Science.gov

Sample records for estrogen receptor alpha-binding

  1. Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters.

    PubMed

    Kwon, Young-Soo; Garcia-Bassets, Ivan; Hutt, Kasey R; Cheng, Christine S; Jin, Mingjie; Liu, Dongyan; Benner, Chris; Wang, Dong; Ye, Zhen; Bibikova, Marina; Fan, Jian-Bing; Duan, Lingxun; Glass, Christopher K; Rosenfeld, Michael G; Fu, Xiang-Dong

    2007-03-20

    ChIP coupled with microarray provides a powerful tool to determine in vivo binding profiling of transcription factors to deduce regulatory circuitries in mammalian cells. Aiming at improving the specificity and sensitivity of such analysis, we developed a new technology called ChIP-DSL using the DNA selection and ligation (DSL) strategy, permitting robust analysis with much reduced materials compared with standard procedures. We profiled general and sequence-specific DNA binding transcription factors using a full human genome promoter array based on the ChIP-DSL technology, revealing an unprecedented number of the estrogen receptor (ERalpha) target genes in MCF-7 cells. Coupled with gene expression profiling, we found that only a fraction of these direct ERalpha target genes were highly responsive to estrogen and that the expression of those ERalpha-bound, estrogen-inducible genes was associated with breast cancer progression in humans. This study demonstrates the power of the ChIP-DSL technology in revealing regulatory gene expression programs that have been previously invisible in the human genome.

  2. Estrogen receptors and endothelium.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Billon-Galés, Audrey; Favre, Julie; Laurell, Henrik; Lenfant, Françoise; Gourdy, Pierre

    2010-08-01

    Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators. PMID:20631350

  3. Selective Estrogen Receptor Modulators.

    PubMed

    An, Ki-Chan

    2016-08-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  4. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  5. Marijuana: interaction with the estrogen receptor.

    PubMed

    Sauer, M A; Rifka, S M; Hawks, R L; Cutler, G B; Loriaux, D L

    1983-02-01

    Crude marijuana extract competed with estradiol for binding to the estrogen receptor of rat uterine cytosol. Condensed marijuana smoke also competed with estradiol for its receptor. Pure delta 9-tetrahydrocannabinol, however, did not interact with the estrogen receptor. Ten delta 9-tetrahydrocannabinol metabolites also failed to compete with estradiol for its receptor. Of several other common cannabinoids tested, only cannabidiol showed any estrogen receptor binding. This was evident only at very high concentrations of cannabidiol. Apigenin, the aglycone of a flavinoid phytoestrogen found in cannabis, displayed high affinity for the estrogen receptor. To assess the biological significance of these receptor data, estrogen activity was measured in vivo with the uterine growth bioassay, using immature rats. Cannabis extract in large doses exhibited neither estrogenic nor antiestrogenic effects. Thus, although estrogen receptor binding activity was observed in crude marijuana extract, marijuana smoke condensate and several known components of cannabis, direct estrogenic activity of cannabis extract could not be demonstrated in vivo.

  6. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  7. Estrogen receptors in the wobbler mouse.

    PubMed

    Siegel, L I; Fox, T O

    1985-12-01

    Recent research has raised the interesting possibility that the neurological mutant mouse, wobbler (wr/wr), possesses an estrogen receptor deficit analogous to the androgen receptor deficiency found in androgen-resistant mice with testicular feminization. In the present report we examined estrogen-binding activity in cytosolic extracts of kidney, liver, and brain from wobbler mice, littermate control animals, and C57BL/6J mice, using DNA-cellulose chromatography. Estrogen binding components exhibiting properties of estrogen receptors were present in all tissues examined. Estrogen receptors adhered to DNA, displayed characteristic elution profiles from DNA-cellulose, and showed high affinity and limited capacity for estradiol, in contrast to non-receptor entities which bind estradiol. The qualitative elution patterns for estrogen receptors did not differ among groups within each tissue studied, and were similar to those reported previously in mouse kidney and brain. While estrogen receptors have been shown in mouse liver by other techniques, this is the first demonstration of putative estrogen receptors in mouse liver by DNA-cellulose chromatography. No consistent deficits in estrogen receptor concentration were found in wobblers compared to littermates. Thus, the data do not support the hypothesis that the wobbler mouse is an estrogen receptor-deficient mutant.

  8. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  9. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  10. Estrogen Receptors are Present in Neocortical Transplants

    PubMed Central

    Pedersen, Erik B.; O'Keefe, Joan A.; Handa, Robert J.; Castro, Anthony J.

    1992-01-01

    Fetal neocortical tissue was grafted into neocortical lesion cavities made in newborn rats. After two weeks survival, in vitro binding of [3H]- estradiol to cytosolic preparations provided evidence of estrogen receptors within the transplants. The observed high levels correspond to previous work demonstrating elevated estrogen receptor levels during the first postnatal week in the rat cerebral cortex. PMID:1515481

  11. Estrogen Receptors, the Hippocampus, and Memory

    PubMed Central

    Bean, Linda A.; Ianov, Lara; Foster, Thomas C.

    2015-01-01

    Estradiol effects on memory depend on hormone levels and the interaction of different estrogen receptors within neural circuits. Estradiol induces gene transcription and rapid membrane signaling mediated by estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and a recently characterized G-protein coupled estrogen receptor, each with distinct distributions and ability to influence estradiol-dependent signaling. Investigations using receptor specific agonists suggest that all three receptors rapidly activate kinase-signaling and have complex dose-dependent influences on memory. Research employing receptor knockout mice demonstrate that ERα maintains transcription and memory as estradiol levels decline. This work indicates a regulatory role of ERβ in transcription and cognition, which depends on estradiol levels and the function of ERα. The regulatory role of ERβ is due in part to ERβ acting as a negative regulator of ERα-mediated transcription. Vector-mediated expression of estrogen receptors in the hippocampus provides an innovative research approach and suggests that memory depends on the relative expression of ERα and ERβ interacting with estradiol levels. Notably, the ability of estradiol to improve cognition declines with advanced age along with decreased expression of estrogen receptors. Thus, it will be important for future research to determine the mechanisms that regulate estrogen receptor expression during aging. PMID:24510074

  12. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  13. Estrogen receptor expert system overview and examples

    EPA Science Inventory

    The estrogen receptor expert system (ERES) is a rule-based system developed to prioritize chemicals based upon their potential for binding to the ER. The ERES was initially developed to predict ER affinity of chemicals from two specific EPA chemical inventories, antimicrobial pe...

  14. Modulators of androgen and estrogen receptor activity.

    PubMed

    Clarke, Bart L; Khosla, Sundeep

    2010-01-01

    This review focuses on significant recent findings regarding modulators of androgen and estrogen receptor activity. Selective androgen receptor modulators (SARMs) interact with androgen receptors (ARs), and selective estrogen receptor modulators (SERMs) interact with estrogen receptors (ERs), with variable tissue selectivity. SERMs, which interact with both ERб and ERв in a tissue-specific manner to produce diverse outcomes in multiple tissues, continue to generate significant interest for clinical application. Development of SARMs for clinical application has been slower to date because of potential adverse effects, but these diverse compounds continue to be investigated for use in disorders in which modulation of the AR is important. SARMs have been investigated mostly at the basic and preclinical level to date, with few human clinical trials published. These compounds have been evaluated mostly for application in different stages of prostate cancer to date, but they hold promise for multiple other applications. Publication of the large STAR and RUTH clinical trials demonstrated that the SERMs tamoxifen and raloxifene have interesting similarities and differences in tissues that contain ERs. Lasofoxifene, bazedoxifene, and arzoxifene are newer SERMs that have been demonstrated in clinical trials to more potently increase bone mineral density and lower serum cholesterol values than tamoxifen or raloxifene. Both SARMs and SERMs hold great promise for therapeutic use in multiple disorders in which tissue-specific effects are mediated by their respective receptors.

  15. Estrogen receptors in prostate development and cancer

    PubMed Central

    Yeh, Chiuan-Ren; Da, Jun; Song, Wenbin; Fazili, Anees; Yeh, Shuyuan

    2014-01-01

    Prostate cancer (PCa) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. To date, a growing body of evidence showed that estrogen and estrogen receptors (ERs) could regulate prostate development, as well as cancer initiation and progression. This review will address the expression levels and function of ERs in different stages of PCa progression. The functions of ERs in different types of prostate cells, the ligand effect, and the potential applications of selective estrogen modulators (SERMs) will also be discussed. To further dissect ERs’ roles in prostate development, cell type specific ER knockout mouse models were generated. Results collected from the prostate cell type-specific ERαKO mouse models provided new insights about the cell type specific ERα roles in prostate development prenatally and postnatally. The results of ERs’ roles in mouse PCa mode and the correlation of ERs expression and biomedical outcome will also be discussed. PMID:25374919

  16. Estrogen-related Receptor β Reduces the Subnuclear Mobility of Estrogen Receptor α and Suppresses Estrogen-dependent Cellular Function*

    PubMed Central

    Tanida, Takashi; Matsuda, Ken Ichi; Yamada, Shunji; Hashimoto, Takashi; Kawata, Mitsuhiro

    2015-01-01

    Estrogen-related receptor (ERR) is a member of the nuclear receptor superfamily that has strong homology with estrogen receptor (ER) α. ERR has three subtypes (α, β, and γ) expressed in estrogen-sensitive organs, including ovary, breast, and brain. No endogenous ligands of ERRs have been identified, but these receptors share a common DNA element with ERα and control estrogen-mediated gene transcription. Recent evidence suggests a role of ERRs in estrogen-related pathophysiology, but the detailed mechanisms of ERR functions in estrogen-related tissues are unclear. Using live-cell imaging with fluorescent protein labeling, we found that only ERRβ among the ERRs exhibits a punctate intranuclear pattern overlapping with ERα following 17β-estradiol (E2)-stimulation. Fluorescence recovery after photobleaching showed significant reduction of the mobility of ligand-activated ERα with co-expression of ERRβ. Fluorescence resonance energy transfer revealed that ERRβ directly interacts with ERα. The N-terminal domain of ERRβ was identified as the region that interacts with ERα. We also found a correlation between punctate cluster formation of ERα and interaction between the receptors. Expression of ERRβ significantly repressed ERα-mediated transactivity, whereas that of other ERR subtypes had no effect on the transactivity of ERα. Consistent with this finding, E2-stimulated proliferation of MCF-7 breast carcinoma cells and bcl-2 expression was significantly inhibited by expression of ERRβ. These results provide strong evidence for a suppressive effect of ERRβ on estrogen signaling through reduction of the intranuclear mobility of ERα. The findings further suggest a unique inhibitory role for ERRβ in estrogen-dependent cellular function such as cancer cell proliferation. PMID:25805499

  17. Estrogen receptors and human disease: an update

    PubMed Central

    Burns, Katherine A.

    2016-01-01

    A myriad of physiological processes in mammals are influenced by estrogens and the estrogen receptors (ERs), ERα and ERβ. As we reviewed previously, given the widespread role for estrogen in normal human physiology, it is not surprising that estrogen is implicated in the development or progression of a number of diseases. In this review, we are giving a 5-year update of the literature regarding the influence of estrogens on a number of human cancers (breast, ovarian, colorectal, prostate, and endometrial), endometriosis, fibroids, and cardiovascular disease. A large number of sophisticated experimental studies have provided insights into human disease, but for this review, the literature citations were limited to articles published after our previous review (Deroo and Korach in J Clin Invest 116(3):561–570, 2006) and will focus in most cases on human data and clinical trials. We will describe the influence in which estrogen’s action, through one of or both of the ERs, mediates the aforementioned human disease states. PMID:22648069

  18. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  19. Estrogen receptor variant ER-α36 is involved in estrogen neuroprotection against oxidative toxicity.

    PubMed

    Han, S; Zhao, B; Pan, X; Song, Z; Liu, J; Gong, Y; Wang, M

    2015-12-01

    It is well known that estrogen exerts neuroprotective effect against various neuronal damages. However, the estrogen receptor (ER) that mediates estrogen neuroprotection has not been well established. In this study, we investigated the potential receptor that mediates estrogen neuroprotection and the underlying molecular mechanisms. Hydrogen peroxide (H2O2) was chosen as an agent in our study to mimic free radicals that are often involved in the pathogenesis of many degenerative diseases. We found that in human SY5Y and IMR-32 cells, the estrogen neuroprotection against H2O2 toxicity was abrogated by knockdown of a variant of estrogen receptor-α, ER-α36. We also studied the rapid estrogen signaling mediated by ER-α36 in neuroprotective effect and found the PI3K/AKT and MAPK/ERK1/2 signaling mediated by ER-α36 is involved in estrogen neuroprotection. We also found that GPER, an orphan G protein-coupled receptor, is not involved in ER-α36-mediated rapid estrogen response. Our study thus demonstrates that ER-α36-mediated rapid estrogen signaling is involved in the neuroprotection activity of estrogen against oxidative toxicity. PMID:26383254

  20. Functional roles of plasma membrane localized estrogen receptors.

    PubMed

    Sreeja, S; Thampan, RaghavaVarman

    2003-07-01

    A series of emerging data supports the existence and importance of plasma membrane localized estrogen receptors in a variety of cells that are targets for the steroid hormone action. When estradiol (E2) binds to the cell surface protein, the ensuing signal transduction event triggers downstream signaling cascades that contribute to important biological functions. Aside from the classical signaling through nuclear estrogen receptors, we have provided evidence for the functional roles of an estrogen receptor localized in the plasma membrane. This review highlights some of the recent advances made in the understanding of the genomic/non-genomic actions of plasma membrane localized estrogen receptors. PMID:15255376

  1. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death.

    PubMed

    Smith, Joshua A; Das, Arabinda; Butler, Jonathan T; Ray, Swapan K; Banik, Naren L

    2011-09-01

    Inflammation is an important pathogenic mechanism in many neurodegenerative disorders. Activated microglia play a pivotal role in releasing pro-inflammatory factors including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) for inducing inflammation. While microglia mediated inflammation is essential in maintaining CNS homeostasis, chronic inflammation results in activation of proteases for cell death. Here, we examined the effect of PPT (estrogen receptor α agonist), DPN (estrogen receptor β agonist), and estrogen on rat primary microglia following exposure to lipopolysaccharide (LPS). Exposure of microglia to LPS (200 ng/ml) for 24 h induced cell death. After LPS toxicity for 15 min, microglia were treated with 25 nM PPT, 25 nM DPN, or 100 nM estrogen that prevented cell death by attenuating the release of IL-1α, IL-1β, TNF-α, and COX-2. Treatment of cells with 100 nM fulvestrant (estrogen receptor antagonist) prior to addition of PPT, DPN, or estrogen significantly decreased their ability to prevent cell death, indicating involvement of estrogen receptor (ER) in providing PPT, DPN, or estrogen mediated cytoprotection. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses showed alterations in mRNA expression of Bax, Bcl-2, calpain, and calpastatin during apoptosis. We also examined mRNA expression of ERβ and ERα following exposure of microglia to LPS and subsequent treatment with PPT, DPN, or estrogen. We found that estrogen or estrogen receptor agonists upregulated expression of ERs. Overall, results indicate that estrogen receptor agonist or estrogen uses a receptor mediated pathway to protect microglia from LPS toxicity.

  2. Synergistic activation of estrogen receptor with combinations of environmental chemicals

    SciTech Connect

    Arnold, S.F.; Klotz, D.M.; Collins, B.M.

    1996-06-07

    Certain chemicals in the environment are estrogenic. The low potencies of the compounds, when studied singly, suggest that they may have little effect on biological systems. The estrogenic potencies of combinations of such chemicals were screened in a simple yeast estrogen potencies of combination of such chemicals were screened in a simple yeast estrogen systems (YES) containing human estrogen receptor (hER). Combinations of two weak environmental estrogens, such as dieldrin, endosulfan, or toxaphene, were 100 times as potent in hER-mediated transactivation as any chemical alone. Hydroxylated polychlorinated biphenyls shown previously to synergistically alter sexual development in turtles also synergized in the YES. The synergistic interaction of chemical mixtures with the estrogen receptor may have profound environmental implications. These results may represent a previously uncharacterized level of regulation of estrogen-associated responses. 32 refs., 3 figs., 3 tabs.

  3. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  4. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D).

  5. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  6. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  7. The expression of estrogen receptor and estrogen effect in MBA-15 marrow stromal osteoblasts.

    PubMed

    Shamay, A; Knopov, V; Benayahu, D

    1996-06-01

    MBA-15, a marrow stromal-derived cell line, was shown to express an estrogen receptor. This finding was confirmed by in situ hybridization and receptor binding assay. An exposure to estrogen (10(-12)-10(-6) M) in a dose response manner resulted in a decrease of cell proliferation as measured by MTT assay. Cell function was measured by enzymatic activities of two osteoblastic markers, CD10/NEP and alkaline phosphatase. These enzymatic activities were elevated following the estrogen treatment. This model enabled direct evaluation of the estrogen effect on stromal osteoblast cells. PMID:8858824

  8. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  9. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  10. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells

    SciTech Connect

    Park, Eunsook; Gong, Eun-Yeung; Romanelli, Maria Grazia; Lee, Keesook

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer TTF-2 was expressed in mammary glands and breast cancer cells. Black-Right-Pointing-Pointer TTF-2 repressed ER{alpha} transactivation. Black-Right-Pointing-Pointer TTF-2 inhibited the proliferation of breast cancer cells. -- Abstract: Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ER{alpha} co-repressor. TTF-2 inhibited ER{alpha} transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ER{alpha}, colocalizing with ER{alpha} in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ER{alpha} target genes such as pS2 and cyclin D1 by interrupting ER{alpha} binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ER{alpha} as a corepressor and play a role in ER-dependent proliferation of mammary cells.

  11. Estrogen Receptor Ligands: A Review (2013–2015)

    PubMed Central

    Farzaneh, Shabnam; Zarghi, Afshin

    2016-01-01

    Estrogen receptors (ERs) are a group of compounds named for their importance in both menstrual and estrous reproductive cycles. They are involved in the regulation of various processes ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. Estrogens attract great attention due to their wide applications in female reproductive functions and treatment of some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER ligands published in international journals patented between 2013 and 2015. The broad physiological profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor, subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse side effects, based on the different distributions and relative levels of the two ER subtypes in different estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory, and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved in the regulation of many complex physiological functions in humans. Selective estrogen ligands are highly promising targets for treatment of some types of cancer, as well as for cardiovascular, inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of ER ligands based on small molecules indicate that many different structural scaffolds may provide high

  12. Membrane estrogen receptors: genomic actions and post transcriptional regulation.

    PubMed

    Jacob, Julie; Sebastian, K S; Devassy, Sony; Priyadarsini, Lakshmi; Farook, Mohamed Febin; Shameem, A; Mathew, Deepa; Sreeja, S; Thampan, Raghava Varman

    2006-02-26

    The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta. PMID:16423448

  13. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  14. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  15. Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels

    PubMed Central

    Smiley, Dia A.; Khalil, Raouf A.

    2010-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  16. Estrogen and estrogen receptors in cardiovascular oxidative stress.

    PubMed

    Arias-Loza, Paula-Anahi; Muehlfelder, Melanie; Pelzer, Theo

    2013-05-01

    The cardiovascular system of a premenopausal woman is prepared to adapt to the challenges of increased cardiac output and work load that accompany pregnancy. Thus, it is tempting to speculate whether enhanced adaptability of the female cardiovascular system might be advantageous under conditions that promote cardiovascular disease. In support of this concept, 17β-estradiol as the major female sex hormone has been shown to confer protective cardiovascular effects in experimental studies. Mechanistically, these have been partially linked to the prevention and protection against oxidative stress. Current evidence indicates that estrogens attenuate oxidative stress at two levels: first, by preventing generation of reactive oxygen species (ROS) and, second, by scavenging ROS in the myocardium and in the vasculature. The purpose of this review is to give an overview on current concepts on conditions and mechanisms by which estrogens protect the cardiovascular system against ROS-mediated cellular injury.

  17. Selective estrogen receptor modulators (SERMs): new alternatives for osteoarthritis?

    PubMed

    Lugo, L; Villalvilla, A; Largo, R; Herrero-Beaumont, G; Roman-Blas, J A

    2014-04-01

    The dramatic rise in the prevalence rate of osteoarthritis (OA) after the menopause and the presence of estrogen receptors in joint tissues suggest that estrogen may help protect against the development of OA. Trials of estrogen therapy have produced inconclusive results, however, partly because of flaws in study design and partly because of the complexity of the mechanisms underlying estrogen's effects on joint tissues. Initial studies of the use of selective estrogen receptor modulators (SERMs) have reported beneficial effects in OA. These agents may exert both a direct effect upon joint cartilage and indirect effects on subchondral bone, synovium, muscle, tendons and ligaments. SERMs may be particularly beneficial for postmenopausal patients with osteoporotic OA, a phenotype defined by decreased bone density, associated with high remodeling in subchondral bone. More research is needed, though, before SERMs can become a therapeutic option for OA.

  18. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα) are both transcriptional regulators of the Runx2-I isoform.

    PubMed

    Kammerer, Martial; Gutzwiller, Sabine; Stauffer, Daniela; Delhon, Isabelle; Seltenmeyer, Yves; Fournier, Brigitte

    2013-04-30

    Runx2 is a master regulator of bone development and has also been described as an oncogene. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα), both implicated in bone metabolism and breast cancer, have been shown to share common transcriptional targets. Here, we show that ERα is a positive regulator of Runx2-I transcription. Moreover, ERRα can act as a transcriptional activator of Runx2-I in presence of peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α). In contrast, ERRα behaves as a negative regulator of Runx2-I transcription in presence of PGC-1β. ERα and ERRα cross-talk via a common estrogen receptor response element on the Runx2-I promoter. In addition, estrogen regulates PGC-1β that in turn is able to modulate both ERα and ERRα transcriptional activity.

  19. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  20. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions.

  1. The "busy life" of unliganded estrogen receptors.

    PubMed

    Stellato, Claudia; Porreca, Immacolata; Cuomo, Danila; Tarallo, Roberta; Nassa, Giovanni; Ambrosino, Concetta

    2016-01-01

    Understanding of the role of estrogen receptors (ERα and ERβ) in the pathophysiology of breast cancer (BC) has considerably increased in last decades. Despite sharing a similar structure, these two transcription factors often exert opposite roles in BC. In addition, it has been shown that their transcriptional activity is not strictly associated to ligand activation and that unliganded ERs are able to "have a life on their own." This appears to be mainly due to ligand-independent mechanisms leading to ERs PTMs or to their recruitment to specific protein complexes, dependent on cellular context. Furthermore, a significant unliganded ER activity, probably independent by the activation of other pathways, has been recently reported to affect gene transcription, microRNA expression, and downstream proteome. In this review, we describe recent findings on nuclear and cytoplasmic unliganded ERα and ERβ activity. We focus on functional genomics, epigenomics, and interaction proteomics data, including PTM induced by ERs-modulated miRNAs in the BC context. A better comprehension of the molecular events controlled by unliganded ERs activity in BC pathogenesis is crucial since it may impact the therapeutic approach to the initial or acquired resistance to endocrine therapies, frequently experienced in the treatment of BC. PMID:26508451

  2. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy.

    PubMed

    Fan, Ping; Maximov, Philipp Y; Curpan, Ramona F; Abderrahman, Balkees; Jordan, V Craig

    2015-12-15

    During the past 20 years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed "morning after pill", was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite "antiestrogen" resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women's health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term hormone replacement therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells.

  3. The adverse effects of estrogen and selective estrogen receptor modulators on hemostasis and thrombosis.

    PubMed

    Artero, Arturo; Tarín, Juan J; Cano, Antonio

    2012-11-01

    Agonists of the estrogen receptor include estrogens and selective estrogen receptor modulators (SERMs). Both types of compounds increase the risk for thrombosis in the arterial and the venous tree. The magnitude of the effect is influenced by potency, which depends on the type of compound and the dose. The particulars of the process change in each territory. Atherosclerosis, which creates local inflammatory conditions, may favor thrombogenesis in arteries. A direct effect of estrogen agonists is also well endorsed at both arteries, as suggested from data with high-estrogenic contraceptives, and veins. Dose reduction has been proved to be an effective strategy, but there is debate on whether additional benefit may be attained beyond a certain threshold. Hormone therapy and SERMs exhibit a lower potency estrogenic profile, but are mainly used by older women, who have a baseline increased thrombogenic risk. When used as sole agents, estrogens substantially reduce the increased risk (venous thrombosis) or may even be neutral (coronary disease). SERMs exhibit a neutral profile for coronary disease and possibly for stroke but not for venous thrombosis.

  4. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  5. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  6. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  7. Estrogen Receptors and Their Implications in Colorectal Carcinogenesis

    PubMed Central

    Caiazza, Francesco; Ryan, Elizabeth J.; Doherty, Glen; Winter, Desmond C.; Sheahan, Kieran

    2015-01-01

    Upon binding their cognate receptors, ERα (ESR1) and ERβ (ESR2), estrogens activate intracellular signaling cascades that have important consequences for cellular behavior. Historically linked to carcinogenesis in reproductive organs, estrogens have also been implicated in the pathogenesis of different cancer types of non-reproductive tissues including the colon. ERβ is the predominant estrogen receptor expressed in both normal and malignant colonic epithelium. However, during colon cancer progression, ERβ expression is lost, suggesting that estrogen signaling may play a role in disease progression. Estrogens may in fact exert an anti-tumor effect through selective activation of pro-apoptotic signaling mediated by ERβ, inhibition of inflammatory signals and modulation of the tumor microenvironment. In this review, we analyze the estrogen pathway as a possible therapeutic avenue in colorectal cancer, we report the most recent experimental evidence to explain the cellular and molecular mechanisms of estrogen-mediated protection against colorectal tumorigenesis, and we discuss future challenges and potential avenues for targeted therapy. PMID:25699240

  8. Structural and Functional Diversity of Estrogen Receptor Ligands

    PubMed Central

    Farooq, Amjad

    2015-01-01

    Estrogen receptors, comprised of ERα and ERβ isoforms in mammals, act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions from sexual development and reproduction to metabolic homeostasis. Herein, I revisit the structural basis of the binding of ERα to DNA and estradiol in light of the recent discoveries and emerging trends in the field of nuclear receptors. A particular emphasis of this review is on the chemical and structural diversity of an ever-increasing repertoire of physiological, environmental and synthetic ligands of estrogen receptors that ultimately modulate their interactions with cognate DNA located within the promoters of estrogen-responsive genes. In particular, modulation of estrogen receptors by small molecule ligands represents an important therapeutic goal toward the treatment of a wide variety of human pathologies including breast cancer, cardiovascular disease, osteoporosis and obesity. Collectively, this article provides an overview of a wide array of small organic and inorganic molecules that can fine-tune the physiological function of estrogen receptors, thereby bearing a direct impact on human health and disease. PMID:25866274

  9. [Association of estrogens and selective estrogens receptors modulators: towards a renewal of the hormonal treatment?].

    PubMed

    Valéra, Marie-Cécile; Chantalat, Elodie; Vinel, Alexia; Benoit, Thibaut; Guillaume, Maeva; Game, Xavier; Gourdy, Pierre; Trémollières, Florence; Payrastre, Bernard; Arnal, Jean-François

    2015-01-01

    The life expectancy of women has risen in the past century from 48years to more than 80. The decline of endogenous estrogen production (in particular, the principal circulating physiological hormone, 17β-estradiol) at menopause (which occurs at an average of 51years) is often accompanied by a series of functional disorders that affect quality of life (QoL). This estrogen deficiency affects different tissues and results in an increase in the prevalence of various disorders, including but not limited to osteoporosis and cardiovascular disease. Hormone therapy for menopause is a relatively recent biomedical challenge, which underwent a downturn after the Women Health Initiative study of older postmenopausal women. We will summarize the WHI findings in the first part of this article. At Inserm unit 1048, we are working on understanding the protective effects of estrogen against the development of atherosclerosis and type 2 diabetes in murine models. We have also focused in recent years on modeling the impact of estrogen in thrombosis models, to attempt to clarify the complex relation between estrogen and thrombotic risk. In part II of this article, we will describe a new strategy of hormone therapy for menopause, combining estrogens and selective estrogen receptor modulators (SERM). We review the scientific underpinnings of this strategy, which may enable the renewal of hormone therapy for menopause.

  10. Comparative analysis of the interaction of various estrogens with the estrogen-receptor system of the uterus

    SciTech Connect

    Fanchenko, N.D.; Alekseeva, M.L.; Minina, L.S.; Novikov, E.A.; Khel'mun, D.K.

    1986-05-20

    The binding of various labeled estrogens under conditions of equilibrium in the cytosol of the uterus of sexually immature Wistar rats was studied. An analysis of the data obtained, as well as the kinetics of the dissociation of the complexes of the ligands used with specific high-affinity estrogen-binding sites of the cytosol, suggested that the population of estrogen receptors in the rat uterus is homogeneous. The possibility of intracellular regulation of the action of estrogens in the target cell in the presence of a homogeneous population of receptors, both at the receptor and at the post-receptor stages, is suggested.

  11. The linear C-terminal regions of epidermal growth factor (EGF) and transforming growth factor-alpha bind to different epitopes on the human EGF receptor.

    PubMed Central

    Lenferink, A E; De Roos, A D; Van Vugt, M J; Van de Poll, M L; Van Zoelen, E J

    1998-01-01

    Epidermal growth factor (EGF) and transforming growth factor-alpha (TGFalpha) bind with similar affinities in a competitive fashion to the human EGF receptor, and basically induce similar mitogenic responses. In spite of the fact that EGF and TGFalpha are structurally alike, it is still not clear if the two growth factors bind the receptor in an identical manner. The observation that the 13A9 antibody blocks binding of TGFalpha, but not that of EGF, to the human EGF receptor [Winkler, O'Connor, Winget and Fendly (1989) Biochemistry 28, 6373-6378] suggests that their binding characteristics are not identical. In the present study we have made use of a set of EGF/TGFalpha chimaeric molecules to show that the 13A9 antibody blocks receptor binding of ligands with TGFalpha sequences, but not of ligands with EGF sequences, in their C-terminal linear regions. Using HaCaT human keratinocyte cells in culture, it was determined that ligands that are able to bind the EGF receptor in the presence of 13A9 are also able to induce calcium release from intracellular stores in these cells, indicating that these ligands have the ability to activate the EGF receptor in the presence of the antibody. From these data it is concluded that the flexible C-terminal linear domains of EGF and TGFalpha bind to separate sequences on the EGF receptor, such that the binding domain of TGFalpha, but not that of EGF, overlaps with the binding epitope of the 13A9 antibody. PMID:9806896

  12. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen.

    PubMed

    Sasson, S; Notides, A C

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-[3H]hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-[3H]hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with [3H]estradiol. However, a competitive binding assay with a saturating concentration of [3H] estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with [3H]estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  13. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen

    SciTech Connect

    Sasson, S.; Notides, A.C.

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-(/sup 3/H)hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-(/sup 3/H)hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with (/sup 3/H)estradiol. However, a competitive binding assay with a saturating concentration of (/sup 3/H) estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with (/sup 3/H)estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  14. Estrogen-related receptor β (ERRβ) – renaissance receptor or receptor renaissance?

    PubMed Central

    Divekar, Shailaja D.; Tiek, Deanna M.; Fernandez, Aileen; Riggins, Rebecca B.

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  15. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  16. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  17. Designer interface peptide grafts target estrogen receptor alpha dimerization.

    PubMed

    Chakraborty, S; Asare, B K; Biswas, P K; Rajnarayanan, R V

    2016-09-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide "I-box" derived from ER residues 503-518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479-485), LQQQHQRLAQ (residues 497-506), and LSHIRHMSNK (residues 511-520) and reported the suitability of using LQQQHQRLAQ (ER 497-506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. PMID:27462021

  18. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  19. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    SciTech Connect

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.; Katamreddy, Subba R.; Navas III, Frank; Miller, Aaron B.; Williams, Shawn P.; Gray, David W.; Orband-Miller, Lisa A.; Shearin, Jean; Heyer, Dennis

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  20. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene.

    PubMed

    Tran, Thi Kim Anh; MacFarlane, Geoff R; Kong, Richard Yuen Chong; O'Connor, Wayne A; Yu, Richard Man Kit

    2016-10-01

    In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The

  1. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    SciTech Connect

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoforms with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  2. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  3. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  4. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor {alpha} homo-dimerization

    SciTech Connect

    Oh, Yohan; Chung, Kwang Chul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of a DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.

  5. NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity.

    PubMed

    Kim, Hye-In; Kim, Taelim; Kim, Ji-Eun; Lee, Jun; Heo, Jinyuk; Lee, Na-Rae; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Estrogens act through interactions with estrogen receptors (ERs) to play diverse roles in various pathophysiological conditions. A number of synthetic selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been developed and used to treat ER-related diseases, including breast cancer and osteoporosis. Here, we identified a novel compound, bis(4-hydroxyphenyl)methanone-O-isopentyl oxime, designated NJK14013, as an ER agonist. NJK14013 activated ER-dependent transcription in a concentration-dependent manner, while suppressing androgen receptor-dependent transcriptional activity. It induced the activation-related phosphorylation of ER and enhanced the transcription of growth regulation by estrogen in breast cancer 1 (GREB1), further supporting its ER-stimulating activity. NJK14013 exerted anti-proliferative effects on various cancer cell lines, including an ER-negative breast cancer cell line, suggesting that it is capable of suppressing the growth of cancer cells independent of its ER-modulating activity. In addition, NJK14013 treatment resulted in significant apoptotic death of MCF7 and Ishikawa cancer cells, but did not induce apoptosis in non-cancer human umbilical vein endothelial cells. Collectively, our findings demonstrate that NJK14013 is a novel SERM that can activate ER-mediated transcription in MCF7 cells and suppress the proliferation of various cancer cells, including breast cancer cells and endometrial cancer cells. These results suggest that NJK14013 has potential as a novel SERM for anticancer or hormone-replacement therapy with reduced risk of carcinogenesis.

  6. Understanding the molecular basis for differences in responses of fish estrogen receptor subtypes to environmental estrogens.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Tatarazako, Norihisa; Katsu, Yoshinao; Ihara, Masaru; Tanaka, Hiroaki; Ishibashi, Hiroshi; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2015-06-16

    Exposure to endocrine disrupting chemicals (EDCs) can elicit adverse effects on development, sexual differentiation, and reproduction in fish. Teleost species exhibit at least three subtypes of estrogen receptor (ESR), ESR1, ESR2a, and ESR2b; thus, estrogenic signaling pathways are complex. We applied in vitro reporter gene assays for ESRs in five fish species to investigate the ESR subtype-specificity for better understanding the signaling pathway of estrogenic EDCs. Responses to bisphenol A, 4-nonylphenol, and o,p'-DDT varied among ESR subtypes, and the response pattern of ESRs was basically common among the different fish species. Using a computational in silico docking model and through assays quantifying transactivation of the LBD (using GAL-LBD fusion proteins and chimera proteins for the ESR2s), we found that the LBD of the different ESR subtypes generally plays a key role in conferring responsiveness of the ESR subtypes to EDCs. These results also indicate that responses of ESR2s to EDCs cannot necessarily be predicted from the LBD sequence alone, and an additional region is required for full transactivation of these receptors. Our data thus provide advancing understanding on receptor functioning for both basic and applied research. PMID:26032098

  7. Understanding the molecular basis for differences in responses of fish estrogen receptor subtypes to environmental estrogens.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Tatarazako, Norihisa; Katsu, Yoshinao; Ihara, Masaru; Tanaka, Hiroaki; Ishibashi, Hiroshi; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2015-06-16

    Exposure to endocrine disrupting chemicals (EDCs) can elicit adverse effects on development, sexual differentiation, and reproduction in fish. Teleost species exhibit at least three subtypes of estrogen receptor (ESR), ESR1, ESR2a, and ESR2b; thus, estrogenic signaling pathways are complex. We applied in vitro reporter gene assays for ESRs in five fish species to investigate the ESR subtype-specificity for better understanding the signaling pathway of estrogenic EDCs. Responses to bisphenol A, 4-nonylphenol, and o,p'-DDT varied among ESR subtypes, and the response pattern of ESRs was basically common among the different fish species. Using a computational in silico docking model and through assays quantifying transactivation of the LBD (using GAL-LBD fusion proteins and chimera proteins for the ESR2s), we found that the LBD of the different ESR subtypes generally plays a key role in conferring responsiveness of the ESR subtypes to EDCs. These results also indicate that responses of ESR2s to EDCs cannot necessarily be predicted from the LBD sequence alone, and an additional region is required for full transactivation of these receptors. Our data thus provide advancing understanding on receptor functioning for both basic and applied research.

  8. Expression of estrogen and progesterone receptors in astrocytomas: a literature review.

    PubMed

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde-Junior, Airton Mendes; Barros-Oliveira, Maria da Conceição; Sousa, Emerson Brandão; Barros, Lorena da Rocha; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-08-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: "estrogen receptor beta" OR "estrogen receptor alpha" OR "estrogen receptor antagonists" OR "progesterone receptors" OR "astrocytoma" OR "glioma" OR "glioblastoma". Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  9. COMPARISON OF FATHEAD MINNOW AND HUMAN ESTROGEN RECEPTOR BINDING TO ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Environmental estrogens have the potential to disrupt endocrine function in a myriad of species. However, in vitro assays designed to detect and characterize endocrine disrupting chemicals (EDCs) typically utilize mammalian estrogen receptors. Our overall objective is to charac...

  10. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  11. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    EPA Science Inventory

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  12. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    SciTech Connect

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay; Pakdel, Farzad; Brion, François; Aït-Aïssa, Sélim; Cavaillès, Vincent; Bourguet, William; Gustafsson, Jan-Ake; and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  13. Estrogen receptor subtypes selectively mediate female mouse reproductive abnormalities induced by neonatal exposure to estrogenic chemicals.

    PubMed

    Nakamura, Takeshi; Katsu, Yoshinao; Watanabe, Hajime; Iguchi, Taisen

    2008-11-20

    Perinatal exposure to estrogens such as diethylstilbestrol (DES), and to estrogenic chemicals, induces persistent anovulation caused by alteration of hypothalamic-pituitary-gonadal (HPG) axis, polyovular follicles, uterine abnormalities and persistent vaginal changes in mice. Most activities of estrogenic chemicals are mediated through estrogen receptor alpha (ERalpha) and/or ERbeta. However, little was known about the relative contribution of the individual ER subtypes in induction of abnormalities. We tested the effects of neonatal exposure to ER selective ligands and DES on female mice. Transactivation assays using mouse ERalpha and ERbeta showed that 10(-10)M DES activated both ER subtypes and that the ERalpha agonist (propyl pyrazole triol, PPT) and the ERbeta agonist (diarylpropionitrile, DPN) selectively activated their respective ERs at 10(-9)M. Neonatal female mice were injected subcutaneously with DES, PPT or DPN and the animals were examined at 13 and 15 weeks of age, respectively. Persistent estrous smears and anovulation were induced in all mice by 0.025-2.5 microg DES and 2.5-25 microg PPT, but not by DPN, suggesting that the observed anovulation was primarily mediated through ERalpha. Disorganization of uterine musculature and ovary-independent vaginal epithelial cell proliferation accompanied by persistent expression of EGF-related genes and interleukin-1-related genes were also mediated through ERalpha. In contrast, polyovular follicles were induced by neonatal treatment with both ERalpha and ERbeta ligands, suggesting that ovarian abnormalities are mediated through both ER subtypes.

  14. [Immunocytochemical localization of estrogen receptor in the spermatogenesis of termites].

    PubMed

    Su, Xiao Hong; Xing, Lian Xi; Yin, Ling Fang; Xi, Geng Si

    2007-04-01

    The available information indicates that estrogen receptor(ER) play a physiological role in the regulation of spermatogenesis in vertebrates. However, the cellular distribution of ER in the testis is poorly understood in invertebrates. The aim of this study was to determine the presence and cellular distribution of ER in the spermatogenesis of termite (Reticulitermes aculabialis). Immunocytochemical analysis showed ER was present in the nucleus of the primary spermatocytes, and the expression of ER was relatively stronger in the primary spermatocytes of the swarming termites. Previous studies have demonstrated the procerebrum of the swarming male termites could strongly secrete FSH (Follicle Stimulating Hormone) and LH (Luteinizing Hormone) which stimulated estrogen secreting. In conclusion, we demonstrated here for the first time that ER might be an important factor in the regulation of the spermatogenesis of termites, and play an important role for starting and maintaining the meiosis cell division of spermatocytes.

  15. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  16. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  17. Potential biological functions emerging from the different estrogen receptors.

    PubMed

    Carpenter, Karen D; Korach, Kenneth S

    2006-12-01

    Technological advances and new tools have brought about tremendous advances in elucidating the roles of estradiol and the estrogen receptors (ERs) in biological processes, especially within the female reproductive system. Development and analysis of multiple genetic models have provided insight into the particular functions of each of the ERs. This article reviews the insights into ER biology in female reproduction gained from the development and use of new types of experimental models.

  18. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    PubMed

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  19. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  20. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  1. Blocking Estrogen Signaling After the Hormone: Pyrimidine-Core Inhibitors of Estrogen Receptor-Coactivator Binding

    PubMed Central

    Parent, Alexander A.; Gunther, Jillian R.; Katzenellenbogen, John A.

    2009-01-01

    As an alternative approach to blocking estrogen action, we have developed small molecules that directly disrupt the key estrogen receptor (ER)/coactivator interaction necessary for gene activation. The more direct, protein-protein nature of this disruption might be effective even in hormone-refractory breast cancer. We have synthesized a pyrimidine-core library of moderate size, members of which act as α-helix mimics to block ERα/coactivator interaction. Structure- activity relationships have been explored with various C, N, O and S-substituents on the pyrimidine core. Time-resolved fluorescence resonance energy transfer and cell-based reporter gene assays show that the most active members inhibit the ERα/steroid receptor coactivator interaction with Ki’s in the low micromolar range. Through these studies, we have obtained a refined pharmacophore model for activity in this pyrimidine series. Furthermore, the favorable activities of several of these compounds support the feasibility that this coactivator binding inhibition mechanism for blocking estrogen action might provide a potential alternative approach to endocrine therapy. PMID:18785725

  2. Aromatase, estrogen receptors and brain development in fish and amphibians.

    PubMed

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  3. Aromatase, estrogen receptors and brain development in fish and amphibians.

    PubMed

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development. PMID:25038582

  4. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals.

    PubMed

    Bannister, Richard; Beresford, Nicola; Granger, David W; Pounds, Nadine A; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J

    2013-09-15

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p>0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10(-6)M for Gen and >10(-5)M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of genistein and

  5. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.

  6. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist.

    PubMed

    Wang, Junjian; Fang, Fang; Huang, Zhiyan; Wang, Yanfei; Wong, Chiwai

    2009-02-18

    Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRalpha and ERRgamma). We demonstrated that kaempferol binds to ERRalpha and ERRgamma and blocks their interaction with coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors. PMID:19171140

  7. Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2016-04-01

    In vertebrates, estrogens play fundamental roles in regulating reproductive activities through estrogen receptors (ESRs), and disruption of estrogen signaling is now of global concern for both wildlife and human health. To date, ESRs of only a limited number of species have been characterized. We investigated the functional diversity and molecular basis or ligand sensitivity of ESRs among ray-finned fish species (Actinopterygii), the most variable group within vertebrates. We cloned and characterized ESRs from several key species in the evolution of ray-finned fish including bichir (Polypteriformes, ESR1 and ESR2) at the basal lineage of ray-finned fish, and arowana (Osteoglossiformes, ESR1 and ESR2b) and eel (Anguilliformes, ESR1, ESR2a and ESR2b) both belonging to ancient early-branching lineages of teleosts, and suggest that ESR2a and ESR2b emerged through teleost-specific whole genome duplication, but an ESR1 paralogue has been lost in the early lineage of euteleost fish species. All cloned ESR isoforms showed similar responses to endogenous and synthetic steroidal estrogens, but they responded differently to non-steroidal estrogenic endocrine disrupting chemicals (EDCs) (e.g., ESR2a exhibits a weaker reporter activity compared with ESR2b). We show that variation in ligand sensitivity of ESRs can be attributed to phylogeny among species of different taxonomic groups in ray-finned fish. The molecular information provided contributes both to understanding of the comparative role of ESRs in the reproductive biology of fish and their comparative responses to EDCs. PMID:26707410

  8. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes.

    PubMed

    Botelho, Mónica C; Alves, Helena; Barros, Alberto; Rinaldi, Gabriel; Brindley, Paul J; Sousa, Mário

    2015-06-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility.

  9. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus.

    PubMed Central

    Golding, T S; Korach, K S

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO4/PAGE. ER derived from nuclei (ERn) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ERc) has a single band of 65 kDa. Both partially purified ERc and the 8S form of unactivated ERc show only the 65-kDa band. The appearance of the ERn doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ERn doublet was determined by [3H]tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ERn doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr. Images PMID:3422428

  10. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus

    SciTech Connect

    Golding, T.S.; Korach, K.S.

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO/sub 4//PAGE. ER derived from nuclei (ER/sub n/) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ER/sub c/) has a single band of 65 kDa. Both partially purified ER/sub c/ and the 8S form of unactivated ER/sub c/ show only the 65-kDa band. The appearance of the ER/sub n/ doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ER/sub n/ doublet was determined by (/sup 3/H)tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ER/sub n/ doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr.

  11. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  12. Colocalization of Estrogen Receptors with the Fluorescent Tamoxifen Derivative, FLTX1, Analyzed by Confocal Microscopy.

    PubMed

    Morales, Araceli; Marín, Raquel; Marrero-Alonso, Jorge; Boto, Alicia; Díaz, Mario

    2016-01-01

    Tamoxifen is a selective estrogen receptor modulator that competitively binds the ligand-binding domain of estrogen receptors. Binding of tamoxifen displaces its cognate ligand, 17β-estradiol, thereby hampering the activation of estrogen receptors. Cellular labeling of ER is typically carried out using specific antibodies which require permeabilization of cells, incubation with secondary antibodies, and are expensive and time consuming. In this article, we describe the usefulness of FLTX1, a novel fluorescent tamoxifen derivative, which allows the labeling of estrogen receptors in immunocytochemistry and immunohistochemistry studies, both under permeabilized and non-permeabilized conditions. Further, besides labeling canonical estrogen receptors, this novel fluorescent probe is also suitable for the identification of unconventional targets such membrane estrogen receptors as well as other noncanonical targets, some of which are likely responsible for the number of undesired side effects reported during long-term tamoxifen treatments. PMID:26585134

  13. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  14. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump

    PubMed Central

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina

    2015-01-01

    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR. PMID:25675114

  15. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation.

    PubMed

    Ho, Ming-Fen; Bongartz, Tim; Liu, Mohan; Kalari, Krishna R; Goss, Paul E; Shepherd, Lois E; Goetz, Matthew P; Kubo, Michiaki; Ingle, James N; Wang, Liewei; Weinshilboum, Richard M

    2016-03-01

    We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion. PMID:26866883

  16. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities.

    PubMed

    Quintin, Justine; Le Péron, Christine; Palierne, Gaëlle; Bizot, Maud; Cunha, Stéphanie; Sérandour, Aurélien A; Avner, Stéphane; Henry, Catherine; Percevault, Frédéric; Belaud-Rotureau, Marc-Antoine; Huet, Sébastien; Watrin, Erwan; Eeckhoute, Jérôme; Legagneux, Vincent; Salbert, Gilles; Métivier, Raphaël

    2014-07-01

    Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.

  17. Dynamic Estrogen Receptor Interactomes Control Estrogen-Responsive Trefoil Factor (TFF) Locus Cell-Specific Activities

    PubMed Central

    Quintin, Justine; Le Péron, Christine; Palierne, Gaëlle; Bizot, Maud; Cunha, Stéphanie; Sérandour, Aurélien A.; Avner, Stéphane; Henry, Catherine; Percevault, Frédéric; Belaud-Rotureau, Marc-Antoine; Huet, Sébastien; Watrin, Erwan; Eeckhoute, Jérôme; Legagneux, Vincent; Salbert, Gilles

    2014-01-01

    Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur. PMID:24752895

  18. Estrogen Signalling and the Metabolic Syndrome: Targeting the Hepatic Estrogen Receptor Alpha Action

    PubMed Central

    Matic, Marko; Bryzgalova, Galyna; Gao, Hui; Antonson, Per; Humire, Patricia; Omoto, Yoko; Portwood, Neil; Pramfalk, Camilla; Efendic, Suad; Berggren, Per-Olof; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2013-01-01

    An increasing body of evidence now links estrogenic signalling with the metabolic syndrome (MS). Despite the beneficial estrogenic effects in reversing some of the MS symptoms, the underlying mechanisms remain largely undiscovered. We have previously shown that total estrogen receptor alpha (ERα) knockout (KO) mice exhibit hepatic insulin resistance. To determine whether liver-selective ablation of ERα recapitulates metabolic phenotypes of ERKO mice we generated a liver-selective ERαKO mouse model, LERKO. We demonstrate that LERKO mice have efficient reduction of ERα selectively within the liver. However, LERKO and wild type control mice do not differ in body weight, and have a comparable hormone profile as well as insulin and glucose response, even when challenged with a high fat diet. Furthermore, LERKO mice display very minor changes in their hepatic transcript profile. Collectively, our findings indicate that hepatic ERα action may not be the responsible factor for the previously identified hepatic insulin resistance in ERαKO mice. PMID:23451233

  19. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...

  20. Estrogen receptor immunoreactivity in prepubertal and adult male Syrian hamsters.

    PubMed

    Romeo, R D; Diedrich, S L; Sisk, C L

    1999-04-23

    Estrogen and estrogen receptors (ER) are involved in the expression of steroid-dependent male sexual behavior and negative feedback regulation of the hypothalamic-pituitary-gonadal axis. The purpose of the present experiment was to determine whether there are pubertal changes in ER expression in brain that are correlated with pubertal changes in responsiveness to steroid negative feedback and behavioral activation. We found equivalent numbers of ER-immunoreactive (ER-ir) cells in castrated prepubertal and adult male hamsters in nuclei that comprise the neural circuit that mediate male sexual behavior. Therefore, increases in the number of cells in these nuclei that express ER are not correlated with the increased behavioral responsiveness to steroid hormone shown by hamsters after puberty. The number of ER-ir cells in the ventral medial hypothalamus was less in adults compared with juveniles. This pubertal decrease in ER expression is correlated with the decreased responsiveness to steroid negative feedback in the adult.

  1. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    PubMed Central

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen receptor in intact cells and modulates its transcriptional activity in the presence of estrogen, but not the anti-estrogen 4-hydroxytamoxifen. In view of its widespread expression in mammalian cells, RIP140 may interact with other members of the superfamily of nuclear receptors and thereby act as a potential co-activator of hormone-regulated gene transcription. Images PMID:7641693

  2. Importance of sex to pain and its amelioration; relevance of spinal estrogens and its membrane receptors

    PubMed Central

    Gintzler, Alan R; Liu, Nai-Jiang

    2013-01-01

    Estrogens have a multitude of effects on opioid systems and are thought to play a key role in sexually dimorphic nociception and opioid antinociception. Heretofore, classical genomic actions of estrogens are largely thought to be responsible for the effects of these steroids on nociception and opioid antinociception. The recent discovery that estrogens can also activate estrogen receptors that are located in the plasma membrane, the effects of which are manifest in seconds to minutes instead of hours to days has revolutionized our thinking concerning the ways in which estrogens are likely to modulate pain responsiveness and the dynamic nature of that modulation. This review summarizes parameters of opioid functionality and nociception that are subject to modulation by estrogens, underscoring the added dimensions of such modulation that accrues from rapid membrane estrogen receptor signaling. Implications of this mode of signaling regarding putative sources of estrogens and its degradation are also discussed. PMID:23036438

  3. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β.

    PubMed

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions.

  4. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  5. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    SciTech Connect

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  6. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    PubMed Central

    Zhao, Xiao-zhen; Liu, Yu; Zhou, Li-juan; Wang, Zhong-qi; Wu, Zhong-hua; Yang, Xiao-yuan

    2015-01-01

    Background/aim Estrogen is reported to promote the occurrence and development of several human cancers. Increasing evidence shows that most human lung tumors exert estrogen receptor expression. In the present study, we investigated the underlying mechanism of estrogen effect in lung cancer through estrogen receptor-epithelial–mesechymal-transition signaling pathways for the first time. Materials and methods A total of 36 inbred C57BL/6 mice (18 male and 18 female) were injected subcutaneously with human lung adenocarcinoma cell line, Lewis. After the lung tumor model was established, mice with lung adenocarcinoma were randomly divided into three groups for each sex (n=6), such as vehicle group, estrogen group, and estrogen plus tamoxifen group. The six groups of mice were sacrificed after 21 days of drug treatment. Tumor tissue was stripped and weighed, and tumor inhibition rate was calculated based on average tumor weight. Protein and messenger RNA (mRNA) expressions of estrogen receptor α (ERα), estrogen receptor β (ERβ), phosphatidylinositol 3′-kinase (PI3K), AKT, E-cadherin, and vimentin were detected in both tumor tissue and lung tissue by using immunohistochemistry and real-time reverse transcription-polymerase chain reaction. Results 1) For male mice: in the estrogen group, estrogen treatment significantly increased ERα protein and mRNA expressions in tumor tissue and protein expression of PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. Besides, mRNA expression of E-cadherin was significantly reduced in estrogen-treated tumor tissues than that in vehicle-treated tissues. In the estrogen plus tamoxifen group, protein and mRNA expressions of ERα and AKT were dramatically reduced by tamoxifen treatment in tumor tissue compared with the estrogen group; mRNA expression of E-cadherin was increased in tumor tissue; protein expression of vimentin and PI3K were downregulated in tumor tissue; protein

  7. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  8. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations. PMID:26528239

  9. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    PubMed

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  10. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  11. Defining the conformation of the estrogen receptor complex that controls estrogen-induced apoptosis in breast cancer.

    PubMed

    Obiorah, Ifeyinwa; Sengupta, Surojeet; Curpan, Ramona; Jordan, V Craig

    2014-05-01

    Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth in MCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the long-term estrogen-deprived MCF7:5C cells. To define the conformation of the TPE:estrogen receptor (ER) complex, we employed a previously validated assay using the induction of transforming growth factor α (TGFα) mRNA in situ in MDA-MB 231 cells stably transfected with wild-type ER (MC2) or D351G ER mutant (JM6). The assays discriminate ligand fit in the ER based on the extremes of published crystallography of planar estrogens or TPE antiestrogens. We classified the conformation of planar estrogens or angular TPE complexes as "estrogen-like" or "antiestrogen-like" complexes, respectively. The TPE:ER complexes did not readily recruit the coactivator steroid receptor coactivator-3 (SRC3) or ER to the PS2 promoter in MCF-7 and MCF7:5C cells, and molecular modeling showed that they prefer to bind to the ER in an antagonistic fashion, i.e., helix 12 not sealing the ligand binding domain (LBD) effectively, and therefore reduce critical SRC3 binding. The fully activated ER complex with helix 12 sealing the LBD is suggested to be the appropriate trigger to initiate rapid estrogen-induced apoptosis.

  12. The Estrogen Receptor-β Expression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy. PMID:26556342

  13. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor.

    PubMed

    Eick, Geeta N; Thornton, Joseph W

    2011-03-01

    Members of the steroid hormone receptor (SR) family activate transcription from different DNA response elements and are regulated by distinct hormonal ligands. Understanding the evolutionary process by which this diversity arose can provide insight into how and why SRs function as they do. Here we review the characteristics of the ancient receptor protein from which the SR family descends by a process of gene duplication and divergence. Several orthogonal lines of evidence - bioinformatic, phylogenetic, and experimental - indicate that this ancient SR had the capacity to activate transcription from DNA estrogen response elements in response to estrogens. Duplication and divergence of the ancestral SR gene subsequently generated new receptors that were activated by other steroid hormones, including progestagens, androgens, and corticosteroids. The androgen and progesterone receptors recruited as their ligands steroids that were previously present as biochemical intermediates in the synthesis of estrogens. This process is an example of molecular exploitation--the evolution of new molecular interactions when an older molecule, which previously had a different function, is co-opted as a binding partner by a newly evolved molecule. The primordial interaction between the ancestral steroid receptor and estrogens may itself have evolved due to an early molecular exploitation event.

  14. A relationship between artifical menopause, previous estrogen consumption, and estrogen receptor content of breast neoplasms: preliminary communication.

    PubMed

    Wallace, R B; Sherman, B M; Bean, J A

    1980-01-01

    A history of prior total bilateral oophorectomy and exogenous estrogen use was elicited from 45 women with breast surgery for cancer, 19 of whose neoplasms were estrogen receptor (ER) positive and 26 ER negative. In the ER-positive group there was a history of oophorectomy in 0/19 and estrogen use in 3/19. In the ER-negative group, corresponding values were 8/26 and 12/26 (p less than 0.05). Manipulation of the female hormonal milieu during or prior to the menopause may be related to the subsequent ER status of incident breast cancers.

  15. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  16. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor positive breast cancer

    PubMed Central

    Meric-Bernstam, Funda; Gonzalez-Angulo, Ana Maria; Ferrer-Lozano, Jaime; Perez-Fidalgo, Jose A.; Cristofanilli, Massimo; Gómez, Henry; Arteaga, Carlos L.; Giltnane, Jennifer; Balko, Justin M.; Cronin, Maureen T; Jarosz, Mirna; Sun, James; Hawryluk, Matthew; Lipson, Doron; Otto, Geoff; Ross, Jeffrey S; Dvir, Addie; Soussan-Gutman, Lior; Wolf, Ido; Rubinek, Tamar; Gilmore, Lauren; Schnitt, Stuart; Come, Steven E.; Pusztai, Lajos; Stephens, Philip; Brown, Myles; Miller, Vincent A.

    2014-01-01

    Purpose We undertook this study to determine the prevalence of estrogen receptor (ER) α (ESR1) mutations throughout the natural history of hormone dependent breast cancer and to delineate the functional roles of the most commonly detected alterations. Experimental Design We studied a total of 249 tumor specimens from 208 patients. The specimens include 134 ER positive (ER+/HER2–) and, as controls, 115 ER negative (ER−) tumors. The ER+ samples consist of 58 primary breast cancers and 76 metastatic samples. All tumors were sequenced to high unique coverage using next generation sequencing targeting the coding sequence of the estrogen receptor and an additional 182 cancer-related genes. Results Recurring somatic mutations in codons 537 and 538 within the ligand-binding domain of ER were detected in ER+ metastatic disease. Overall, the frequency of these mutations was 12% (9/76, 95% CI 6%-21%) in metastatic tumors and in a subgroup of patients who received an average of 7 lines of treatment the frequency was 20% (5/25, 95% CI 7%-41%). These mutations were not detected in primary or treatment naïve ER+ cancer or in any stage of ER− disease. Functional studies in cell line models demonstrate that these mutations render estrogen receptor constitutive activity and confer partial resistance to currently available endocrine treatments. Conclusions In this study we show evidence for the temporal selection of functional ESR1 mutations as potential drivers of endocrine resistance during the progression of ER positive breast cancer. PMID:24398047

  17. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  18. Estrogen Receptor-α Polymorphisms and Predisposition to TMJ Disorder

    PubMed Central

    Ribeiro-Dasilva, Margarete Cristiane; Line, Sérgio Roberto Peres; dos Santos, Maria Cristina Leme Godoy; Arthuri, Mariana Trevisani; Hou, Wei; Fillingim, Roger Benton; Barbosa, Célia Marisa Rizzatti

    2009-01-01

    Temporomandibular joint disorders (TMJD) affect women with greater frequency than men, and sex hormones may contribute to this female predominance. Therefore, this study investigated whether estrogen receptor-α (XbaI/PvuII) single nucleotide polymorphisms (SNPs) are associated with TMJD in women. DNA was obtained from 200 women with TMJD (100 with chronic pain and 100 with signs of TMJD but no pain) diagnosed according to the Research Diagnostic Criteria for Temporomandibular Disorder (RDC/TMD) and 100 control women without TMJD. Restriction fragment length polymorphisms of polymerase chain reaction products were used to analyze XbaI and PvuII SNPs in DNA fragments. A model directly characterizing specific DNA sequence variants based on the risk haplotypic structure implemented with the EM algorithm was used to analyze the data. The [GC] haplotype of the XbaI locus was significantly more prevalent in both TMJD groups when compared with the control group (P =.0012). Specifically, the [GC] haplotype was more prevalent within the painful TMJD group versus the control group (OR = 3.203, 95% CI = 1.633, 6.284) and in the TMJD no pain versus the control group (OR = 2.51, 95% CI = 1.267, 4.97). In conclusion, the presence of [GC] haplotype in the XbaI locus may increase the susceptibility of women to develop TMJD. Perspective: This study suggests that a polymorphism in the estrogen receptor may increase the risk of women developing temporomandibular joint disorder. This finding may elucidate the interindividual differences in the contribution of estrogen to TMJD, the genetic influences on TMJD predisposition, and may serve as the basis for future treatment tailoring, which could enhance outcomes for these patients. PMID:19411060

  19. Differing species responsiveness of estrogenic contaminants in fish is conferred by the ligand binding domain of the estrogen receptor.

    PubMed

    Miyagawa, Shinichi; Lange, Anke; Hirakawa, Ikumi; Tohyama, Saki; Ogino, Yukiko; Mizutani, Takeshi; Kagami, Yoshihiro; Kusano, Teruhiko; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Ohta, Yasuhiko; Katsu, Yoshinao; Tyler, Charles R; Iguchi, Taisen

    2014-05-01

    Exposure to estrogenic endocrine disrupting chemicals (EDCs) induces a range of adverse effects, notably on reproduction and reproductive development. These responses are mediated via estrogen receptors (ERs). Different species of fish may show differences in their responsiveness to environmental estrogens but there is very limited understanding on the underlying mechanisms accounting for these differences. We used custom developed in vitro ERα reporter gene assays for nine fish species to analyze the ligand- and species-specificity for 12 environmental estrogens. Transcriptonal activities mediated by estradiol-17β (E2) were similar to only a 3-fold difference in ERα sensitivity between species. Diethylstilbestrol was the most potent estrogen (∼ 10-fold that of E2) in transactivating the fish ERαs, whereas equilin was about 1 order of magnitude less potent in all species compared to E2. Responses of the different fish ERαs to weaker environmental estrogens varied, and for some considerably. Medaka, stickleback, bluegill and guppy showed higher sensitivities to nonylphenol, octylphenol, bisphenol A and the DDT-metabolites compared with cyprinid ERαs. Triclosan had little or no transactivation of the fish ERαs. By constructing ERα chimeras in which the AF-containing domains were swapped between various fish species with contrasting responsiveness and subsequent exposure to different environmental estrogens. Our in vitro data indicate that the LBD plays a significant role in accounting for ligand sensitivity of ERα in different species. The differences seen in responsiveness to different estrogenic chemicals between species indicate environmental risk assessment for estrogens cannot necessarily be predicted for all fish by simply examining receptor activation for a few model fish species. PMID:24689804

  20. Specific regulation of male rat liver cytosolic estrogen receptor by the modulator of the glucocorticoid receptor.

    PubMed

    Celiker, M Y; Haas, A; Saunders, D; Litwack, G

    1993-08-31

    Modulator is a novel low-molecular-weight organic compound that regulates activities of glucocorticoid and mineralocorticoid receptors as well as protein kinase C. In this study we show that male rat liver cytosolic estrogen receptor activation is inhibited by modulator in a dose-dependent manner. Fifty percent inhibition is obtained with 1 unit/ml modulator purified from bovine liver which is within the physiological concentration for modulator. However, sheep uterine cytosolic estrogen and androgen receptors are insensitive to regulation by modulator. Exogenous sodium molybdate treatment inhibits activation of all of these receptors of liver or uterus origin in an identical manner, further differentiating the effects of modulator and the molybdate anion. PMID:8363596

  1. Estrogen-related receptor γ is an in vivo receptor of bisphenol A.

    PubMed

    Tohmé, Marie; Prud'homme, Sophie M; Boulahtouf, Abdel; Samarut, Eric; Brunet, Frédéric; Bernard, Laure; Bourguet, William; Gibert, Yann; Balaguer, Patrick; Laudet, Vincent

    2014-07-01

    Bisphenol A (BPA) is an endocrine disruptor that displays estrogenic activity. Several reports suggest that BPA may have estrogen receptor-independent effects. In zebrafish, 50 μM BPA exposure induces otic vesicle abnormalities, including otolith aggregation. The purpose of this study was to test if BPA action was mediated in vivo during zebrafish development by the orphan nuclear estrogen related receptor (ERR) γ. Combining pharmacological and functional approaches, we demonstrate that the zebrafish ERRγ mediates BPA-induced malformations in otoliths. Using different bisphenol derivatives, we show that different compounds can induce a similar otolith phenotype than BPA and that the binding affinity of these derivatives to the zebrafish ERRγ correlates with their ability to induce otolith malformations. Morpholino knockdown of ERRγ function suppresses the BPA effect on otoliths whereas overexpression of ERRγ led to a BPA-like otolith phenotype. Moreover, a subphenotypical dose of BPA (1 μM) combined with ERRγ overexpression led to a full-dose (50 μM) BPA otolith phenotype. We therefore conclude that ERRγ mediates the otic vesicle phenotype generated by BPA. Our results suggest that the range of pathways perturbed by this compound and its potential harmful effect are larger than expected.-Tohmé, M., Prud'homme, S. M., Boulahtouf, A., Samarut, E., Brunet, F., Bernard, L., Bourguet, W., Gibert, Y., Balaguer, P., Laudet, V. Estrogen-related receptor γ is an in vivo receptor of bisphenol A. PMID:24744145

  2. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  3. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    PubMed Central

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  4. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  5. Monitoring of xenobiotic ligands for human estrogen receptor and aryl hydrocarbon receptor in industrial wastewater effluents.

    PubMed

    Chou, Pei-Hsin; Liu, Tong-Cun; Lin, Yi-Ling

    2014-07-30

    Industrial wastewater contains a variety of toxic substances, which may severely contaminate the aquatic environment if discharged without adequate treatment. In this study, effluents from a thin film transistor liquid crystal display wastewater treatment plant and the receiving water were analyzed by bioassays and liquid chromatography-tandem mass spectrometry to investigate the presence of estrogenic compounds, aryl hydrocarbon receptor (AhR) agonists, and genotoxicants. Xenobiotic AhR agonists were frequently detected and, in particular, strong AhR agonist activity and genotoxicity were found in the suspended solids of the aeration tank outflow. The high AhR agonist activity in the final effluent (FE) and the downstream river water suggested that the treatment plant failed to remove the wastewater-related AhR agonists. In contrast, although significant estrogenic potency could be detected in raw wastewater or effluents from different treatment processes, the FE and the receiving river water exhibited no or weak estrogenicity. Instrumental analysis showed that bisphenol A was often detected in water samples. However, the investigated estrogenic compounds could only account for a small portion of the estrogenicity in the collected samples. Therefore, further investigation is necessary to identify the major estrogenic compounds and AhR agonist contaminants in the wastewater effluents.

  6. Estrogen receptor beta in the brain: from form to function.

    PubMed

    Weiser, Michael J; Foradori, Chad D; Handa, Robert J

    2008-03-01

    Estrogens have numerous effects on the brain, both in adulthood and during development. These actions of estrogen are mediated by two distinct estrogen receptor (ER) systems, ER alpha (ERalpha) and ER beta (ERbeta). In brain, ERalpha plays a critical role in regulating reproductive neuroendocrine function and behavior, however, a definitive role for ERbeta in any neurobiological function has been slow in forthcoming. Clues to the function of ERbeta in the central nervous system can be gleaned from the neuroanatomical distribution of ERbeta and the phenotypes of neurons that express ERbeta. ERbeta immunoreactivity has been found in populations of GnRH, CRH, vasopressin, oxytocin and prolactin containing neurons in the hypothalamus. Utilizing subtype-selective estrogen receptor agonists can help determine the roles for ERbeta in non-reproductive behaviors in rat models. ERbeta-selective agonists exert potent anxiolytic activity when animals were tested in a number of behavioral paradigms. Consistent with this, ERbeta-selective agonists also inhibited the ACTH and corticosterone response to stress. In contrast, ERalpha selective agonists were found to be anxiogenic and correspondingly increased the hormonal stress response. Taken together, our studies implicate ERbeta as an important modulator of some non-reproductive neurobiological systems. The molecular and neuroanatomical targets of estrogen that are mediated by ERbeta remain to be determined. A number of splice variants of ERbeta mRNA have been reported in brain tissue. Imaging of eGFP labeled chimeric receptor proteins transfected into cell lines shows that ERbeta splice variation can alter trafficking patterns and function. The originally described ERbeta (herein termed ERbeta1) is characterized by possessing a high affinity for estradiol. Similar to ERalpha, it is localized in the nucleus and is trafficked to nuclear sites termed "hyperspeckles" following ligand binding. In contrast, ERbeta2 contains an 18

  7. Estrogen receptor ligands counteract cognitive deficits caused by androgen deprivation in male rats.

    PubMed

    Lagunas, Natalia; Calmarza-Font, Isabel; Grassi, Daniela; Garcia-Segura, Luis M

    2011-04-01

    Androgen deprivation causes impairment of cognitive tasks in rodents and humans, and this deficit can be reverted by androgen replacement therapy. Part of the effects of androgens in the male may be mediated by their local metabolism to estradiol or 3-alpha androstanediol within the brain and the consequent activation of estrogen receptors. In this study we have assessed whether the administration of estradiol benzoate, the estrogen receptor β selective agonist diarylpropionitrile or the estrogen receptor α selective agonist propyl pyrazole triol affect performance of androgen-deprived male Wistar rats in the cross-maze test. In addition, we tested the effect of raloxifene and tamoxifen, two selective estrogen receptor modulators used in clinical practice. The behavior of the rats was assessed 2 weeks after orchidectomy or sham surgery. Orchidectomy impaired acquisition in the cross-maze test. Estradiol benzoate and the selective estrogen receptor β agonist significantly improved acquisition in the cross-maze test compared to orchidectomized animals injected with vehicle. Raloxifene and tamoxifen at a dose of 1mg/kg, but not at doses of 0.5 or 2mg/kg, also improved acquisition of orchidectomized animals. Our findings suggest that estrogenic compounds with affinity for estrogen receptor β and selective estrogen receptor modulators, such as raloxifene and tamoxifen, may represent good candidates to promote cognitive performance in androgen-deprived males.

  8. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2009-01-01

    GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7- transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications. PMID:19442754

  9. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development.

    PubMed Central

    Hou, Q; Gorski, J

    1993-01-01

    Estrogen and progesterone play an important role in the development and implantation of preimplantation embryos. However, it is controversial whether these hormones act directly on the embryos. The effects of these hormones depend on the existence of their specific receptors. To determine whether estrogen receptor (ER) and progesterone receptor genes are expressed in mouse preimplantation embryos, we examined RNA from embryos at different stages of preimplantation development by reverse transcription-polymerase chain reaction techniques. ER mRNA was found in oocytes and fertilized eggs. The message level began to decline at the two-cell stage and reached its lowest level at the five- to eight-cell stage. ER mRNA was not detectable at the morula stage but reappeared at the blastocyst stage. Progesterone receptor mRNA was not detectable until the blastocyst stage. The embryonic expression of ER and progesterone receptor genes in the blastocyst suggests a possible functional requirement for ER and progesterone receptor at this stage of development. These results provide a basis for determining the direct role of estrogen and progesterone in preimplantation embryos. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8415723

  10. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    NASA Astrophysics Data System (ADS)

    Štísová, Viktorie; Goffinont, Stephane; Spotheim-Maurizot, Melanie; Davídková, Marie

    2010-08-01

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERα, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with γ rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  11. Histone methylase MLL1 and MLL3 coordinate with estrogen receptors in estrogen-mediated HOXB9 expression

    PubMed Central

    Ansari, Khairul I.; Shrestha, Bishakha; Hussain, Imran; Kasiri, Sahba; Mandal, Subhrangsu S.

    2011-01-01

    Homeobox gene HOXB9 is a critical player in development of mammary gland and sternum and in regulation of Renin which is closely linked with blood pressure control. Our studies demonstrated that HOXB9 gene is transcriptionally regulated by estrogen (E2). HOXB9 promoter contains several estrogen-response elements (ERE). Reporter assay based experiments demonstrated that HOXB9 promoter EREs are estrogen-responsive. Estrogen receptors ERα and ERβ are essential for E2-mediated transcriptional activation of HOXB9. Chromatin immuno-precipitation assay demonstrated that ERs bind to HOXB9 EREs as a function of E2. Similarly, histone methylases MLL1 and MLL3 also bind to HOXB9 EREs and play critical role in E2-mediated transcriptional activation of HOXB9. Overall, our studies demonstrated that HOXB9 is an E2-responsive gene and ERs coordinate with MLL1 and MLL3 in E2-mediated transcriptional regulation of HOXB9. PMID:21428455

  12. Structural and Functional Profiling of Environmental Ligands for Estrogen Receptors

    PubMed Central

    Delfosse, Vanessa; Grimaldi, Marina; Cavaillès, Vincent

    2014-01-01

    Background: Individuals are exposed daily to environmental pollutants that may act as endocrine-disrupting chemicals (EDCs), causing a range of developmental, reproductive, metabolic, or neoplastic diseases. With their mostly hydrophobic pocket that serves as a docking site for endogenous and exogenous ligands, nuclear receptors (NRs) can be primary targets of small molecule environmental contaminants. However, most of these compounds are chemically unrelated to natural hormones, so their binding modes and associated hormonal activities are hardly predictable. Objectives: We conducted a correlative analysis of structural and functional data to gain insight into the mechanisms by which 12 members of representative families of pollutants bind to and activate the estrogen receptors ERα and ERβ. Methods: We used a battery of biochemical, structural, biophysical, and cell-based approaches to characterize the interaction between ERs and their environmental ligands. Results: Our study revealed that the chemically diverse compounds bound to ERs via varied sets of protein–ligand interactions, reflecting their differential activities, binding affinities, and specificities. We observed xenoestrogens binding to both ERs—with affinities ranging from subnanomolar to micromolar values—and acting in a subtype-dependent fashion as full agonists or partial agonists/antagonists by using different combinations of the activation functions 1 and 2 of ERα and ERβ. Conclusions: The precise characterization of the interactions between major environmental pollutants and two of their primary biological targets provides rational guidelines for the design of safer chemicals, and will increase the accuracy and usefulness of structure-based computational methods, allowing for activity prediction of chemicals in risk assessment. Citation: Delfosse V, Grimaldi M, Cavaillès V, Balaguer P, Bourguet W. 2014. Structural and functional profiling of environmental ligands for estrogen

  13. Estrogen receptor-β in the gonadotropin-releasing hormone neuron.

    PubMed

    Wolfe, Andrew; Wu, Sheng

    2012-01-01

    Estrogen regulation of gonadotropin-releasing hormone (GnRH) neuronal activity plays a crucial role in homeostatic regulation of the hypothalamic-pituitary-gonadal axis. Estrogen also coordinates a complex series of physiological changes culminating with a surge of gonadotropin secretion that triggers ovulation of a developed follicle from the ovary. The coordinated functions of estrogen ensure that the female will elaborate appropriate reproductive behaviors ultimately designed to deliver sperm to the oocyte and to provide a receptive uterine environment for the fertilized embryo. Although the effects of estrogen on GnRH neuronal function have long been proposed to be indirect due to the presumed lack of estrogen receptors in GnRH neurons, the identification of alternative estrogen signaling pathways, including estrogen receptor (ER)β and membrane ERs such as GPR30, has put the focus back on estrogen's effect at the level of the GnRH neuron itself. One candidate to mediate the effects of estrogen is the β isoform of the estrogen receptor. We review the evidence for a role for ERβ-mediated regulation of GnRH neuronal function.

  14. Rational modification of estrogen receptor by combination of computational and experimental analysis.

    PubMed

    Ferrero, Valentina Elisabetta Viviana; Pedotti, Mattia; Chiadò, Alessandro; Simonelli, Luca; Calzolai, Luigi; Varani, Luca; Lettieri, Teresa

    2014-01-01

    In this manuscript, we modulate the binding properties of estrogen receptor protein by rationally modifying the amino acid composition of its ligand binding domain. By combining sequence alignment and structural analysis of known estrogen receptor-ligand complexes with computational analysis, we were able to predict estrogen receptor mutants with altered binding properties. These predictions were experimentally confirmed by producing single point variants with up to an order of magnitude increased binding affinity towards some estrogen disrupting chemicals and reaching an half maximal inhibitory concentration (IC50) value of 2 nM for the 17α-ethinylestradiol ligand. Due to increased affinity and stability, utilizing such mutated estrogen receptor instead of the wild type as bio-recognition element would be beneficial in an assay or biosensor.

  15. Rational modification of estrogen receptor by combination of computational and experimental analysis.

    PubMed

    Ferrero, Valentina Elisabetta Viviana; Pedotti, Mattia; Chiadò, Alessandro; Simonelli, Luca; Calzolai, Luigi; Varani, Luca; Lettieri, Teresa

    2014-01-01

    In this manuscript, we modulate the binding properties of estrogen receptor protein by rationally modifying the amino acid composition of its ligand binding domain. By combining sequence alignment and structural analysis of known estrogen receptor-ligand complexes with computational analysis, we were able to predict estrogen receptor mutants with altered binding properties. These predictions were experimentally confirmed by producing single point variants with up to an order of magnitude increased binding affinity towards some estrogen disrupting chemicals and reaching an half maximal inhibitory concentration (IC50) value of 2 nM for the 17α-ethinylestradiol ligand. Due to increased affinity and stability, utilizing such mutated estrogen receptor instead of the wild type as bio-recognition element would be beneficial in an assay or biosensor. PMID:25075862

  16. Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway

    PubMed Central

    Kim, Cho-Won; Go, Ryeo-Eun

    2015-01-01

    Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC (10−6 M) and CP (10−5 M) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 (10−8 M), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, ERα expression was not significantly changed by LC and CP, while downregulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model. PMID:26877835

  17. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities.

    PubMed

    Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar; Chittiboyina, Amar G; Khan, Ikhlas; Doerge, Daniel R; Helferich, William G; Carlson, Kathryn E; Martin, Teresa; Piyachaturawat, Pawinee; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2016-01-01

    Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs. PMID:26631549

  18. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities.

    PubMed

    Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar; Chittiboyina, Amar G; Khan, Ikhlas; Doerge, Daniel R; Helferich, William G; Carlson, Kathryn E; Martin, Teresa; Piyachaturawat, Pawinee; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2016-01-01

    Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs.

  19. Circular Permutation Probes for Illuminating Phosphorylation of Estrogen Receptor.

    PubMed

    Kim, Sung-Bae; Tao, Hiroaki

    2016-01-01

    The present protocol demonstrates a new strategy for imaging ligand-triggered protein phosphorylation using circularly permutated luciferases (cpLuc): (1) a luciferase is first fragmented into two segments for creating new N- and C-terminal ends in the hydrophilic region, (2) the original N- and C-terminal ends are circularly permutated and linked via a GS linker, whereas the new ends made by fragmentation are correspondingly linked with two proteins of interest. When the new ends of the cpLuc are linked with the ligand-binding domain of estrogen receptor (ER LBD) and Src homology two domain of Src (SH2), the estrogen can trigger phosphorylation of the ER LBD and consequent intramolecular ER LBD-SH2 binding. This interaction triggers an approximation of the adjacent fragments of split-cpLuc recovering the enzyme activity. This probe design greatly improves signal-to-noise (S/N) ratios upon tracing weak protein-protein interactions (PPIs) in mammalian cells. PMID:27424903

  20. Expression and function of a novel variant of estrogen receptor-α36 in murine airways.

    PubMed

    Jia, Shuping; Zhang, Xintian; He, David Z Z; Segal, Manav; Berro, Abdo; Gerson, Trevor; Wang, Zhaoyi; Casale, Thomas B

    2011-11-01

    Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility. PMID:21642591

  1. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    PubMed

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent. PMID:21866300

  2. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    PubMed

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent.

  3. Modulation of the estrogen receptor structure, evidence of a heterogeneity

    SciTech Connect

    Toulas, C.; Guilbaud, N.; Delassus, F.; Bayard, F.; Faye, J.C. )

    1990-01-01

    In order to analyse the molecular weight polymorphism of the estrogen receptor (ER) in MCF-7 cells, we have developed a procedure which allowed in situ linkage of ER by (3H) tamoxifen aziridine and provided labelled proteins in conditions which minimized protease activities. After labelling, cell lysis was performed in SDS buffer containing various concentrations of mercaptoethanol. Proteins extracted with phenolic solution and precipitated by cold acetone were analysed by SDS PAGE. It appears that beside the form of 67 kDa already described, binding entities of tamoxifen aziridine were also present at a molecular mass of 110 kDa and 45 kDa. On the other hand, investigations on the effect of 12-0-Tetradecanoyl Phorbol 13-Acetate (TPA) showed that TPA induces a decrease of the 67 kDa entity.

  4. Estrogens Induce Expression of Membrane-Associated Estrogen Receptor α Isoforms in Lactotropes

    PubMed Central

    Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Eijo, Guadalupe; Magri, María L.; Pisera, Daniel; Seilicovich, Adriana

    2012-01-01

    Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2

  5. A helminth cestode parasite express an estrogen-binding protein resembling a classic nuclear estrogen receptor.

    PubMed

    Ibarra-Coronado, Elizabeth Guadalupe; Escobedo, Galileo; Nava-Castro, Karen; Jesús Ramses, Chávez-Rios; Hernández-Bello, Romel; García-Varela, Martìn; Ambrosio, Javier R; Reynoso-Ducoing, Olivia; Fonseca-Liñán, Rocío; Ortega-Pierres, Guadalupe; Pavón, Lenin; Hernández, María Eugenia; Morales-Montor, Jorge

    2011-01-01

    The role of an estrogen-binding protein similar to a known mammalian estrogen receptor (ER) is described in the estradiol-dependent reproduction of the helminth parasite Taenia crassiceps. Previous results have shown that 17-β-estradiol induces a concentration-dependent increase in bud number of in vitro cultured cysticerci. This effect is inhibited when parasites are also incubated in the presence of an ER binding-inhibitor (tamoxifen). RT-PCR assays using specific oligonucleotides of the most conserved ER sequences, showed expression by the parasite of a mRNA band of molecular weight and sequence corresponding to an ER. Western blot assays revealed reactivity with a 66 kDa protein corresponding to the parasite ER protein. Tamoxifen treatment strongly reduced the production of the T. crassiceps ER-like protein. Antibody specificity was demonstrated by immunoprecipitating the total parasite protein extract with anti-ER-antibodies. Cross-contamination by host cells was discarded by flow cytometry analysis. ER was specifically detected on cells expressing paramyosin, a specific helminth cell marker. Parasite cells expressing the ER-like protein were located by confocal microscopy in the subtegumental tissue exclusively. Analysis of the ER-like protein by bidimensional electrophoresis and immunoblot identified a specific protein of molecular weight and isoelectric point similar to a vertebrates ER. Sequencing of the spot produced a small fragment of protein similar to the mammalian nuclear ER. Together these results show that T. crassiceps expresses an ER-like protein which activates the budding of T. crassiceps cysticerci in vitro. To the best of our knowledge, this is the first report of an ER-like protein in parasites. This finding may have strong implications in the fields of host-parasite co-evolution as well as in sex-associated susceptibility to this infection, and could be an important target for the design of new drugs.

  6. Prebending the estrogen response element destabilizes binding of the estrogen receptor DNA binding domain.

    PubMed Central

    Kim, J; de Haan, G; Nardulli, A M; Shapiro, D J

    1997-01-01

    Binding of many eukaryotic transcription regulatory proteins to their DNA recognition sequences results in conformational changes in DNA. To test the effect of altering DNA topology by prebending a transcription factor binding site, we examined the interaction of the estrogen receptor (ER) DNA binding domain (DBD) with prebent estrogen response elements (EREs). When the ERE in minicircle DNA was prebent toward the major groove, which is in the same direction as the ER-induced DNA bend, there was no significant effect on ER DBD binding relative to the linear counterparts. However, when the ERE was bent toward the minor groove, in a direction that opposes the ER-induced DNA bend, there was a four- to eightfold reduction in ER DBD binding. Since reduced binding was also observed with the ERE in nicked circles, the reduction in binding was not due to torsional force induced by binding of ER DBD to the prebent ERE in covalently closed minicircles. To determine the mechanism responsible for reduced binding to the prebent ERE, we examined the effect of prebending the ERE on the association and dissociation of the ER DBD. Binding of the ER DBD to ERE-containing minicircles was rapid when the EREs were prebent toward either the major or minor groove of the DNA (k(on) of 9.9 x 10(6) to 1.7 x 10(7) M(-1) s(-1)). Prebending the ERE toward the minor groove resulted in an increase in k(off) of four- to fivefold. Increased dissociation of the ER DBD from the ERE is, therefore, the major factor responsible for reduced binding of the ER DBD to an ERE prebent toward the minor groove. These data provide the first direct demonstration that the interaction of a eukaryotic transcription factor with its recognition sequence can be strongly influenced by altering DNA topology through prebending the DNA. PMID:9154816

  7. Molecular Characterization and Sex-Specific Tissue Expression of Estrogen Receptor Alpha (esr1), Estrogen Receptor Beta-a (esr2a) and Ovarian Aromatase (cyp19a1a) in Yellow Perch (Perca flavescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow perch (Perca flavescens) exhibit an estrogen-stimulated sexual size dimorphism (SSD) wherein females grow faster and larger than males. To aid in the examination of this phenomenon, the cDNA sequences encoding estrogen receptor-alpha (esr1), estrogen receptor-beta-a (esr2a) and ovarian aroma...

  8. Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Jo, Young Kwang; Kim, Geon A; Chung, Jin Young; Choi, Jung Hoon

    2016-01-01

    Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog's abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells. PMID:27382382

  9. Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog.

    PubMed

    Jung, Hyo Young; Yoo, Dae Young; Jo, Young Kwang; Kim, Geon A; Chung, Jin Young; Choi, Jung Hoon; Jang, Goo; Hwang, In Koo

    2016-06-01

    Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog's abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells. PMID:27382382

  10. Age and stage dependency of estrogen receptor expression by lymphocyte precursors

    PubMed Central

    Igarashi, Hideya; Kouro, Taku; Yokota, Takafumi; Comp, Phillip C.; Kincade, Paul W.

    2001-01-01

    Sex steroids negatively regulate B lymphopoiesis in adult mice. Paradoxically, lymphocytes arise during fetal life, when estrogen levels are high and maternal lymphopoiesis is suppressed. Here we demonstrate that embryonic B lymphopoiesis was unaffected by estrogen, but sensitive to glucocorticoids. Both fetal and adult precursors contained glucocorticoid receptor transcripts, but only adult precursors expressed estrogen receptor α and β together with the androgen receptor. Fetal hematopoietic cells did not efficiently acquire functional estrogen receptors after transplantation to irradiated adult mice. Sex steroid receptors were also expressed in a stage- and developmental age-dependent fashion in human precursors. A developmental switch in responsiveness of hematopoietic cells to sex steroids may be essential for formation of the immune system. PMID:11752459

  11. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    NASA Astrophysics Data System (ADS)

    Garcia, Marcel; Derocq, Danielle; Freiss, Gilles; Rochefort, Henri

    1992-12-01

    Breast cancers containing estrogen receptors are responsive to antiestrogen treatment and have a better prognosis than estrogen receptor-negative tumors. The loss of estrogen and progesterone receptors appears to be associated with a progression to less-differentiated tumors. We transfected the human estrogen receptor into the estrogen receptor-negative metastatic breast cancer cell line MDA-MB-231 in an attempt to restore their sensitivity to antiestrogens. Two stable sublines of MDA-MB-231 cells (HC1 and HE5) expressing functional estrogen receptors were studied for their ability to grow and invade in vitro and to metastasize in athymic nude mice. The number and size of lung metastases developed by these two sublines in ovariectomized nude mice was not markedly altered by tamoxifen but was inhibited 3-fold by estradiol. Estradiol also significantly inhibited in vitro cell proliferation of these sublines and their invasiveness in Matrigel, a reconstituted basement membrane, whereas the antiestrogens 4-hydroxytamoxifen and ICI 164,384 reversed these effects. These results show that estradiol inhibits the metastatic ability of estrogen receptornegative breast cancer cells following transfection with the estrogen receptor, whereas estrogen receptor-positive breast cancers are stimulated by estrogen, indicating that factors other than the estrogen receptor are involved in progression toward hormone independence. Reactivation or transfer of the estrogen receptor gene can therefore be considered as therapeutic approaches to hormone-independent cancers

  12. Estrogen receptor independent neurotoxic mechanism of bisphenol A, an environmental estrogen

    PubMed Central

    Lee, Yoot Mo; Seong, Min Jae; Lee, Jae Woong; Lee, Yong Kyung; Kim, Tae Myoung; Nam, Sang-Yoon; Kim, Dae Joong; Yun, Young Won; Kim, Tae Seong; Han, Soon Young

    2007-01-01

    Bisphenol A (BPA), a ubiquitous environmental contaminant, has been shown to cause developmental toxicity and carcinogenic effects. BPA may have physiological activity through estrogen receptor (ER) -α and -β, which are expressed in the central nervous system. We previously found that exposure of BPA to immature mice resulted in behavioral alternation, suggesting that overexposure of BPA could be neurotoxic. In this study, we further investigated the molecular neurotoxic mechanisms of BPA. BPA increased vulnerability (decrease of cell viability and differentiation, and increase of apoptotic cell death) of undifferentiated PC12 cells and cortical neuronal cells isolated from gestation 18 day rat embryos in a concentration-dependent manner (more than 50 µM). The ER antagonists, ICI 182,780, and tamoxifen, did not block these effects. The cell vulnerability against BPA was not significantly different in the PC12 cells overexpressing ER-α and ER-β compared with PC12 cells expressing vector alone. In addition, there was no difference observed between BPA and 17-β estradiol, a well-known agonist of ER receptor in the induction of neurotoxic responses. Further study of the mechanism showed that BPA significantly activated extracellular signal-regulated kinase (ERK) but inhibited anti-apoptotic nuclear factor kappa B (NF-κB) activation. In addition, ERK-specific inhibitor, PD 98,059, reversed BPA-induced cell death and restored NF-κB activity. This study demonstrated that exposure to BPA can cause neuronal cell death which may eventually be related with behavioral alternation in vivo. However, this neurotoxic effect may not be directly mediated through an ER receptor, as an ERK/NF-κB pathway may be more closely involved in BPA-induced neuronal toxicity. PMID:17322771

  13. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  14. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  15. Identification and Biological Evaluation of Coactivator Binding Inhibitors for the Estrogen Receptor

    ERIC Educational Resources Information Center

    Gunther, Jillian Rebecca

    2009-01-01

    The physiologic effects of estrogen action through the estrogen receptor (ER) are widespread, as this hormone exerts actions in both reproductive (e.g., uterus) and non-reproductive (e.g., bone, brain) tissues in both men and women. As such, the regulation of the activity of this ligand-activated transcription factor is highly relevant to the…

  16. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    SciTech Connect

    Cathey, T.M.; Chung, Kyung W. )

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  17. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    ERIC Educational Resources Information Center

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  18. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  19. Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell

    PubMed Central

    Abbondanza, Ciro; Rossi, Valentina; Roscigno, Annarita; Gallo, Luigi; Belsito, Angela; Piluso, Giulio; Medici, Nicola; Nigro, Vincenzo; Molinari, Anna Maria; Moncharmont, Bruno; Puca, Giovanni A.

    1998-01-01

    A 104-kD protein was coimmunoprecipitated with the estrogen receptor from the flowtrough of a phosphocellulose chromatography of MCF-7 cell nuclear extract. mAbs to this protein identified several cDNA clones coding for the human 104-kD major vault protein. Vaults are large ribonucleoprotein particles of unknown function present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species, the major vault protein, accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug, but no proteins of known function have been described to interact with them. Western blot analysis of vaults purified on sucrose gradient showed the presence of estrogen receptor co-migrating with the vault peak. The AER317 antibody to estrogen receptor coimmunoprecipitated the major vault protein and the vault RNA also in the 20,000 g supernatant fraction. Reconstitution experiments of estrogen receptor fragments with the major vault protein mapped the site of the interaction between amino acids 241 and 280 of human estrogen receptor, where the nuclear localization signal sequences are located. Estradiol treatment of cells increased the amount of major vault protein present in the nuclear extract and coimmunoprecipitated with estrogen receptor, whereas the anti-estrogen ICI182,780 had no effect. The hormone-dependent interaction of vaults with estrogen receptor was reproducible in vitro and was prevented by sodium molybdate. Antibodies to progesterone and glucocorticoid receptors were able to coimmunoprecipitate the major vault protein. The association of nuclear receptors with vaults could be related to their intracellular traffic. PMID:9628887

  20. Molecular cloning of estrogen receptor alpha (ERalpha; ESR1) of the Japanese giant salamander, Andrias japonicus.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Oka, Tomohiro; Mitsui, Naoko; Tooi, Osamu; Santo, Noriaki; Urushitani, Hiroshi; Fukumoto, Yukio; Kuwabara, Kazushi; Ashikaga, Kazuhide; Minami, Shinji; Kato, Shigeaki; Ohta, Yasuhiko; Guillette, Louis J; Iguchi, Taisen

    2006-09-26

    Estrogens are essential for normal reproductive activity in females and males and for ovarian differentiation during a critical developmental stage in many vertebrates. To understand the molecular mechanisms of estrogen action and to evaluate estrogen receptor ligand interactions in the Japanese giant salamander (Andrias japonicus), we isolated cDNA encoding the estrogen receptor (ER) from the liver. A full-length Japanese giant salamander ER cDNA (jgsER) was obtained using 5' and 3' rapid amplification cDNA ends (RACE). The deduced amino acid sequence of the jgsER showed high identity to the Xenopus ERalpha (ESR1) (77.7%). We have applied both the conventional ERE-luciferase reporter assay system and the GAL4-transactivation system to characterize this receptor. In two different transient transfection assay systems using mammalian cells, the jgsER protein displayed estrogen-dependent activation of transcription. The GAL4-transactivation system showed about 10-fold greater activity of the estrogen receptor by hormone when compared to the conventional ERE-luciferase reporter assay system. Tissue distribution of ERalpha mRNA was examined and kidney, ovary and liver exhibited expression. This is the first isolation of an estrogen receptor from a salamander and also is the first functional cDNA obtained from the Japanese giant salamander, an endangered species considered a special natural monument of Japan.

  1. Bromine-80m-labeled estrogens: Auger-electron emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor positive cancers

    SciTech Connect

    DeSombre, E.R.; Mease, R.C.; Hughes, A.; Harper, P.V.; DeJesus, O.T.; Friedman, A.M.

    1988-01-01

    A triphenylbromoethylene, 1,1-bis(p-hydroxyphenyl)-2-bromo-2-phenylethylene, Br-BHPE, and a bromosteroidal estrogen, 17..cap alpha..- bromovinylestradiol, BrVE/sub 2/, were labeled with the Auger electron emitting nuclide bromine-80m, prepared by the (p,n) reaction with /sup 80/Se. To assess their potential as estrogen receptor (ER) directed therapeutic substrates the bromine-80m labeled estrogens were injected into immature female rats and the tissue distribution studied at 0.5 and 2 hours. Both radiobromoestrogens showed substantial diethylstilbesterol (DES)-inhibitable localization in the ER rich tissues, uterus, pituitary, ovary and vagina at both time points. While the percent dose per gram tissue was higher for the Br-BHPE, the BrVE/sub 2/ showed higher tissue to blood ratios, especially at 2 hr, reflecting the lower blood concentrations of radiobromine following administration of the steroidal bromoestrogen. Comparing intraperitoneal, intravenous and subcutaneous routes of administration for the radiobromine labeled Br-BHPE, the intraperitoneal route was particularly advantageous to provide maximum, DES-inhibitable concentrations in the peritoneal, ER-rich target organs, the uterus, ovary and vagina. While uterine concentrations after BrBHPE were from 10--48% dose/g and after BrVE/sub 2/ were 15--25% dose/g, similar treatment with /sup 80m/Br as sodium bromide showed uniform low concentrations in all tissues at about the levels seen in blood. The effective specific activity of (/sup 80m/Br)BrBHPE, assayed by specific binding to ER in rat uterine cytosol, was 8700 Ci/mmole. 23 refs., 9 figs., 2 tabs.

  2. Regulatory function of the P295-T311 motif of the estrogen receptor α - does proteasomal degradation of the receptor induce emergence of peptides implicated in estrogenic responses?

    PubMed Central

    Gallo, Dominique; Haddad, Iman; Laurent, Guy; Vinh, Joëlle; Jacquemotte, Françoise; Jacquot, Yves; Leclercq, Guy

    2008-01-01

    The way in which estrogen receptor α (ERα) mediates gene transcription and hormone-dependent cancer cell proliferation is now being largely reconsidered in view of several recent discoveries. ERα-mediated transcription appears to be a cyclic and transient process where the proteasome - and thus receptor degradation - plays a pivotal role. In view of our recent investigations, which demonstrate the estrogenic activity of a synthetic peptide corresponding to a regulatory motif of the receptor (ERα17p), we propose that ERα proteasomal degradation could induce the emergence of regulatory peptide(s). The latter would function as a signal and contribute to the ERα activation process, amplifying the initial hormonal stimulation and giving rise to sustained estrogenic response. PMID:18432312

  3. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  4. Receptor-binding radiopharmaceuticals for imaging breast tumors: estrogen-receptor interactions and selectivity of tissue uptake of halogenated estrogen analogs

    SciTech Connect

    Katzenellenbogen J.A.; Carlson, K.E.; Heiman, D.F.; Goswami, R.

    1980-06-01

    Four halogenated estrogen analogs - o-fluorohexestrol, and 1-fluoro-, 1-bromo-, and 1-iodohexestrol - have been prepared and tritium-labeled in high specific activity, to investigate their potential as estrogen-receptor-based agents for imaging breast tumors. These compounds bind with high affinity in vitro to the cytoplasmic uterine estrogen receptor from rat and lamb and sediment as 8S receptor complexes on sucrose gradients. After 1 hr in immature rats, these compounds show high uptake into the uterus, but low uptakes (10 to 25% of the uterine levels) into most nontarget tissues. The uterine uptake is estrogen specific since it is depressed by excess nonradioactive estradiol. Uptake selectivity is greatest for the fluorohexestrols and decreases for the bromo and iodo compounds. In mature rats bearing DMBA-induced mammary tumors, selective uptake by the uterus and tumors is seen with 1-fluoro(/sup 3/H/sub 4/)hexestrol and o-fluoro(/sup 3/H/sub 3/)hexestrol. The studies indicate that these four halogenated hexestrols are promising candidates as estrogen-receptor-based agents for the imaging of human breast tumors.

  5. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  6. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    PubMed Central

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  7. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α.

    PubMed

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  8. Nonclassical estrogen receptor alpha signaling mediates negative feedback in the female mouse reproductive axis.

    PubMed

    Glidewell-Kenney, C; Hurley, L A; Pfaff, L; Weiss, J; Levine, J E; Jameson, J L

    2007-05-01

    Ovarian estrogen exerts both positive and negative feedback control over luteinizing hormone (LH) secretion during the ovulatory cycle. Estrogen receptor (ER) alpha but not ERbeta knockout mice lack estrogen feedback. Thus, estrogen feedback appears to be primarily mediated by ERalpha. However, it is now recognized that, in addition to binding to estrogen response elements (EREs) in DNA to alter target gene transcription, ERalpha signals through ERE-independent or nonclassical pathways, and the relative contributions of these pathways in conveying estrogen feedback remain unknown. Previously we created a knockin mouse model expressing a mutant form of ERalpha (AA) with ablated ERE-dependent but intact ERE-independent activity. Breeding this allele onto the ERalpha-null (-/-) background, we examine the ability of ERE-independent ERalpha signaling pathways to convey estrogen feedback regulation of the female hypothalamic-pituitary axis in vivo. ERalpha-/AA exhibited 69.9% lower serum LH levels compared with ERalpha-/- mice. Additionally, like wild type, ERalpha-/AA mice exhibited elevated LH after ovariectomy (OVX). Furthermore, the post-OVX rise in serum LH was significantly suppressed by estrogen treatment in OVX ERalpha-/AA mice. However, unlike wild type, both ERalpha-/AA and ERalpha-/- mice failed to exhibit estrous cyclicity, spontaneous ovulation, or an afternoon LH surge response to estrogen. These results indicate that ERE-independent ERalpha signaling is sufficient to convey a major portion of estrogen's negative feedback actions, whereas positive feedback and spontaneous ovulatory cyclicity require ERE-dependent ERalpha signaling.

  9. Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA).

    PubMed

    Taguchi, Yasuto; Koslowski, Mirek; Bodenner, Donald L

    2004-08-19

    BACKGROUND: The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3-5%), the latter was carefully removed by ultrafiltration. RESULTS: As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERalpha within ER-negative HeLa cells and with MC7 cells that endogenously produce ERalpha. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. CONCLUSIONS: These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate

  10. Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA)

    PubMed Central

    Taguchi, Yasuto; Koslowski, Mirek; Bodenner, Donald L

    2004-01-01

    Background The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3–5%), the latter was carefully removed by ultrafiltration. Results As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERα within ER-negative HeLa cells and with MC7 cells that endogenously produce ERα. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. Conclusions These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate that in

  11. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription.

    PubMed

    Katsu, Yoshinao; Cziko, Paul A; Chandsawangbhuwana, Charlie; Thornton, Joseph W; Sato, Rui; Oka, Koari; Takei, Yoshio; Baker, Michael E; Iguchi, Taisen

    2016-09-15

    Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b. PMID:27432813

  12. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription.

    PubMed

    Katsu, Yoshinao; Cziko, Paul A; Chandsawangbhuwana, Charlie; Thornton, Joseph W; Sato, Rui; Oka, Koari; Takei, Yoshio; Baker, Michael E; Iguchi, Taisen

    2016-09-15

    Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b.

  13. Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer.

    PubMed

    McCafferty, Marc P J; McNeill, Roisin E; Miller, Nicola; Kerin, Michael J

    2009-08-01

    The activity of selective estrogen receptor modulators (SERMs) is not fully explained by an estrogen receptor (ER) switch model that simply turns estrogen activity on or off. A better understanding of the mechanisms involved in estrogen signaling and the development of drug resistance could help stratify patients into more coherent treatment groups and identify novel therapeutic candidates. This review describes how interactions between two novel factors known to influence estrogenic activity: nuclear receptor cofactors--protein partners which modulate estrogen action, and microRNAs--a class of recently discovered regulatory elements, may impact hormone-sensitive breast cancer. The role of nuclear receptor cofactors in estrogen signaling and the associations between ER cofactors and breast cancer are described. We outline the activity of microRNAs (miRNAs) and their associations with breast cancer and detail recent evidence of interactions between the ER and its cofactors and miRNA and provide an overview of the emerging field of miRNA-based therapeutics. We propose that previously unrecognised interactions between these two species of regulatory molecules may underlie at least some of the heterogeneity of breast cancer in terms of its clinical course and response to treatment. The exploitation of such associations will have important implications for drug development.

  14. Recurrence of cervical cancer in mice after selective estrogen receptor modulator therapy.

    PubMed

    Spurgeon, Megan E; Chung, Sang-Hyuk; Lambert, Paul F

    2014-02-01

    Estrogen and its nuclear receptor, estrogen receptor α, are necessary cofactors in the initiation and multistage progression of carcinogenesis in the K14E6/E7 transgenic mouse model of human papillomavirus-associated cervical cancer. Recently, our laboratory reported that raloxifene, a selective estrogen receptor modulator, promoted regression of high-grade dysplasia and cancer that arose in the cervix of K14E6/E7 transgenic mice treated long-term with estrogen. Herein, we evaluated the recurrence of cervical cancer after raloxifene therapy in our preclinical model of human papillomavirus-associated cervical carcinogenesis. We observed recurrence of cervical cancer in mice re-exposed to estrogen after raloxifene treatment, despite evidence suggesting the antagonistic effects of raloxifene persisted in the reproductive tract after treatment had ceased. We also observed recurrence of neoplastic disease in mice that were not retreated with exogenous estrogen, although the severity of disease was less. Recurrent neoplastic disease and cancers retained functional estrogen receptor α and responded to retreatment with raloxifene. Moreover, continuous treatment of mice with raloxifene prevented the emergence of recurrent disease seen in mice in which raloxifene was discontinued. These data suggest that cervical cancer cells are not completely eradicated by raloxifene and rapidly expand if raloxifene treatment is ceased. These findings indicate that a prolonged treatment period with raloxifene might be required to prevent recurrence of neoplastic disease and lower reproductive tract cancers.

  15. Distinct effects of loss of classical estrogen receptor signaling versus complete deletion of estrogen receptor alpha on bone

    PubMed Central

    Syed, Farhan A.; Fraser, Daniel G.; Monroe, David G.; Khosla, Sundeep

    2011-01-01

    Estrogen receptor (ER)α is a major regulator of bone metabolism which can modulate gene expression via a “classical” pathway involving direct DNA binding to estrogen-response elements (EREs) or via “non-classical” pathways involving protein-protein interactions. While the skeletal consequences of loss of ERE binding by ERα have been described, a significant unresolved question is how loss of ERE binding differs from complete loss of ERα. Thus, we compared the skeletal phenotype of wild-type (ERα+/+) and ERα knock out (ERα−/−) mice with that of mice in which the only ERα present had a knock-in mutation abolishing ERE binding (non-classical ERα knock-in [NERKI], ERα−/NERKI). All three groups were in the same genetic background (C57BL/6). As compared to both ERα+/+ and ERα−/− mice, ERα−/NERKI mice had significantly reduced cortical volumetric bone mineral density and thickness at the tibial diaphysis; this was accompanied by significant decreases in periosteal and endocortical mineral apposition rates. Colony forming unit (CFU)-fibroblast, CFU-alkaline phosphatase, and CFU-osteoblast numbers were all increased in ERα−/− compared to ERα+/+ mice, but reduced in ERα−/NERKI mice compared to the two other groups. Thus, using mice in identical genetic backgrounds, our data indicate that the presence of an ERα that cannot bind DNA but can function through protein-protein interactions may have more deleterious skeletal effects than complete loss of ERα. These findings suggest that shifting the balance of classical versus non-classical ERα signaling triggers pathways that impair bone formation. Further studies defining these pathways may lead to novel approaches to selectively modulate ER signaling for beneficial skeletal effects. PMID:21458604

  16. Estrogen receptor beta participate in the regulation of metabolizm of extracellular matrix in estrogen alpha negative breast cancer.

    PubMed

    Leśniewska, Monika; Miltyk, Wojciech; Swiatecka, Jolanta; Tomaszewska, Małgorzata; Kuźmicki, Mariusz; Pałka, Jerzy; Wołczyński, Sławomir

    2009-01-01

    The biology of breast cancer is closely releted to sex steroid hormones. Estrogen receptor beta is overexpressed in around 70% breast cancer cases, referrd to as "ER positive". Estrogens bind to estrogen receptor and stimulate the transcription of genes involved in control of cell proliferation. Moreover, estrogens may induce growth factors and components of extracellular matrix and interact with them in a complex manner. Extracellular matrix and integrins play an important role in cell functions and their aberrant expressions are implicated in breast cancer development, invasion and metastasis. ER beta is certainly associated with more differentiated tumors, while evidence of role of ER beta is controversial. The highly invasive breast cancer ER beta negative cell line MDA-MB 231 can be the model of exam the role of ER beta in breast cancer. The aim of this study was to examine the role of activation of ER beta on the metabolism of the extracellular matrix and the expression of beta-1 integrin in the breast cancer cell line MDA-MB 231. The cells were exposed on the estradiol, tamoxifen, raloxifen and genisteina in dose dependent concentrations. To determine the relative rate of collagen syntesis we measured the time-dependent reduction of collagen-bound radioactivity after pulse-chase labeling with [3 H] prolina by Peterkofsky methods. The expression of beta-1 integrin was determine by Western blot analysis. The activity of MMP2 and 9 were measured using gelatin zymography with an image analysis system. Our data suggest on the role of estrogen receptor beta on the metabolism of extracellular matrix in the breast cancer line MDA - MB 231. Estradiol and SERMs regulate the expression of ECM proteins: collagen, integrins and enhance activity of metaloproteinases 2 and 9. PMID:20067880

  17. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP

    PubMed Central

    Bennesch, Marcela A.; Segala, Gregory; Wider, Diana; Picard, Didier

    2016-01-01

    The estrogen receptor α (ERα) is a transcription factor that can be directly activated by estrogen or indirectly by other signaling pathways. We previously reported that activation of the unliganded ERα by cAMP is mediated by phosphorylation of the transcriptional coactivator CARM1 by protein kinase A (PKA), allowing CARM1 to bind ERα directly. This being insufficient by itself to activate ERα, we looked for additional factors and identified the histone H3 demethylase LSD1 as a substrate of PKA and an important mediator of this signaling crosstalk as well as of the response to estrogen. Surprisingly, ERα engages not only LSD1, but its partners of the CoREST corepressor complex and the molecular chaperone Hsp90. The recruitment of Hsp90 to promote ERα transcriptional activity runs against the steroid receptor paradigm and suggests that it might be involved as an assembly factor or scaffold. In a breast cancer cell line, which is resistant to the anti-estrogen tamoxifen because of constitutively activated PKA, some interactions are constitutive and drug combinations partially rescue tamoxifen sensitivity. In ERα-positive breast cancer patients, high expression of the genes encoding some of these factors correlates with poor prognosis. Thus, these mechanisms might contribute to ERα-driven breast cancer. PMID:27325688

  18. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium.

    PubMed

    Maiti, K; Paul, J W; Read, M; Chan, E C; Riley, S C; Nahar, P; Smith, R

    2011-06-01

    Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), mediated some of this effect. Using human myometrium obtained at term cesarean section before or after the onset of labor, we demonstrated the presence of GPR30 mRNA and protein using quantitative RT-PCR and Western blotting. GPR30 receptor was localized to the cell membrane and often colocalized with calveolin-1. Using the specific estrogen membrane receptor agonist G-1 and myometrial explants, we showed that membrane receptor activation led to phosphorylation of MAPK and the actin-modifying small heat shock protein 27. Using myometrial strips incubated with G-1 or vehicle we demonstrated that estrogen membrane receptor activation increased the myometrial contractile response to oxytocin. These data suggest that activation of the plasma membrane estrogen receptor GPR30 likely participates in the physiology of the human myometrium during pregnancy and identifies it as a potential target to modify uterine activity. PMID:21427217

  19. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland.

    PubMed

    Rago, V; Romeo, F; Giordano, F; Ferraro, A; Carpino, A

    2016-01-01

    Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements.

  20. Estrogen receptor and progesterone receptor synthesis and degradation in target cells

    SciTech Connect

    Nardulli, A.M.

    1987-01-01

    It was the intent of this study to determine the turnover of the estrogen receptor (ER) and progesterone receptors (PR) in rat uterine and human breast cancer cells, respectively, and to examine the effect of estrogen and progestin on PR levels. The rates of synthesis and degradation of ER were determined in rat uterine cells in vitro and in vivo. The affinity labeling antiestrogen, (/sup 3/H)tamoxifen aziridine, was used in pulse chase experiments to show that the 65,000 molecular weight ER has a half-life of 3-4h in primary cultures of rat uterine cells in vitro and in the intact rat uterus in vivo. Density shift analyses using dense (/sup 15/N, /sup 13/C, /sup 2/H) amino acid incorporation corroborate the rapid turnover of ER in rat uterine cell cultures. The regulation of PR by progestins in T47D human breast cancer cells was examined using density shift-dense amino acid incorporation. When T47D cells, which normally maintain high PR levels, are exposed to progestin (R5020), PR levels decline. Receptor half-life, which is 21h in control cells, is reduced to 6h when cells are exposed to 20 nM (/sup 3/H)R5020. In addition, PR synthesis rate declines exponentially following R5020 exposure. The reduction in receptor level is thus due to dramatic increases in PR degradation as well as marked decreases in PR synthesis.

  1. Modern reproductive patterns associated with estrogen receptor positive but not negative breast cancer susceptibility

    PubMed Central

    Aktipis, C. Athena; Ellis, Bruce J.; Nishimura, Katherine K.; Hiatt, Robert A.

    2015-01-01

    It has long been accepted that modern reproductive patterns are likely contributors to breast cancer susceptibility because of their influence on hormones such as estrogen and the importance of these hormones in breast cancer. We conducted a meta-analysis to assess whether this ‘evolutionary mismatch hypothesis’ can explain susceptibility to both estrogen receptor positive (ER-positive) and estrogen receptor negative (ER-negative) cancer. Our meta-analysis includes a total of 33 studies and examines parity, age of first birth and age of menarche broken down by estrogen receptor status. We found that modern reproductive patterns are more closely linked to ER-positive than ER-negative breast cancer. Thus, the evolutionary mismatch hypothesis for breast cancer can account for ER-positive breast cancer susceptibility but not ER-negative breast cancer. PMID:25389105

  2. Luminescent enzyme-linked receptor assay for estrogenic compounds.

    PubMed

    Seifert, Martin

    2004-02-01

    The analytics of endocrine-disrupting compounds has become a major issue during recent years. Several test systems have been developed for endocrine-disrupting chemicals. Yeast reporter gene assays and MCF-7 cell-based proliferation assays (E-screen) are particularly popular. A correlation of an enzyme-linked receptor assay (ELRA) with a yeast reporter gene assay is shown. In addition, the development of an ultra-sensitive luminescent ELRA with a detection limit of 20 ng/L for 17 beta-estradiol in the sample is reported. Data for real sample analysis are shown in this paper. ELRA characteristics are compared with cell-based assays, and the issue of detection limits is addressed. In this context, the detection limits of the cell-based assays have been claimed to be below the ELRA detection limits. However, it is clarified that the given detection limits for the yeast estrogen screen and the E-screen are usually based on concentrations of 17 beta-estradiol in the well, not in the sample, whereas ELRA detection limits are concentrations in the sample.

  3. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.

    PubMed

    Browne, Patience; Judson, Richard S; Casey, Warren M; Kleinstreuer, Nicole C; Thomas, Russell S

    2015-07-21

    The U.S. Environmental Protection Agency (EPA) is considering high-throughput and computational methods to evaluate the endocrine bioactivity of environmental chemicals. Here we describe a multistep, performance-based validation of new methods and demonstrate that these new tools are sufficiently robust to be used in the Endocrine Disruptor Screening Program (EDSP). Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17β-estradiol). ToxCast ER model performance was evaluated for reference chemicals, as well as results of EDSP Tier 1 screening assays in current practice. The ToxCast ER model accuracy was 86% to 93% when compared to reference chemicals and predicted results of EDSP Tier 1 guideline and other uterotrophic studies with 84% to 100% accuracy. The performance of high-throughput assays and ToxCast ER model predictions demonstrates that these methods correctly identify active and inactive reference chemicals, provide a measure of relative ER bioactivity, and rapidly identify chemicals with potential endocrine bioactivities for additional screening and testing. EPA is accepting ToxCast ER model data for 1812 chemicals as alternatives for EDSP Tier 1 ER binding, ER transactivation, and uterotrophic assays. PMID:26066997

  4. Tristetraprolin Represses Estrogen Receptor α Transactivation in Breast Cancer Cells*

    PubMed Central

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-01-01

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer. PMID:24737323

  5. Tristetraprolin represses estrogen receptor α transactivation in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-05-30

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer.

  6. Tristetraprolin represses estrogen receptor α transactivation in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-05-30

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer. PMID:24737323

  7. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer.

    PubMed

    Lau, Kin-Mang; To, Ka-Fai

    2016-01-01

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients. PMID:27589731

  8. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer.

    PubMed

    Lau, Kin-Mang; To, Ka-Fai

    2016-08-31

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.

  9. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer

    PubMed Central

    Lau, Kin-Mang; To, Ka-Fai

    2016-01-01

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients. PMID:27589731

  10. Estrogen receptors in gastric cancer: Advances and perspectives

    PubMed Central

    Rahman, Muhammad Saif Ur; Cao, Jiang

    2016-01-01

    Worldwide, gastric cancer is one of the most common malignancies with high mortality. Various aspects of the development and progression of gastric cancer continue to be extensively investigated in order to further our understanding and provide more effective means for the prevention, diagnosis, and treatment of the disease. Estrogen receptors (ERs) are steroid hormone receptors that regulate cellular activities in many physiological and pathological processes in different tissues. There are two distinct forms of ERs, namely ERα and ERβ, with several alternative-splicing isoforms for each. They show distinct tissue distribution patterns and exert different biological functions. Dysregulation of ERs has been found to be associated closely with many diseases, including cancer. A number of studies have been conducted to investigate the role of ERs in gastric cancer, the possible mechanisms underlying these roles, and the clinical relevance of deregulated ERs in gastric cancer patients. To date, inconsistent associations of different ERs with gastric cancer have been reported. These inconsistencies may be caused by variations in in vitro cell models and clinical samples, including assay conditions and protocols with regard to different forms of ERs. Given the potential of the deregulated ERs as diagnostic/prognostic markers or therapeutic targets for gastric cancer, it will be important to identify/confirm the association of each ER isoform with gastric cancer, to determine the specific roles and interactions that these individual ER isoforms play under specific conditions in the development and/or progression of gastric cancer, and to elucidate precisely these mechanisms. In this review, we summarize the achievements from early ER studies in gastric cancer to the most up-to-date discoveries, with an effort to provide a comprehensive understanding of the role of ERs roles in gastric cancer and its possible mechanisms. Furthermore, we propose directions for future

  11. Estrogen and selective estrogen receptor modulators (SERMs) for the treatment of acromegaly: a meta-analysis of published observational studies.

    PubMed

    Stone, Jennifer C; Clark, Justin; Cuneo, Ross; Russell, Anthony W; Doi, Suhail A R

    2014-06-01

    Estrogen and selective estrogen receptor modulator (SERM) treatments for acromegaly have received limited attention since the development of newer pharmacologic therapies. There has been ongoing research evidence suggesting their utility in the biochemical control of acromegaly. Therefore, the aim of this meta-analysis was to synthesise current evidence with a view to determining to what extent and in which acromegalic patient subsets do estrogen and SERMs reduce IGF-1 levels. A literature search was conducted (finished December 2012), which included all studies pertaining to estrogen or SERM treatment and IGF-1. Seven patient subsets were identified from six published observational studies, and were pooled using meta-analytic methods. Overall, the pooled mean loss in IGF-1 was -29.09 nmol/L (95 % CI -37.23 to -20.95). A sensitivity analysis indicated that women receiving estrogen had a substantially greater reduction in IGF-1 levels compared with women receiving SERMs, with a weighted mean loss in IGF-1 of -38.12 nmol/L (95 % CI -46.78 to -29.45) compared with -22.91 nmol/L (95 % CI -32.73 to -13.09). There was a trend that did not reach statistical significance for men receiving SERM treatment at -11.41 nmol/L (95 % CI -30.14 to 7.31). It was concluded that estrogen and SERMs are a low cost and effective treatment to achieve control of IGF-1 levels in acromegalic women either as concomitant treatment for refractory disease, or where access to conventional therapy is restricted. Their use in men requires further study.

  12. Antiestrogenic effects of the fetal estrogen estetrol in women with estrogen-receptor positive early breast cancer.

    PubMed

    Singer, Christian F; Bennink, Herjan J T Coelingh; Natter, Camilla; Steurer, Stefan; Rudas, Margaretha; Moinfar, Farid; Appels, Nicole; Visser, Monique; Kubista, Ernst

    2014-11-01

    Estetrol (E4) is a fetal estrogen with estrogenic effects on reproductive organs and bone in preclinical models and in postmenopausal women. However, E4 exerts antiestrogenic effects on breast cancer (BC) cell growth in vitro and in vivo. We have investigated the effect of 14 days preoperative treatment with 20mg E4 per day on tumor proliferation markers, sex steroid receptor expression and endocrine parameters in a prospective, randomized, placebo-controlled, preoperative window trial in 30 pre- and post-menopausal women with estrogen-receptor positive early BC. E4 had a significant pro-apoptotic effect on tumor tissue, whereas Ki67 expression remained unchanged in both pre- and post-menopausal women. E4 increased sex-hormone-binding globulin significantly thereby reducing the concentrations of bioavailable estradiol. Follicle-stimulating hormone levels decreased in postmenopausal women only and luteinizing hormone levels remained unchanged. Systemic insulin growth factor-1 levels decreased significantly. Intratumoral epithelial ERα expression decreased significantly and a trend was found towards an increased expression of ERβ. This clinical data support the preclinical findings that E4 has antiestrogenic effects on BC cells, whereas earlier studies have shown that E4 has estrogenic effects on reproductive tissues and bone. Further clinical studies seem acceptable and are needed to confirm the safety and efficacy of E4 for the breast in hormone replacement therapy, including hormone replacement therapy in women who have or have had BC, especially in those BC patients treated with aromatase inhibitors and suffering from serious complaints due to estrogen deficiency. PMID:24997853

  13. Bisphenol A regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor.

    PubMed

    Xu, Xiao-Bin; He, Ye; Song, Chen; Ke, Xin; Fan, Shi-Jun; Peng, Wei-Jie; Tan, Ruei; Kawata, Mitsuhiro; Matsuda, Ken-Ichi; Pan, Bing-Xing; Kato, Nobumasa

    2014-12-01

    Bisphenol A (BPA), one of the most common environmental endocrine disruptors, has been recognized to have wide adverse effects on the brain development and behavior. These adversities are related to its ability to bind estrogen receptor (ER) with subsequent alteration of its expression in the target areas. However, very little is known about whether BPA exposure also affects ER phosphorylation and its translocation to nucleus during postnatal development, two critical steps for its function. Here, we found that during development from postnatal day 7 (P7) to P21, the alpha subtype of ER (ERα) in the hippocampus of male rats experienced remarkable alterations in terms of its expression, phosphorylation and translocation to nucleus. Exposure to low level of BPA had bidirectional, development-dependent effects on the expression of ERα mRNA and protein, but decreased ERα phosphorylation and impaired its translocation to nucleus throughout the period investigated. Treatment with low dose of ICI 182,780 (ICI), an ER antagonist to block the binding of ER with BPA, reversed the altered ERα following BPA exposure, highlighting critical involvement of ER. Moreover, ICI treatment rescued the hippocampus-dependent behavioral deficits in the adult rats experiencing early-life BPA exposure. Overall, our results indicate that BPA interferes with the ERα signaling in the developing hippocampus in an ER-dependent manner, which may underlie its adverse behavioral and cognitive outcomes in adult animals.

  14. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    PubMed

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment. PMID:26704594

  15. Gender-specific alteration of adrenergic responses in small femoral arteries from estrogen receptor-beta knockout mice.

    PubMed

    Luksha, Leonid; Poston, Lucilla; Gustafsson, Jan-Ake; Aghajanova, Lusine; Kublickiene, Karolina

    2005-11-01

    Estrogen receptor-beta knockout mice become hypertensive as they age, and males have a higher blood pressure than females. We hypothesized that the absence of estrogen receptor-beta may contribute to development of cardiovascular dysfunction by modification of adrenergic responsiveness in the peripheral vasculature. Small femoral arteries (internal diameter <200 microm) were isolated from estrogen receptor-beta knockout and wild-type mice and mounted on a wire myograph. Concentration-response curves to phenylephrine and norepinephrine were compared and the contribution of adrenoceptor subtypes established using specific agonists and antagonists. The involvement of endothelial factors in the modulation of resting tone was also investigated and immunohistochemical analysis used to confirm the presence or absence of estrogen receptor expression. Compared with wild type, arteries from estrogen receptor-beta knockout male, but not female, mice demonstrated gender-specific enhancement of the response to phenylephrine (alpha1-adrenoceptor agonist), which was accompanied by elevated basal tension attributable to endothelial factors. Contractile responses to the mixed adrenoceptor agonist norepinephrine did not differ significantly between estrogen receptor-beta knockout and wild type; however, beta-adrenoceptor inhibition unmasked an enhanced underlying alpha1-adrenoceptor responsiveness in estrogen receptor-beta knockout males. beta-adrenoceptor-mediated dilatation was also enhanced in estrogen receptor-beta knockout versus wild-type males. We suggest that estrogen receptor-beta modifies the adrenergic control of small artery tone in males but not in females.

  16. A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance

    PubMed Central

    Ma, Yongxian; Preet, Anju; Tomita, York; De Oliveira, Eliseu; Zhang, Li; Ueda, Yumi; Clarke, Robert; Brown, Milton; Rosen, Eliot M.

    2015-01-01

    Previous studies indicate that BRCA1 protein binds to estrogen receptor-alpha (ER) and inhibits its activity. Here, we found that BRCA1 over-expression not only inhibits ER activity in anti-estrogen-resistant LCC9 cells but also partially restores their sensitivity to Tamoxifen. To simulate the mechanism of BRCA1 inhibition of ER in the setting of Tamoxifen resistance, we created a three-dimensional model of a BRCA1-binding cavity within the ER/Tamoxifen complex; and we screened a pharmacophore database to identify small molecules that could fit into this cavity. Among the top 40 “hits”, six exhibited potent ER inhibitory activity in anti-estrogen-sensitive MCF-7 cells and four of the six exhibited similar activity (IC50 ≤ 1.0 μM) in LCC9 cells. We validated the model by mutation analysis. Two representative compounds (4631-P/1 and 35466-L/1) inhibited ER-dependent cell proliferation in Tamoxifen-resistant cells (LCC9 and LCC2) and partially restored sensitivity to Tamoxifen. The compounds also disrupted the association of BRCA1 with ER. In electrophoretic mobility shift assays, the compounds caused dissociation of ER from a model estrogen response element. Finally, a modified form of compound 35446 (hydrochloride salt) inhibited growth of LCC9 tumor xenografts at non-toxic concentrations. These results identify a novel group of small molecules that can overcome Tamoxifen resistance. PMID:26575173

  17. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer

    PubMed Central

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M.; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-01-01

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence. PMID:27092883

  18. A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance.

    PubMed

    Ma, Yongxian; Preet, Anju; Tomita, York; De Oliveira, Eliseu; Zhang, Li; Ueda, Yumi; Clarke, Robert; Brown, Milton; Rosen, Eliot M

    2015-12-01

    Previous studies indicate that BRCA1 protein binds to estrogen receptor-alpha (ER) and inhibits its activity. Here, we found that BRCA1 over-expression not only inhibits ER activity in anti-estrogen-resistant LCC9 cells but also partially restores their sensitivity to Tamoxifen. To simulate the mechanism of BRCA1 inhibition of ER in the setting of Tamoxifen resistance, we created a three-dimensional model of a BRCA1-binding cavity within the ER/Tamoxifen complex; and we screened a pharmacophore database to identify small molecules that could fit into this cavity. Among the top 40 "hits", six exhibited potent ER inhibitory activity in anti-estrogen-sensitive MCF-7 cells and four of the six exhibited similar activity (IC50 ≤ 1.0 μM) in LCC9 cells. We validated the model by mutation analysis. Two representative compounds (4631-P/1 and 35466-L/1) inhibited ER-dependent cell proliferation in Tamoxifen-resistant cells (LCC9 and LCC2) and partially restored sensitivity to Tamoxifen. The compounds also disrupted the association of BRCA1 with ER. In electrophoretic mobility shift assays, the compounds caused dissociation of ER from a model estrogen response element. Finally, a modified form of compound 35446 (hydrochloride salt) inhibited growth of LCC9 tumor xenografts at non-toxic concentrations. These results identify a novel group of small molecules that can overcome Tamoxifen resistance.

  19. Solubilization of the chromatin-bound estrogen receptor from chicken liver and fractionation on hydroxylapatite.

    PubMed

    Gschwendt, M

    1976-08-16

    1. High-affinity estrogen-binding sites can be solubilized from the liver chromatin of estrogenized chickens by treatment of the chromatin with 2 M KCL/5 M urea and fractionation on hydroxylapatite. Two estrogen-binding proteins are eluted from hydroxylapatite columns by 20mM phosphate (binding protein I) and 200mMphosphate (binding protein II), respectively. 2. The binding protein I is part of a non-histone protein fraction containing acid-soluble and insoluble proteins, whereas the binding protein II elutes together with high molecular weight nonhistone proteins containing acid insoluble proteins only. Both binding proteins exhibit the smae affinity for estradiol (Kd approximately 10(-9) M). 3. From chromatin of untreated chickens very small amounts of binding protein I (0.1 pmol/mg protein compared to 1.9 pmol/mg protein from estrogenized chickens) with the smae affinity for estradiol as that from estrogenized animals can be solubilized. Binding protein II is not detectable. 4. The "soluble nuclear estrogen receptor" extracted from crude liver nucleir of estrogenized chickens by 0.5 M KCL behaves on hydroxylapatite very similarly to salt/urea-dissociated chromatin with respect to the binding protein I. No binding protein II, however, can be demonstrated. 5. Chromatography of various preparations on Bio-Gel A-1.5 m indicates that the binding protein II is a residual chromatin fragment containing an unseparated binding protein-DNA complex, whereas the binding protein I represents the solubilized nucleic-acid-free chromosomal estrogen receptor. The "soluble nuclear receptor" and the binding protein I, however, are not identical with respect to their chromatographic behaviour on Bio-Gel A-1.5m, even though their estrogen binding entity remaining after trypsin treatment seems to be very similar.

  20. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  1. Urethral Dysfunction in Female Mice with Estrogen Receptor β Deficiency

    PubMed Central

    Chen, Yung-Hsiang; Chen, Chao-Jung; Yeh, Shuyuan; Lin, Yu-Ning; Wu, Yang-Chang; Hsieh, Wen-Tsong; Wu, Bor-Tsang; Ma, Wen-Lung; Chen, Wen-Chi; Chang, Chawnshang; Chen, Huey-Yi

    2014-01-01

    Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI. PMID:25275480

  2. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  3. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  4. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.

    PubMed

    Wang, Pan; Dang, Li; Zhu, Bao-Ting

    2016-01-01

    Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.

  5. Transcriptional activation of estrogen receptor ERalpha and ERbeta by polycyclic musks is cell type dependent.

    PubMed

    Schreurs, Richard H M M; Quaedackers, Monique E; Seinen, Willem; van der Burg, Bart

    2002-08-15

    In the past decade the list of chemicals in the environment that are able to mimic the natural hormone estrogen, thereby disrupting endocrine function, has grown rapidly. These chemicals are able to bind to estrogen receptors (ERs) and influence estrogen signaling pathways, although several of them have structures that differ substantially from the endogenous hormone 17beta-estradiol. Because of their polycyclic nature, the polycyclic musks AHTN (6-acetyl-1,1,2,4,4,7-hexamethyltetraline) and HHCB (1,2,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran) were assessed for interaction with estrogen receptors. These compounds are ubiquitously present in surface waters and have been identified in human milk fat and blood. Using sensitive in vitro reporter gene assays, we found that AHTN and HHCB act as selective estrogen receptor modulators (SERMs), inducing both estrogenic and antiestrogenic activity dependent on the cell line and the ER subtype targeted. Weak estrogenic effects were observed only at relatively high concentrations (10 microM). Antiestrogenic effects were observed in various cell lines starting at concentrations of 0.1 microM. In comparison with the well-known SERM, 4-hydroxytamoxifen, AHTN and HHCB have a much lower potency in suppressing estradiol-induced transactivation. Results with various mutant ER receptor types suggest that binding sites of the musk compounds differ from 17beta-estradiol and 4-hydroxytamoxifen. The cell type dependency of ER transactivation shows that caution should be exerted when interpreting effects of estrogenic compounds using in vitro systems.

  6. Phytoestrogens Activate the Estrogen Receptor in HepG2 Cells.

    PubMed

    Kelly, Lynne A

    2016-01-01

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in postmenopausal women are unknown. This chapter describes a protocol to determine the effect of the phytoestrogens genistein, daidzein and equol, on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen using in vitro culture systems and Taqman(®) gene expression analysis. PMID:26585156

  7. Phytoestrogens Activate the Estrogen Receptor in HepG2 Cells.

    PubMed

    Kelly, Lynne A

    2016-01-01

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in postmenopausal women are unknown. This chapter describes a protocol to determine the effect of the phytoestrogens genistein, daidzein and equol, on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen using in vitro culture systems and Taqman(®) gene expression analysis.

  8. G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    PubMed Central

    Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.

    2012-01-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861

  9. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass

    PubMed Central

    Farman, H. H.; Windahl, S. H.; Westberg, L.; Isaksson, H.; Egecioglu, E.; Schele, E.; Ryberg, H.; Jansson, J. O.; Tuukkanen, J.; Koskela, A.; Xie, S. K.; Hahner, L.; Zehr, J.; Clegg, D. J.; Lagerquist, M. K.

    2016-01-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα−/−). Female POMC-ERα−/− and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα−/− mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice. PMID:27254004

  10. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    PubMed

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  11. Enantioselective recognition of mono-demethylated methoxychlor metabolites by the estrogen receptor.

    PubMed

    Miyashita, Masahiro; Shimada, Takahiro; Nakagami, Shizuka; Kurihara, Norio; Miyagawa, Hisashi; Akamatsu, Miki

    2004-02-01

    Metabolites of methoxychlor such as 2-(p-hydroxyphenyl)-2-(p-methoxyphenyl)-1,1,1-trichloroethane (mono-OH-MXC) and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (bis-OH-MXC), have estrogenic activity. Mono-OH-MXC is a chiral compound in which the carbon atom bridging two benzene rings is the chiral centre. In previous studies the estrogenic activity of racemic mono-OH-MXC has been measured, and the activity of each enantiomer of this compound has not yet been elucidated. In this study, we evaluated the estrogen receptor-binding activity of each enantiomer of mono-OH-MXC to clarify the enantioselective recognition by the estrogen receptor. (S)-mono-OH-MXC showed 3-fold higher binding activity than that of the (R) enantiomer. The activity of bis-OH-MXC was only 1.7-fold higher than that of (S)-mono-OH-MXC. This result suggests that the one hydroxy group and the orientation of the CCl3 group of mono- and bis-OH-MXCs are important for the interaction with the estrogen receptor. The result also points out the estrogenic activity of methoxychlor after metabolic activation in vivo, which predominantly produces the (S)-mono-OH-MXC, may be higher than estimated from the in vitro activity of racemic mixtures.

  12. Characterization of two uterine proteases and their actions on the estrogen receptor

    SciTech Connect

    Gregory, M.R.; Notides, A.C.

    1982-01-01

    We have characterized two previously undetected proteases from the calf uterine cytosol and measured their actions on the estrogen receptor. One is an exopeptidase, purified 60-fold, that hydrolyzed amino acid (lysine-, and alanine-, or leucine-) p-nitroanilide substrates and leucyl-glycylglycine, did not hydrolyze (/sup 14/C)methemoglobin, was completely inhibited by 1 mM bestatin or puromycin (specific inhibitors of leucine aminopeptidase like enzymes), and was unable to influence the sedimentation of the 8S form of the estrogen receptor in sucrose gradients containing dilute Tris buffer. A commercial porcine leucine aminopeptidase, like the calf uterine aminopeptidase, did not convert the 8S estrogen receptor to a 4S form. Evidently, removal of the N-terminal amino acid(s) from the estrogen receptor by exopeptidase action cannot alter the sedimentation of the 8S form of the receptor, or the N-terminal amino acid(s) of the receptor is (are) unaccessible or resistant to exopeptidase activity. The second, a receptor-active protease, is an endopeptidase that did not hydrolyze any of the synthetic amide or peptide substrates tested but did possess (/sup 14/C)methemoglobin-degrading activity and the ability to convert the 8S estrogen receptor to a modified 4S form in sucrose gradients containing dilute Tris buffer. The modified 4S receptor was separable from the native receptor by DEAE-cellulose chromatography. The endopeptidase did not require Ca/sup 2 +/ for activity, and its chromatographic properties were distinctly different from a previously isolated Ca/sup 2 +/-activated protease. It was inhibited by leupeptin or dipyridyl disulfide, suggesting the presence of a thiol group that is essential for its activity.

  13. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo.

    PubMed

    Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M

    2011-09-01

    17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.

  14. Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta.

    PubMed

    Burek, Malgorzata; Steinberg, Katrin; Förster, Carola Y

    2014-07-01

    Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.

  15. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  16. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. PMID:26921679

  17. Sharing the Roles: An Assessment of Japanese Medaka Estrogen Receptors in Vitellogenin Induction.

    PubMed

    Lee Pow, Crystal S D; Yost, Erin E; Aday, D Derek; Kullman, Seth W

    2016-08-16

    Teleost fish express at least three estrogen receptor (ER) subtypes. To date, however, the individual role of these ER subtypes in regulating expression of estrogen responsive genes remains ambiguous. Here, we investigate putative roles of three ER subtypes in Japanese medaka (Oryzias latipes), using vitellogenin (VTG) I and II as model genes. We identify specific ligand/receptor/promoter dynamics, using transient transactivation assays that incorporate luciferase reporters comprising 3kb promoter/enhancer regions of medaka VTGI and VTGII genes. Four steroidal estrogens (17β-estradiol, estrone, estriol, and 17α-estradiol) were tested in these assays. Results indicate that all three medaka ERs (mERs) are capable of initiating transactivation of both VTG I and II, with ERβ2 exhibiting greatest activity. Promoter deletion analysis suggests that ligand-specific receptor transactivation and utilization of regional-specific estrogen response elements may be associated with differential activities of each medaka ER. Further, cluster analysis of in vivo gene expression and in vitro transactivation suggests that all three ER subtypes putatively play a role in up-regulation of VTG. Results illustrate that preferential ligand/receptor/promoter interactions may have direct implications for VTG gene expression and other ER-mediated regulatory functions that are relevant to the risk assessment of estrogenic compounds.

  18. Sharing the Roles: An Assessment of Japanese Medaka Estrogen Receptors in Vitellogenin Induction.

    PubMed

    Lee Pow, Crystal S D; Yost, Erin E; Aday, D Derek; Kullman, Seth W

    2016-08-16

    Teleost fish express at least three estrogen receptor (ER) subtypes. To date, however, the individual role of these ER subtypes in regulating expression of estrogen responsive genes remains ambiguous. Here, we investigate putative roles of three ER subtypes in Japanese medaka (Oryzias latipes), using vitellogenin (VTG) I and II as model genes. We identify specific ligand/receptor/promoter dynamics, using transient transactivation assays that incorporate luciferase reporters comprising 3kb promoter/enhancer regions of medaka VTGI and VTGII genes. Four steroidal estrogens (17β-estradiol, estrone, estriol, and 17α-estradiol) were tested in these assays. Results indicate that all three medaka ERs (mERs) are capable of initiating transactivation of both VTG I and II, with ERβ2 exhibiting greatest activity. Promoter deletion analysis suggests that ligand-specific receptor transactivation and utilization of regional-specific estrogen response elements may be associated with differential activities of each medaka ER. Further, cluster analysis of in vivo gene expression and in vitro transactivation suggests that all three ER subtypes putatively play a role in up-regulation of VTG. Results illustrate that preferential ligand/receptor/promoter interactions may have direct implications for VTG gene expression and other ER-mediated regulatory functions that are relevant to the risk assessment of estrogenic compounds. PMID:27391190

  19. The interaction site for tamoxifen aziridine with the bovine estrogen receptor

    SciTech Connect

    Ratajczak, T.; Wilkinson, S.P.; Brockway, M.J.; Haehnel, R.M.; Moritz, R.L.; Begg, G.S.; Simpson, R.J.

    1989-08-15

    Calf uterine estrogen receptor was covalently labeled with ({sup 3}H)tamoxifen aziridine during affinity chromatography purification. After carboxymethylation, affinity labeled receptor was digested with trypsin under limit conditions and the labeled peptides were fractionated by reversed-phase high performance liquid chromatography into one major and two minor components. Sequence analysis of the dominant labeled fragment indicated the facile cleavage of label during Edman degradation but identified two peptides, both derived from the extreme carboxyl terminus of the steroid-binding domain. The 17 residues of one peptide were fully conserved in all estrogen receptors. This fragment contained five nucleophilic amino acids and was considered as the more favored interaction site for tamoxifen aziridine. A corresponding region of the glucocorticoid receptor has recently been identified as one of three major contact sites for glucocorticoids. A comparison of amino acid physical characteristics in the hormone-binding domains of human estrogen and glucocorticoid receptors demonstrated an excellent structural correlation between the two regions and delineated elements in the estrogen receptor which may be directly involved in estradiol binding.

  20. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  1. Estrogen receptor alpha and androgen receptor are commonly expressed in well-differentiated liposarcoma

    PubMed Central

    2014-01-01

    Background Liposarcoma (LS) is the second-most common type of soft-tissue sarcoma. Despite advances in knowledge and treatment of this disease, there remains a need for more effective LS therapy. Steroid hormone receptors regulate metabolism in adipocytes. Estrogen receptor alpha (ER), progesterone receptor (PR), and androgen receptor (AR) have been implicated in the pathophysiology of other cancer types. We sought to comprehensively determine temporal expression patterns of these receptors in LS. Methods We analyzed 561 histologically subtyped LS specimens from 354 patients for expression of ER, PR, and AR by immunohistochemistry (IHC) using diagnostic-grade reagents and protocols. The fractions of positively stained tumor cells were scored within each specimen. IHC scores were compared across LS subtypes using the Kruskal-Wallis test, and subtypes were compared using Dunn’s post-hoc test. Ages of patients with receptor-positive vs. -negative LS were compared by t-test. Genders and races were compared for hormone receptor positivity using Fisher’s exact test and Chi-square analysis, respectively. Recurrence-free survival was compared between receptor-positive and negative patients by log-rank test. p< 0.05 was considered significant. Results ER and AR were frequently expressed in LS, while few tumors expressed PR. Most of the ER + and AR + samples were of the well-differentiated LS subtype. A smaller fraction of de-differentiated LS expressed ER or AR, but expression was common within well-differentiated regions of tumors histologically classified as de-differentiated LS. In LS specimens from patients who underwent multiple surgeries over time, receptor expression frequently changed over time, which may be attributable in part to intratumor heterogeneity, varying degrees of de-differentiation, and biopsy bias. ER and AR were frequently co-expressed. Receptor status was not significantly associated with gender or race, but AR and PR expression were

  2. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    PubMed

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  3. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  4. Integrated Summary Report: Validation of Two Binding Assays Using Human Recombinant Estrogen Receptor Alpha (hrERa)

    EPA Science Inventory

    This Integrated Summary Report (ISR) summarizes, in a single document, the results from an international multi-laboratory validation study conducted for two in vitro estrogen receptor (ER) binding assays. These assays both use human recombinant estrogen receptor, alpha subtype (h...

  5. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis, and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in r...

  6. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  7. Characterization of the weak estrogen receptor α agonistic activity of exemestane

    PubMed Central

    Masri, Selma; Lui, Ki; Phung, Sheryl; Ye, Jingjing; Zhou, Dujin; Wang, Xin; Chen, Shiuan

    2012-01-01

    Third generation aromatase inhibitors (AI) have shown good clinical efficacy in comparison to the anti-estrogen tamoxifen. The steroidal AI, exemestane (EXE) has previously been shown to act as an androgen, but this report demonstrates the estrogen-like activity of EXE. Based on genome-wide microarray analysis, high correlation was seen between EXE-Only (EXE O, hormone-free) and hormone-containing AI-resistant lines. In addition, the top regulated genes in the EXE O lines were mostly estrogen-responsive genes. This estrogen-like activity of EXE was further validated using estrogen receptor (ER) activity assays, where in comparison to 17β-estradiol (E2), EXE was able to induce ER activity, though at a higher concentration. Also, this EXE-mediated ER activity was blocked by the ER antagonist ICI as well as the ERα-specific antagonist methyl-piperidino-pyrazole (MPP). Similarly, EXE was able to induce proliferation of breast cancer cell lines, MCF-7 and MCF-7aro, as well as activate transcription of known estrogen-responsive genes, i.e., PGR, pS2 and AREG. These results suggest that EXE does have weak estrogen-like activity. PMID:18677558

  8. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina

    PubMed Central

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-01-01

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs. PMID:26438838

  9. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System.

    PubMed

    Menazza, Sara; Murphy, Elizabeth

    2016-03-18

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.

  10. G Protein-Coupled Estrogen Receptor in Energy Homeostasis and Obesity Pathogenesis

    PubMed Central

    Shi, Haifei; Dharshan Senthil Kumar, Shiva Priya; Liu, Xian

    2013-01-01

    Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. PMID:23317786

  11. Androgen receptor (AR), estrogen receptor-alpha (ER-α) and estrogen receptor-beta (ER-β) expression in the testis of the newt, Triturus marmoratus marmoratus during the annual cycle

    PubMed Central

    ARENAS, M. I.; ROYUELA, M.; LOBO, M. V. T.; ALFARO, J. M.; FRAILE, B.; PANIAGUA, R.

    2001-01-01

    Expression of androgen receptor (AR), estrogen receptor alpha (ER-α) and estrogen receptor beta (ER-β) in the testis of the marbled newt (Triturus marmoratus marmoratus) was investigated, with special attention to changes during the annual testicular cycle, using light microscopy immunohistochemistry and Western blot analysis. Primordial germ cells, primary and secondary spermatogonia and spermatocytes showed a positive reaction to the 3 receptor antibodies during the annual reproductive cycle. Follicular cells were positive to AR, ER-α and ER-β during the spermiogenesis and quiescence periods in the glandular tissue. Interstitial cells showed reactivity to AR, ER-α and ER-β in the spermiogenesis and the quiescence periods, and presented no labelling to these receptors in the proliferative period. These findings suggest that, as in mammals, there is an androgen-estrogen regulation of the function and development of the newt testis. PMID:11693307

  12. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis.

  13. Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer’s disease

    PubMed Central

    Wang, Chunyu; Zhang, Fan; Jiang, Sirui; Siedlak, Sandra L.; Shen, Lu; Perry, George; Wang, Xinglong; Tang, Beisha; Zhu, Xiongwei

    2016-01-01

    The female predominance for developing Alzheimer disease (AD) suggests the involvement of gender specific factor(s) such as a reduced estrogen-estrogen receptor signaling in the pathogenesis of AD. The potential role of ERα in AD pathogenesis has been explored by several groups with mixed results. We revisited this issue of expression and distribution of ERα in AD brain using a specific ERα antibody. Interestingly, we found that ERα co-localized with neurofibrillary pathology in AD brain and further demonstrated that ERα interacts with tau protein in vivo. Immunoprecipitaion experiments found increased ERα-tau interaction in the AD cases, which may account for ERα being sequestered in neuronal tau pathology. Indeed, tau overexpression in M17 cells leads to interruption of estrogen signaling. Our data support the idea that sequestration of ERα by tau pathology underlies the loss of estrogen neuroprotection during the course of AD. PMID:26837465

  14. Identification of Estrogen Response Element in Aquaporin-3 Gene that Mediates Estrogen-induced Cell Migration and Invasion in Estrogen Receptor-positive Breast Cancer

    PubMed Central

    Huang, Yi-Ting; Zhou, Jun; Shi, Shuai; Xu, Hai-Yan; Qu, Fan; Zhang, Dan; Chen, Yi-Ding; Yang, Jing; Huang, He-Feng; Sheng, Jian-Zhong

    2015-01-01

    Accumulating evidence suggests that aquaporins (AQPs) may facilitate tumor development. The molecular pathways connecting the pathological functions of AQPs are unclear and need to be better defined. This study aimed to investigate whether AQP3, one of the AQPs expressed highly in breast cancer, had any clinical implication in estrogen-receptor (ER) positive breast cancer, and explore the regulatory mechanisms of AQP3 in estrogen-related breast cancer progression. Here we show that AQP3 is an important enforcer of migration and invasion in breast cancer. We, for the first time, reported that ER-positive breast cancer tissues obtained from premenopausal patients had higher AQP3 expression when compared to those obtained from postmenopausal patients. Estrogen directly upregulates AQP3 by activating ERE in the promoter of the AQP3 gene. The upregulation of AQP3 can influence the expression of molecules related to epithelial-mesenchymal transition and the reorganization of actin-cytoskeleton, resulting in enhancement of cell migration and invasion in ER-positive breast cancer cells. PMID:26219409

  15. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low. PMID:10760947

  16. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low.

  17. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    PubMed

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  18. Androgen- and Estrogen-Receptor Content in Spontaneous and Experimentally Induced Canine Prostatic Hyperplasia

    PubMed Central

    Trachtenberg, John; Hicks, L. Louise; Walsh, Patrick C.

    1980-01-01

    To gain insight into the mechanism by which steroidal hormones influence the development of canine prostatic hyperplasia, nuclear and cytosolic androgen- and estrogen-receptor content, as measured under exchange conditions by the binding of [3H]R1881 (methyltrienolone) and [3H]estradiol, respectively, were quantitated in the prostates of purebred beagles of known age. In young dogs with spontaneously arising and experimentally induced (androstanediol plus estradiol treatment) prostatic hyperplasia, nuclear, but not cytosolic, prostatic androgen-receptor content was significantly greater than that determined in the normal prostates of age-matched dogs (3,452±222 and 4,035±274 fmol/mg DNA vs. 2,096±364 fmol/mg DNA, respectively). No differences were observed between the androgen-receptor content of the normal prostates of young dogs and the hyperplastic prostates of old dogs. The cytosolic and nuclear estrogen-receptor content of spontaneously arising prostatic hyperplasia in both young and old animals was similar to that found in normal prostates. The administration of estradiol plus androstanediol to castrate dogs significantly increased the prostatic nuclear androgen-receptor content over that found in dogs treated only with androstanediol. This estradiol-associated increase in nuclear androgen-receptor content was accompanied by the development of benign prostatic hyperplasia. Estradiol treatment of castrate dogs resulted in an increase in prostatic nuclear estrogen-receptor content, in the appearance of a putative prostatic cytosolic progesterone receptor, and in an alteration of the epithelium of the prostate to one characterized by squamous metaplasia. Treatment of castrate dogs with both estradiol and androstanediol resulted in a reduction in prostatic nuclear estrogen-receptor content, disappearance of the progesterone receptor, and loss of squamous metaplasia. An increase in nuclear androgen-receptor content, thus, appears to be an important event in the

  19. Up-regulation of cyclin E in breast cancer via estrogen receptor pathway.

    PubMed

    Niu, Dehong; Wang, Gang; Wang, Xiuwen

    2015-01-01

    It is well known that cell cycle dysregulation plays an important role in breast cancer. The mechanism, however, is not fully understood. In this study, we aimed to explore whether estrogen and estrogen receptor pathway play a role in the regulation of cell cycle protein cyclin E expression, and whether the expression of cyclin E is associated with breast cancer prognosis. We first examined the level of cyclin E expression in breast cancer by immunohistochemistry. Benign fibroadenoma was used as controls. Next we cultured MCF-7 cells with different concentration of 17β-estradiol or tamoxifen for 48 hours. Then we employ qRT-PCR to determine changes of cyclin E in MCF-7 cells. Cyclin E is overexpressed in breast cancer and its expression is associated with the status of estrogen receptor and lymph node metastasis. After treatment with 17β-estradiol, the gene expression of cyclin E was enhanced, and as the concentration increased, the enhancement increased. After treatment with tamoxifen, the gene expression of cyclin E was inhibited, and as the concentration decreased, the inhibition increased. We demonstrated that estrogen induces, while tamoxifen inhibits cyclin E expression. This indicate that estrogen receptor pathway play a critical role in cell cycle dysregulation in breast cancer.

  20. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling.

    PubMed

    Nehybova, Tereza; Smarda, Jan; Daniel, Lukas; Brezovsky, Jan; Benes, Petr

    2015-08-01

    Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways.

  1. Estrogen and progesterone modulate [35S]GTPgammaS binding to nociceptin receptors.

    PubMed

    Quesada, Arnulfo; Micevych, Paul

    2008-01-01

    Sex steroids modulate reproduction by altering the response of steroid-activated opioid circuits in the hypothalamus and limbic system, by inducing release of endogenous opioids and activation of their cognate receptors. Many studies have concentrated on steroid regulation of exogenous opioid peptides, but steroids also have important actions on opioid receptors inducing receptor trafficking. Opioid receptors are G protein-coupled receptors and their activation catalyzes the exchange of GTP for GDP initiating intracellular signaling cascades. Kinetics of G protein activation were studied using [(35)S]GTPgammaS binding. Catalytic amplification, the number of G proteins activated per occupied receptor, was used as a measure of receptor/transducer amplification. The present study examined whether estrogen and progesterone treatment altered the kinetics of nociceptin opioid receptor (ORL1) in plasma membranes from the medial preoptic area and mediobasal hypothalamus. These hypothalamic regions are important in the gonadal steroid hormone regulation of sexual receptivity. In the mediobasal hypothalamus, estrogen increased ORL1 (B(max)) receptor number 2-fold and maximal GTPgammaS binding (E(max)) 3.9-fold. Subsequent progesterone treatment further increased ORL1 E(max )6.9-fold above baseline, despite a 2-fold decrease in the catalytic amplification factor. In the medial preoptic area, estrogen alone did not increase E(max), but both estrogen and progesterone were able to increase ORL1 B(max) 2.2-fold and E(max) 3-fold, despite having a 3-fold decrease in the catalytic amplification factor. These effects are interesting because they indicate actions of steroids that increase the number of ORL1 but decrease the catalytic amplification suggesting that the steroid effects on opioid receptors are complex and may involve modulation by other signals. PMID:18212517

  2. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    PubMed Central

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  3. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias; Prossnitz, Eric R

    2015-10-01

    Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common causes of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase (COX)-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A(2) were determined in human endothelial cells stimulated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α). Moreover, Gper-deficient (Gper(-/-)) and WT mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, contractions to acetylcholine-stimulated endothelial vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by twofold. Ovariectomy also augmented prostanoid-dependent contractions by twofold in WT mice but had no additional effect in Gper(-/-) mice. These contractions were blocked by the COX inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor l-N(G)-nitroarginine methyl ester. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to

  4. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Barton, Matthias; Prossnitz, Eric R.

    2016-01-01

    Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common cause of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A2 were determined in human endothelial cells stimulated by the pro-inflammatory cytokine TNF-α. Moreover, Gper-deficient (Gper−/−) and wild-type mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, endothelium-dependent contractions to acetylcholine-stimulated vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by 2-fold. Ovariectomy also augmented prostanoid-dependent contractions by 2-fold in wild-type mice, but had no additional effect in Gper−/− mice. These contractions were blocked by the cyclooxygenase inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor L-NAME. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to treat increased prostanoid

  5. Histone acetyltransferase Hbo1 destabilizes estrogen receptor α by ubiquitination and modulates proliferation of breast cancers.

    PubMed

    Iizuka, Masayoshi; Susa, Takao; Takahashi, Yoshihisa; Tamamori-Adachi, Mimi; Kajitani, Takashi; Okinaga, Hiroko; Fukusato, Toshio; Okazaki, Tomoki

    2013-12-01

    The estrogen receptor (ER) is a key molecule for growth of breast cancers. It has been a successful target for treatment of breast cancers. Elucidation of the ER expression mechanism is of importance for designing therapeutics for ER-positive breast cancers. However, the detailed mechanism of ER stability is still unclear. Here, we report that histone acetyltransferase Hbo1 promotes destabilization of estrogen receptor α (ERα) in breast cancers through lysine 48-linked ubiquitination. The acetyltransferase activity of Hbo1 is linked to its activity for ERα ubiquitination. Depletion of Hbo1 and anti-estrogen treatment displayed a potent growth suppression of breast cancer cell line. Hbo1 modulated transcription by ERα. Mutually exclusive expression of Hbo1 and ERα was observed in roughly half of the human breast tumors examined in the present study. Modulation of ER stability by Hbo1 in breast cancers may provide a novel therapeutic possibility.

  6. There and back again: The journey of the estrogen-related receptors in the cancer realm.

    PubMed

    Tam, Ingrid S; Giguère, Vincent

    2016-03-01

    The identification of two genes encoding polypeptides with structural features common with the estrogen receptor more than a quarter century ago, referred to as the estrogen-related receptors (ERRs), subsequently led to the discovery of several previously unrecognized hormone responsive systems through the application of reverse endocrinology. Paradoxically, the natural ligand(s) associated with members of the ERR subfamily remains to be identified. While initial studies on the mode of action and physiological functions of the ERRs focused on interaction with estrogen signalling in breast cancer, subsequent work showed that the ERRs are ubiquitous master regulators of cellular energy metabolism. This review aims to demonstrate that the ERRs occupy a central node at the interface of cancer and metabolism, and that modulation of their activity may represent a worthwhile strategy to induce metabolic vulnerability in tumors of various origins and thus achieve a more comprehensive response to current therapies. PMID:26151739

  7. Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC.

    PubMed

    Pellegrini, Marco; Bulzomi, Pamela; Lecis, Marco; Leone, Stefano; Campesi, Ilaria; Franconi, Flavia; Marino, Maria

    2014-08-01

    Sex steroid hormones differently control the major physiological processes in male and female organisms. In particular, their effects on vascular smooth muscle cells (VSMCs) migration are at the root of sex/gender-related differences reported in the cardiovascular system. Several exogenous substances, defined endocrine disruptor chemicals (EDCs), could interfere with these androgen and estrogen effects; however, the sex/gender-related susceptibility of VSMC motility to EDCs is completely unknown. Here, the effect of naturally occurring (naringenin, Nar) and synthetic (bisphenol A, BPA) EDCs on male and female VSMC motility has been evaluated. 17β-estradiol (E2, 0.1 nM-1 µM) induced a dose-dependent inhibition of motility in female-derived VSMC. In contrast, neither dihydrotestosterone (DHT, 0.01-100 nM) nor the common precursor of sex steroid hormones, testosterone (Tes, 0.01-100 nM) modified male-derived VSMC motility. Estrogen receptor (ER) β subtype-dependent activation of p38 was necessary for the E2 effect on cell motility. High BPA concentration prevented E2 effects in female-derived cells being without any effect in male-derived cells. Nar mimicked E2 effects on female-derived cells even in the presence of E2 or BPA. Intriguingly, Nar also inhibited the male-derived VSMC mobility. This latter effect was prevented by ERβ inhibitor, but not by the androgen receptor (AR) inhibitor. As a whole, ERβ-dependent signals in VSMC results more susceptible to the impact of EDCs than AR signals suggesting a possible high and overall susceptibility of female to EDCs. However, several male-derived cells, including VSMC, express ERβ, which could also serve as target of EDC disruption in male organisms. PMID:24347325

  8. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation. PMID:27681435

  9. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    SciTech Connect

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  10. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B

    2015-07-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.

  11. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  12. Estrogen receptor function as revealed by knockout studies: neuroendocrine and behavioral aspects.

    PubMed

    Rissman, E F; Wersinger, S R; Taylor, J A; Lubahn, D B

    1997-06-01

    Estrogens are an important class of steroid hormones, involved in the development of brain, skeletal, and soft tissues. These hormones influence adult behaviors, endocrine state, and a host of other physiological functions. Given the recent cloning of a second estrogen receptor (ER) cDNA (the ER beta), work on alternate spliced forms of ER alpha, and the potential for membrane estrogen receptors, an animal with a null background for ER alpha function is invaluable for distinguishing biological responses of estrogens working via the ER alpha protein and those working via another ER protein. Data generated to date, and reviewed here, indicate that there are profound ramifications of the ER alpha disruption on behavior and neuroendocrine function. First, data on plasma levels of estradiol (E2), testosterone (T), and luteinizing hormone (LH) in wild-type (WT) versus ER alpha- mice confirm that ER alpha is essential in females for normal regulation of the hypothalamic-pituitary gonadal axis. Second, ovariectomized female ER alpha- mice do not display sexual receptivity when treated with a hormonal regime of estrogen and progesterone that induces receptivity in WT littermates. Finally, male sexual behaviors are disrupted in ER alpha- animals. Given decades of data on these topics our findings may seem self-evident. However, these data represent the most direct test currently possible of the specific role of the ER alpha protein on behavior and neuroendocrinology. The ER alpha- mouse can be used to ascertain the specific functions of ER alpha, to suggest functions for the other estrogen receptors, and to study indirect effects of ER alpha on behavior via actions on other receptors, neurotransmitters, and neuropeptides.

  13. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2015-08-01

    The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-β estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.

  14. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women

    PubMed Central

    Olivo-Marston, Susan E.; Mechanic, Leah E.; Mollerup, Steen; Bowman, Elise D.; Remaley, Alan T.; Forman, Michele R.; Skaug, Vidar; Zheng, Yun-Ling; Haugen, Aage; Harris, Curtis C.

    2010-01-01

    The role of tumor estrogen receptors (ERs) and serum estrogen in lung cancer is inconclusive. We investigated the hypothesis that ERs and functional single-nucleotide polymorphisms in the estrogen biosynthesis pathway are associated with poorer lung cancer survival. Lung cancer patients (n = 305) from a National Cancer Institute-Maryland (NCI-MD) case–case cohort in the Baltimore metropolitan area were used as a test cohort. To validate, 227 cases from the NCI-MD case–control cohort and 293 cases from a Norwegian lung cancer cohort were studied. Information on demographics, tobacco and reproductive histories was collected in an interviewer-administered questionnaire. Serum estrogen, progesterone, tumor messenger RNA expression of hormone receptors and germ line DNA polymorphisms were analyzed for associations with lung cancer survival. Patients in the highest tertile of serum estrogen had worse survival in all three cohorts (P combined < 0.001). Furthermore, the variant allele of estrogen receptor alpha (ER-α) polymorphism (rs2228480) was significantly associated with increased tumor ER-α levels and worse survival in all three cohorts [hazard ratio (HR) = 2.59, 95% confidence interval (CI): 1.20– 4.01; HR = 1.76, 95% CI: 1.08–2.87 and HR = 2.85, 95% CI: 1.31–4.36). Other polymorphisms associated with lower serum estrogen correlated with improved survival. Results were independent of gender and hormone replacement therapy. We report a significant association of increased serum estrogen with poorer survival among lung cancer male and female patients. Understanding the genetic control of estrogen biosynthesis and response in lung cancer could lead to improved prognosis and therapy. PMID:20729390

  15. CLONING, EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR ALPHA FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    In vitro screening assays designed to identify hormone mimics or antagonists, including those recommended for use in the EPA's Tier 1 screening battery, typically use mammalian estrogen (ER) and androgen receptors (AR) such as rat or human. Although we know that the amino acid s...

  16. Analysis of estrogen and progesterone receptors on preoperative fine-needle aspirates.

    PubMed

    Frigo, B; Pilotti, S; Zurrida, S; Ermellino, L; Manzari, A; Rilke, F

    1995-01-01

    For 56 cases of carcinoma of the breast, results of the immunocytochemical assay for estrogen and progesterone receptors performed on preoperative fine-needle aspirates were compared with those obtained on scraping material from the same tumors. The value and usefulness of this last analysis was demonstrated in a previous study. The level of agreement between the two cytological techniques was assessed by the k statistic. A high level of agreement was found, with k values of 0.909 and 0.889 for estrogen and progesterone receptors, respectively. The results reported here revealed the reliability of steroid receptor determination on fine-needle aspiration biopsies, provided that sufficient cellularity was available. This technique can replace the open biopsy procedure, in as much as it represents a rapid, almost painless, and easily repeated method for the assessment of the receptor status, and is useful for treatment decisions at any time during the course of the disease.

  17. COMPARATIVE DOCKING STUDIES OF THE BINDING OF POLYCYCLIC AROMATIC HYDROCARBONS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    The interactions of several PAHs, and some of their possible metabolites, with the ligand binding domain of the estrogen receptor have been examined using molecular docking and quantum mechanical methods. The geometries of the PAHs were optimized at the Hartree-Fock level and the...

  18. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2011-01-01

    Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and non-genomic ER activity through direct interactions with ERs, indirectly through transcription factors like the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study. PMID:21053929

  19. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  20. Species comparisons in molecular and functional attributes of the androgen and estrogen receptor

    EPA Science Inventory

    While endocrine disrupting compounds (EDCs) have the potential to act via several mechanisms of action, one of the most widely studied is the ability of environmental chemicals to interact directly with either the estrogen (ER) or androgen receptor (AR). In vitro screening assay...

  1. NATURE OF BINDING INTERACTION OF SELECTED CHEMICALS WITH RAT ESTROGEN RECEPTORS

    EPA Science Inventory

    The US EPA is currently validating a rat uterine estrogen receptor (ER) binding assay as part of the Tier 1 Screening Battery for the Endocrine Disruptor Program. An eventual goal is to use interactive data to create computerized structure-activity models. However, more informati...

  2. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii.

  3. HOXC6 is transcriptionally regulated via coordination of MLL histone methylase and estrogen receptor under estrogen environment

    PubMed Central

    Ansari, Khairul I.; Hussain, Imran; Shrestha, Bishakha; Kasiri, Sahba; Mandal, Subhrangsu S.

    2011-01-01

    Homeobox containing gene HOXC6 is a critical player in mammary gland development, milk production and is overexpressed in breast and prostate cancer. We demonstrated that HOXC6 is transcriptionally regulated by estrogen (E2). HOXC6 promoter contains two putative estrogen-response elements (EREs), termed as ERE11/2 and ERE21/2. Promoter analysis using luciferase based reporter assay demonstrated that both EREs are responsive to E2, ERE11/2 being more responsive than ERE21/2. Estrogen receptors, ERα and ERβ, bind to these EREs in an E2-dependent manner and antisense-mediated knockdown of ERs suppressed the E2-dependent activation of HOXC6 expression. Similarly, knockdown of histone methylases, MLL2 and MLL3, decreased E2-mediated activation of HOXC6. However, depletion of MLL1 or MLL4 showed no significant effect. MLL2 and MLL3 were bound to the HOXC6 EREs in an E2-dependent manner. In contrast, MLL1 and MLL4 that were bound to the HOXC6 promoter in the absence of E2, decreased upon exposure to E2. MLL2 and MLL3 play key roles in histone H3K4-trimethylation and recruitment of general transcription factors and RNAP II in the HOXC6 promoter during E2-dependent transactivation. Nuclear receptor corepressors N-CoR and SAFB1 were bound in the HOXC6 promoter in absence of E2 and that binding were decreased upon E2-treatment indicating their critical roles in suppressing HOXC6 gene expression under non-activated condition. Knockdown of either ERα or ERβ abolished E2-dependent recruitment of MLL2 and MLL3 into the HOXC6 promoter demonstrating key roles of ERs in recruitment of these MLLs into HOXC6 promoter. Overall, our studies demonstrated that HOXC6 is an estrogen-responsive gene and histone methylases MLL2 and MLL3, in coordination with ERα and ERβ, transcriptionally regulate HOXC6 in an E2-dependent manner. PMID:21683083

  4. Estrogen prevents norepinephrine alpha-2a receptor reversal of stress-induced working memory impairment

    PubMed Central

    SHANSKY, REBECCA M.; BENDER, GENEVIEVE; ARNSTEN, A. F. T.

    2011-01-01

    Understanding effects of estrogen on the medial prefrontal cortex (PFC) may help to elucidate the increased prevalence of depression and post-traumatic stress disorder in women of ovarian cycling age. Estrogen replacement in ovariectomized (OVX) young rats amplifies the detrimental effects of stress on working memory (a PFC-mediated task), but the mechanisms by which this occurs have yet to be identified. In male rats, stimulation of norepinephrine alpha-2 adrenoceptors protects working memory from stress-induced impairments. However, this effect has not been studied in females, and has not been examined for sensitivity to estrogen. The current study asked whether OVX females with estrogen replacement (OVX + Est) and without replacement (OVX + Veh) responded differently to stimulation of alpha-2 adrenoceptors after administration of the benzodiazepine inverse agonist FG7142, a pharmacological stressor. The alpha-2 agonist, guanfacine, protected working memory from the impairing effects of FG7142 in OVX + Veh, but not in OVX + Est rats. Western Blot analysis for alpha-2 receptors was performed on PFC tissue from each group, but no changes in expression were found, indicating that the behavioral effects observed were likely not due to changes in receptor expression. These findings point to possible mechanisms by which estrogen may enhance the stress response, and hold implications for the gender discrepancy in the prevalence of stress-related mental illness. PMID:19005873

  5. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth.

    PubMed

    Johnson, Kailee A; Vemuri, Sravan; Alsahafi, Sameerh; Castillo, Rudy; Cheriyath, Venugopalan

    2016-01-01

    Due to the association of hormone replacement therapy (HRT) with breast cancer risk, estrogenically active soy isoflavones are considered as an HRT alternative to alleviate menopausal symptoms. However, several recent reports challenged the health benefits of soy isoflavones and associated them with breast cancer promotion. While glyconic isoflavones are the major constituents of soybean seeds, due to their low cell permeability, they are considered to be biologically inactive. The glyconic isoflavones may exert their effects on membrane-bound estrogen receptors or could be converted to aglycones by extracellular β-glucosidases. Therefore, we hypothesized that despite their low cell permeability, soybean cultivars with high glyconic isoflavones may promote breast cancer cell growth. To test this, composition and estrogenic activity of isoflavones from 54 commercial soybean cultivars were determined. Soybean seeds produced in identical climate and growth conditions were used to minimize the effects of extraneous factors on isoflavone profile and concentrations. The glyconic daidzin concentration negatively correlated with genistin and with other aglycones. Relative to control, isoflavone extracts from 51 cultivars were estrogenic and promoted the growth of estrogen receptor positive (ER+) breast cancer cell line MCF-7 from 1.14 to 4.59 folds and other three cultivars slightly reduced the growth. Among these, extracts from three cultivars were highly estrogenic and promoted MCF-7 cell growth by 2.59-4.64 folds (P<0.005). Among six isoflavones, daidzin was positively associated with MCF-7 cell growth (P<0.005, r = 0.13966), whereas the negative correlation between genistin and MCF-7 cell growth was nearly significant (P≤0.0562, r = -0.026141). Furthermore, in drug interaction studies daidzin-rich isoflavone extracts antagonized tamoxifen, an ER inhibitor. Taken together, our results suggest that the glyconic daidzin-rich soy isoflavone extracts may exert estrogenic

  6. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  7. Interaction of Galaxolide® with the human and trout estrogen receptor-α.

    PubMed

    Simmons, Denina B D; Marlatt, V L; Trudeau, V L; Sherry, J P; Metcalfe, C D

    2010-11-15

    Synthetic musks have been detected in sewage effluents, surface waters, and fish tissues where the polycyclic musk compound, HHCB (Galaxolide®) is the dominant compound in those matrices. In the present study, the Galaxolide® formulation was tested in the yeast estrogenicity screening (YES) assay, and also tested in in vitro and in vivo teleost systems to determine whether it interacts with the estrogen receptor as either an agonist or antagonist. In those tests, Galaxolide® did not act as an estrogen agonist, however there was strong evidence of antagonistic activity as Galaxolide® inhibited the estrogenic activity of 17β-estradiol (E2). In the YES assay based on a recombinant strain of yeast containing the human estrogen receptor (i.e. hERα), Galaxolide® inhibited the effects of E2 in a dose-dependent manner (IC50=1.63×10(-5)M). In a luciferase reporter gene assay based on the rainbow trout estrogen receptor (i.e. rtER) transfected into a rainbow trout gonadal (RTG-2) cell line, the IC50 for the antagonistic effect of Galaxolide® was 2.79×10(-9)M. In an in vivo assay based on modulation of vitellogenin in rainbow trout, Galaxolide® i.p. injected into trout at a dose of 3.64mg/kg caused inhibition of E2-induced vitellogenin production. That dose is within the range of concentrations of Galaxolide® that have been detected in tissues of fish from contaminated locations.

  8. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    SciTech Connect

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  9. Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis*

    PubMed Central

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-01-01

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  10. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    PubMed

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors.

  11. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    PubMed

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors. PMID:24142535

  12. Detection of estrogen receptors in the trigonum and urinary bladder with an immunohistochemical technique.

    PubMed

    Bussolati, G; Tizzani, A; Casetta, G; Cassoni, P; Pacchioni, D; Piana, P; Revelli, A; Massobrio, M

    1990-09-01

    In order to detect estrogen receptors (ER) in the female bladder, 5 premenopausal and 10 postmenopausal women affected by gynecological diseases were submitted to cystoscopy, during which both the trigonum and the bladder lateral wall were biopsied. A new, simple, cost-effective immunohistochemical technique was employed to stain the estrogen specific binding sites. ER were found in the trigonum of 3 premenopausal and 4 postmenopausal subjects, while the bladder lateral wall was always ER-negative. A comparison with previously used ER detection methods and a discussion of further hypothetical applications of the immunohistochemical technique in the study of the lower female urogenital tract are reported.

  13. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    PubMed

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues. PMID:21839626

  14. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.

  15. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  16. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy.

    PubMed

    Pisano, Annalinda; Preziuso, Carmela; Iommarini, Luisa; Perli, Elena; Grazioli, Paola; Campese, Antonio F; Maresca, Alessandra; Montopoli, Monica; Masuelli, Laura; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio; Ghelli, Anna; Giordano, Carla

    2015-12-15

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful.

  17. Role of direct estrogen receptor signaling in wear particle-induced osteolysis

    PubMed Central

    Nich, Christophe; Rao, Allison J.; Valladares, Roberto D.; Li, Chenguang; Christman, Jane E.; Antonios, Joseph K.; Yao, Zhenyu; Zwingenberger, Stefan; Petite, Hervé; Hamadouche, Moussa; Goodman, Stuart B.

    2014-01-01

    Estrogen withdrawal following surgical ovariectomy was recently shown to mitigate particle-induced osteolysis in the murine calvarial model. Currently, we hypothesize that estrogen receptors (ERs) were involved in this paradoxical phenomenon. To test this hypothesis, we first evaluated polyethylene (PE) particle-induced osteolysis in the murine calvarial model, using wild type (WT) C57BL6J female mice, ERα deficient (ERαKO) mice, and WT mice either treated with 17β-estradiol (E2) or with the ER pan-antagonist ICI 182,780. According to micro-CT and histomorphometry, we showed that bone resorption was consistently altered in both ERαKO and ICI 182,780 treated mice as compared to WT and E2 groups. Then, we demonstrated that ER disruption consistently decreased both PE and polymethylmethacrylate (PMMA) particle-induced production of TNF-α by murine macrophages in vitro. Similar results were obtained following ER blockade using ICI 182,780 in RAW 264.7 and WT macrophages. ER disruption and pre treatment with ICI 182,780 resulted in a consistent down-regulation of particle-induced TNF-α mRNA expression relative to WT macrophages or untreated RAW cells. These results indicate that the response to wear particles involves estrogen receptors in female mice, as part of macrophage activation. Estrogen receptors may be considered as a future therapeutic target for particle-induced osteolysis. PMID:23113918

  18. Application of phosphorylation site-specific antibodies to measure nuclear receptor signaling: characterization of novel phosphoantibodies for estrogen receptor α

    PubMed Central

    Al-Dhaheri, Mariam H.; Rowan, Brian G.

    2006-01-01

    An understanding of posttranslational events in nuclear receptor signaling is crucial for drug design and clinical therapeutic strategies. Phosphorylation is a well-characterized posttranslational modification that regulates subcellular localization and function of nuclear receptors and coregulators. Although the role of single phosphorylation sites in nuclear receptor function has been described, the contribution of combinations of multiple phosphorylation sites to receptor function remains unclear. The development of phosphoantibodies to each phosphorylation site in a nuclear receptor is a powerful tool to address the role of phosphorylation in multiply phosphorylated receptors. However, phosphoantibodies must be rigorously validated prior to use. This review describes the general methodology for design, characterization and validation of phosphoantibodies using the example of eight phosphoantibodies raised against phosphorylation sites in estrogen receptor α (ERα). PMID:16741565

  19. Characterization of estrogenic receptor agonists and evaluation of estrogenic activity in the sediments of Liaohe River protected areas.

    PubMed

    Ke, Xin; Wang, Chunyong; Zhang, Haijun; Zhang, Yun; Gui, Shaofeng

    2015-11-15

    Estrogenic activity of 12 sediment samples from Liaohe River protected areas was evaluated by the recombinant yeast bioassays. The bioassay-derived 17β-estradiol equivalents of crude extracts (Bio-EEQcrudes) were between 52.2 and 207.6pg/g dry weight. The most concerned estrogenic receptor (ER) agonists including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), 4-nonylphenols (4-NP), bisphenol A (BPA), and organochlorine pesticides (OCPs) were determined. The concentrations of E1, E2, E3, EE2, BPA, andΣ10OCPs ranged up to 203.3pg/g, 185.8pg/g, 237.7pg/g, 188.5pg/g, 51.0ng/g, and 3.6ng/g, respectively. Taken together with polarity-based fractionation, in vitro bioassay and chemical analysis, it indicated that E1, E2, and EE2 were the predominant ER agonists and were mainly from the discharge of domestic wastewater and breeding wastewater. Meanwhile, this study showed that the establishment of protected areas had not obviously reduced the ecological risk caused by ER agonists in Liaohe River protected areas sediments. PMID:26388445

  20. Outcomes of Estrogen Receptor Negative and Progesterone Receptor Positive Breast Cancer

    PubMed Central

    Chan, Melissa; Chang, Martin C.; González, Rosa; Lategan, Belinda; del Barco, Elvira; Vera-Badillo, Francisco; Quesada, Paula; Goldstein, Robyn; Cruz, Ignacio; Ocana, Alberto; Cruz, Juan J.; Amir, Eitan

    2015-01-01

    Purpose To describe the clinical features and outcomes of estrogen receptor negative (ER-) and progesterone receptor positive (PgR+) breast cancer. Methods We retrospectively reviewed a well-characterized database of sequential patients diagnosed with early stage invasive breast carcinoma. Outcomes of interest were time to relapse (TTR) and overall survival (OS). Multivariable Cox proportional hazards analysis was conducted to assess the association of ER-/PgR+ with TTR and OS in comparison to ER+ and to ER- and PgR negative (ER-/PgR-) tumors irrespective of HER2 status. ER and PgR expression was conservatively defined as 10% or greater staining of cancer cells. Results 815 patients were followed for a median of 40.5 months; 56 patients (7%) had ER-/PgR+, 624 (77%) had ER+ and 136 (17%) had ER-/PgR- phenotypes. Compared with ER+ tumors, ER-/PgR+ tumors were associated with younger age (50 versus 59 years, p=0.03), high grade (50% versus 24%, p<0.001) and more frequent HER2 overexpression/amplification (43% versus 14%, p<0.001). TTR for ER-/PgR+ was intermediate between ER+ and ER-/PgR- tumors, but was not significantly different from ER+ tumors. Recurrences in the ER-/PgR+ and ER-/PgR- groups occurred early in follow-up while in ER+ tumors recurrences continued to occur over the duration of follow-up. OS of ER-/PgR+ was similar to ER+ tumors and better than that of ER-/PgR- tumors. Conclusions The ER-/PgR+ phenotype is associated with higher grade with HER2 overexpression/amplification and occurs more commonly in younger women. Risk of relapse and death more closely resembles ER+ than ER-/PgR- tumors suggesting this phenotype represents a group of more aggressive hormone receptor positive tumors. PMID:26161666

  1. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    PubMed

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  2. Sex-specificity and estrogen-dependence of kappa opioid receptor-mediated antinociception and antihyperalgesia.

    PubMed

    Lawson, Kera P; Nag, Subodh; Thompson, Analisa D; Mokha, Sukhbir S

    2010-12-01

    This investigation determined whether the activation of the kappa opioid receptor (KOR) in the spinal cord produces estrogen-dependent, sex-specific modulation of acute and inflammation-induced persistent nociception. We demonstrate for the first time that KOR antinociception and gene expression are enhanced by exogenous or endogenous estrogen in the female. The lack of KOR antinociception and KOR gene expression are not altered by the hormonal status (testosterone or estrogen) in males. Cannulae were implanted intrathecally in male, gonadectomized male (GDX), intact and ovariectomized female (OVX) Sprague-Dawley rats. Estradiol was injected subcutaneously, 48h before testing (GDX+E and OVX+E). Intrathecal injection of U50,488H, a selective KOR agonist, dose dependently increased heat-evoked tail flick latencies (TFLs) in proestrous and OVX+E groups, but not in male, GDX, GDX+E, OVX, and diestrous groups. Further, estrogen dose-dependently enhanced the effect of U50,488H in OVX rats. KOR selective antagonist, nor-binaltorphimine (Nor-BNI), blocked the antinociceptive effect of U50,488H. U50,488H reversed the carrageenan-induced thermal hyperalgesia in OVX+E rats, but not in male or OVX rats. However, U50,488H treatment did not alter mechanical thresholds in any group, with or without inflammation. KOR gene expression was enhanced in proestrous and OVX+E groups as compared to any other group. We conclude that selective activation of KOR in the spinal cord produces sex-specific, stimulus- and estrogen-dependent attenuation of acute and inflammatory pain in the rat via estrogen-induced upregulation of the KOR gene expression in the spinal cord. These findings may further implicate estrogen dependence of KOR effects in learning, epilepsy, stress response, addiction etc. PMID:20926192

  3. Effects of coumestrol on estrogen receptor function and uterine growth in ovariectomized rats.

    PubMed Central

    Markaverich, B M; Webb, B; Densmore, C L; Gregory, R R

    1995-01-01

    Isoflavonoids and related compounds such as coumestrol have classically been categorized as phytoestrogens because these environmentally derived substances bind to the estrogen receptor (ER) and increase uterine wet weight in immature rats and mice. Assessment of the binding affinities of isoflavonoids for ER and subsequent effects on uterine growth suggest these compounds are less active estrogens than estradiol and therefore may reduce the risk of developing breast or prostate cancer in humans by preventing estradiol binding to ER. With the renewed interest in the relationships between environmental estrogens and cancer cause and prevention, we assessed the effects of the phytoestrogen coumestrol on uterotropic response in the immature, ovariectomized rat. Our studies demonstrated that in this animal model, coumestrol is an atypical estrogen that does not stimulate uterine cellular hyperplasia. Although acute (subcutaneous injection) or chronic (multiple injection or orally via drinking water) administration of coumestrol significantly increased uterine wet and dry weights, the phytoestrogen failed to increase uterine DNA content. The lack of true estrogenic activity was characterized by the inability of this phytoestrogen to cause cytosolic ER depletion, nuclear ER accumulation, or the stimulation of nuclear type II sites which characteristically precede estrogenic stimulation of cellular DNA synthesis and proliferation. In fact, subcutaneous or oral coumestrol treatment caused an atypical threefold induction of cytosolic ER without corresponding cytosolic depletion and nuclear accumulation of this receptor, and this increased the sensitivity of the uterus to subsequent stimulation by estradiol.(ABSTRACT TRUNCATED AT 250 WORDS) Images p574-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. PMID:7556010

  4. Estrogen Receptor 1 Gene Expression and Its Combination with Estrogen Receptor 2 or Aromatase Expression Predicts Survival in Non-Small Cell Lung Cancer

    PubMed Central

    Aresti, Unai; Carrera, Sergio; Iruarrizaga, Eluska; Fuente, Natalia; Marrodan, Ines; de Lobera, Abigail Ruiz; Muñoz, Alberto; Buque, Aitziber; Condori, Elizabeth; Ugalde, Irene; Calvo, Begoña; Vivanco, Guillermo López

    2014-01-01

    The biological roles of estrogen receptor 1 (ERS1), estrogen receptor 2 (ERS2), and aromatase (CYP19A1) genes in the development of non-small cell lung cancer (NSCLC) is unclear, as is the use of their expression as a prognostic factor. The aim of this study was to investigate the prognostic value of estrogen receptors and aromatase mRNA expression, along with aromatase protein concentration, in resected NSCLC patients. Tumor and non-tumor lung tissue samples were analyzed for the mRNA expression of ERS1, ERS2 and CYP19A1 by RT-PCR. Aromatase concentration was measured with an ELISA. A total of 96 patients were included. ERS1 expression was significantly higher in non-tumor tissue than in tumor samples. Two gene expression categories were created for each gene (and protein): high and low. ERS1 high category showed increased overall survival (OS) when compared to the low expression category. Aromatase protein concentration was significantly higher in tumor samples. Higher ERS1 expression in tumor tissues was related to longer overall survival. The analysis of gene expression combinations provides evidence for longer OS when both ERS1 and ERS2 are highly expressed. ESR1, alone or in combination with ERS2 or CYP19A1, is the most determining prognostic factor within the analyzed 3 genes. It seems that ERS1 can play a role in NSCLC prognosis, alone or in combination with other genes such as ERS2 or Cyp19a1. ERS2 in combination with aromatase concentration could have a similar function. PMID:25310221

  5. Vaginal estrogen products in hormone receptor-positive breast cancer patients on aromatase inhibitor therapy.

    PubMed

    Sulaica, Elisabeth; Han, Tiffany; Wang, Weiqun; Bhat, Raksha; Trivedi, Meghana V; Niravath, Polly

    2016-06-01

    Atrophic vaginitis represents a major barrier to compliance with aromatase inhibitor (AI) therapy in breast cancer (BC) survivors. While local estrogen therapy is effective for postmenopausal vaginal dryness, the efficacy of such therapies has not been evaluated systematically in hormone receptor-positive (HR+) BC patients on AI therapy. Furthermore, the potential risk of breast cancer recurrence with vaginal estrogen therapy represents a long-term safety concern for the patients with HR + BC. Unfortunately, there is no standardized assay to measure very low concentrations of estradiol (E2) in these women being treated with AI therapy. This makes it difficult to evaluate even indirectly the potential risk of BC recurrence with vaginal estrogen therapy in HR + BC patients on AI therapy. In this review, we describe available assays to measure very low concentrations of E2, discuss the Food and Drug Administration-approved vaginal estrogen products on the market, and summarize published and ongoing clinical trials evaluating the safety and efficacy of vaginal estrogen in HR + BC patients on AI therapy. In the absence of any randomized controlled clinical trials, this review serves as a summary of available clinical data and ongoing studies to aid clinicians in selecting the best available option for their patients.

  6. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties.

    PubMed

    Ouellet, Charles; Maltais, René; Ouellet, Étienne; Barbeau, Xavier; Lagüe, Patrick; Poirier, Donald

    2016-08-25

    Steroid sulfatase (STS), the enzyme which converts inactive sulfated steroid precursors into active hormones, is a promising therapeutic target for the treatment of estrogen-sensitive breast cancer. We report herein the synthesis and in vitro study of dual-action STS inhibitors with selective estrogen-receptor modulator (SERM) effects. A library of tetrahydroisoquinoline-N-substituted derivatives (phenolic compounds) was synthesized by solid-phase chemistry and tested on estrogen-sensitive breast cancer T-47D cells. Three phenolic compounds devoid of estrogenic activity and toxicity emerged from this screening. Their sulfamate analogs were then synthesized, tested in STS-transfected HEK-293 cells, and found to be potent inhibitors of the enzyme (IC50 of 3.9, 8.9, and 16.6 nM). When tested in T-47D cells they showed no estrogenic activity and produced a moderate antiestrogenic activity. The compounds were further tested on osteoblast-like Saos-2 cells and found to significantly stimulate their proliferation as well as their alkaline phosphatase activity, thus suggesting a SERM activity. These results are supported by molecular docking experiments. PMID:27155470

  7. Requirement for Estrogen Receptor Alpha in a Mouse Model for Human Papillomavirus-Associated Cervical Cancer

    PubMed Central

    Chung, Sang-Hyuk; Wiedmeyer, Kerri; Shai, Anny; Korach, Kenneth S.; Lambert, Paul F.

    2008-01-01

    The majority of human cervical cancers are associated with the high-risk human papillomaviruses (HPVs), which encode the potent E6 and E7 oncogenes. Upon prolonged treatment with physiological levels of exogenous estrogen, K14E7 transgenic mice expressing HPV-16 E7 oncoprotein in their squamous epithelia succumb to uterine cervical cancer. Furthermore, prolonged withdrawal of exogenous estrogen results in complete or partial regression of tumors in this mouse model. In the current study we investigated whether estrogen receptor alpha (ERα) is required for the development of cervical cancer in K14E7 transgenic mice. We demonstrate that exogenous estrogen fails to promote either dysplasia or cervical cancer in K14E7/ERα−/− mice despite the continued presence of the presumed cervical cancer precursor cell type, reserve cells, and evidence for E7 expression therein. We also observed that cervical cancers in our mouse models are strictly associated with atypical squamous metaplasia (ASM), which is believed to be the precursor for cervical cancer in women. Consistently, E7 and exogenous estrogen failed to promote ASM in the absence of ERα. We conclude that ERα plays a crucial role at an early stage of cervical carcinogenesis in this mouse model. PMID:19047174

  8. Estrogen and progesterone receptors: an overview from the year 2000.

    PubMed

    Peterson, C M

    2000-01-01

    Our current understanding of the steroid/thyroid superfamily of ligand-dependent nuclear transcription factors now involves specific domains for steroid ligand binding, receptor homo- and heterodimer formation, the association of transcription mediators or adaptors that activate, repress, or integrate competing influences, interaction with the hormone response element, transcription modulation based on the components of the transcriptional complex, and intracellular trafficking. Various ligands, including selective hormone receptor modulators, interact with transcriptional mediators in both ligand- and tissue-specific manners, thus multiplying the variety and complexity of interactions substantially. Transcriptional mediators, selective hormone receptor modulators, and varying isoforms of nuclear receptors and their tissue-specific interactions will be a major focus of research in the future. This symposium assembles many of the investigators presently elucidating our understanding of nuclear receptors as we move into the next millennium. PMID:10732320

  9. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor.

    PubMed

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-07-01

    The structure-activity relationships of parabens which are widely used as preservatives for transcriptional activities mediated by human estrogen receptor α (hERα), hERβ and androgen receptor (hAR) were investigated. Fourteen of 17 parabens exhibited hERα and/or hERβ agonistic activity at concentrations of ≤ 1 × 10(-5)M, whereas none of the 17 parabens showed AR agonistic or antagonistic activity. Among 12 parabens with linear alkyl chains ranging in length from C₁ to C₁₂, heptylparaben (C₇) and pentylparaben (C₅) showed the most potent ERα and ERβ agonistic activity in the order of 10(-7)M and 10(-8)M, respectively, and the activities decreased in a stepwise manner as the alkyl chain was shortened to C₁ or lengthened to C₁₂. Most parabens showing estrogenic activity exhibited ERβ-agonistic activity at lower concentrations than those inducing ERα-agonistic activity. The estrogenic activity of butylparaben was markedly decreased by incubation with rat liver microsomes, and the decrease of activity was blocked by a carboxylesterase inhibitor. These results indicate that parabens are selective agonists for ERβ over ERα; their interactions with ERα/β are dependent on the size and bulkiness of the alkyl groups; and they are metabolized by carboxylesterases, leading to attenuation of their estrogenic activity.

  10. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors.

    PubMed

    Hasenbrink, Guido; Sievernich, André; Wildt, Ludwig; Ludwig, Jost; Lichtenberg-Fraté, Hella

    2006-07-01

    The human estrogen receptors (hER)alpha and hERbeta, differentially expressed and localized in various tissues and cell types, mediate transcriptional activation of target genes. These encode a variety of physiological reproductive and nonreproductive functions involved in energy metabolism, salt balance, immune system, development, and differentiation. As a step toward developing a screening assay for the use in applications where significant numbers of compounds or complex matrices need to be tested for (anti) estrogenic bioactivity, hERalpha and hERbeta were expressed in a genetically modified Saccharomyces cerevisiae strain, devoid of three endogenous xenobiotic transporters (PDR5, SNQ2, and YOR1). By using receptor-mediated transcriptional activation of the green fluorescent protein optimized for expression in yeast (yEGFP) as reporter 17 natural, comprising estrogens and phytoestrogens or synthetic compounds among which tibolone with its metabolites, gestagens, and antiestrogens were investigated. The reporter assay deployed a simple and robust protocol for the rapid detection of estrogenic effects within a 96-well microplate format. Results were expressed as effective concentrations (EC50) and correlated to other yeast based and cell line assays. Tibolone and its metabolites exerted clear estrogenic effects, though considerably less potent than all other natural and synthetic compounds. For the blood serum of two volunteers, considerable higher total estrogenic bioactivity than single estradiol concentrations as determined by immunoassay was found. Visualization of a hERalpha/GFP fusion protein in yeast revealed a sub cellular cytosolic localization. This study demonstrates the versatility of (anti) estrogenic bioactivity determination using sensitized S. cerevisiae cells to assess estrogenic exposure and effects.

  11. G Protein-Coupled Estrogen Receptor 1 Mediates Acute Estrogen-Induced Cardioprotection via MEK/ERK/GSK-3β Pathway after Ischemia/Reperfusion

    PubMed Central

    Kabir, Mohammad E.; Singh, Harpreet; Lu, Rong; Olde, Bjorn; Leeb-Lundberg, L. M. Fredrik; Bopassa, Jean Chrisostome

    2015-01-01

    Three types of estrogen receptors (ER) exist in the heart, Esr1, Esr2 and the G protein-coupled estrogen receptor 1, Gper1. However, their relative importance in mediating estrogen protective action is unknown. We found that, in the male mouse ventricle, Gper1 transcripts are three- and seventeen-fold more abundant than Esr1 and Esr2 mRNAs, respectively. Analysis of the three ER knockouts (Esr1-/-, Esr2-/- and Gper1-/-) showed that only the Gper1-/- hearts lost their ability to be protected by 40 nM estrogen as measured by heart function, infarct size and mitochondrial Ca2+ overload, an index of mitochondrial permeability transition pore (mPTP) activity. Analysis of Akt, ERK1/2 and GSK-3β salvage kinases uncovered Akt and ERK1/2 transient activation by estrogen whose phosphorylation increased during the first 5 min of non-ischemic perfusion. All these increase in phosphorylation effects were abrogated in Gper1-/-. Inhibition of MEK1/2/ERK1/2 (1 μM U0126) and PI-3K/Akt (10 μM LY294002) signaling showed that the MEK1/2/ERK1/2 pathway via GSK-3β exclusively was responsible for cardioprotection as an addition of U0126 prevented estrogen-induced GSK-3β increased phosphorylation, resistance to mitochondrial Ca2+-overload, functional recovery and protection against infarction. Further, inhibiting PKC translocation (1 μM chelerythrin-chloride) abolished estrogen-induced cardioprotection. These data indicate that estrogen-Gper1 acute coupling plays a key role in cardioprotection against ischemia/reperfusion injury in male mouse via a cascade involving PKC translocation, ERK1/2/GSK-3β phosphorylation leading to the inhibition of the mPTP opening. PMID:26356837

  12. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    PubMed Central

    2010-01-01

    Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are vulnerable to very

  13. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer.

    PubMed

    Etti, Imaobong; Abdullah, Rasedee; Hashim, Najihah Mohd; Kadir, Arifah; Abdul, Ahmad Bustamam; Etti, Christopher; Malami, Ibrahim; Waziri, Peter; How, Chee Wun

    2016-01-01

    The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of -12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8-6.9 µM) in comparison to a reference standard Tamoxifen (18.9-24.1 µM) within the tested time point (24-72 h). The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules. PMID:27367662

  14. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer.

    PubMed

    Etti, Imaobong; Abdullah, Rasedee; Hashim, Najihah Mohd; Kadir, Arifah; Abdul, Ahmad Bustamam; Etti, Christopher; Malami, Ibrahim; Waziri, Peter; How, Chee Wun

    2016-06-29

    The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of -12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8-6.9 µM) in comparison to a reference standard Tamoxifen (18.9-24.1 µM) within the tested time point (24-72 h). The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.

  15. Improvement of a sensitive enzyme-linked immunosorbent assay for screening estrogen receptor binding activity.

    PubMed

    Koda, Tomoko; Soya, Yoshihiro; Negishi, Harumi; Shiraishi, Fujio; Morita, Masatoshi

    2002-12-01

    A competitive enzyme-linked immunosorbent assay (ELISA) with estrogen receptor (alpha) and a fluorescence depolarization method with Full-Range Beacon were examined as estrogen receptor binding assays to prescreen endocrine-disrupting chemicals (EDCs). In this study, because it is difficult to measure the receptor binding ability of sparingly water-soluble chemicals using these methods, the competitive enzyme immunoassay was further modified for improved sensitivity by changing the operational parameters, such as receptor concentration, ligand concentration, and the reaction temperature. The method was applied to 10 test chemicals, including alkylphenols and bisphenol A (BPA). The diethylstilbestrol (DES) relative binding affinity (RBA) of ELISA kit was set equal to 1 (RBA = IC50/IC50 of DES). The RBAs of BPA, 4-nonylphenol (p-NP), and 4-t-octylphenol (p-t-OP) are 5386, 8619. and 8121 before using the improved competitive enzyme immunoassay and 883, 699, and 2832 using improved it respectively. Mixtures of BPA, p-NP, and p-t-OP gave results that the estrogen binding affinities of these chemicals are additive or slightly more than additive.

  16. Interaction between bone morphogenetic protein receptor type 2 and estrogenic compounds in pulmonary arterial hypertension.

    PubMed

    Fessel, Joshua P; Chen, Xinping; Frump, Andrea; Gladson, Santhi; Blackwell, Tom; Kang, Christie; Johnson, Jennifer; Loyd, James E; Hemnes, Anna; Austin, Eric; West, James

    2013-09-01

    Abstract The majority of heritable pulmonary arterial hypertension (HPAH) cases are associated with mutations in bone morphogenetic protein receptor type 2 (BMPR2). BMPR2 mutation carries about a 20% lifetime risk of PAH development, but penetrance is approximately three times higher in females. Previous studies have shown a correlation between estrogen metabolism and penetrance, with increased levels of the estrogen metabolite 16α-hydroxyestrone (16αOHE) and reduced levels of the metabolite 2-methoxyestrogen (2ME) associated with increased risk of disease. The goal of this study was to determine whether 16αOHE increased and 2ME decreased penetrance of disease in Bmpr2 mutant mice and, if so, by what mechanism. We found that 16αOHE∶2ME ratio was high in male human HPAH patients. Bmpr2 mutant male mice receiving chronic 16αOHE had doubled disease penetrance, associated with reduced cardiac output. 2ME did not have a significant protective effect, either alone or in combination with 16αOHE. In control mice but not in Bmpr2 mutant mice, 16αOHE suppressed bone morphogenetic protein signaling, probably directly through suppression of Bmpr2 protein. Bmpr2 mutant pulmonary microvascular endothelial cells were insensitive to estrogen signaling through canonical pathways, associated with aberrant intracellular localization of estrogen receptor α. In both control and Bmpr2 mutant mice, 16αOHE was associated with suppression of cytokine expression but with increased alternate markers of injury, including alterations in genes related to thrombotic function, angiogenesis, planar polarity, and metabolism. These data support a causal relationship between increased 16αOHE and increased PAH penetrance, with the likely molecular mechanisms including suppression of BMPR2, alterations in estrogen receptor translocation, and induction of vascular injury and insulin resistance-related pathways.

  17. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells

    SciTech Connect

    Yu Xinyuan; Filardo, Edward J.; Shaikh, Zahir A.

    2010-05-15

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERalpha), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  18. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    SciTech Connect

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  19. Selective estrogen receptor modulators (SERMs): a review of clinical data.

    PubMed

    Mirkin, Sebastian; Pickar, James H

    2015-01-01

    SERMs represent a diverse group of molecules with varying levels of estrogenic agonist and antagonist activity in target tissues. SERMs have a long regulatory approval history and have been studied for a variety of therapeutic indications. The clinical effects of SERMs have been evaluated in a large number of phase 3 clinical trials. Many of the available SERMs have proved to be effective as chemo-preventive agents and treatments for breast cancer and a number are useful for the prevention and treatment of osteoporosis. The endometrial effect of SERMs has been a key differentiator in clinical practice and a major hurdle for regulatory approval. The effect of SERMs in the vagina also represents a major distinction among different SERMs. This review summarized key clinical finding of SERMs in different target tissues. PMID:25466304

  20. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  1. Estrogenic Regulation of Histamine Receptor Subtype H1 Expression in the Ventromedial Nucleus of the Hypothalamus in Female Rats

    PubMed Central

    Mori, Hiroko; Matsuda, Ken-Ichi; Yamawaki, Masanaga; Kawata, Mitsuhiro

    2014-01-01

    Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal. PMID:24805361

  2. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  3. Soy isoflavones--benefits and risks from nature's selective estrogen receptor modulators (SERMs).

    PubMed

    Setchell, K D

    2001-10-01

    Phytoestrogens have become one of the more topical areas of interest in clinical nutrition. These non-nutrient bioactive compounds are ubiquitous to the plant kingdom and possess a wide range of biological properties that contribute to the many different health-related benefits reported for soy foods and flaxseeds--two of the most abundant dietary sources of phytoestrogens. Reviewed is the recent knowledge related to their pharmacokinetics and clinical effects, focusing mainly on isoflavones that are found in high concentrations in soy foods. Arguments are made for considering soy isoflavones as natural selective estrogen receptor modulators (SERMs) based upon recent data of their conformational binding to estrogen receptors. Rebuttal is made to several key and important issues related to the recent concerns about the safety of soy and its constituent isoflavones. This article is not intended to be a comprehensive review of the literature but merely highlight recent research with key historical perspectives.

  4. Structure-based design of eugenol analogs as potential estrogen receptor antagonists.

    PubMed

    Anita, Yulia; Radifar, Muhammad; Kardono, Leonardus Bs; Hanafi, Muhammad; Istyastono, Enade P

    2012-01-01

    Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists. PMID:23144548

  5. Bile acid receptor agonist GW4064 regulates PPARγ coactivator-1α expression through estrogen receptor-related receptor α.

    PubMed

    Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D; Sanyal, Sabyasachi

    2011-06-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.

  6. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    PubMed

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.

  7. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  8. Estrogen and progesterone receptors in breast cancer. Immunohistochemical assay on scraping material.

    PubMed

    Frigo, B; Pilotti, S; Coradini, D; La Malfa, G; Rilke, F

    1992-04-01

    In order to demonstrate the reliability of immunocytochemical results on cytologic specimens for receptor analysis, the expression of estrogen and progesterone receptors was investigated using immunohistochemistry on frozen sections and on scraping material from the same samples of 50 breast carcinomas. The level of agreement between the two procedures was evaluated by the kappa statistic, as was that between each immunohistochemical procedure and the dextran-coated-charcoal assay since the latter is still the assay employed most frequently for steroid receptor determination and is used for official reports. Statistical results revealed very good agreement regarding the estrogen receptor analysis, with kappa values of .910 and .952 for the comparison of the dextran-coated-charcoal assay with immunocytochemistry on frozen sections and on scrapes, respectively, and .950 for the comparison between the two immunocytochemical procedures. As to progesterone receptors, the kappa values were .795 and .712 for the comparison between the biochemical and immunocytochemical results and .915 for agreement evaluation between the two immunocytochemical procedures. The study showed that the scraping procedure is a valuable tool for the immunocytochemical assessment of steroid receptors in small mammary tumors; it yields representative cellular samples, thus permitting the investigation of heterogeneously distributed substances in tissues.

  9. DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors.

    PubMed

    Zhang, H; Thomsen, J S; Johansson, L; Gustafsson, J A; Treuter, E

    2000-12-22

    We have discovered that the orphan receptor DAX-1 (NROB1) interacts with the estrogen receptors ERalpha and ERbeta. Interaction occurs with ligand-activated ERs in solution and on DNA and is mediated by the unique DAX-1 N-terminal repeat domain. Each of the three repeats contains a leucine-rich receptor-binding motif, known as the LXXLL motif, which is usually found in nuclear receptor coactivators. We have demonstrated that DAX-1 functions as an inhibitor of ER activation in mammalian cells and suggest a mechanism involving two sequential events, occupation of the ligand-induced coactivator-binding surface and subsequent recruitment of corepressors. Accordingly, we propose that DAX-1 itself acts as a corepressor for ERs. Because DAX-1 is coexpressed with ERs in reproductive tissues, these interactions could play significant roles by influencing estrogen signaling pathways. Our results point at functional similarities between DAX-1 and the orphan receptor SHP (NROB2) in that they have acquired features of transcriptional coregulators that are unique for members of the nuclear receptor family. PMID:11053406

  10. Distinct effects of 4-nonylphenol and estrogen-17β on expression of estrogen receptor α gene in smolting sockeye salmon

    USGS Publications Warehouse

    Luo, Qiong; Ban, Massatoshi; Ando, Hironori; Kitahashi, Takashi; Bhandari, Ramji K.; McCormick, Stephen D.; Urano, Akihisa

    2005-01-01

    Xenoestrogens such as 4-nonylphenol (4-NP) have been shown to affect the parr–smolt transformation, but their mechanisms of action are not known. We therefore examined effects of 4-NP and estradiol-17β (E2) on expression of estrogen receptor (ER) α gene in the liver, gill, pituitary and brain of sockeye salmon to elucidate molecular mechanisms of 4-NP and E2 and developmental differences in response during smolting. Fish were treated twice within a week with 4-NP (15 and 150 mg/kg BW), E2 (2 mg/kg BW) or only vehicle at three stages of smolting, pre-smolting in March, early smolting in April and late smolting in May. The absolute amounts of ERα mRNA were determined by real-time PCR. The basal amounts of ERα mRNA peaked in April in the liver, gill and pituitary. In March, E2 extensively increased the amounts in the liver, while 4-NP had no effects at this stage. In contrast, 4-NP (but not E2) decreased liver ERα mRNA in April. 4-NP also decreased the amount of ERα mRNA in the gill in April. In the pituitary, 4-NP increased ERα mRNA in March but decreased it in May. There were no significant effects in the brain. Changes in basal ERα mRNA observed in this study indicate that estrogen responsiveness of tissues may change during salmon smolting. Furthermore, 4-NP and E2 have different effects on expression of ERα gene in the liver and gill during smolting, and the response is dependent on smolt stage.

  11. Estrogen receptor-α variant, ER-α36, is involved in tamoxifen resistance and estrogen hypersensitivity.

    PubMed

    Zhang, Xiantian; Wang, Zhao-Yi

    2013-06-01

    Antiestrogens such as tamoxifen (TAM) provided a successful treatment for estrogen receptor (ER)-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to TAM therapy. The molecular mechanisms underlying TAM resistance have not been well established. Recently, we reported that breast cancer patients with tumors expressing high concentrations of ER-α36, a variant of ER-α, benefited less from TAM therapy than those with low concentrations of ER-α36, suggesting that increased ER-α36 concentration is one of the underlying mechanisms of TAM resistance. Here, we investigated the function and underlying mechanism of ER-α36 in TAM resistance. We found that TAM increased ER-α36 concentrations, and TAM-resistant MCF7 cells expressed high concentrations of ER-α36. In addition, MCF7 cells with forced expression of recombinant ER-α36 and H3396 cells expressing high concentrations of endogenous ER-α36 were resistant to TAM. ER-α36 down-regulation in TAM-resistant cells with the short hairpinRNA method restored TAM sensitivity. We also found that TAM acted as a potent agonist by activating phosphorylation of the AKT kinase in ER-α36-expressing cells. Finally, we found that cells with high concentration of ER-α36 protein were hypersensitive to estrogen, activating ERK phosphorylation at picomolar range. Our results thus demonstrated that elevated ER-α36 concentration is one of the mechanisms by which ER-positive breast cancer cells escape TAM therapy and provided a rational to develop novel therapeutic approaches for TAM-resistant patients by targeting ER-α36.

  12. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions.

    PubMed

    Ghisari, Mandana; Bonefeld-Jorgensen, Eva Cecilie

    2009-08-25

    Plasticizers are additives used to increase the flexibility or plasticity of the material to which they are added, normally rigid plastic and as additives in paint and adhesives. They are suspected to interfere with the endocrine system, including the estrogen and the thyroid hormone (TH) systems. We investigated in vitro the thyroid hormone-like and estrogenic activities of a range of widely used plasticizers and phenols including benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di(2-ethylhexyl) phthalate (DEHP), bis(2-ethylhexyl) adipate (DEHA), 4-tert-octylphenol (tOP), 4-chloro-3-methylphenol (CMP), 2,4-dichlorophenol (2,4-DCP), 2-phenylphenol (2-PP) and resorcinol. The TH disrupting potential was determined by the effect on the TH-dependent rat pituitary GH3 cell proliferation (T-screen). The estrogenic activities of the compounds were assessed in MVLN cells, stably transfected with an estrogen receptor (ER) luciferase reporter vector. Furthermore, the combined effect of a multi-components mixture of six plasticizers was evaluated for its estrogenic and TH-like activities. All the tested compounds, but 2-PP, significantly affected the GH3 cell proliferation. tOP, BBP and DBP activated ER transactivity, whereas DEHP antagonized the 17beta-estradiol induced ER function. The mixture significantly induced ER transactivity in an additive manner, whereas in the T-screen, the observed mixture effect was lower than predicted, suggesting a potential antagonizing effect of the mixture. In conclusion, the tested plasticizers and phenols elicited endocrine-disrupting potential that can be mediated via interference with the estrogen and TH systems. Moreover, the observed mixture effect stresses the importance of considering the combined effect of the compounds for risk assessment of human health. PMID:19463926

  13. Treatment with Bazedoxifene, a Selective Estrogen Receptor Modulator, Causes Regression of Endometriosis in a Mouse Model

    PubMed Central

    Kulak, Jaime; Fischer, Catha; Komm, Barry

    2011-01-01

    Endometriosis is a common estrogen-dependent disorder. Medical treatments currently consist of progestins or GnRH agonists; however, neither is fully effective and both entail significant side effects. Selective estrogen receptor (ER) modulators (SERM) have tissue-selective actions, acting as an ER agonist in some tissues and ER antagonist in others. The SERM bazedoxifene (BZA) effectively antagonizes estrogen-induced uterine endometrial stimulation without countering estrogenic effects in bone or central nervous system. These properties make it an attractive candidate for use in the treatment of endometriosis. Experimental endometriosis was created in reproductive-age CD-1 mice. After 8 wk, 10 animals received ip injections of BZA (3 mg/kg·d) for 8 wk, whereas 10 received vehicle control. Mice were killed, and implant size was assessed. The mean size of the implants after treatment was 60 mm2 in the control group and 21 mm2 in the BZA treatment group (P = 0.03). Quantitative PCR and immunohistochemical analysis were used to determine the effect on endometrial gene expression. PCNA, ERα, and LIF mRNA and protein expression were significantly decreased in endometrium of the treated group. Caspase 3 mRNA expression was increased. Expression of PR and Hoxa10 were not significantly altered by treatment. There was no evidence of ovarian enlargement or cyst formation. Decreased PCNA and ER expression demonstrated that the regression of endometriosis likely involved decreased estrogen-mediated cell proliferation. BZA may be an effective novel agent for the treatment of endometriosis due to greater endometrial-specific estrogen antagonism compared with other SERM. PMID:21586552

  14. Ligand-dependent repression of the erythroid transcription factor GATA-1 by the estrogen receptor.

    PubMed Central

    Blobel, G A; Sieff, C A; Orkin, S H

    1995-01-01

    High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation. PMID:7760810

  15. A fusion protein of the estrogen receptor (ER) and nuclear receptor corepressor (NCoR) strongly inhibits estrogen-dependent responses in breast cancer cells.

    PubMed

    Chien, P Y; Ito, M; Park, Y; Tagami, T; Gehm, B D; Jameson, J L

    1999-12-01

    Nuclear receptor corepressor (NCoR) mediates repression (silencing) of basal gene transcription by nuclear receptors for thyroid hormone and retinoic acid. The goal of this study was to create novel estrogen receptor (ER) mutants by fusing transferable repressor domains from the N-terminal region of NCoR to a functional ER fragment. Three chimeric NCoR-ER proteins were created and shown to lack transcriptional activity. These fusion proteins silenced basal transcription of the ERE2-tk-Luc reporter gene and inhibited the activity of co-transfected wild-type ER (wtER), indicating that they possess dominant negative activity. One of the fusion proteins (CDE-RD1), containing the ER DNA-binding and ligand-binding domains linked to the NCoR repressor domain (RD1), was selected for detailed examination. Its hormone affinity, intracellular localization, and level of expression in transfected cells were similar to wtER, and it bound to the estrogen response element (ERE) DNA in gel shift assays. Glutathione-S-transferase pull-down assays showed that CDE-RD1 retains the ability to bind to steroid receptor coactivator-1. Introduction of a DNA-binding domain mutation into the CDE-RD1 fusion protein eliminated silencing and dominant negative activity. Thus, the RD1 repressor domain prevents transcriptional activation despite the apparent ability of CDE-RD1 to bind DNA, ligand, and coactivators. Transcriptional silencing was incompletely reversed by trichostatin A, suggesting a histone deacetylase-independent mechanism for repression. CDE-RD1 inhibited ER-mediated transcription in T47D and MDA-MB-231 breast cancer cells and repressed the growth of T47D cells when delivered to the cells by a retroviral vector. These ER-NCoR fusion proteins provide a novel means for inhibiting ER-mediated cellular responses, and analogous strategies could be used to create dominant negative mutants of other transcription factors.

  16. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats.

    PubMed

    Dumasia, Kushaan; Kumar, Anita; Kadam, Leena; Balasinor, N H

    2015-06-01

    Maintenance of normal male fertility relies on the process of spermatogenesis which is under complex endocrine control by mechanisms involving gonadotropin and steroid hormones. Although testosterone is the primary sex steroid in males, estrogen is locally produced in the testis and plays a very crucial role in male fertility. This is evident from presence of both the estrogen receptors alpha (ERα) and beta (ERβ) in the testis and their absence, as in the case of knockout mice models, leads to sterility. The present study was undertaken to understand individual roles of the two ERs in spermatogenesis and their direct contribution towards the maintenance of male fertility using receptor-subtype-specific ligands. Administration of ERα and β agonists to adult male rats for 60 days results in a significant decrease in fertility, mainly due to an increase in pre- and post-implantation loss and a concomitant decrease in litter size and sperm counts. Our results indicate that ERα is mainly involved in negative feedback regulation of gonadotropin hormones, whereas both ERs are involved in regulation of prolactin and testosterone production. Histological examinations of the testis reveal that ERβ could be involved in the process of spermiation since many failed spermatids were observed in stages IX-XI following ERβ agonist treatment. Our results indicate that overactivation of estrogen signaling through either of its receptors can have detrimental effects on the fertility parameters and that the two ERs have both overlapping and distinct roles in maintenance of male fertility.

  17. p300 is a component of an estrogen receptor coactivator complex.

    PubMed

    Hanstein, B; Eckner, R; DiRenzo, J; Halachmi, S; Liu, H; Searcy, B; Kurokawa, R; Brown, M

    1996-10-15

    The estrogen receptor (ER) is a ligand-dependent transcription factor that regulates expression of target genes in response to estrogen in concert with other cellular signaling pathways. This suggests that the mechanism by which ER transmits an activating signal to the general transcription machinery may include factors that integrate these diverse signals. We have previously characterized the estrogen receptor-associated protein, ERAP160, as a factor that complexes with ER in an agonist-dependent manner. We have now found that the transcriptional coactivator p300 associates with agonist bound ER and augments ligand-dependent activation by ER. Our studies show that an ER coactivator complex involves a direct hormone-dependent interaction between ER and ERAP160, resulting in the recruitment of p300. In addition, antibodies directed against the cloned steroid receptor coactivator 1 (SRC1) recognize ERAP160. The known role of p300 in multiple signal transduction pathways, including those involving the second messenger cAMP, suggests p300 functions as a point of integration between ER and these other pathways. PMID:8876171

  18. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection.

    PubMed

    Johansen, Lisa M; Brannan, Jennifer M; Delos, Sue E; Shoemaker, Charles J; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G; Dewald, Lisa Evans; Schornberg, Kathryn L; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E; White, Judith M; Olinger, Gene G

    2013-06-19

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections.

  19. Detection of Endogenous Selective Estrogen Receptor Modulators such as 27-Hydroxycholesterol.

    PubMed

    Nelson, Erik R

    2016-01-01

    The estrogen receptors (ERs) belong to the nuclear receptor superfamily, and as such act as ligand inducible transcription factors, mediating the effects of estrogens. However, their pharmacology is complex, having the ability to be differentially activated by ligands. Such ligands possess the ability to behave as either ER-agonists or ER-antagonists, depending on the cellular and tissue context, and have been termed Selective Estrogen Receptor Modulators (SERMs). Several SERMs have been identified with clinical relevance such as tamoxifen and raloxifene. Recently, 27-hydroxycholesterol has been characterized as the first identified endogenous SERM leading to the notion that other endogenous SERMs may exist, each having potential pathophysiological functions. This, coupled with the historic pharmaceutical interest as well as growing concern over chemicals in the environment with the ability to behave like SERMs, has increased the demand for assays to detect SERM-like activity. Here, we describe a common, straightforward in vitro assay investigating the induction of classic ER-target genes in MCF7 breast cancer cells, allowing one to identify ligands with SERM-like activity. PMID:26585155

  20. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats.

    PubMed

    Dumasia, Kushaan; Kumar, Anita; Kadam, Leena; Balasinor, N H

    2015-06-01

    Maintenance of normal male fertility relies on the process of spermatogenesis which is under complex endocrine control by mechanisms involving gonadotropin and steroid hormones. Although testosterone is the primary sex steroid in males, estrogen is locally produced in the testis and plays a very crucial role in male fertility. This is evident from presence of both the estrogen receptors alpha (ERα) and beta (ERβ) in the testis and their absence, as in the case of knockout mice models, leads to sterility. The present study was undertaken to understand individual roles of the two ERs in spermatogenesis and their direct contribution towards the maintenance of male fertility using receptor-subtype-specific ligands. Administration of ERα and β agonists to adult male rats for 60 days results in a significant decrease in fertility, mainly due to an increase in pre- and post-implantation loss and a concomitant decrease in litter size and sperm counts. Our results indicate that ERα is mainly involved in negative feedback regulation of gonadotropin hormones, whereas both ERs are involved in regulation of prolactin and testosterone production. Histological examinations of the testis reveal that ERβ could be involved in the process of spermiation since many failed spermatids were observed in stages IX-XI following ERβ agonist treatment. Our results indicate that overactivation of estrogen signaling through either of its receptors can have detrimental effects on the fertility parameters and that the two ERs have both overlapping and distinct roles in maintenance of male fertility. PMID:25869617

  1. Selective Estrogen Receptor Modulation Increases Hippocampal Activity during Probabilistic Association Learning in Schizophrenia.

    PubMed

    Kindler, Jochen; Weickert, Cynthia Shannon; Skilleter, Ashley J; Catts, Stanley V; Lenroot, Rhoshel; Weickert, Thomas W

    2015-09-01

    People with schizophrenia show probabilistic association learning impairment in conjunction with abnormal neural activity. The selective estrogen receptor modulator (SERM) raloxifene preserves neural activity during memory in healthy older men and improves memory in schizophrenia. Here, we tested the extent to which raloxifene modifies neural activity during learning in schizophrenia. Nineteen people with schizophrenia participated in a twelve-week randomized, double-blind, placebo-controlled, cross-over adjunctive treatment trial of the SERM raloxifene administered orally at 120 mg daily to assess brain activity during probabilistic association learning using functional magnetic resonance imaging (fMRI). Raloxifene improved probabilistic association learning and significantly increased fMRI BOLD activity in the hippocampus and parahippocampal gyrus relative to placebo. A separate region of interest confirmatory analysis in 21 patients vs 36 healthy controls showed a positive association between parahippocampal neural activity and learning in patients, but no such relationship in the parahippocampal gyrus of healthy controls. Thus, selective estrogen receptor modulation by raloxifene concurrently increases activity in the parahippocampal gyrus and improves probabilistic association learning in schizophrenia. These results support a role for estrogen receptor modulation of mesial temporal lobe neural activity in the remediation of learning disabilities in both men and women with schizophrenia.

  2. Distribution and regulation by estrogen of progesterone receptor in the hypothalamus of the cat.

    PubMed

    Bayliss, D A; Seroogy, K B; Millhorn, D E

    1991-05-01

    The diencephalon is critically involved in the estrogen-dependent receptor-mediated stimulation of respiration by progesterone in cats. To identify a neuroanatomic basis for this effect of progesterone, the diencephalon of the ovariectomized cat was examined immunohistochemically with an antiprogesterone receptor (anti-PR) monoclonal antibody. No immunostaining was found in ovariectomized animals pretreated with sesame oil alone. In contrast, numerous cells in the ventromedial aspect of the hypothalamus from cats pretreated with estradiol benzoate were PR immunoreactive. Thus, PR is induced by estrogen in hypothalamic neurons of cats. In animals pretreated with estradiol benzoate, the highest density of immunostained neurons was found throughout the infundibular nucleus, especially in the region of the mammillary recess of the third ventricle. PR-immunoreactive cells were also distributed throughout the periventricular nucleus, with the highest density located rostrally and immediately above the suprachiasmatic nucleus. Notably and in contrast to a number of other species (e.g. rat and guinea pig), only very few weakly stained PR-containing cells were found in the hypothalamic ventromedial nucleus. This latter finding could reflect the progesterone independence of sexual behaviors in cat. Overall, we have identified hypothalamic areas that may subserve estrogen-dependent receptor-mediated effects of progesterone in the cat, such as the stimulation of respiration. PMID:2019267

  3. Targeting tyrosine-kinases and estrogen receptor abrogates resistance to endocrine therapy in breast cancer

    PubMed Central

    Liu, Shuying; Meng, Xiaolong; Chen, Huiqin; Liu, Wenbin; Miller, Todd; Murph, Mandi; Lu, Yiling; Zhang, Fan; Gagea, Mihai; Arteaga, Carlos L.; Mills, Gordon B.; Meric-Bernstam, Funda; González-Angulo, Ana M.

    2014-01-01

    Despite numerous therapies that effectively inhibit estrogen signaling in breast cancer, a significant proportion of patients with estrogen receptor (ER)-positive malignancy will succumb to their disease. Herein we demonstrate that long-term estrogen deprivation (LTED) therapy among ER-positive breast cancer cells results in the adaptive increase in ER expression and subsequent activation of multiple tyrosine kinases. Combination therapy with the ER down-regulator fulvestrant and dasatinib, a broad kinase inhibitor, exhibits synergistic activity against LTED cells, by reduction of cell proliferation, cell survival, cell invasion and mammary acinar formation. Screening kinase phosphorylation using protein arrays and functional proteomic analysis demonstrates that the combination of fulvestrant and dasatinib inhibits multiple tyrosine kinases and cancer-related pathways that are constitutively activated in LTED cells. Because LTED cells display increased insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF-1R) signaling, we added an ant-IGF-1 antibody to the combination with fulvestrant and dasatinib in an effort to further increase the inhibition. However, adding MK0646 only modestly increased the inhibition of cell growth in monolayer culture, but neither suppressed acinar formation nor inhibited cell migration in vitro and invasion in vivo. Therefore, combinations of fulvestrant and dasatinib, but not MK0646, may benefit patients with tyrosine-kinase-activated, endocrine therapy-resistant breast cancer. PMID:24979294

  4. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer

    PubMed Central

    Matsushima, Hiroshi; Mori, Taisuke; Ito, Fumitake; Yamamoto, Takuro; Akiyama, Makoto; Kokabu, Tetsuya; Yoriki, Kaori; Umemura, Shiori; Akashi, Kyoko; Kitawaki, Jo

    2016-01-01

    Estrogen-related receptor (ERR)α presents structural similarities with estrogen receptor (ER)α. However, it is an orphan receptor not binding to naturally occurring estrogens. This study was designed to investigate the role of ERRα in endometrial cancer progression. Immunohistochemistry analysis on 50 specimens from patients with endometrial cancer showed that ERRα was expressed in all examined tissues and the elevated expression levels of ERRα were associated with advanced clinical stages and serous histological type (p < 0.01 for each). ERRα knockdown with siRNA suppressed angiogenesis via VEGF and cell proliferation in vitro (p < 0.01). Cell cycle and apoptosis assays using flow cytometry and western blot revealed that ERRα knockdown induced cell cycle arrest during the mitotic phase followed by apoptosis initiated by caspase-3. Additionally, ERRα knockdown sensitized cells to paclitaxel. A significant reduction of tumor growth and angiogenesis was also observed in ERRα knockdown xenografts (p < 0.01). These findings indicate that ERRα may serve as a novel molecular target for the treatment of endometrial cancer. PMID:27153547

  5. Association between Estrogen Receptor Gene Polymorphisms and Depression in Post-Menopausal Women: A Preliminary Study

    PubMed Central

    Pae, Chi Un; Kim, Mi Ran; Min, Jung Ah; Kim, Kyung Hee; Lee, Chang Uk; Lee, Chul; Paik, In Ho

    2010-01-01

    Post-menopausal women experience variable biological and psychological changes. The effect of reduced levels of estrogen can effect on post-menopausal depression. Estrogen triggers physiological responses by binding to the estrogen receptor (ER). Two subtypes of ER, ERa and ERb are now known. We investigated the significance of ERa and ERb polymorphisms and post-menopasal depression in this study. Forty three women with post-menopausal depression and 63 post-menopausal women without depression as normal controls were recruited. Polymerase chain reaction-restriction fragment length polymorphism method was used to investigate genotypes of ERa and ERb polymorphisms. Genotypes of PvuII and XbaI polymorphism of ERa receptor were significantly different in patients with post-menopausal depression comparing with controls. Genotypes of ERb did not show association with post-menopausal depression. Our study showed that ERa receptor polymorphism had an association with depression in post-menopausal women. It suggests that investigation of ER genes and their functions might be important for understanding pathophysilogical mechanism of post-menopausal depression. PMID:20927313

  6. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1

    PubMed Central

    Neubauer, Hans; Clare, Susan E; Wozny, Wojciech; Schwall, Gerhard P; Poznanović, Slobodan; Stegmann, Werner; Vogel, Ulrich; Sotlar, Karl; Wallwiener, Diethelm; Kurek, Raffael; Fehm, Tanja; Cahill, Michael A

    2008-01-01

    Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of

  7. Selective Estrogen Receptor Modulator Delivery of Quinone Warheads to DNA Triggering Apoptosis in Breast Cancer Cells

    PubMed Central

    Peng, Kuan-wei; Wang, Huali; Qin, Zhihui; Wijewickrama, Gihani T.; Lu, Meiling; Wang, Zhican; Bolton, Judy L.; Thatcher, Gregory R. J.

    2009-01-01

    Estrogen exposure is a risk factor for breast cancer and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the β-naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damage DNA by adduction and oxidation. To differentiate hormonal and chemical carcinogensis pathways in estrogen receptor positive ER(+) cells, catechol or β-naphthohydroquinone warheads were conjugated to the selective estrogen receptor modulator (SERM) desmethylarzoxifene (DMA). ER binding was retained in the DMA conjugates; both were antiestrogens with submicromolar potency in mammary and endometrial cells. Cytotoxicity, apoptosis, and caspase-3/7 activation were compared in ER(+) and ER(−)MDA-MB-231 cells, and production of ROS was detected using a fluorescent reporter. Comparison was made to DMA, isolated warheads, and a DMA-mustard. Conjugation of warheads to DMA increased cytotoxicity accompanied by induction of apoptosis and activation of caspase-3/7. Activation of caspase-3/7, induction of apoptosis, and cytotoxicity were all increased significantly in ER(+) cells for the DMA conjugates. ROS production was localized in the nucleus for conjugates in ER(+) cells. Observations are compatible with β-naphthohydroquinone and catechol groups being concentrated in the nucleus by ER binding, where oxidation and ROS production result, concomitant with caspase-dependent apoptosis. The results suggest DNA damage induced by catechol estrogen metabolites can be amplified in ER(+) cells independent of hormonal activity. The novel conjugation of quinone warheads to an ER-targeting SERM gives ER-dependent, enhanced apoptosis in mammary cancer cells of potential application in cancer therapy. PMID:19839584

  8. Identification and localization of estrogen receptor alpha- and beta-positive cells in adult male and female mouse intestine at various estrogen levels.

    PubMed

    Kawano, Naoko; Koji, Takehiko; Hishikawa, Yoshitaka; Murase, Kunihiko; Murata, Ikuo; Kohno, Shigeru

    2004-05-01

    Although estrogen is implