek, J.
1982-04-01
This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fishmore » populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population.« less
Abundance and density of lesser prairie-chickens and leks in Texas
Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.
2013-01-01
Lesser prairie-chickens (LEPCs; Tympanuchus pallidicinctus) have experienced population declines due to both direct and indirect habitat loss, including conversion of native rangeland to cropland and disturbance from energy development. Our objectives were to 1) determine the current density of LEPC leks and LEPCs within the Texas (USA) occupied range, including areas with high potential for wind-energy development; and 2) find new leks. To estimate lek and LEPC density, we employed a line-transect-based aerial survey method using a Robinson 22 helicopter to count leks. We surveyed 26,810.9 km of transect in the spring of 2010 and 2011 and we detected 96 leks. We estimated a density of 2.0 leks/100 km(2) (90% CI = 1.4-2.7 leks/100 km(2)) and 12.3 LEPCs/100 km(2) (90% CI = 8.5-17.9 LEPCs/100 km(2)) and an abundance of 293.6 leks (90% CI = 213.9-403.0 leks) and 1,822.4 LEPCs (90% CI = 1,253.7-2,649.1 LEPCs) for our sampling frame. Our best model indicated that lek size and lek type (AIC(c) wt = 0.235) influenced lek detectability. Lek detectability was greater for larger leks and natural leks versus man-made leks. Our statewide survey efforts provide wildlife managers and biologists with population estimates, new lek locations, and areas to target for monitoring and conservation.
NASA Astrophysics Data System (ADS)
Obana, Y.; Maruyama, N.; Masahito, N.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Shinohara, I.
2017-12-01
Earth's inner magnetosphere is a complex dynamical region of geo space comprising plasma populations with wide energy ranges, the plasmasphere, ring current, and radiation belts. They form a closely coupled system, thus, the plasmasphere is the lowest energy population in the inner magnetosphere, but the accurate prediction of the evolution of the plasmasphere is critical in understanding the dynamics of the inner magnetosphere, which include even the highest energy population, the radiation belts. In this study, we study plasmaspheric refilling following geomagnetic storms using data from ERG-MGF, ERG-PWE, RBSP-EMFISIS and Ground-based magnetometers. DC magnetic field data measured by ERG-MGF, RBSP-EMFISIS and ground-based magnetometers provides the frequency of the toroidal mode field line resonances. From this information, the equatorial plasma mass density is estimated by solving the MHD wave equation for suitable models of the magnetic field and the field line density distribution. ERG-PWE and RBSP-EMFISIS provide measurements of wave electric and magnetic field, thus we can estimate the local electron density from the plasma wave spectrograms by identifying narrow-band emission at the upper-hybrid resonance frequency. Furthermore, using Ionosphere Plasmasphere Electrodynamics Model (IPE), we calculate the plasmaspheric refilling rates and evaluate the relative contribution of various mechanisms (heating, neutral particle density, composition and wings, etc.) to the refilling rate.
Probabilistic prediction models for aggregate quarry siting
Robinson, G.R.; Larkins, P.M.
2007-01-01
Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.
Bulk density of small meteoroids
NASA Astrophysics Data System (ADS)
Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.
2011-06-01
Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also related to JFCs. Both categories we suggest are chondritic based on their high bulk density. Meteoroids of HT (Halley type) orbits have a minimum bulk density value of 360+400-100 kg m-3 and a maximum value of 1510+400-900 kg m-3. This is consistent with many previous works which suggest bulk cometary meteoroid density is low. SA (Sun-approaching)-type meteoroids show a density spread from 1000 kg m-3 to 4000 kg m-3, reflecting multiple origins. (b) We found two different meteor showers in our sample: Perseids (10 meteoroids, ~11% of our sample) with an average bulk density of 620 kg m-3 and Northern Iota Aquariids (4 meteoroids) with an average bulk density of 3200 kg m-3, consistent with the notion that the NIA derive from 2P/Encke.
Feldman, Melissa; Isaza, Ramiro; Prins, Cindy; Hernandez, Jorge
2013-01-01
Captive elephants infected with tuberculosis are implicated as an occupational source of zoonotic tuberculosis. However, accurate estimates of prevalence and incidence of elephant tuberculosis from well-defined captive populations are lacking in the literature. Studies published in recent years contain a wide range of prevalence estimates calculated from summary data. Incidence estimates of elephant tuberculosis in captive elephants are not available. This study estimated the annual point prevalence, annual incidence, cumulative incidence, and incidence density of tuberculosis in captive elephants within the USA during the past 52 years. We combined existing elephant census records from captive elephants in the USA with tuberculosis culture results obtained from trunk washes or at necropsy. This data set included 15 years where each elephant was screened annually. Between 1960 and 1996, the annual point prevalence of tuberculosis complex mycobacteria for both species was 0. From 1997 through 2011, the median point prevalence within the Asian elephant population was 5.1%, with a range from 0.3% to 6.7%. The incidence density was 9.7 cases/1000 elephant years (95% CI: 7.0-13.4). In contrast, the annual point prevalence during the same time period within the African elephant population remained 0 and the incidence density was 1.5 cases/1000 elephant years (95% CI: 0.7-4.0). The apparent increase in new cases noted after 1996 resulted from a combination of both index cases and the initiation of mandatory annual tuberculosis screening in 1997 for all the elephants. This study found lower annual point prevalence estimates than previously reported in the literature. These discrepancies in prevalence estimates are primarily due to differences in terminology and calculation methods. Using the same intensive testing regime, the incidence of tuberculosis differed significantly between Asian and African elephants. Accurate and species specific knowledge of prevalence and incidence will inform our efforts to mitigate occupational risks associated with captive elephants in the USA.
NASA Astrophysics Data System (ADS)
Skene, Katherine J.; Gent, Janneane F.; McKay, Lisa A.; Belanger, Kathleen; Leaderer, Brian P.; Holford, Theodore R.
2010-12-01
An integrated exposure model was developed that estimates nitrogen dioxide (NO 2) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO 2 taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO 2 measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO 2 levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
Khan, Md Nabiul Islam; Hijbeek, Renske; Berger, Uta; Koedam, Nico; Grueters, Uwe; Islam, S M Zahirul; Hasan, Md Asadul; Dahdouh-Guebas, Farid
2016-01-01
In the Point-Centred Quarter Method (PCQM), the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1) and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively) show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns) plant populations and empirical ones. PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3) show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition). If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1)/(π ∑ R2) but not 12N/(π ∑ R2), of PCQM2 is 4(8N - 1)/(π ∑ R2) but not 28N/(π ∑ R2) and of PCQM3 is 4(12N - 1)/(π ∑ R2) but not 44N/(π ∑ R2) as published. If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process. Since in practice, the spatial pattern of a plant association remains unknown before starting a vegetation survey, for field applications the use of PCQM3 along with the corrected estimator is recommended. However, for sparse plant populations, where the use of PCQM3 may pose practical limitations, the PCQM2 or PCQM1 would be applied. During application of PCQM in the field, care should be taken to summarize the distance data based on 'the inverse summation of squared distances' but not 'the summation of inverse squared distances' as erroneously published.
Spatial capture-recapture models for search-encounter data
Royle, J. Andrew; Kery, Marc; Guelat, Jerome
2011-01-01
1. Spatial capture–recapture models make use of auxiliary data on capture location to provide density estimates for animal populations. Previously, models have been developed primarily for fixed trap arrays which define the observable locations of individuals by a set of discrete points. 2. Here, we develop a class of models for 'search-encounter' data, i.e. for detections of recognizable individuals in continuous space, not restricted to trap locations. In our hierarchical model, detection probability is related to the average distance between individual location and the survey path. The locations are allowed to change over time owing to movements of individuals, and individual locations are related formally by a model describing individual activity or home range centre which is itself regarded as a latent variable in the model. We provide a Bayesian analysis of the model in WinBUGS, and develop a custom MCMC algorithm in the R language. 3. The model is applied to simulated data and to territory mapping data for the Willow Tit from the Swiss Breeding Bird Survey MHB. While the observed density was 15 territories per nominal 1 km2 plot of unknown effective sample area, the model produced a density estimate of 21∙12 territories per square km (95% posterior interval: 17–26). 4. Spatial capture–recapture models are relevant to virtually all animal population studies that seek to estimate population size or density, yet existing models have been proposed mainly for conventional sampling using arrays of traps. Our model for search-encounter data, where the spatial pattern of searching can be arbitrary and may change over occasions, greatly expands the scope and utility of spatial capture–recapture models.
Leonardsson, Kjell
1994-02-01
Possible mechanisms for differences in population densities and dynamics were investigated in the amphipod Monoporeia affinis at two deep sites in the northern Bothnian Sea. The two sites were sampled yearly for 10 years. Average sizes, growth and mortality of the different age-classes were estimated from the cohort structure of the two populations. Laboratory experiments also investigated the ability of the common predatory isopod Saduria entomon to cause densitydependent (DD) mortality of the prey M. affinis. At site A, 43 m depth, the average density of M. affinis was twice as high as at site B, 81 m depth. The fluctuations in density were asynchronous between the two sites. Recruitment and subadult sizes of Monoporeia affinis were density dependent at both sites. The main functional difference between the two populations seemed to be the DD mortality of the 1 + cohort that occurred only at the low-density site B. A corresponding DD mortality was found in the predation experiments at densities of 1 + m. affinis corresponding to those found at site B. The potential importance of the predator was also indicated by a significant negative correlation between the biomass of S. entomon and the rate of change in M. affinis density in the field. The similarities in the abiotic factors between the two sites suggested that differences in carrying capacity should be small. The results could be explained by the predation regulation hypothesis for the low-density population at site B, while at site A M. affinis seemed to be regulated by intra-specific competition and limited by predation. It is suggested that in this simple predator-prey system there is potential for the existence of alternative equilibria.
Domke, Grant M.; Woodall, Christopher W.; Walters, Brian F.; Smith, James E.
2013-01-01
The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.’s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events. PMID:23544112
Domke, Grant M; Woodall, Christopher W; Walters, Brian F; Smith, James E
2013-01-01
The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.'s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.
NASA Astrophysics Data System (ADS)
McKinnell, Skip
2008-05-01
In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.
Dynamics of a recolonizing population of black bears in the Ouachita Mountains of Oklahoma
Bales, S.L.; Hellgren, E.C.; Leslie, David M.; Hemphill, J.
2005-01-01
Understanding how populations expand to recolonize former habitats is important to restoration efforts in wildlife management and conservation. Translocation of black bears (Ursus americanus) to Arkansas in the 1950s and 1960s has led to recolonization of former bear range in Oklahoma, with substantial increases in distribution and abundance of the species in Oklahoma over the last 15 years. We studied demographics of black bears in southeastern Oklahoma from May 2001 to November 2002 to provide insight into characteristics of recolonizing populations of large carnivores. We trapped 51 black bears (22 M, 29 F) 77 times and radiocollared 25 female bears. Sex ratios of adults and cubs were skewed toward females, and the age structure was younger than observed in other unharvested populations. Survival of adult females was estimated at 0.9??0.1, and fertility was estimated at 0.77 female young/female/year. Density on the study area was estimated at 0.21 bears/km2 and the current finite growth rate (??) of the study population was estimated to be 1.11/year. Demographic characteristics of the Oklahoma population of black bears were similar to those of other recolonizing populations of large carnivores.
Graham, T.B.; Chomel, B.B.
1997-01-01
Hantavirus pulmonary syndrome, first documented in 1993, is caused by Sin Nombre virus (SNV), which is carried by the Peromyscus species. In 1994, high SNV antibody prevalence was identified in deer mice from two California Channel Islands. We sampled two locations on three islands to estimate mouse population density and SNV prevalence. Population flux and SNV prevalence appear to vary independently.
Lewis, Jesse S; Logan, Kenneth A; Alldredge, Mat W; Bailey, Larissa L; VandeWoude, Sue; Crooks, Kevin R
2015-10-01
Urbanization is a primary driver of landscape conversion, with far-reaching effects on landscape pattern and process, particularly related to the population characteristics of animals. Urbanization can alter animal movement and habitat quality, both of which can influence population abundance and persistence. We evaluated three important population characteristics (population density, site occupancy, and species detection probability) of a medium-sized and a large carnivore across varying levels of urbanization. Specifically, we studied bobcat and puma populations across wildland, exurban development, and wildland-urban interface (WUI) sampling grids to test hypotheses evaluating how urbanization affects wild felid populations and their prey. Exurban development appeared to have a greater impact on felid populations than did habitat adjacent to a major urban area (i.e., WUI); estimates of population density for both bobcats and pumas were lower in areas of exurban development compared to wildland areas, whereas population density was similar between WUI and wildland habitat. Bobcats and pumas were less likely to be detected in habitat as the amount of human disturbance associated with residential development increased at a site, which was potentially related to reduced habitat quality resulting from urbanization. However, occupancy of both felids was similar between grids in both study areas, indicating that this population metric was less sensitive than density. At the scale of the sampling grid, detection probability for bobcats in urbanized habitat was greater than in wildland areas, potentially due to restrictive movement corridors and funneling of animal movements in landscapes influenced by urbanization. Occupancy of important felid prey (cottontail rabbits and mule deer) was similar across levels of urbanization, although elk occupancy was lower in urbanized areas. Our study indicates that the conservation of medium- and large-sized felids associated with urbanization likely will be most successful if large areas of wildland habitat are maintained, even in close proximity to urban areas, and wildland habitat is not converted to low-density residential development.
Tara Chestnut; Chauncey Anderson; Radu Popa; Andrew R. Blaustein; Mary Voytek; Deanna H. Olson; Julie Kirshtein
2014-01-01
Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines...
Field trials of line transect methods applied to estimation of desert tortoise abundance
Anderson, David R.; Burnham, Kenneth P.; Lubow, Bruce C.; Thomas, L. E. N.; Corn, Paul Stephen; Medica, Philip A.; Marlow, R.W.
2001-01-01
We examine the degree to which field observers can meet the assumptions underlying line transect sampling to monitor populations of desert tortoises (Gopherus agassizii). We present the results of 2 field trials using artificial tortoise models in 3 size classes. The trials were conducted on 2 occasions on an area south of Las Vegas, Nevada, where the density of the test population was known. In the first trials, conducted largely by experienced biologists who had been involved in tortoise surveys for many years, the density of adult tortoise models was well estimated (-3.9% bias), while the bias was higher (-20%) for subadult tortoise models. The bias for combined data was -12.0%. The bias was largely attributed to the failure to detect all tortoise models on or near the transect centerline. The second trials were conducted with a group of largely inexperienced student volunteers and used somewhat different searching methods, and the results were similar to the first trials. Estimated combined density of subadult and adult tortoise models had a negative bias (-7.3%), again attributable to failure to detect some models on or near the centerline. Experience in desert tortoise biology, either comparing the first and second trials or in the second trial with 2 experienced biologists versus 16 novices, did not have an apparent effect on the quality of the data or the accuracy of the estimates. Observer training, specific to line transect sampling, and field testing are important components of a reliable survey. Line transect sampling represents a viable method for large-scale monitoring of populations of desert tortoise; however, field protocol must be improved to assure the key assumptions are met.
Social structural consequences of population growth.
Adams, R E
1981-01-01
Estimates from archaeological data of the numbers in the elite classes, nonelite occupational specialists, density of population, city size, and size of political units in the ancient Maya civilization suggest that there was a quantum shift in rate of development in the Early Classic period, associated with intensification of agriculture, and that the social structure approximated to a generalized feudal pattern.
Population Estimation Methods for Free-Ranging Dogs: A Systematic Review.
Belo, Vinícius Silva; Werneck, Guilherme Loureiro; da Silva, Eduardo Sérgio; Barbosa, David Soeiro; Struchiner, Claudio José
2015-01-01
The understanding of the structure of free-roaming dog populations is of extreme importance for the planning and monitoring of populational control strategies and animal welfare. The methods used to estimate the abundance of this group of dogs are more complex than the ones used with domiciled owned dogs. In this systematic review, we analyze the techniques and the results obtained in studies that seek to estimate the size of free-ranging dog populations. Twenty-six studies were reviewed regarding the quality of execution and their capacity to generate valid estimates. Seven of the eight publications that take a simple count of the animal population did not consider the different probabilities of animal detection; only one study used methods based on distances; twelve relied on capture-recapture models for closed populations without considering heterogeneities in capture probabilities; six studies applied their own methods with different potential and limitations. Potential sources of bias in the studies were related to the inadequate description or implementation of animal capturing or viewing procedures and to inadequacies in the identification and registration of dogs. Thus, there was a predominance of estimates with low validity. Abundance and density estimates carried high variability, and all studies identified a greater number of male dogs. We point to enhancements necessary for the implementation of future studies and to potential updates and revisions to the recommendations of the World Health Organization with respect to the estimation of free-ranging dog populations.
Power of sign surveys to monitor population trend
Kendall, Katherine C.; Metzgar, Lee H.; Patterson, David A.; Steele, Brian M.
1992-01-01
The urgent need for an effective monitoring scheme for grizzly bear (Ursus arctos) populations led us to investigate the effort required to detect changes in populations of low—density dispersed animals, using sign (mainly scats and tracks) they leave on trails. We surveyed trails in Glacier National Park for bear tracks and scats during five consecutive years. Using these data, we modeled the occurrence of bear sign on trails, then estimated the power of various sampling schemes. Specifically, we explored the power of bear sign surveys to detect a 20% decline in sign occurrence. Realistic sampling schemes appear feasible if the density of sign is high enough, and we provide guidelines for designs with adequate replication to monitor long—term trends of dispersed populations using sign occurrences on trails.
Line transect estimation of population size: the exponential case with grouped data
Anderson, D.R.; Burnham, K.P.; Crain, B.R.
1979-01-01
Gates, Marshall, and Olson (1968) investigated the line transect method of estimating grouse population densities in the case where sighting probabilities are exponential. This work is followed by a simulation study in Gates (1969). A general overview of line transect analysis is presented by Burnham and Anderson (1976). These articles all deal with the ungrouped data case. In the present article, an analysis of line transect data is formulated under the Gates framework of exponential sighting probabilities and in the context of grouped data.
Drinking, driving, and crashing: a traffic-flow model of alcohol-related motor vehicle accidents.
Gruenewald, Paul J; Johnson, Fred W
2010-03-01
This study examined the influence of on-premise alcohol-outlet densities and of drinking-driver densities on rates of alcohol-related motor vehicle crashes. A traffic-flow model is developed to represent geographic relationships between residential locations of drinking drivers, alcohol outlets, and alcohol-related motor vehicle crashes. Cross-sectional and time-series cross-sectional spatial analyses were performed using data collected from 144 geographic units over 4 years. Data were obtained from archival and survey sources in six communities. Archival data were obtained within community areas and measured activities of either the resident population or persons visiting these communities. These data included local and highway traffic flow, locations of alcohol outlets, population density, network density of the local roadway system, and single-vehicle nighttime (SVN) crashes. Telephone-survey data obtained from residents of the communities were used to estimate the size of the resident drinking and driving population. Cross-sectional analyses showed that effects relating on-premise densities to alcohol-related crashes were moderated by highway trafficflow. Depending on levels of highway traffic flow, 10% greater densities were related to 0% to 150% greater rates of SVN crashes. Time-series cross-sectional analyses showed that changes in the population pool of drinking drivers and on-premise densities interacted to increase SVN crash rates. A simple traffic-flow model can assess the effects of on-premise alcohol-outlet densities and of drinking-driver densities as they vary across communities to produce alcohol-related crashes. Analyses based on these models can usefully guide policy decisions on the sitting of on-premise alcohol outlets.
Density-dependent recruitment of the bloater (Coregonus hoyi) in Lake Michigan
Brown, Edward H.; Eck, Gary W.
1992-01-01
Density-dependent recruitment of the bloater (Coregonus hoyi) in Lake Michigan during and after recovery of the population in about 1977-1983 was best reflected in the fit of the Beverton-Holt recruitment function to age -1 and -2 recruits and estimated eggs of parents surveyed with trawls. A lower growth rate and lower lipid content of bloaters at higher population densities and no evidence of cannibalism supported the conclusion that recruitment is resource limited when alewife (Alosa pseudoharengus) abundance is low. Predation on larvae by alewives was indicated in earlier studies as the probable cause of depressed recruitment of bloaters before their recovery, which coincided with declining alewife abundance. This negative interaction masked any bloater stock-recruitment relation in the earlier period.
Face Value: Towards Robust Estimates of Snow Leopard Densities.
Alexander, Justine S; Gopalaswamy, Arjun M; Shi, Kun; Riordan, Philip
2015-01-01
When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality.
Face Value: Towards Robust Estimates of Snow Leopard Densities
2015-01-01
When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality. PMID:26322682
On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Black, D. C.
2001-01-01
We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
Wong, Sarah N P; Sicotte, Pascale
2006-05-01
The Boabeng-Fiema Monkey Sanctuary (BFMS) is inhabited by a growing population of Ursine colobus (Colobus vellerosus), a species that is listed as vulnerable. Smaller, degraded forest fragments that surround the BFMS also contain C. vellerosus and may provide an important habitat for the monkeys. Our objectives were to 1) determine the current population size and density of C. vellerosus at BFMS and in five surrounding fragments, 2) examine the differences in demographics between the fragments and BFMS, and 3) determine whether a relationship exists between population density and fragment size and isolation distance from BFMS. The census was a complete count and was conducted for 1 month (July 2003) by S.W. and trained research assistants. Seven census routes were walked simultaneously on 13 days. The 2003 population estimate of C. vellerosus at BFMS was 217-241 individuals (15 groups), a slight increase from the 2000 census. Numbers in the fragments (58-62, six groups) have remained stable since 1997, when the only other census of these fragments was conducted. Mean group size did not differ between the fragments and BFMS. Larger fragments had larger numbers of colobus, but there was no relationship between fragment size and colobus density. Isolation distance had no effect on population density. Our data suggest that colobus probably travel between fragments. Conservation efforts should focus on treating the small forests and their connecting areas as a single conservation unit. 2005 Wiley-Liss, Inc.
Weiner, J; Kinsman, S; Williams, S
1998-11-01
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.
Use of burrow entrances to indicate densities of Townsend's ground squirrels
Van Horne, Beatrice; Schooley, Robert L.; Knick, Steven T.; Olson, G.S.; Burnham, K.P.
1997-01-01
Counts of burrow entrances have been positively correlated with densities of semi-fossorial rodents and used as an index of densities. We evaluated their effectiveness in indexing densities of Townsend's ground squirrels (Spermophilus townsendii) in the Snake River Birds of Prey National Conservation Area (SRBOPNCA), Idaho, by comparing burrow entrance densities to densities of ground squirrels estimated from livetrapping in 2 consecutive years over which squirrel populations declined by >75%. We did not detect a consistent relation between burrow entrance counts and ground squirrel density estimates within or among habitat types. Scatter plots indicated that burrow entrances had little predictive power at intermediate densities. Burrow entrance counts did not reflect the magnitude of a between-year density decline. Repeated counts of entrances late in the squirrels' active season varied in a manner that would be difficult to use for calibration of transects sampled only once during this period. Annual persistence of burrow entrances varied between habitats. Trained observers were inconsistent in assigning active-inactive status to entrances. We recommend that burrow entrance counts not be used as measures or indices of ground squirrel densities in shrubsteppe habitats, and that the method be verified thoroughly before being used in other habitats.
Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia
Gimenez, Olivier; Ambu, Laurentius; Ancrenaz, Karine; Andau, Patrick; Goossens, Benoît; Payne, John; Sawang, Azri; Tuuga, Augustine; Lackman-Ancrenaz, Isabelle
2005-01-01
Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah. PMID:15630475
Non-invasive genetic censusing and monitoring of primate populations.
Arandjelovic, Mimi; Vigilant, Linda
2018-03-01
Knowing the density or abundance of primate populations is essential for their conservation management and contextualizing socio-demographic and behavioral observations. When direct counts of animals are not possible, genetic analysis of non-invasive samples collected from wildlife populations allows estimates of population size with higher accuracy and precision than is possible using indirect signs. Furthermore, in contrast to traditional indirect survey methods, prolonged or periodic genetic sampling across months or years enables inference of group membership, movement, dynamics, and some kin relationships. Data may also be used to estimate sex ratios, sex differences in dispersal distances, and detect gene flow among locations. Recent advances in capture-recapture models have further improved the precision of population estimates derived from non-invasive samples. Simulations using these methods have shown that the confidence interval of point estimates includes the true population size when assumptions of the models are met, and therefore this range of population size minima and maxima should be emphasized in population monitoring studies. Innovations such as the use of sniffer dogs or anti-poaching patrols for sample collection are important to ensure adequate sampling, and the expected development of efficient and cost-effective genotyping by sequencing methods for DNAs derived from non-invasive samples will automate and speed analyses. © 2018 Wiley Periodicals, Inc.
Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Alan
The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeksmore » in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.« less
Breeding distribution of the Black Turnstone
Handel, Colleen M.; Gill, Robert E.
1992-01-01
Eighty-five percent of the world population of Black Turnstones (Arenaria melanocephala) nest on the central Yukon-Kuskokwim Delta, Alaska, 65% concentrated in a narrow band of salt grass, graminoid, and dwarf shrub meadows within two km of the coast. An estimated 61,000 to 99,000 birds (95% CI), with a point estimate of 80,000 birds, breed on the central delta. About 15,000 others nest elsewhere in Alaska. Abundance varies among habitats and with distance from the coast. On the central delta, highest breeding densities occur in coastal salt grass meadows (1.11 ± 0.16 birds · ha-1) and lowest densities occur on dwarf shrub mat tundra (0.04 ± 0.04 birds · ha-1). Breeding densities in mixed graminoid and dwarf shrub meadows decline significantly with distance from the coast, decreasing abruptly from 0.75 ± 0.11 birds · ha-1 within the first two km to 0.09 ± 0.03 birds · ha-1 farther inland. Although salt grass meadows constitute only 5% of the coastal lowlands, they support 25% of the population.
NASA Astrophysics Data System (ADS)
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.
A statistical approach to quasi-extinction forecasting.
Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric
2007-12-01
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Golden eagle population trends in the western United States: 1968-2010
Millsap, Brian A.; Zimmerman, Guthrie S.; Sauer, John R.; Nielson, Ryan M.; Otto, Mark; Bjerre, Emily; Murphy, Robert K.
2013-01-01
In 2009, the United States Fish and Wildlife Service promulgated permit regulations for the unintentional lethal take (anthropogenic mortality) and disturbance of golden eagles (Aquila chrysaetos). Accurate population trend and size information for golden eagles are needed so agency biologists can make informed decisions when eagle take permits are requested. To address this need with available data, we used a log-linear hierarchical model to average data from a late-summer aerial-line-transect distance-sampling survey (WGES) of golden eagles in the United States portions of Bird Conservation Region (BCR) 9 (Great Basin), BCR 10 (Northern Rockies), BCR 16 (Southern Rockies/Colorado Plateau), and BCR 17 (Badlands and Prairies) from 2006 to 2010 with late-spring, early summer Breeding Bird Survey (BBS) data for the same BCRs and years to estimate summer golden eagle population size and trends in these BCRs. We used the ratio of the density estimates from the WGES to the BBS index to calculate a BCR-specific adjustment factor that scaled the BBS index (i.e., birds per route) to a density estimate. Our results indicated golden eagle populations were generally stable from 2006 to 2010 in the 4 BCRs, with an estimated average rate of population change of −0.41% (95% credible interval [CI]: −4.17% to 3.40%) per year. For the 4 BCRs and years, we estimated annual golden eagle population size to range from 28,220 (95% CI: 23,250–35,110) in 2007 to 26,490 (95% CI: 21,760–32,680) in 2008. We found a general correspondence in trends between WGES and BBS data for these 4 BCRs, which suggested BBS data were providing useful trend information. We used the overall adjustment factor calculated from the 4 BCRs and years to scale BBS golden eagle counts from 1968 to 2005 for the 4 BCRs and for 1968 to 2010 for the 8 other BCRs (without WGES data) to estimate golden eagle population size and trends across the western United States for the period 1968 to 2010. In general, we noted slightly declining trends in southern BCRs and slightly increasing trends in northern BCRs. However, we estimated the average rate of golden eagle population change across all 12 BCRs for the period 1968–2010 as +0.40% per year (95% CI = −0.27% to 1.00%), suggesting a stable population. We also estimated the average rate of population change for the period 1990–2010 was +0.5% per year (95% CI = −0.33% to 1.3%). Our annual estimates of population size for the most recent decade range from 31,370 (95% CI: 25,450–39,310) in 2004 to 33,460 (95% CI: 27,380–41,710) in 2007. Our results clarify that golden eagles are not declining widely in the western United States. © 2013 The Wildlife Society.
Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.
2011-01-01
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.
Lee, Jeannette Y; Klimberg, Suzanne; Bondurant, Kristina L; Phillips, Martha M; Kadlubar, Susan A
2014-01-01
The Gail and CARE models estimate breast cancer risk for white and African-American (AA) women, respectively. The aims of this study were to compare metropolitan and nonmetropolitan women with respect to predicted breast cancer risks based on known risk factors, and to determine if population density was an independent risk factor for breast cancer risk. A cross-sectional survey was completed by 15,582 women between 35 and 85 years of age with no history of breast cancer. Metropolitan and nonmetropolitan women were compared with respect to risk factors, and breast cancer risk estimates, using general linear models adjusted for age. For both white and AA women, tisk factors used to estimate breast cancer risk included age at menarche, history of breast biopsies, and family history. For white women, age at first childbirth was an additional risk factor. In comparison to their nonmetropolitan counterparts, metropolitan white women were more likely to report having a breast biopsy, have family history of breast cancer, and delay childbirth. Among white metropolitan and nonmetropolitan women, mean estimated 5-year risks were 1.44% and 1.32% (p < 0.001), and lifetime risks of breast cancer were 10.81% and 10.01% (p < 0.001), respectively. AA metropolitan residents were more likely than those from nonmetropolitan areas to have had a breast biopsy. Among AA metropolitan and nonmetropolitan women, mean estimated 5-year risks were 1.16% and 1.12% (p = 0.039) and lifetime risks were 8.94%, and 8.85% (p = 0.344). Metropolitan residence was associated with higher predicted breast cancer risks for white women. Among AA women, metropolitan residence was associated with a higher predicted breast cancer risk at 5 years, but not over a lifetime. Population density was not an independent risk factor for breast cancer. © 2014 Wiley Periodicals, Inc.
Density of transneptunian object 229762 2007 UK126
NASA Astrophysics Data System (ADS)
Grundy, Will
2017-08-01
Densities provide unique information about bulk composition and interior structure and are key to going beyond the skin-deep view offered by remote-sensing techniques based on photometry, spectroscopy, and polarimetry. They are known for a handful of the relict planetesimals that populate our Solar System's Kuiper belt, revealing intriguing differences between small and large bodies. More and better quality data are needed to address fundamental questions about how planetesimals form from nebular solids, and how distinct materials are distributed through the nebula. Masses from binary orbits are generally quite precise, but a problem afflicting many of the known densities is that they depend on size estimates from thermal emission observations, with large model-dependent uncertainties that dominate the error bars on density estimates. Stellar occultations can provide much more accurate sizes and thus densities, but they depend on fortuitous geometry and thus can only be done for a few particularly valuable binaries. We propose observations of a system where an accurate density can be determined: 229762 2007 UK126. An accurate size is already available from multiple stellar occultation chords. This proposal will determine the mass, and thus the density.
Smith, D.R.
2007-01-01
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5-9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds. ?? 2007 Estuarine Research Federation.
Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.
2016-01-01
During the 2004–2005 to 2015–2016 hunting seasons, the New Mexico Department of Game and Fish (NMDGF) estimated black bear abundance (Ursus americanus) across the state by coupling density estimates with the distribution of primary habitat generated by Costello et al. (2001). These estimates have been used to set harvest limits. For example, a density of 17 bears/100 km2 for the Sangre de Cristo and Sacramento Mountains and 13.2 bears/100 km2 for the Sandia Mountains were used to set harvest levels. The advancement and widespread acceptance of non-invasive sampling and mark-recapture methods, prompted the NMDGF to collaborate with the New Mexico Cooperative Fish and Wildlife Research Unit and New Mexico State University to update their density estimates for black bear populations in select mountain ranges across the state.We established 5 study areas in 3 mountain ranges: the northern (NSC; sampled in 2012) and southern Sangre de Cristo Mountains (SSC; sampled in 2013), the Sandia Mountains (Sandias; sampled in 2014), and the northern (NSacs) and southern Sacramento Mountains (SSacs; both sampled in 2014). We collected hair samples from black bears using two concurrent non-invasive sampling methods, hair traps and bear rubs. We used a gender marker and a suite of microsatellite loci to determine the individual identification of hair samples that were suitable for genetic analysis. We used these data to generate mark-recapture encounter histories for each bear and estimated density in a spatially explicit capture-recapture framework (SECR). We constructed a suite of SECR candidate models using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We used Akaike’s Information Criterion corrected for small sample size (AICc) to rank and select the most supported model from which we estimated density.We set 554 hair traps, 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 M, 358 F) individuals; the sex ratio for each study area was approximately equal. Our density estimates varied within and among mountain ranges with an estimated density of 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) for the NSC, 19.74 bears/100 km2 (95% CI: 13.77 – 28.30) in the SSC, 25.75 bears/100 km2 (95% CI: 13.22 – 50.14) in the Sandias, 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) in the NSacs, and 16.55 bears/100 km2 (95% CI: 11.64 – 23.53) in the SSacs. Overall detection probability for hair traps and bear rubs, combined, was low across all study areas and ranged from 0.00001 to 0.02. We speculate that detection probabilities were affected by failure of some hair samples to produce a complete genotype due to UV degradation of DNA, and our inability to set and check some sampling devices due to wildfires in the SSC. Ultraviolet radiation levels are particularly high in New Mexico compared to other states where NGS methods have been used because New Mexico receives substantial amounts of sunshine, is relatively high in elevation (1,200 m – 4,000 m), and is at a lower latitude. Despite these sampling difficulties, we were able to produce density estimates for New Mexico black bear populations with levels of precision comparable to estimated black bear densities made elsewhere in the U.S.Our ability to generate reliable black bear density estimates for 3 New Mexico mountain ranges is attributable to our use of a statistically robust study design and analytical method. There are multiple factors that need to be considered when developing future SECR-based density estimation projects. First, the spatial extent of the population of interest and the smallest average home range size must be determined; these will dictate size of the trapping array and spacing necessary between hair traps. The number of technicians needed and access to the study areas will also influence configuration of the trapping array. We believe shorter sampling occasions could be implemented to reduce degradation of DNA due to UV radiation; this might help increase amplification rates and thereby increase both the number of unique individuals identified and the number of recaptures, improving the precision of the density estimates. A pilot study may be useful to determine the length of time hair samples can remain in the field prior to collection. In addition, researchers may consider setting hair traps and bear rubs in more shaded areas (e.g., north facing slopes) to help reduce exposure to UV radiation. To reduce the sampling interval it will be necessary to either hire more field personnel or decrease the number of hair traps per sampling session. Both of these will enhance detection of long-range movement events by individual bears, increase initial capture and recapture rates, and improve precision of the parameter estimates. We recognize that all studies are constrained by limited resources, however, increasing field personnel would also allow a larger study area to be sampled or enable higher trap density.In conclusion, we estimated the density of black bears in 5 study areas within 3 mountains ranges of New Mexico. Our estimates will aid the NMDGF in setting sustainable harvest limits. Along with estimates of density, information on additional demographic rates (e.g., survival rates and reproduction) and the potential effects that climate change and future land use may have on the demography of black bears may also help inform management of black bears in New Mexico, and may be considered as future areas for research.
Experimental demonstration of an Allee effect in microbial populations.
Kaul, RajReni B; Kramer, Andrew M; Dobbs, Fred C; Drake, John M
2016-04-01
Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: 'Everything is everywhere, but the environment selects'. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml(-1)under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. © 2016 The Author(s).
Experimental demonstration of an Allee effect in microbial populations
Kramer, Andrew M.; Dobbs, Fred C.; Drake, John M.
2016-01-01
Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: ‘Everything is everywhere, but the environment selects’. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml−1 under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. PMID:27048467
Annual incidence of snake bite in rural bangladesh.
Rahman, Ridwanur; Faiz, M Abul; Selim, Shahjada; Rahman, Bayzidur; Basher, Ariful; Jones, Alison; d'Este, Catherine; Hossain, Moazzem; Islam, Ziaul; Ahmed, Habib; Milton, Abul Hasnat
2010-10-26
Snake bite is a neglected public health problem in the world and one of the major causes of mortality and morbidity in many areas, particularly in the rural tropics. It also poses substantial economic burdens on the snake bite victims due to treatment related expenditure and loss of productivity. An accurate estimate of the risk of snake bite is largely unknown for most countries in the developing world, especially South-East Asia. We undertook a national epidemiological survey to determine the annual incidence density of snake bite among the rural Bangladeshi population. Information on frequency of snake bite and individuals' length of stay in selected households over the preceding twelve months was rigorously collected from the respondents through an interviewer administered questionnaire. Point estimates and confidence intervals of the incidence density of snake bite, weighted and adjusted for the multi-stage cluster sampling design, were obtained. Out of 18,857 study participants, over one year a total of 98 snake bites, including one death were reported in rural Bangladesh. The estimated incidence density of snake bite is 623.4/100,000 person years (95% C I 513.4-789.2/100,000 person years). Biting occurs mostly when individuals are at work. The majority of the victims (71%) receive snake bites to their lower extremities. Eighty-six percent of the victims received some form of management within two hours of snake bite, although only three percent of the victims went directly to either a medical doctor or a hospital. Incidence density of snake bite in rural Bangladesh is substantially higher than previously estimated. This is likely due to better ascertainment of the incidence through a population based survey. Poor access to health services increases snake bite related morbidity and mortality; therefore, effective public health actions are warranted.
Shot noise perturbations and mean first passage times between stable states.
Drury, Kevin L S
2007-08-01
Predicting crossings between stable states is a central issue in population biology. Crossings from low-density to high-density equilibria are often associated with pest outbreaks, while the opposite crossings are often associated with population collapse of harvested species. Here I use a simple, bistable model to demonstrate a technique for estimating mean first passage times (MFPT) of thresholds, including boundaries between stable equilibria. The approach is based on stochastic "shot-noise" perturbations to the population and the MFPTs compare favorably with mean crossing times from Monte Carlo numerical solutions of the stochastically perturbed model. This agreement suggests that MFPT approximations can be used to quantify expected effects of species manipulations, whether the goal is pest control or sustainable harvest.
Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton
2015-01-01
Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River.
Korman, Josh; Yard, Mike
2017-01-01
Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.
Determinants of the Egyptian labour migration.
Kandil, M; Metwally, M
1992-03-01
The objective is to summarize the pattern of Egyptian migration to Arab oil-producing countries (AOPC), to review some factors that are important determinants of labor movement based on theory, and to empirically model the migration rate to AOPC and to Saudi Arabia. Factors are differentiated as to their relative importance. Push factors are the low wages, high inflation rate, and high population density in Egypt; pull factors are higher wages. It is predicted that an increase in income from destination countries has a significant positive impact on the migration rate. An increase in population density stimulates migration. An increase in inflation acts to increase out-migration with a 2-year lag, which accommodates departure preparation. Egypt's experience with labor migration is described for the pre-oil boom, and the post-oil boom. Several estimates of labor migration are given. Government policy toward migration is positive. Theory postulates migration to be determined by differences in the availability of labor, labor rewards between destination and origin, and the cost of migration. In the empirical model, push factors are population density, the current inflation rate, and the ratio of income/capita in AOPC to Egypt. The results indicate that the ratio of income/capita had a strong pull impact and population density had a strong push impact. The inflation rate has a positive impact with a lag estimated at 2 years. Prior to the Camp David Accord, there was a significant decrease in the number of Egyptian migrants due to political tension. The findings support the classical theory of factor mobility. The consequences of migration on the Egyptian economy have been adverse. Future models should disaggregate data because chronic shortages exist in some parts of the labor market. Manpower needs assessment would be helpful for policy makers.
Rostro-García, Susana; Kamler, Jan F; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W
2018-02-01
We studied the Indochinese leopard ( Panthera pardus delacouri ) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture-recapture models, was 1.0 leopard/100 km 2 , 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng ( Bos javanicus ), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig ( Sus scrofa ) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac ( Muntiacus vaginalis ; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5-3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided.
Kamler, Jan F.; Crouthers, Rachel; Sopheak, Keo; Prum, Sovanna; In, Visattha; Pin, Chanratana; Caragiulo, Anthony; Macdonald, David W.
2018-01-01
We studied the Indochinese leopard (Panthera pardus delacouri) in eastern Cambodia, in one of the few potentially remaining viable populations in Southeast Asia. The aims were to determine the: (i) current leopard density in Srepok Wildlife Sanctuary (SWS) and (ii) diet, prey selection and predation impact of leopard in SWS. The density, estimated using spatially explicit capture–recapture models, was 1.0 leopard/100 km2, 72% lower than an estimate from 2009 at the same site, and one of the lowest densities ever reported in Asia. Dietary analysis of 73 DNA confirmed scats showed leopard consumed 13 prey species, although ungulates comprised 87% of the biomass consumed (BC). The overall main prey (42% BC) was banteng (Bos javanicus), making this the only known leopard population whose main prey had adult weight greater than 500 kg. Consumption of wild pig (Sus scrofa) was also one of the highest ever reported (22% BC), indicating leopard consistently predated on ungulates with some of the largest adult weights in SWS. There were important differences in diet and prey selection between sexes, as males consumed mostly banteng (62% BC) in proportion to availability, but few muntjac (Muntiacus vaginalis; 7% BC), whereas females selectively consumed muntjac (56% BC) and avoided banteng (less than 1% BC). Predation impact was low (0.5–3.2% of populations) for the three ungulate species consumed. We conclude that the Indochinese leopard is an important apex predator in SWS, but this unique population is declining at an alarming rate and will soon be eradicated unless effective protection is provided. PMID:29515839
Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations
Nogeire, Theresa M.; Lawler, Joshua J.; Schumaker, Nathan H.; Cypher, Brian L.; Phillips, Scott E.
2015-01-01
Although rodenticides are increasingly regulated, they nonetheless cause poisonings in many non-target wildlife species. Second-generation anticoagulant rodenticide use is common in agricultural and residential landscapes. Here, we use an individual-based population model to assess potential population-wide effects of rodenticide exposures on the endangered San Joaquin kit fox (Vulpes macrotis mutica). We estimate likelihood of rodenticide exposure across the species range for each land cover type based on a database of reported pesticide use and literature. Using a spatially-explicit population model, we find that 36% of modeled kit foxes are likely exposed, resulting in a 7-18% decline in the range-wide modeled kit fox population that can be linked to rodenticide use. Exposures of kit foxes in low-density developed areas accounted for 70% of the population-wide exposures to rodenticides. We conclude that exposures of non-target kit foxes could be greatly mitigated by reducing the use of second-generation anticoagulant rodenticides in low-density developed areas near vulnerable populations. PMID:26244655
Hunter, Margaret; Meigs-Friend, Gaia; Ferrante, Jason; Takoukam Kamla, Aristide; Dorazio, Robert; Keith Diagne, Lucy; Luna, Fabia; Lanyon, Janet M.; Reid, James P.
2018-01-01
Environmental DNA (eDNA) detection is a technique used to non-invasively detect cryptic, low density, or logistically difficult-to-study species, such as imperiled manatees. For eDNA measurement, genetic material shed into the environment is concentrated from water samples and analyzed for the presence of target species. Cytochrome bquantitative PCR and droplet digital PCR eDNA assays were developed for the 3 Vulnerable manatee species: African, Amazonian, and both subspecies of the West Indian (Florida and Antillean) manatee. Environmental DNA assays can help to delineate manatee habitat ranges, high use areas, and seasonal population changes. To validate the assay, water was analyzed from Florida’s east coast containing a high-density manatee population and produced 31564 DNA molecules l-1on average and high occurrence (ψ) and detection (p) estimates (ψ = 0.84 [0.40-0.99]; p = 0.99 [0.95-1.00]; limit of detection 3 copies µl-1). Similar occupancy estimates were produced in the Florida Panhandle (ψ = 0.79 [0.54-0.97]) and Cuba (ψ = 0.89 [0.54-1.00]), while occupancy estimates in Cameroon were lower (ψ = 0.49 [0.09-0.95]). The eDNA-derived detection estimates were higher than those generated using aerial survey data on the west coast of Florida and may be effective for population monitoring. Subsequent eDNA studies could be particularly useful in locations where manatees are (1) difficult to identify visually (e.g. the Amazon River and Africa), (2) are present in patchy distributions or are on the verge of extinction (e.g. Jamaica, Haiti), and (3) where repatriation efforts are proposed (e.g. Brazil, Guadeloupe). Extension of these eDNA techniques could be applied to other imperiled marine mammal populations such as African and Asian dugongs.
Sampling characteristics and calibration of snorkel counts to estimate stream fish populations
Weaver, D.; Kwak, Thomas J.; Pollock, Kenneth
2014-01-01
Snorkeling is a versatile technique for estimating lotic fish population characteristics; however, few investigators have evaluated its accuracy at population or assemblage levels. We evaluated the accuracy of snorkeling using prepositioned areal electrofishing (PAE) for estimating fish populations in a medium-sized Appalachian Mountain river during fall 2008 and summer 2009. Strip-transect snorkel counts were calibrated with PAE counts in identical locations among macrohabitats, fish species or taxa, and seasons. Mean snorkeling efficiency (i.e., the proportion of individuals counted from the true population) among all taxa and seasons was 14.7% (SE, 2.5%), and the highest efficiencies were for River Chub Nocomis micropogon at 21.1% (SE, 5.9%), Central Stoneroller Campostoma anomalum at 20.3% (SE, 9.6%), and darters (Percidae) at 17.1% (SE, 3.7%), whereas efficiencies were lower for shiners (Notropis spp., Cyprinella spp., Luxilus spp.) at 8.2% (SE, 2.2%) and suckers (Catostomidae) at 6.6% (SE, 3.2%). Macrohabitat type, fish taxon, or sampling season did not significantly explain variance in snorkeling efficiency. Mean snorkeling detection probability (i.e., probability of detecting at least one individual of a taxon) among fish taxa and seasons was 58.4% (SE, 6.1%). We applied the efficiencies from our calibration study to adjust snorkel counts from an intensive snorkeling survey conducted in a nearby reach. Total fish density estimates from strip-transect counts adjusted for snorkeling efficiency were 7,288 fish/ha (SE, 1,564) during summer and 15,805 fish/ha (SE, 4,947) during fall. Precision of fish density estimates is influenced by variation in snorkeling efficiency and sample size and may be increased with additional sampling effort. These results demonstrate the sampling properties and utility of snorkeling to characterize lotic fish assemblages with acceptable efficiency and detection probability, less effort, and no mortality, compared with traditional sampling methods.
Harris, Julianne E.; Hightower, Joseph E.
2012-01-01
American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.
Khorozyan, Igor G; Malkhasyan, Alexander G; Abramov, Alexei V
2008-12-01
It is important to predict how many individuals of a predator species can survive in a given area on the basis of prey sufficiency and to compare predictive estimates with actual numbers to understand whether or not key threats are related to prey availability. Rugged terrain and low detection probabilities do not allow for the use of traditional prey count techniques in mountain areas. We used presence-absence occupancy modeling and camera-trapping to estimate the abundance and densities of prey species and regression analysis to predict leopard (Panthera pardus) densities from estimated prey biomass in the mountains of the Nuvadi area, Meghri Ridge, southern Armenia. The prey densities were 12.94 ± 2.18 individuals km(-2) for the bezoar goat (Capra aegagrus), 6.88 ± 1.56 for the wild boar (Sus scrofa) and 0.44 ± 0.20 for the roe deer (Capreolus capreolus). The detection probability of the prey was a strong function of the activity patterns, and was highest in diurnal bezoar goats (0.59 ± 0.09). Based on robust regression, the estimated total ungulate prey biomass (720.37 ± 142.72 kg km(-2) ) can support a leopard density of 7. 18 ± 3.06 individuals 100 km(-2) . The actual leopard density is only 0.34 individuals 100 km(-2) (i.e. one subadult male recorded over the 296.9 km(2) ), estimated from tracking and camera-trapping. The most plausible explanation for this discrepancy between predicted and actual leopard density is that poaching and disturbance caused by livestock breeding, plant gathering, deforestation and human-induced wild fires are affecting the leopard population in Armenia. © 2008 ISZS, Blackwell Publishing and IOZ/CAS.
Uncertainty in gridded CO 2 emissions estimates
Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...
2016-05-19
We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less
Thompson, W.L.
2003-01-01
Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream fish studies across North America. However, their population estimator relies on two key assumptions: (1) removal estimates are equal to the true numbers of fish, and (2) removal estimates are highly correlated with snorkel counts within a subset of sampled stream units. Violations of these assumptions may produce suspect results. To determine possible sources of the assumption violations, I used data on the abundance of steelhead Oncorhynchus mykiss from Hankin and Reeves' (1988) in a simulation composed of 50,000 repeated, stratified systematic random samples from a spatially clustered distribution. The simulation was used to investigate effects of a range of removal estimates, from 75% to 100% of true fish abundance, on overall stream fish population estimates. The effects of various categories of removal-estimates-to-snorkel-count correlation levels (r = 0.75-1.0) on fish population estimates were also explored. Simulation results indicated that Hankin and Reeves' approach may produce poor results unless removal estimates exceed at least 85% of the true number of fish within sampled units and unless correlations between removal estimates and snorkel counts are at least 0.90. A potential modification to Hankin and Reeves' approach is the inclusion of environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative approach is to use snorkeling combined with line transect sampling to estimate fish densities within stream units. As with any method of population estimation, a pilot study should be conducted to evaluate its usefulness, which requires a known (or nearly so) population of fish to serve as a benchmark for evaluating bias and precision of estimators.
Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M
2017-01-01
For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.
Relationships between brightness of nighttime lights and population density
NASA Astrophysics Data System (ADS)
Naizhuo, Z.
2012-12-01
Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly lit area, relatively large under-estimations would emerge in the urban core regions. Previous studies have shown that GDP, carbon dioxide emission, and electric power consumption strongly correlate to urban population (Ghosh et al., 2010; Sutton et al., 2007; Zhao et al., 2012). Thus, although this study only examined the relationships between brightness of nighttime lights and population density, the results can provide insight for the spatial disaggregations of socioeconomic data (e.g. GDP, carbon dioxide emission, and electric power consumption) using the satellite nighttime light image data. Simply distributing the socioeconomic data to each pixel in proportion to the DN value of the nighttime light images may generate relatively large errors. References Bharit N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT, 2011. Science, 334:1424-1427. Ghosh T, Elvidge CD, Sutton PC, Baugh KE, Ziskin D, Tuttle BT, 2010. Energies, 3:1895-1913. Oda T, Maksyutov S, 2011. Atmospheric Chemistry and Physics, 11:543-556. Sutton PC, Elvidge CD, Ghosh T, 2007. International Journal of Ecological Economics and Statistics, 8:5-21. Zhao N, Ghosh T, Samson EL, 2012. International Journal of Remote sensing, 33:6304-6320.
Density dependence, whitebark pine, and vital rates of grizzly bears
van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.
2016-01-01
Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the index of whitebark pine mortality. The results of our study support the interpretation that slowing of population growth during the last decade was associated more with increasing grizzly bear density than the decline in whitebark pine. Grizzly bear density and its potential effect on vital rates and population trajectory warrant consideration for management of the grizzly bear population in the Greater Yellowstone Ecosystem.
Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar
Stabach, Jared A.; Fleming, Chris H.; Calabrese, Justin M.; De Paula, Rogério C.; Ferraz, Kátia M. P. M.; Kantek, Daniel L. Z.; Miyazaki, Selma S.; Pereira, Thadeu D. C.; Araujo, Gediendson R.; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S.; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A.; Ramalho, Emiliano E.; Carvalho, Marina M.; Soares, Fábio H. S.; Zimbres, Barbara; Silva, Marina X.; Moraes, Marcela D. F.; Vogliotti, Alexandre; May, Joares A.; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C.; Leimgruber, Peter
2016-01-01
Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species’ ecology with an aim towards better conservation of this endangered/critically endangered carnivore—the top predator in the Neotropics. PMID:28030568
Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar.
Morato, Ronaldo G; Stabach, Jared A; Fleming, Chris H; Calabrese, Justin M; De Paula, Rogério C; Ferraz, Kátia M P M; Kantek, Daniel L Z; Miyazaki, Selma S; Pereira, Thadeu D C; Araujo, Gediendson R; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A; Ramalho, Emiliano E; Carvalho, Marina M; Soares, Fábio H S; Zimbres, Barbara; Silva, Marina X; Moraes, Marcela D F; Vogliotti, Alexandre; May, Joares A; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C; Leimgruber, Peter
2016-01-01
Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species' ecology with an aim towards better conservation of this endangered/critically endangered carnivore-the top predator in the Neotropics.
A geostatistical state-space model of animal densities for stream networks.
Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H
2018-06-21
Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T
2017-03-01
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.
Density-body mass relationships: Inconsistent intercontinental patterns among termite feeding-groups
NASA Astrophysics Data System (ADS)
Dahlsjö, Cecilia A. L.; Parr, Catherine L.; Malhi, Yadvinder; Meir, Patrick; Rahman, Homathevi; Eggleton, Paul
2015-02-01
Allometric relationships are useful for estimating and understanding resource distribution in assemblages with species of different masses. Damuth's law states that body mass scales with population density as M-0.75, where M is body mass and -0.75 is the slope. In this study we used Damuth's law (M-0.75) as a null hypothesis to examine the relationship between body mass and population density for termite feeding-groups in three different countries and regions (Cameroon, West Africa; Peru South America; and Malaysia SE Asia). We found that none of the feeding-groups had a relationship where M-0.75 while the data suggested that population density-body mass relationships for true soil-feeding termites in Cameroon (M2.7) and wood-feeding termites in Peru (M1.5) were significantly different from the expected values given by Damuth's law. The dominance of large-bodied true soil-feeding termites in Cameroon and the absence of fungus-growing termites from Peru suggest that these allometric patterns are due to heterogeneities in termite biogeographical evolution. Additionally, as these feeding-groups have higher population density than expected by their body masses it may be suggested that they also have a higher energy throughput than expected. The results presented here may be used to gain further understanding of resource distribution among termite feeding-groups across regions and an insight into the importance of evolutionary history and biogeography on allometric patterns. Further understanding of population density-body mass relationships in termite feeding-groups may also improve understanding of the role these feeding-groups play in ecosystem processes in different regions.
A.R. Mason; H.G. Paul
1994-01-01
Procedures for monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience in sampling these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a...
Mannocci, Laura; Roberts, Jason J; Miller, David L; Halpin, Patrick N
2017-06-01
As human activities expand beyond national jurisdictions to the high seas, there is an increasing need to consider anthropogenic impacts to species inhabiting these waters. The current scarcity of scientific observations of cetaceans in the high seas impedes the assessment of population-level impacts of these activities. We developed plausible density estimates to facilitate a quantitative assessment of anthropogenic impacts on cetacean populations in these waters. Our study region extended from a well-surveyed region within the U.S. Exclusive Economic Zone into a large region of the western North Atlantic sparsely surveyed for cetaceans. We modeled densities of 15 cetacean taxa with available line transect survey data and habitat covariates and extrapolated predictions to sparsely surveyed regions. We formulated models to reduce the extent of extrapolation beyond covariate ranges, and constrained them to model simple and generalizable relationships. To evaluate confidence in the predictions, we mapped where predictions were made outside sampled covariate ranges, examined alternate models, and compared predicted densities with maps of sightings from sources that could not be integrated into our models. Confidence levels in model results depended on the taxon and geographic area and highlighted the need for additional surveying in environmentally distinct areas. With application of necessary caution, our density estimates can inform management needs in the high seas, such as the quantification of potential cetacean interactions with military training exercises, shipping, fisheries, and deep-sea mining and be used to delineate areas of special biological significance in international waters. Our approach is generally applicable to other marine taxa and geographic regions for which management will be implemented but data are sparse. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Bau, Sébastien; Bémer, Denis; Grippari, Florence; Appert-Collin, Jean-Christophe; Thomas, Dominique
2014-10-01
Increasing numbers of workers are exposed to airborne nanoparticles, the health effects of which remain difficult to evaluate. Effective density is considered to be a key characteristic of airborne nanoparticles due to its role in particle deposition in the human respiratory tract and in the conversion of number distributions to mass distributions. Because effective density cannot be measured directly, in this study the electrical mobility and aerodynamic equivalent diameters of airborne nanoparticles were measured simultaneously (tandem DMA/ELPI). Test aerosols consisted of spherical Di-Ethyl-Hexyl-Sebacate nanoparticles produced by nebulization (PALAS AGK 2000). To take into account the presence of multiple-charged particles at the DMA outlet, a theoretical model was developed in which the successive mechanisms undergone by particles are accounted for. Using this model, it is possible to determine the proportion of each population exiting the DMA ( p = 1, 2,…,5 elementary charges) in each channel of the overall ELPI signal. Thus, particle effective density can be estimated for each population. The results indicate that using the ELPI signal alone could lead to significant misevaluation of particle effective density, with biases up to 150 %. However, when the proportion of each population is taken into account, particle effective density is determined within ±15 % of the theoretical value.
NASA Technical Reports Server (NTRS)
Alexander, R. (Principal Investigator); Lins, H. F., Jr.; Wray, J. R.
1974-01-01
The author has identified the following significant results. A number of likely applications and follow-on analyses are suggested by the census cities evaluation of ERTS-1 and Skylab data. Some of these applications are: (1) estimate water use requirements; (2) define urban expansion; (3) document the pattern of residential development and assess quality of residential environment: (4) project future population densities, and estimate changes in population distribution between censuses; (5) assess environmental impact resulting from gradual as well as catastrophic changes.
Individual movements and population density estimates for moray eels on a Caribbean coral reef
NASA Astrophysics Data System (ADS)
Abrams, R. W.; Schein, M. W.
1986-12-01
Observations of moray eel (Muraenidae) distribution made on a Caribbean coral reef are discussed in the context of long term population trends. Observations of eel distribution made using SCUBA during 1978, 1979 1980, and 1984 are compared and related to the occurrence of a hurricane in 1979. An estimate of the mean standing stock of moray eels is presented. The degree of site attachment is discussed for spotted morays ( Gymnothorax moringa) and goldentail morays ( Muraena miliaris). The repeated non-aggressive association of moray eels with large aggregations of potential prey fishes is detailed.
Fay, Rémi; Weimerskirch, Henri; Delord, Karine; Barbraud, Christophe
2015-09-01
1. Our understanding of demographic processes is mainly based on analyses of traits from the adult component of populations. Early-life demographic traits are poorly known mainly for methodological reasons. Yet, survival of juvenile and immature individuals is critical for the recruitment into the population and thus for the whole population dynamic, especially for long-lived species. This bias currently restrains our ability to fully understand population dynamics of long-lived species and life-history theory. 2. The goal of this study was to estimate the early-life demographic parameters of a long-lived species with a long immature period (9-10 years), to test for sex and age effects on these parameters and to identify the environmental factors encountered during the period of immaturity that may influence survival and recruitment. 3. Using capture-mark-recapture multievent models allowing us to deal with uncertain and unobservable individual states, we analysed a long-term data set of wandering albatrosses to estimate both age- and sex-specific early-life survival and recruitment. We investigated environmental factors potentially driving these demographic traits using climatic and fisheries covariates and tested for density dependence. 4. Our study provides for the first time an estimate of annual survival during the first 2 years at sea for an albatross species (0·801 ± 0·014). Both age and sex affected early-life survival and recruitment processes of this long-lived seabird species. Early-life survival and recruitment were highly variable across years although the sensitivity of young birds to environmental variability decreased with age. Early-life survival was negatively associated with sea surface temperature, and recruitment rate was positively related to both Southern Annular Mode and sea surface temperature. We found strong evidence for density-dependent mortality of juveniles. Population size explained 41% of the variation of this parameter over the study period. 5. These results indicate that early-life survival and recruitment were strongly age and sex dependent in a dimorphic long-lived species. In addition, early-life demographic parameters were affected by natal environmental conditions and by environmental conditions faced during the period of immaturity. Finally, our results constitute one of the first demonstrations of density dependence on juvenile survival in seabirds, with major consequences for our understanding of population dynamics in seabirds. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
O'Brien, Susan H; Cook, Aonghais S C P; Robinson, Robert A
2017-10-01
Assessing the potential impact of additional mortality from anthropogenic causes on animal populations requires detailed demographic information. However, these data are frequently lacking, making simple algorithms, which require little data, appealing. Because of their simplicity, these algorithms often rely on implicit assumptions, some of which may be quite restrictive. Potential Biological Removal (PBR) is a simple harvest model that estimates the number of additional mortalities that a population can theoretically sustain without causing population extinction. However, PBR relies on a number of implicit assumptions, particularly around density dependence and population trajectory that limit its applicability in many situations. Among several uses, it has been widely employed in Europe in Environmental Impact Assessments (EIA), to examine the acceptability of potential effects of offshore wind farms on marine bird populations. As a case study, we use PBR to estimate the number of additional mortalities that a population with characteristics typical of a seabird population can theoretically sustain. We incorporated this level of additional mortality within Leslie matrix models to test assumptions within the PBR algorithm about density dependence and current population trajectory. Our analyses suggest that the PBR algorithm identifies levels of mortality which cause population declines for most population trajectories and forms of population regulation. Consequently, we recommend that practitioners do not use PBR in an EIA context for offshore wind energy developments. Rather than using simple algorithms that rely on potentially invalid implicit assumptions, we recommend use of Leslie matrix models for assessing the impact of additional mortality on a population, enabling the user to explicitly define assumptions and test their importance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Not in wilderness: African vulture strongholds remain in areas with high human density.
Henriques, Mohamed; Granadeiro, José Pedro; Monteiro, Hamilton; Nuno, Ana; Lecoq, Miguel; Cardoso, Paulo; Regalla, Aissa; Catry, Paulo
2018-01-01
Vultures constitute an important functional group in many ecosystems, providing crucial ecosystem services both in natural and humanized environments. These scavengers are facing massive declines worldwide, but in several African countries virtually nothing is known on populations' status and threats, hampering the development of adequate conservation strategies. In Guinea-Bissau, globally important populations of Hooded Necrosyrtes monachus and African white-backed vultures Gyps africanus were recently reported. Using the country as a study area, we aim to characterize human-vulture interactions in West Africa applying a multidisciplinary approach. We assessed the status and distribution of vulture populations using data from 1711 km of roadside transects, examined predictors of their distribution, and produced a nationwide population estimate for the Hooded Vulture, using an innovative method based on the relationship between the size of human population in settlements and vulture numbers. We conducted 47 stakeholder interviews to assess perceived roles played by vultures, and to investigate potential anthropogenic threats. Hooded vultures were strongly associated with high human population densities, whereas no relation was found between African white-backed and Rüppell's vultures and any of the tested predictors, which included cattle density, precipitation and Normalized Difference Vegetation Index, among others. We estimate a national population of 43347 Hooded vultures, the largest population reported in the species range. Respondents were generally aware of the services provided by vultures, especially waste and carcass removal, including in urban areas. Hunting for witchcraft and traditional medicine was the most frequently recognised threat, while poisoning was ranked as having the highest impact. We hypothesise that poisoning-related mortality may be affecting African white-backed and Rüppell's vultures' distribution and explain their scarcity in apparently highly suitable habitats. Our results suggest a mutualistic rather than a commensalistic relationship between vultures and humans, with important implications for designing and implementing conservation strategies.
Quinn, Thomas P; Cunningham, Curry J; Randall, Jessica; Hilborn, Ray
2014-10-01
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such "compensatory" density dependence, the alternative "depensatory" process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80% of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.
Ferreira, Sam M.; Greaver, Cathy; Knight, Grant A.; Knight, Mike H.; Smit, Izak P. J.; Pienaar, Danie
2015-01-01
The onslaught on the World’s rhinoceroses continues despite numerous initiatives aimed at curbing it. When losses due to poaching exceed birth rates, declining rhino populations result. We used previously published estimates and growth rates for black rhinos (2008) and white rhinos (2010) together with known poaching trends at the time to predict population sizes and poaching rates in Kruger National Park, South Africa for 2013. Kruger is a stronghold for the south-eastern black rhino and southern white rhino. Counting rhinos on 878 blocks 3x3 km in size using helicopters, estimating availability bias and collating observer and detectability biases allowed estimates using the Jolly’s estimator. The exponential escalation in number of rhinos poached per day appears to have slowed. The black rhino estimate of 414 individuals (95% confidence interval: 343-487) was lower than the predicted 835 individuals (95% CI: 754-956). The white rhino estimate of 8,968 individuals (95% CI: 8,394-9,564) overlapped with the predicted 9,417 individuals (95% CI: 7,698-11,183). Density- and rainfall-dependent responses in birth- and death rates of white rhinos provide opportunities to offset anticipated poaching effects through removals of rhinos from high density areas to increase birth and survival rates. Biological management of rhinos, however, need complimentary management of the poaching threat as present poaching trends predict detectable declines in white rhino abundances by 2018. Strategic responses such as anti-poaching that protect supply from illegal harvesting, reducing demand, and increasing supply commonly require crime network disruption as a first step complimented by providing options for alternative economies in areas abutting protected areas. PMID:26121681
NASA Astrophysics Data System (ADS)
Fedorov, N. I.; Mikhailenko, O. I.; Zharkikh, T. L.; Bakirova, R. T.
2018-01-01
Mapping of the vegetation (1:25000) of the Pre-Urals Steppe area at the Orenburg State Nature Reserve was completed in 2016. A map created with the geoinformation system contains 1931 simple and complex polygons for 25 types of vegetation. In a drought year, the average stock of palatable vegetation of the whole area is estimated at 8380 tons dry weight. The estimation is based on the size of areas covered by different types of vegetation, their grass production, the correction coefficients for decreasing of pasture forage stocks in winter and decreasing of production of grass communities in dry years. Based on pasture forage stocks the area could tolerate the maximum population size of 1769 individuals of the Przewalski horse, their average density could be 0.11 horse per ha. Yet, as watering places for animals are limited in Pre-Urals Steppe, grazing pressures on the vegetation next to the water sources may increase in dry years. That is why the above-mentioned calculated maximum population size and density must be reduced at least by half until some additional watering places are established and monitoring of the grazing effect on the vegetation next to the places is carried out regularly. Thus, the maximum size of the population is estimated at 800 to 900 individuals, which is almost 1.5 times more than necessary to establish a self-sustained population of the Przewalski horse.
Using simulation to improve wildlife surveys: Wintering mallards in Mississippi, USA
Pearse, A.T.; Reinecke, K.J.; Dinsmore, S.J.; Kaminski, R.M.
2009-01-01
Wildlife conservation plans generally require reliable data about population abundance and density. Aerial surveys often can provide these data; however, associated costs necessitate designing and conducting surveys efficiently. We developed methods to simulate population distributions of mallards (Anas platyrhynchos) wintering in western Mississippi, USA, by combining bird observations from three previous strip-transect surveys and habitat data from three sets of satellite images representing conditions when surveys were conducted. For each simulated population distribution, we compared 12 primary survey designs and two secondary design options by using coefficients of variation (CV) of population indices as the primary criterion for assessing survey performance. In all, 3 of the 12 primary designs provided the best precision (CV???11.7%) and performed equally well (WR08082E1d.gif diff???0.6%). Features of the designs that provided the largest gains in precision were optimal allocation of sample effort among strata and configuring the study area into five rather than four strata, to more precisely estimate mallard indices in areas of consistently high density. Of the two secondary design options, we found including a second observer to double the size of strip transects increased precision or decreased costs, whereas ratio estimation using auxiliary habitat data from satellite images did not increase precision appreciably. We recommend future surveys of mallard populations in our study area use the strata we developed, optimally allocate samples among strata, employ PPS or EPS sampling, and include two observers when qualified staff are available. More generally, the methods we developed to simulate population distributions from prior survey data provide a cost-effective method to assess performance of alternative wildlife surveys critical to informing management decisions, and could be extended to account for effects of detectability on estimates of true abundance. ?? 2009 CSIRO.
Murphy, Sean M; Augustine, Ben C; Ulrey, Wade A; Guthrie, Joseph M; Scheick, Brian K; McCown, J Walter; Cox, John J
2017-01-01
Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted.
Guthrie, Joseph M.; Scheick, Brian K.; McCown, J. Walter; Cox, John J.
2017-01-01
Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida’s largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted. PMID:28738077
Patrick C. Tobin; Aijun Zhang; Ksenia Onufrieva; Donna Leonard
2011-01-01
Traps baited with disparlure, the synthetic form of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), sex pheromone are used to detect newly founded populations and estimate population density across the United States. The lures used in trapping devices are exposed to field conditions with varying climates, which can affect the rate...
Arianna Morani; David J. Nowak; Satoshi Hirabayashi; Carlo Calfapietra
2011-01-01
Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon bene!ts. Those trees will likely remove more than 10...
McKenny, H.C.; Keeton, W.S.; Donovan, T.M.
2006-01-01
Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses. ?? 2006 Elsevier B.V. All rights reserved.
Schultz, Luke; Heck, Michael; Kowalski, Brandon M; Eagles-Smith, Collin A.; Coates, Kelly C.; Dunham, Jason B.
2017-01-01
Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream-migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater-resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2-month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations.
Price, Peter W; Hunter, Mark D
2015-06-01
The interaction between the arroyo willow, Salix lasiolepis Bentham, and its specialist herbivore, the arroyo willow stem-galling sawfly, Euura lasiolepis Smith (Hymenoptera: Tenthredinidae), was studied for 32 yr in Flagstaff, AZ, emphasizing a mechanistic understanding of insect population dynamics. Long-term weather records were evaluated to provide a climatic context for this study. Previously, predictive models of sawfly dynamics were developed from estimates of sawfly gall density made between 1981 and 2002; one model each for drier and wetter sites. Predictor variables in these models included winter precipitation and the Palmer Drought Severity Index, which impact the willow growth, with strong bottom-up effects on sawflies. We now evaluate original model predictions of sawfly population dynamics using new data (from 2003-2012). Additionally, willow resources were evaluated in 1986 and in 2012, using as criteria clone area, shoot density, and shoot length. The dry site model accounted for 40% of gall population density variation between 2003 and 2012 (69% over the 32 yr), providing strong support for the bottom-up, mechanistic hypothesis that water supply to willow hosts impacts sawfly populations. The current drying trend stressed willow clones: in drier sites, willow resources declined and gall density decreased by 98%. The wet site model accounted for 23% of variation in gall population density between 2003 and 2012 (48% over 30 yr), consistent with less water limitation. Nonetheless, gall populations were reduced by 72%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sutherland, Andrew M; Parrella, Michael P
2011-08-01
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.
Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique
2014-01-01
Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates.
Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique
2014-01-01
Background Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. Methodology/Principal findings The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. Conclusion/Significance The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates. PMID:24489839
Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.
Husband, Brian C; Barrett, Spencer C H
1992-03-01
The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m 2 /minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.
Scott, Michael L.; Reynolds, Elizabeth W.
2007-01-01
Compared to 5-m by 20-m tree quadrats, belt transects were shown to provide similar estimates of stand structure (stem density and stand basal area) in less than 30 percent of the time. Further, for the streams sampled, there were no statistically significant differences in stem density and basal area estimates between 10-m and 20-m belt transects and the smaller belts took approximately half the time to sample. There was, however, high variance associated with estimates of stand structure for infrequently occurring stems, such as large, relict or legacy riparian trees. Legacy riparian trees occurred in limited numbers at all sites sampled. A reachscale population census of these trees indicated that the 10-m belt transects tended to underestimate both stem density and basal area for these riparian forest elements and that a complete reach-scale census of legacy trees averaged less than one hour per site.
Ecological change points: The strength of density dependence and the loss of history.
Ponciano, José M; Taper, Mark L; Dennis, Brian
2018-05-01
Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.
Global patterns of current and future road infrastructure
NASA Astrophysics Data System (ADS)
Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.
2018-06-01
Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.
Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus.
Sétamou, Mamoudou; Flores, Daniel; French, J Victor; Hall, David G
2008-08-01
The abundance and spatial dispersion of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) were studied in 34 grapefruit (Citrus paradisi Macfad.) and six sweet orange [Citrus sinensis (L.) Osbeck] orchards from March to August 2006 when the pest is more abundant in southern Texas. Although flush shoot infestation levels did not vary with host plant species, densities of D. citri eggs, nymphs, and adults were significantly higher on sweet orange than on grapefruit. D. citri immatures also were found in significantly higher numbers in the southeastern quadrant of trees than other parts of the canopy. The spatial distribution of D. citri nymphs and adults was analyzed using Iowa's patchiness regression and Taylor's power law. Taylor's power law fitted the data better than Iowa's model. Based on both regression models, the field dispersion patterns of D. citri nymphs and adults were aggregated among flush shoots in individual trees as indicated by the regression slopes that were significantly >1. For the average density of each life stage obtained during our surveys, the minimum number of flush shoots per tree needed to estimate D. citri densities varied from eight for eggs to four flush shoots for adults. Projections indicated that a sampling plan consisting of 10 trees and eight flush shoots per tree would provide density estimates of the three developmental stages of D. citri acceptable enough for population studies and management decisions. A presence-absence sampling plan with a fixed precision level was developed and can be used to provide a quick estimation of D. citri populations in citrus orchards.
Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships
Gately, Conor K.; Hutyra, Lucy R.; Sue Wing, Ian
2015-01-01
Emissions of CO2 from road vehicles were 1.57 billion metric tons in 2012, accounting for 28% of US fossil fuel CO2 emissions, but the spatial distributions of these emissions are highly uncertain. We develop a new emissions inventory, the Database of Road Transportation Emissions (DARTE), which estimates CO2 emitted by US road transport at a resolution of 1 km annually for 1980–2012. DARTE reveals that urban areas are responsible for 80% of on-road emissions growth since 1980 and for 63% of total 2012 emissions. We observe nonlinearities between CO2 emissions and population density at broad spatial/temporal scales, with total on-road CO2 increasing nonlinearly with population density, rapidly up to 1,650 persons per square kilometer and slowly thereafter. Per capita emissions decline as density rises, but at markedly varying rates depending on existing densities. We make use of DARTE’s bottom-up construction to highlight the biases associated with the common practice of using population as a linear proxy for disaggregating national- or state-scale emissions. Comparing DARTE with existing downscaled inventories, we find biases of 100% or more in the spatial distribution of urban and rural emissions, largely driven by mismatches between inventory downscaling proxies and the actual spatial patterns of vehicle activity at urban scales. Given cities’ dual importance as sources of CO2 and an emerging nexus of climate mitigation initiatives, high-resolution estimates such as DARTE are critical both for accurately quantifying surface carbon fluxes and for verifying the effectiveness of emissions mitigation efforts at urban scales. PMID:25847992
Shifting foundations and metrics for golden-cheeked warbler recovery
Hatfield, Jeff S.; Weckerly, Floyd W.; Duarte, Adam
2012-01-01
Using the golden-cheeked warbler (Setophaga chrysoparia) as a case study, this paper discusses what lessons can be learned from the process of the emergency listing and subsequent development of the recovery plan. Are the metrics for recovery in the current warbler plan appropriate, including population size and distribution (recovery units), migration corridors, and wintering habitat? In other words, what happened, what can we learn, and what should happen (in general) in the future for development of such plans? We discuss the number of recovery units required for species persistence and estimate the number of male warblers in protected areas across the breeding range of the species, using newly published density estimates. We also discuss future monitoring strategies to estimate warbler population trends and dispersal rates.
Ham, Young-Sik; Kobori, Hiromi; Takasago, Masahisa
2009-05-01
The indicator bacteria (standard plate count, total coliform, and fecal coliform bacteria) concentrations have been investigated using six ambient habitats (population density, percent sewer penetration, stream flow rate (m(3)/sec), percent residential area, percent forest area and percent agricultural area) in the Tama River basin in Tokyo, Japan during June 2003 to January 2005. The downstream and tributary Tama River showed higher concentrations of TC and FC bacteria than the upstream waters, which exceeded an environmental quality standard for rivers and a bathing water quality criterion. It was estimated that combined sewer overflow (CSO) and stormwater effluents contributed -4-23% to the indicator bacteria concentrations of the Tama River. The results of multiple regression analyses show that the indicator bacteria concentrations of Tama River basin are significantly affected by population density. It is concluded that the Tama River received a significant bacterial contamination load originating from the anthropogenic source.
Adams, C. G.; Schenker, J. H.; McGhee, P. S.; Gut, L. J.; Brunner, J. F.
2017-01-01
Abstract Novel methods of data analysis were used to interpret codling moth (Cydia pomonella) catch data from central-trap, multiple-release experiments using a standard codlemone-baited monitoring trap in commercial apple orchards not under mating disruption. The main objectives were to determine consistency and reliability for measures of: 1) the trapping radius, composed of the trap’s behaviorally effective plume reach and the maximum dispersive distance of a responder population; and 2) the proportion of the population present in the trapping area that is caught. Two moth release designs were used: 1) moth releases at regular intervals in the four cardinal directions, and 2) evenly distributed moth releases across entire approximately 18-ha orchard blocks using both high and low codling moth populations. For both release designs, at high populations, the mean proportion catch was 0.01, and for the even release of low populations, that value was approximately 0.02. Mean maximum dispersive distance for released codling moth males was approximately 260 m. Behaviorally effective plume reach for the standard codling moth trap was < 5 m, and total trapping area for a single trap was approximately 21 ha. These estimates were consistent across three growing seasons and are supported by extraordinarily high replication for this type of field experiment. Knowing the trapping area and mean proportion caught, catch number per single monitoring trap can be translated into absolute pest density using the equation: males per trapping area = catch per trapping area/proportion caught. Thus, catches of 1, 3, 10, and 30 codling moth males per trap translate to approximately 5, 14, 48, and 143 males/ha, respectively, and reflect equal densities of females, because the codling moth sex ratio is 1:1. Combined with life-table data on codling moth fecundity and mortality, along with data on crop yield per trapping area, this fundamental knowledge of how to interpret catch numbers will enable pest managers to make considerably more precise projections of damage and therefore more precise and reliable decisions on whether insecticide applications are justified. The principles and methods established here for estimating absolute codling moth density may be broadly applicable to pests generally and thereby could set a new standard for integrated pest management decisions based on trapping. PMID:28131989
Monitoring low density avian populations: An example using Mountain Plovers
Dreitz, V.J.; Lukacs, P.M.; Knopf, F.L.
2006-01-01
Declines in avian populations highlight a need for rigorous, broad-scale monitoring programs to document trends in avian populations that occur in low densities across expansive landscapes. Accounting for the spatial variation and variation in detection probability inherent to monitoring programs is thought to be effort-intensive and time-consuming. We determined the feasibility of the analytical method developed by Royle and Nichols (2003), which uses presence-absence (detection-non-detection) field data, to estimate abundance of Mountain Plovers (Charadrius montanus) per sampling unit in agricultural fields, grassland, and prairie dog habitat in eastern Colorado. Field methods were easy to implement and results suggest that the analytical method provides valuable insight into population patterning among habitats. Mountain Plover abundance was highest in prairie dog habitat, slightly lower in agricultural fields, and substantially lower in grassland. These results provided valuable insight to focus future research into Mountain Plover ecology and conservation. ?? The Cooper Ornithological Society 2006.
Populations potentially exposed to traffic-related air pollution in seven world cities.
Su, Jason G; Apte, Joshua S; Lipsitt, Jonah; Garcia-Gonzales, Diane A; Beckerman, Bernardo S; de Nazelle, Audrey; Texcalac-Sangrador, José Luis; Jerrett, Michael
2015-05-01
Traffic-related air pollution (TRAP) likely exerts a large burden of disease globally, and in many places, traffic is increasing dramatically. The impact, however, of urban form on the portion of population potentially exposed to TRAP remains poorly understood. In this study, we estimate portions of population potentially exposed to TRAP across seven global cities of various urban forms. Data on population distributions and road networks were collected from the best available sources in each city and from remote sensing analysis. Using spatial mapping techniques, we first overlaid road buffers onto population data to estimate the portions of population potentially exposed for four plausible impact zones. Based on a most likely scenario with impacts from highways up to 300meters and major roadways up to 50meters, we identified that the portions of population potentially exposed for the seven cities ranged from 23 to 96%. High-income North American cities had the lowest potential exposure portions, while those in Europe had the highest. Second, we adjusted exposure zone concentration levels based on a literature suggested multiplier for each city using corresponding background concentrations. Though Beijing and Mexico City did not have the highest portion of population exposure, those in their exposure zones had the highest levels of exposure. For all seven cities, the portion of population potentially exposed was positively correlated with roadway density and, to a lesser extent, with population density. These analyses suggest that urban form may influence the portion of population exposed to TRAP and vehicle emissions and other factors may influence the exposure levels. Greater understanding of urban form and other factors influencing potential exposure to TRAP may help inform interventions that protect public health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sanderlin, J.S.; Waser, P.M.; Hines, J.E.; Nichols, J.D.
2012-01-01
Metapopulation ecology has historically been rich in theory, yet analytical approaches for inferring demographic relationships among local populations have been few. We show how reverse-time multi-state capture-recapture models can be used to estimate the importance of local recruitment and interpopulation dispersal to metapopulation growth. We use 'contribution metrics' to infer demographic connectedness among eight local populations of banner-tailed kangaroo rats, to assess their demographic closure, and to investigate sources of variation in these contributions. Using a 7 year dataset, we show that: (i) local populations are relatively independent demographically, and contributions to local population growth via dispersal within the system decline with distance; (ii) growth contributions via local survival and recruitment are greater for adults than juveniles, while contributions involving dispersal are greater for juveniles; (iii) central populations rely more on local recruitment and survival than peripheral populations; (iv) contributions involving dispersal are not clearly related to overall metapopulation density; and (v) estimated contributions from outside the system are unexpectedly large. Our analytical framework can classify metapopulations on a continuum between demographic independence and panmixia, detect hidden population growth contributions, and make inference about other population linkage forms, including rescue effects and source-sink structures. Finally, we discuss differences between demographic and genetic population linkage patterns for our system. ?? 2011 The Royal Society.
Mo, Solveig Sølverød; Urdahl, Anne Margrete; Madslien, Knut; Sunde, Marianne; Nesse, Live L; Slettemeås, Jannice Schau; Norström, Madelaine
2018-01-01
The objective of this study was to estimate and compare the occurrence of AMR in wild red foxes in relation to human population densities. Samples from wild red foxes (n = 528) included in the Norwegian monitoring programme on antimicrobial resistance in bacteria from food, feed and animals were included. All samples were divided into three different groups based on population density in the municipality where the foxes were hunted. Of the 528 samples included, 108 (20.5%), 328 (62.1%) and 92 (17.4%) originated from areas with low, medium and high population density, respectively. A single faecal swab was collected from each fox. All samples were plated out on a selective medium for Enterobacteriaceae for culturing followed by inclusion and susceptibility testing of one randomly selected Escherichia coli to assess the overall occurrence of AMR in the Gram-negative bacterial population. Furthermore, the samples were subjected to selective screening for detection of E. coli displaying resistance towards extended-spectrum cephalosporins and fluoroquinolones. In addition, a subset of samples (n = 387) were subjected to selective culturing to detect E. coli resistant to carbapenems and colistin, and enterococci resistant to vancomycin. Of these, 98 (25.3%), 200 (51.7%) and 89 (23.0%) originated from areas with low, medium and high population density, respectively. Overall, the occurrence of AMR in indicator E. coli from wild red foxes originating from areas with different human population densities in Norway was low to moderate (8.8%). The total occurrence of AMR was significantly higher; χ2 (1,N = 336) = 6.53, p = 0.01 in areas with high population density compared to areas with medium population density. Similarly, the occurrence of fluoroquinolone resistant E. coli isolated using selective detection methods was low in areas with low population density and more common in areas with medium or high population density. In conclusion, we found indications that occurrence of AMR in wild red foxes in Norway is associated with human population density. Foxes living in urban areas are more likely to be exposed to AMR bacteria and resistance drivers from food waste, garbage, sewage, waste water and consumption of contaminated prey compared to foxes living in remote areas. The homerange of red fox has been shown to be limited thereby the red fox constitutes a good sentinel for monitoring antimicrobial resistance in the environment. Continuous monitoring on the occurrence of AMR in different wild species, ecological niches and geographical areas can facilitate an increased understanding of the environmental burden of AMR in the environment. Such information is needed to further assess the impact for humans, and enables implementation of possible control measures for AMR in humans, animals and the environment in a true "One Health" approach.
NASA Astrophysics Data System (ADS)
Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro
2013-04-01
Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.
Lewis, Jesse S.; Farnsworth, Matthew L.; Burdett, Chris L.; Theobald, David M.; Gray, Miranda; Miller, Ryan S.
2017-01-01
Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors. PMID:28276519
Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models
Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.
2006-01-01
In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in past ecosystem reconstructions. Counts of small numbers of confirmed species and estimates of maximum numbers of species present in the basin are used for the analysis and estimation of energy flow. This approach applies the methods of modern ecosystem analysis. ?? 2005 Elsevier Ltd. All rights reserved.
Urban heat island effect on cicada densities in metropolitan Seoul.
Nguyen, Hoa Q; Andersen, Desiree K; Kim, Yuseob; Jang, Yikweon
2018-01-01
Urban heat island (UHI) effect, the ubiquitous consequence of urbanization, is considered to play a major role in population expansion of numerous insects. Cryptotympana atrata and Hyalessa fuscata are the most abundant cicada species in the Korean Peninsula, where their population densities are higher in urban than in rural areas. We predicted a positive relationship between the UHI intensities and population densities of these two cicada species in metropolitan Seoul. To test this prediction, enumeration surveys of cicada exuviae densities were conducted in 36 localities located within and in the vicinity of metropolitan Seoul. Samples were collected in two consecutive periods from July to August 2015. The abundance of each species was estimated by two resource-weighted densities, one based on the total geographic area, and the other on the total number of trees. Multiple linear regression analyses were performed to identify factors critical for the prevalence of cicada species in the urban habitat. C. atrata and H. fuscata were major constituents of cicada species composition collected across all localities. Minimum temperature and sampling period were significant factors contributing to the variation in densities of both species, whereas other environmental factors related to urbanization were not significant. More cicada exuviae were collected in the second rather than in the first samplings, which matched the phenological pattern of cicadas in metropolitan Seoul. Cicada population densities increased measurably with the increase in temperature. Age of residential complex also exhibited a significantly positive correlation to H. fuscata densities, but not to C. atrata densities. Effects of temperature on cicada densities have been discerned from other environmental factors, as cicada densities increased measurably in tandem with elevated temperature. Several mechanisms may contribute to the abundance of cicadas in urban environments, such as higher fecundity of females, lower mortality rate of instars, decline in host plant quality, and local adaptation of organisms, but none of them were tested in the current study. In sum, results of the enumeration surveys of cicada exuviae support the hypothesis that the UHI effect underlies the population expansion of cicadas in metropolitan Seoul. Nevertheless, the underlying mechanisms for this remain untested.
Estimating total population size for adult female sea turtles: Accounting for non-nesters
Kendall, W.L.; Richardson, J.I.; Rees, Alan F.
2008-01-01
Assessment of population size and changes therein is important to sea turtle management and population or life history research. Investigators might be interested in testing hypotheses about the effect of current population size or density (number of animals per unit resource) on future population processes. Decision makers might want to determine a level of allowable take of individual turtles of specified life stage. Nevertheless, monitoring most stages of sea turtle life histories is difficult, because obtaining access to individuals is difficult. Although in-water assessments are becoming more common, nesting females and their hatchlings remain the most accessible life stages. In some cases adult females of a given nesting population are sufficiently philopatric that the population itself can be well defined. If a well designed tagging study is conducted on this population, survival, breeding probability, and the size of the nesting population in a given year can be estimated. However, with published statistical methodology the size of the entire breeding population (including those females skipping nesting in that year) cannot be estimated without assuming that each adult female in this population has the same probability of nesting in a given year (even those that had just nested in the previous year). We present a method for estimating the total size of a breeding population (including nesters those skipping nesting) from a tagging study limited to the nesting population, allowing for the probability of nesting in a given year to depend on an individual's nesting status in the previous year (i.e., a Markov process). From this we further develop estimators for rate of growth from year to year in both nesting population and total breeding population, and the proportion of the breeding population that is breeding in a given year. We also discuss assumptions and apply these methods to a breeding population of hawksbill sea turtles (Eretmochelys imbricata) from the Caribbean. We anticipate that this method could also be useful for in-water studies of well defined populations.
Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel
2014-09-01
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation. Copyright © 2014 Elsevier B.V. All rights reserved.
Not in wilderness: African vulture strongholds remain in areas with high human density
Granadeiro, José Pedro; Monteiro, Hamilton; Nuno, Ana; Lecoq, Miguel; Cardoso, Paulo; Regalla, Aissa; Catry, Paulo
2018-01-01
Vultures constitute an important functional group in many ecosystems, providing crucial ecosystem services both in natural and humanized environments. These scavengers are facing massive declines worldwide, but in several African countries virtually nothing is known on populations’ status and threats, hampering the development of adequate conservation strategies. In Guinea-Bissau, globally important populations of Hooded Necrosyrtes monachus and African white-backed vultures Gyps africanus were recently reported. Using the country as a study area, we aim to characterize human-vulture interactions in West Africa applying a multidisciplinary approach. We assessed the status and distribution of vulture populations using data from 1711 km of roadside transects, examined predictors of their distribution, and produced a nationwide population estimate for the Hooded Vulture, using an innovative method based on the relationship between the size of human population in settlements and vulture numbers. We conducted 47 stakeholder interviews to assess perceived roles played by vultures, and to investigate potential anthropogenic threats. Hooded vultures were strongly associated with high human population densities, whereas no relation was found between African white-backed and Rüppell’s vultures and any of the tested predictors, which included cattle density, precipitation and Normalized Difference Vegetation Index, among others. We estimate a national population of 43347 Hooded vultures, the largest population reported in the species range. Respondents were generally aware of the services provided by vultures, especially waste and carcass removal, including in urban areas. Hunting for witchcraft and traditional medicine was the most frequently recognised threat, while poisoning was ranked as having the highest impact. We hypothesise that poisoning-related mortality may be affecting African white-backed and Rüppell’s vultures’ distribution and explain their scarcity in apparently highly suitable habitats. Our results suggest a mutualistic rather than a commensalistic relationship between vultures and humans, with important implications for designing and implementing conservation strategies. PMID:29385172
Visual counts as an index of White-Tailed Prairie Dog density
Menkens, George E.; Biggins, Dean E.; Anderson, Stanley H.
1990-01-01
Black-footed ferrets (Mustela nigripes) are depended on prairie dogs (Cynomys spp.) for food and shelter and were historically restricted to prairie dog towns (Anderson et al. 1986). Because ferrets and prairie dogs are closely associated, successful ferret management and conservation depends on successful prairie dog management. A critical component of any management program for ferrets will be monitoring prairie dog population dynamics on towns containing ferrets or on towns proposed as ferret reintroduction sites. Three techniques for estimating prairie dog population size and density are counts of plugged and reopened burrows (Tietjen and Matschke 1982), mark-recapture (Otis et al. 1978; Seber 1982, 1986; Menkens and Anderson 1989), and visual counts (Fagerstone and Biggins 1986, Knowles 1986). The technique of plugging burrows and counting the number reopened by prairie dogs is too time and labor intensive for population evaluation on a large number of towns or over large areas. Total burrow counts are not correlated with white-tailed prairie dog (C. leucurus) densities and thus cannot be used for populated evaluation (Menkens et al. 1988). Mark-recapture requires trapping that is expensive and time and labor intensive. Monitoring a large number of prairie dog populations using mark-recapture would be difficult. Alternatively a large number of populations could be monitored in short periods of time using the visual count technique (Fagerstone and Biggins 1986, Knowles 1986). However, the accuracy of visual counts has only been evaluated in a few locations. Thus, it is not known whether the relationship between counts and prairie dog density is consistent throughout the prairie dog's range. Our objective was to evaluate the potential of using visual counts as a rapid means of estimating white-tailed prairie dog density in prairie dog towns throughout Wyoming. We studied 18 white-tailed prairie dog towns in 4 white-tailed prairie dog complexes in Wyoming near Laramie (105°40'W, 41°20'N, 3 grids), Pathfinder reservoir (106°55'W, 42°30'N, 6 grids), Shirley Basin (106°10'W, 42°20'N, 6 grids), and Meeteetse (108°10'W, 44°10'N, 3 grids). All towns were dominated by grasses, forbs, and shrubs (details in Collins and Lichvar 1986). Topography of towns ranged from flat to gently rolling hills.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew
2010-01-01
We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew
2010-11-01
We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Population dynamics of tule elk at point Reyes National Seashore, California
Howell, J.A.; Brooks, G.C.; Semenoff-Irving, M.; Greene, C.
2002-01-01
The presence of locally abundant wildlife raises questions about natural regulation and ecological consequences of overpopulation. We sought to establish precise information about population size, structure, and productivity to examine the role of natural regulation in a closed tule elk (Cervus elaphus nannodes) population at Point Reyes National Seashore, California, USA. We estimated an instantaneous exponential growth rate of 0.19 with an adjusted R2 = 0.98 during 1998, 20 years after the elk were introduced. We estimated annual survival for adult cows of nearly 0.95. Calf survival from birth through the rut ending during October-November was 0.85. Male calves exhibited higher mortality than female calves. Cow mortality was associated with the calving season. We measured a 42% increase in cow:calf density from 0.733 ha-1 to 1.043 ha-1 during 1996-1998. We observed a density-correlated reduction in the rate of increase and in the cow:calf ratios prior to high precipitation El Nin??o Southern Oscillation years, 1993, 1996, and 1997, precipitation >1.23 m year-1. Given the high population growth rate and model evaluation of management scenarios, park managers will need to use a suite of approaches, such as contraception and removal, to maintain the elk population at levels at or near the closed-range carrying capacity for years between El Nin??o events.
How can mortality increase population size? A test of two mechanistic hypotheses.
McIntire, Kristina M; Juliano, Steven A
2018-05-03
Overcompensation occurs when added mortality increases survival to the next life-cycle stage. Overcompensation can contribute to the Hydra Effect, wherein added mortality increases equilibrium population size. One hypothesis for overcompensation is that added mortality eases density-dependence, increasing survival to adulthood ("temporal separation of mortality and density dependence"). Mortality early in the life cycle is therefore predicted to cause overcompensation, whereas mortality later in the life cycle is not. Another hypothesis for overcompensation is that threat of mortality (e.g., from predation) causes behavioral changes that reduce overexploitation of resources, allowing resource recovery, and increasing production of adults ("prudent resource exploitation"). Behaviorally active predation cues alone are therefore predicted to cause overcompensation. We tested these predictions in two experiments with larvae of two species of Aedes. As predicted, early mortality yielded greater production of adults, and of adult females, and greater estimated rate of population increase than did later mortality. Addition of water-borne predation cues usually reduced browsing on surfaces in late-stage larvae, but contrary to prediction, resulted in neither significantly greater production of adult mosquitoes nor significantly greater estimated rate of increase. Thus we have strong evidence that timing of mortality contributes to overcompensation and the Hydra effect in mosquitoes. Evidence that predation cues alone can result in overcompensation via prudent resource exploitation is lacking. We expect the overcompensation in response to early mortality will be common in organisms with complex life cycles, density dependence among juveniles, and developmental control of populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gear and survey efficiency of patent tongs for oyster populations on restoration reefs.
Schulte, David M; Lipcius, Romuald N; Burke, Russell P
2018-01-01
Surveys of restored oyster reefs need to produce accurate population estimates to assess the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effective and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bottom cores. Restored reefs vary in relief and oyster density, either of which could affect survey efficiency. This study is the first to evaluate gear (the first full grab) and survey (which includes selecting a specific half portion of the first grab for further processing) efficiencies of hand-operated patent tongs as a function of reef height and oyster density on subtidal restoration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored reefs of high- and low-relief (25-45 cm, and 8-12 cm, respectively) were constructed throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctuary acreage > 20 ha at one site) in Chesapeake Bay. We designed a metal frame to guide a non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until all oysters within the grab area were captured. Full capture was verified by an underwater remotely-operated vehicle. Samples (n = 19) were taken on nine different reefs, including five low- (n = 8) and four high-relief reefs (n = 11), over a two-year period. The gear efficiency of the patent tong was estimated to be 76% (± 5% standard error), whereas survey efficiency increased to 81% (± 10%) due to processing. Neither efficiency differed significantly between young-of-the-year oysters (spat) and adults, high- and low-relief reefs, or years. As this type of patent tong is a common and cost-effective tool to evaluate oyster restoration projects as well as population density on fished habitat, knowing the gear and survey efficiencies allows for accurate and precise population estimates.
Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob
2015-01-01
Background Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. Objective We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. Methods We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. Results In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. Conclusion These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits. Citation Ghosh R, Lurmann F, Perez L, Penfold B, Brandt S, Wilson J, Milet M, Künzli N, McConnell R. 2016. Near-roadway air pollution and coronary heart disease: burden of disease and potential impact of a greenhouse gas reduction strategy in Southern California. Environ Health Perspect 124:193–200; http://dx.doi.org/10.1289/ehp.1408865 PMID:26149207
González-Rodríguez, Loida A; Felici-Giovanini, Marcos E; Haddock, Lillian
2013-06-01
To determine the prevalence of hypothyroidism in an adult female population in Puerto Rico and to determine the relationship between hypothyroidism, bone mineral density and vertebral and non-vertebral fractures in this population. Data from the 400 subjects' database of the Latin American Vertebral Osteoporosis Study (LAVOS), Puerto Rico site was reviewed. Patient's medical history, anthropometric data, current medications, laboratories, and DXA results was extracted. Subjects with thyroid dysfunction were identified based on their previous medical history and levels of TSH. Bone Mineral Density was classified using the World Health Organization criteria. Crude prevalence of thyroid dysfunction were estimated with a confidence of 95% and weighted by the population distribution by age, according to the distribution by age group in the 2000 census. Bone mineral densities and prevalence of vertebral and non-vertebral fractures were compared among the groups. The weighted prevalence of hyperthyroidism in this population was 0.0043% (95% CI: -0.0021%, 0.0107%). The weighted prevalence of hypothyroidism was 24.2% (95% CI: 19.9%, 28.4%). Increased prevalence of hypothyroidism was found in participants 70 years or older. The mean BMD at spine, hip and femoral neck was similar among the groups. No difference in the proportion of participants with vertebral and non-vertebral fractures was found among the groups. Our study found a high prevalence of hypothyroidism among adult postmenopausal females in Puerto Rico. No association between hypothyroidism and decreased bone mineral densities, vertebral or non-vertebral fractures was found in this population.
Dynamics of newly established elk populations
Sargeant, G.A.; Oehler, M.W.
2007-01-01
The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (??=1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of ?? = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.
The distribution and numbers of cheetah (Acinonyx jubatus) in southern Africa
Jacobson, Andrew P.; Schoonover, Rebecca F.; Groom, Rosemary J.; Horgan, Jane; Keeping, Derek; Klein, Rebecca; Marnewick, Kelly; Maude, Glyn; Melzheimer, Jörg; Mills, Gus; van der Merwe, Vincent; van der Meer, Esther; van Vuuren, Rudie J.; Wachter, Bettina
2017-01-01
Assessing the numbers and distribution of threatened species is a central challenge in conservation, often made difficult because the species of concern are rare and elusive. For some predators, this may be compounded by their being sparsely distributed over large areas. Such is the case with the cheetah Acinonyx jubatus. The IUCN Red List process solicits comments, is democratic, transparent, widely-used, and has recently assessed the species. Here, we present additional methods to that process and provide quantitative approaches that may afford greater detail and a benchmark against which to compare future assessments. The cheetah poses challenges, but also affords unique opportunities. It is photogenic, allowing the compilation of thousands of crowd-sourced data. It is also persecuted for killing livestock, enabling estimation of local population densities from the numbers persecuted. Documented instances of persecution in areas with known human and livestock density mean that these data can provide an estimate of where the species may or may not occur in areas without observational data. Compilations of extensive telemetry data coupled with nearly 20,000 additional observations from 39 sources show that free-ranging cheetahs were present across approximately 789,700 km2 of Namibia, Botswana, South Africa, and Zimbabwe (56%, 22%, 12% and 10% respectively) from 2010 to 2016, with an estimated adult population of 3,577 animals. We identified a further 742,800 km2 of potential cheetah habitat within the study region with low human and livestock densities, where another ∼3,250 cheetahs may occur. Unlike many previous estimates, we make the data available and provide explicit information on exactly where cheetahs occur, or are unlikely to occur. We stress the value of gathering data from public sources though these data were mostly from well-visited protected areas. There is a contiguous, transboundary population of cheetah in southern Africa, known to be the largest in the world. We suggest that this population is more threatened than believed due to the concentration of about 55% of free-ranging individuals in two ecoregions. This area overlaps with commercial farmland with high persecution risk; adult cheetahs were removed at the rate of 0.3 individuals per 100 km2 per year. Our population estimate for confirmed cheetah presence areas is 11% lower than the IUCN’s current assessment for the same region, lending additional support to the recent call for the up-listing of this species from vulnerable to endangered status. PMID:29250465
The distribution and numbers of cheetah (Acinonyx jubatus) in southern Africa.
Weise, Florian J; Vijay, Varsha; Jacobson, Andrew P; Schoonover, Rebecca F; Groom, Rosemary J; Horgan, Jane; Keeping, Derek; Klein, Rebecca; Marnewick, Kelly; Maude, Glyn; Melzheimer, Jörg; Mills, Gus; van der Merwe, Vincent; van der Meer, Esther; van Vuuren, Rudie J; Wachter, Bettina; Pimm, Stuart L
2017-01-01
Assessing the numbers and distribution of threatened species is a central challenge in conservation, often made difficult because the species of concern are rare and elusive. For some predators, this may be compounded by their being sparsely distributed over large areas. Such is the case with the cheetah Acinonyx jubatus. The IUCN Red List process solicits comments, is democratic, transparent, widely-used, and has recently assessed the species. Here, we present additional methods to that process and provide quantitative approaches that may afford greater detail and a benchmark against which to compare future assessments. The cheetah poses challenges, but also affords unique opportunities. It is photogenic, allowing the compilation of thousands of crowd-sourced data. It is also persecuted for killing livestock, enabling estimation of local population densities from the numbers persecuted. Documented instances of persecution in areas with known human and livestock density mean that these data can provide an estimate of where the species may or may not occur in areas without observational data. Compilations of extensive telemetry data coupled with nearly 20,000 additional observations from 39 sources show that free-ranging cheetahs were present across approximately 789,700 km 2 of Namibia, Botswana, South Africa, and Zimbabwe (56%, 22%, 12% and 10% respectively) from 2010 to 2016, with an estimated adult population of 3,577 animals. We identified a further 742,800 km 2 of potential cheetah habitat within the study region with low human and livestock densities, where another ∼3,250 cheetahs may occur. Unlike many previous estimates, we make the data available and provide explicit information on exactly where cheetahs occur, or are unlikely to occur. We stress the value of gathering data from public sources though these data were mostly from well-visited protected areas. There is a contiguous, transboundary population of cheetah in southern Africa, known to be the largest in the world. We suggest that this population is more threatened than believed due to the concentration of about 55% of free-ranging individuals in two ecoregions. This area overlaps with commercial farmland with high persecution risk; adult cheetahs were removed at the rate of 0.3 individuals per 100 km 2 per year. Our population estimate for confirmed cheetah presence areas is 11% lower than the IUCN's current assessment for the same region, lending additional support to the recent call for the up-listing of this species from vulnerable to endangered status.
A citizen science based survey method for estimating the density of urban carnivores.
Scott, Dawn M; Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W; Mill, Aileen C; Smith, Graham C; Tolhurst, Bryony A
2018-01-01
Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980's. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on species traits meeting particular criteria, and on resident responsiveness.
A citizen science based survey method for estimating the density of urban carnivores
Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W.; Mill, Aileen C.; Smith, Graham C.; Tolhurst, Bryony A.
2018-01-01
Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980’s. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on species traits meeting particular criteria, and on resident responsiveness. PMID:29787598
Estimation of avian population sizes and species richness across a boreal landscape in Alaska
Handel, Colleen M.; Swanson, S.A.; Nigro, Debora A.; Matsuoka, S.M.
2009-01-01
We studied the distribution of birds breeding within five ecological landforms in Yukon-Charley Rivers National Preserve, a 10,194-km2 roadless conservation unit on the Alaska-Canada border in the boreal forest zone. Passerines dominated the avifauna numerically, comprising 97% of individuals surveyed but less than half of the 115 species recorded in the Preserve. We used distance-sampling and discrete-removal models to estimate detection probabilities, densities, and population sizes across the Preserve for 23 species of migrant passerines and five species of resident passerines. Yellow-rumped Warblers (Dendroica coronata) and Dark-eyed Juncos (Junco hyemalis) were the most abundant species, together accounting for 41% of the migrant passerine populations estimated. White-winged Crossbills (Loxia leucoptera), Boreal Chickadees (Poecile hudsonica), and Gray Jays (Perisoreus canadensis) were the most abundant residents. Species richness was greatest in the Floodplain/Terrace landform flanking the Yukon River but densities were highest in the Subalpine landform. Species composition was related to past glacial history and current physiography of the region and differed notably from other areas of the northwestern boreal forest. Point-transect surveys, augmented with auxiliary observations, were well suited to sampling the largely passerine avifauna across this rugged landscape and could be used across the boreal forest region to monitor changes in northern bird distribution and abundance. ?? 2009 The Wilson Ornithological Society.
Kadlec, Sarah M; Johnson, Rodney D; Mount, David R; Olker, Jennifer H; Borkholder, Brian D; Schoff, Patrick K
2017-12-01
Testicular oocytes (TOs) have been found in black bass (Micropterus spp.) from many locations in North America. The presence of TOs is often assumed to imply exposure to estrogenic endocrine disrupting compounds (EDCs); however, a definitive causal relationship has yet to be established, and TO prevalence is not consistently low in fish from areas lacking evident EDC sources. This might indicate any of a number of situations: 1) unknown or unidentified EDCs or EDC sources, 2) induction of TOs by other stressors, or 3) testicular oocytes occurring spontaneously during normal development. In the present study, we analyzed TO occurrence in smallmouth bass (Micropterus dolomieu) from 8 populations in northeastern Minnesota watersheds with differing degrees of human development and, hence, presumed likelihood of exposure to anthropogenic chemicals. Three watersheds were categorized as moderately developed, based on the presence of municipal wastewater discharges and higher human population density (4-81 per km 2 ), and 5 watersheds were minimally developed, with very low human population density (0-1 per km 2 ) and minimal built environment. Testicular tissues from mature fish were evaluated using a semiquantitative method that estimated TO density, normalized by cross-sectional area. Testicular oocyte prevalence and density among populations from moderately developed watersheds was higher than in populations from minimally developed watersheds. However, TO prevalence was unexpectedly high and variable (7-43%) in some populations from minimally developed watersheds, and only weak evidence was found for a relationship between TO density and watershed development, suggesting alternative or more complex explanations for TO presence in smallmouth bass from this region. Environ Toxicol Chem 2017;36:3424-3435. © 2017 SETAC. © 2017 SETAC.
Nakaya, Tomoki; Honjo, Kaori; Hanibuchi, Tomoya; Ikeda, Ai; Iso, Hiroyasu; Inoue, Manami; Sawada, Norie; Tsugane, Shoichiro
2014-01-01
Despite evidence that neighbourhood conditions affect residents' health, no prospective studies of the association between neighbourhood socio-demographic factors and all-cause mortality have been conducted in non-Western societies. Thus, we examined the effects of areal deprivation and population density on all-cause mortality in Japan. We employed census and survival data from the Japan Public Health Center-based Prospective Study, Cohort I (n = 37,455), consisting of middle-aged residents (40 to 59 years at the baseline in 1990) living in four public health centre districts. Data spanned between 1990 and 2010. A multilevel parametric proportional-hazard regression model was applied to estimate the hazard ratios (HRs) of all-cause mortality by two census-based areal variables--areal deprivation index and population density--as well as individualistic variables such as socioeconomic status and various risk factors. We found that areal deprivation and population density had moderate associations with all-cause mortality at the neighbourhood level based on the survival data with 21 years of follow-ups. Even when controlling for individualistic socio-economic status and behavioural factors, the HRs of the two areal factors (using quartile categorical variables) significantly predicted mortality. Further, this analysis indicated an interaction effect of the two factors: areal deprivation prominently affects the health of residents in neighbourhoods with high population density. We confirmed that neighbourhood socio-demographic factors are significant predictors of all-cause death in Japanese non-metropolitan settings. Although further study is needed to clarify the cause-effect relationship of this association, the present findings suggest that health promotion policies should consider health disparities between neighbourhoods and possibly direct interventions towards reducing mortality in densely populated and highly deprived neighbourhoods.
Elliott, Jane C; Lucas, Robyn M; Clements, Mark S; Bambrick, Hilary J
2010-09-01
Type 1 diabetes incidence has increased rapidly over the last 20 years, and ecological studies show inverse latitudinal gradients for both incidence and prevalence. Some studies have found season of birth or season of diagnosis effects. Together these findings suggest an important role for environmental factors in disease etiology. To examine whether type 1 diabetes incidence varies in relation to ambient ultraviolet radiation (UVR) in Australian children. We used case records of 4773 children aged 0-14 yr from the Australian National Diabetes Register to estimate type 1 diabetes incidence in relation to residential ambient UVR, both as a continuous variable and in four categories. We examined season of birth and season of diagnosis and variation in these parameters and in age at diagnosis, in relation to ambient UVR. Overall incidence was 20 per 100 000 population with no sex difference. There was a statistically significant trend toward winter diagnosis (adjusted RR = 1.22, 95% CI 1.13-1.33, p<0.001) but no apparent season of birth effect. Incidence in the highest UVR category was significantly lower than in the lowest UVR category (RR = 0.85, 95% CI 0.75-0.96). We found an inverse association between incidence and ambient UVR that was present only at low population densities; at high population densities type 1 diabetes incidence increased with increasing ambient UVR. In low population density, largely rural environments, ambient UVR may better reflect the personal UV dose, with the latter being protective for the development of type 1 diabetes. This effect is lost or reversed in high population density, largely urban, environments.
Dorazio, Robert; Kumar, N. Samba; Royle, Andy; Gopalaswamy, Arjun M.
2017-01-01
Tigers predominantly prey on large ungulate species, such as sambar (Cervus unicolor), red deer (Cervus elaphus), gaur (Bos gaurus), banteng (Bos javanicus), chital (Axis axis), muntjac (Muntiacus muntjak), wild pig (Sus scrofa), and bearded pig (Sus barbatus). The density of a tiger population is strongly correlated with the density of such prey species (Karanth et al. 2004). In the absence of direct hunting of tigers, abundance of prey in an area is the key determinant of the “carrying capacity” of that area for tigers (Chap. 2). Accurate estimates of prey abundance are often needed to assess the potential number of tigers a conservation area can support.
Aliakbarpour, Hamaseh; Rawi, Che Salmah Md
2011-08-01
Populations of several thrips species were estimated using yellow sticky traps in an orchard planted with mango, Mangifera indica L. during the dry and wet seasons beginning in late 2008-2009 on Penang Island, Malaysia. To determine the efficacy of using sticky traps to monitor thrips populations, we compared weekly population estimates on yellow sticky traps with thrips population sizes that were determined (using a CO(2) method) directly from mango panicles. Dispersal distance and direction of thrips movement out of the orchard also were studied using yellow sticky traps placed at three distances from the edge of the orchard in four cardinal directions facing into the orchard. The number of thrips associated with the mango panicles was found to be correlated with the number of thrips collected using the sticky trap method. The number of thrips captured by the traps decreased with increasing distance from the mango orchard in all directions. Density of thrips leaving the orchard was related to the surrounding vegetation. Our results demonstrate that sticky traps have the potential to satisfactorily estimate thrips populations in mango orchards and thus they can be effectively employed as a useful tactic for sampling thrips.
Contribution potential of glaciers to water availability in different climate regimes
Kaser, Georg; Großhauser, Martin; Marzeion, Ben
2010-01-01
Although reliable figures are often missing, considerable detrimental changes due to shrinking glaciers are universally expected for water availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river systems. We find that the seasonally delayed glacier contribution is largest where rivers enter seasonally arid regions and negligible in the lowlands of river basins governed by monsoon climates. By comparing monthly glacier melt contributions with population densities in different altitude bands within each river basin, we demonstrate that strong human dependence on glacier melt is not collocated with highest population densities in most basins. PMID:21059938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.
Based on a compilation of three estimation approaches, the total nationwide population of wild pigs in the United States numbers approximately 6.3 million animals, with that total estimate ranging from 4.4 up to 11.3 million animals. The majority of these numbers (99 percent), which were encompassed by ten states (i.e., Alabama, Arkansas, California, Florida, Georgia, Louisiana, Mississippi, Oklahoma, South Carolina and Texas), were based on defined estimation methodologies (e.g., density estimates correlated to the total potential suitable wild pig habitat statewide, statewide harvest percentages, statewide agency surveys regarding wild pig distribution and numbers). In contrast to the pre-1990 estimates, nonemore » of these more recent efforts, collectively encompassing 99 percent of the total, were based solely on anecdotal information or speculation. To that end, one can defensibly state that the wild pigs found in the United States number in the millions of animals, with the nationwide population estimated to arguably vary from about four million up to about eleven million individuals.« less
Guillaumet, Alban; Kuntz, Wendy A.; Samuel, Michael D.; Paxton, Eben H.
2017-01-01
Altitudinal movement by tropical birds to track seasonally variable resources can move them from protected areas to areas of increased vulnerability. In Hawaiʻi, historical reports suggest that many Hawaiian honeycreepers such as the ‘I‘iwi (Drepanis coccinea) once undertook seasonal migrations, but the existence of such movements today is unclear. Because Hawaiian honeycreepers are highly susceptible to avian malaria, currently minimal in high-elevation forests, understanding the degree to which honeycreepers visit lower elevation forests may be critical to predict the current impact of malaria on population dynamics and how susceptible bird populations may respond to climate change and mitigation scenarios. Using radio telemetry data, we demonstrate for the first time that a large fraction of breeding adult and juvenile ‘I‘iwi originating from an upper-elevation (1,920 m) population at Hakalau Forest National Wildlife Refuge exhibit post-breeding movements well below the upper elevational limit for mosquitoes. Bloom data suggest seasonal variation in floral resources is the primary driver of seasonal movement for ‘I‘iwi. To understand the demographic implications of such movement, we developed a spatial individual-based model calibrated using previously published and original data. ʻI‘iwi dynamics were simulated backward in time, to estimate population levels in the absence of avian malaria, and forward in time, to assess the impact of climate warming as well as two potential mitigation actions. Even in disease-free ‘refuge’ populations, we found that breeding densities failed to reach the estimated carrying capacity, suggesting the existence of a seasonal “migration load” as a result of travel to disease-prevalent areas. We predict that ‘I‘iwi may be on the verge of extinction in 2100, with the total number of pairs reaching only ~ 0.2–12.3% of the estimated pre-malaria density, based on an optimistic climate change scenario. The probability of extinction of ‘I‘iwi populations, as measured by population estimates for 2100, is strongly related to their estimated migration propensity. Long-term conservation strategies likely will require a multi-pronged response including a reduction of malaria threats, habitat restoration and continued landscape-level access to seasonally variable nectar resources.
Characterizing fishing effort and spatial extent of coastal fisheries.
Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B
2010-12-29
Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.
Spatial Dependence and Sampling of Phytoseiid Populations on Hass Avocados in Southern California.
Lara, Jesús R; Amrich, Ruth; Saremi, Naseem T; Hoddle, Mark S
2016-04-22
Research on phytoseiid mites has been critical for developing an effective biocontrol strategy for suppressing Oligonchus perseae Tuttle, Baker, and Abatiello (Acari: Tetranychidae) in California avocado orchards. However, basic understanding of the spatial ecology of natural populations of phytoseiids in relation to O. perseae infestations and the validation of research-based strategies for assessing densities of these predators has been limited. To address these shortcomings, cross-sectional and longitudinal observations consisting of >3,000 phytoseiids and 500,000 O. perseae counted on 11,341 leaves were collected across 10 avocado orchards during a 10-yr period. Subsets of these data were analyzed statistically to characterize the spatial distribution of phytoseiids in avocado orchards and to evaluate the merits of developing binomial and enumerative sampling strategies for these predators. Spatial correlation of phytoseiids between trees was detected at one site, and a strong association of phytoseiids with elevated O. perseae densities was detected at four sites. Sampling simulations revealed that enumeration-based sampling performed better than binomial sampling for estimating phytoseiid densities. The ecological implications of these findings and potential for developing a custom sampling plan to estimate densities of phytoseiids inhabiting sampled trees in avocado orchards in California are discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Naugle, R.E.; Rutberg, A.T.; Underwood, H.B.; Turner, J.W.; Liu, I.K.; Kirkpatrick, J.F.; Lasley, B.L.; Allen, W.R.; Doberska, C.
2002-01-01
Application of contraception for the control of suburban populations of white-tailed deer (Odocoileus virginianus) has been much debated, but few data are available on field applications and even fewer on population effects. Between 1993 and 1997, 74-164 individually known female deer living on Fire Island, New York, USA, were treated remotely with an initial shot of 65 microg porcine zona pellucida (PZP) in Freund's complete adjuvant followed by booster injections of 65 microg PZP in Freund's incomplete adjuvant. Starting in 1996, progressively increasing numbers of deer were treated with vaccinating/marking darts. Estimates of population density and composition, using distance sampling methods, began in 1995 in selected portions of the study area. Between 1993 and 1997, fawning rates among individually known, treated adult females decreased by 78.9% from pretreatment rates. Population density in the most heavily treated area increased by 11% per year from 1995 to March 1998 and then decreased at 23% per year to October 2000. In 1999-2000 surveys, fawns comprised 13-14% of the total population in the most heavily treated area, versus 16-33% in nearby untreated areas. These results show that PZP can be delivered effectively to sufficient deer to affect population density and composition in some environments, but that technical and logistical improvements are needed before contraception can be used widely to manage suburban deer populations.
Modelling the impact of vector control interventions on Anopheles gambiae population dynamics
2011-01-01
Background Intensive anti-malaria campaigns targeting the Anopheles population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of Anopheles mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions. Methods An ecological model of Anopheles gambiae sensu lato populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density. Results A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density. Conclusions Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density. PMID:21798055
The role of parasites in the dynamics of a reindeer population.
Albon, S D; Stien, A; Irvine, R J; Langvatn, R; Ropstad, E; Halvorsen, O
2002-01-01
Even though theoretical models show that parasites may regulate host population densities, few empirical studies have given support to this hypothesis. We present experimental and observational evidence for a host-parasite interaction where the parasite has sufficient impact on host population dynamics for regulation to occur. During a six year study of the Svalbard reindeer and its parasitic gastrointestinal nematode Ostertagia gruehneri we found that anthelminthic treatment in April-May increased the probability of a reindeer having a calf in the next year, compared with untreated controls. However, treatment did not influence the over-winter survival of the reindeer. The annual variation in the degree to which parasites depressed fecundity was positively related to the abundance of O. gruehneri infection the previous October, which in turn was related to host density two years earlier. In addition to the treatment effect, there was a strong negative effect of winter precipitation on the probability of female reindeer having a calf. A simple matrix model was parameterized using estimates from our experimental and observational data. This model shows that the parasite-mediated effect on fecundity was sufficient to regulate reindeer densities around observed host densities. PMID:12184833
Functional and numerical responses of shrews to competition vary with mouse density.
Eckrich, Carolyn A; Flaherty, Elizabeth A; Ben-David, Merav
2018-01-01
For decades, ecologists have debated the importance of biotic interactions (e.g., competition) and abiotic factors in regulating populations. Competition can influence patterns of distribution, abundance, and resource use in many systems but remains difficult to measure. We quantified competition between two sympatric small mammals, Keen's mice (Peromyscus keeni) and dusky shrews (Sorex monticolus), in four habitat types on Prince of Wales Island in Southeast Alaska. We related shrew density to that of mice using standardized regression models while accounting for habitat variables in each year from 2010-2012, during which mice populations peaked (2011) and then crashed (2012). Additionally, we measured dietary overlap and segregation using stable isotope analysis and kernel utilization densities and estimated the change in whole community energy consumption among years. We observed an increase in densities of dusky shrews after mice populations crashed in 2012 as expected under competitive release. In addition, competition coefficients revealed that the influence of Keen's mice was dependent on their density. Also in 2012, shrew diets shifted, indicating that they were able to exploit resources previously used by mice. Nonetheless, increases in shrew numbers only partially compensated for the community energy consumption because, as insectivores, they are unlikely to utilize all food types consumed by their competitors. In pre-commercially thinned stands, which exhibit higher diversity of resources compared to other habitat types, shrew populations were less affected by changes in mice densities. These spatially and temporally variable interactions between unlikely competitors, observed in a relatively simple, high-latitude island ecosystem, highlight the difficulty in assessing the role of biotic factors in structuring communities.
Environment of Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Hou, K.-c.; Chen, L.-w.
2013-10-01
To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.
McFarland, Kent P; Lloyd, John D; Hardy, Spencer P
2017-06-04
We conducted point counts in the alpine zone of the Presidential Range of the White Mountains, New Hampshire, USA, to estimate the distribution and density of the rare endemic White Mountain Fritillary ( Boloria chariclea montinus ). Incidence of occurrence and density of the endemic White Mountain Fritillary during surveys in 2012 and 2013 were greatest in the herbaceous-snowbank plant community. Densities at points in the heath-shrub-rush plant community were lower, but because this plant community is more widespread in the alpine zone, it likely supports the bulk of adult fritillaries. White Mountain Fritillary used cushion-tussock, the other alpine plant community suspected of providing habitat, only sparingly. Detectability of White Mountain Fritillaries varied as a consequence of weather conditions during the survey and among observers, suggesting that raw counts yield biased estimates of density and abundance. Point counts, commonly used to study and monitor populations of birds, were an effective means of sampling White Mountain Fritillary in the alpine environment where patches of habitat are small, irregularly shaped, and widely spaced, rendering line-transect methods inefficient and difficult to implement.
AMOBH: Adaptive Multiobjective Black Hole Algorithm.
Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen
2017-01-01
This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.
Humpback whale-generated ambient noise levels provide insight into singers' spatial densities.
Seger, Kerri D; Thode, Aaron M; Urbán-R, Jorge; Martínez-Loustalot, Pamela; Jiménez-López, M Esther; López-Arzate, Diana
2016-09-01
Baleen whale vocal activity can be the dominant underwater ambient noise source for certain locations and seasons. Previous wind-driven ambient-noise formulations have been adjusted to model ambient noise levels generated by random distributions of singing humpback whales in ocean waveguides and have been combined to a single model. This theoretical model predicts that changes in ambient noise levels with respect to fractional changes in singer population (defined as the noise "sensitivity") are relatively unaffected by the source level distributions and song spectra of individual humpback whales (Megaptera novaeangliae). However, the noise "sensitivity" does depend on frequency and on how the singers' spatial density changes with population size. The theoretical model was tested by comparing visual line transect surveys with bottom-mounted passive acoustic data collected during the 2013 and 2014 humpback whale breeding seasons off Los Cabos, Mexico. A generalized linear model (GLM) estimated the noise "sensitivity" across multiple frequency bands. Comparing the GLM estimates with the theoretical predictions suggests that humpback whales tend to maintain relatively constant spacing between one another while singing, but that individual singers either slightly increase their source levels or song duration, or cluster more tightly as the singing population increases.
An empirical analysis of the Ebola outbreak in West Africa
NASA Astrophysics Data System (ADS)
Khaleque, Abdul; Sen, Parongama
2017-02-01
The data for the Ebola outbreak that occurred in 2014-2016 in three countries of West Africa are analysed within a common framework. The analysis is made using the results of an agent based Susceptible-Infected-Removed (SIR) model on a Euclidean network, where nodes at a distance l are connected with probability P(l) ∝ l-δ, δ determining the range of the interaction, in addition to nearest neighbors. The cumulative (total) density of infected population here has the form , where the parameters depend on δ and the infection probability q. This form is seen to fit well with the data. Using the best fitting parameters, the time at which the peak is reached is estimated and is shown to be consistent with the data. We also show that in the Euclidean model, one can choose δ and q values which reproduce the data for the three countries qualitatively. These choices are correlated with population density, control schemes and other factors. Comparing the real data and the results from the model one can also estimate the size of the actual population susceptible to the disease. Rescaling the real data a reasonably good quantitative agreement with the simulation results is obtained.
Size and spatial distribution of stray dog population in the University of São Paulo campus, Brazil.
Dias, Ricardo Augusto; Guilloux, Aline Gil Alves; Borba, Mauro Riegert; Guarnieri, Maria Cristina de Lourdes; Prist, Ricardo; Ferreira, Fernando; Amaku, Marcos; Neto, José Soares Ferreira; Stevenson, Mark
2013-06-01
A longitudinal study was carried out to describe the size and spatial distribution of the stray dog population in the University of São Paulo campus, Brazil from November 2010 to November 2011. The campus is located within the urban area of São Paulo, the largest city of Brazil, with a population over 11 million. The 4.2 km(2) that comprise the university grounds are walled, with 10 access gates, allowing stray dogs to move in and out freely. Over 100,000 people and 50,000 vehicles circulate in the campus daily. Five observations were made during the study period, using a mark-resight method. The same route was performed in all observations, being traveled twice on each observation day. Observed animals were photographed and the sight coordinates were obtained using a GPS device. The estimated size of the stray dog population varied from 32 (CI 95% 23-56) to 56 (CI 95% 45-77) individuals. Differences between in- and outward dog movements influenced dog population estimates. Overlapping home ranges of docile dogs were observed in areas where most people circulate. An elusive group was observed close to a protected rain forest area and the estimated home range for this group did not overlap with the home ranges for other dogs within the campus. A kernel density map showed that higher densities of stray dog sighting is associated with large organic matter generators, such as university restaurants. We conclude that the preferred source of food of the stray dogs on the University of São Paulo campus was leftover food deliberately offered by restaurant users. The population was stable during the study period and the constant source of food was the main reason to retain this population within the campus. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fujita, K.; Osawa, Y.; Kayanne, H.; Ide, Y.; Yamano, H.
2009-03-01
The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m-2 year-1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m-2 year-1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may adversely affect foraminiferal distribution and production.
Grossi, D A; Brito, L F; Jafarikia, M; Schenkel, F S; Feng, Z
2018-04-30
The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.
Population viability analysis for endangered Roanoke logperch
Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.
2016-01-01
A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.
Modeling sandhill crane population dynamics
Johnson, D.H.
1979-01-01
The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.
Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I
2008-10-27
The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.
Approach for computing 1D fracture density: application to fracture corridor characterization
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette
2016-04-01
Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.
Flight of the bumble bee: Buzzes predict pollination services.
Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace
2017-01-01
Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines.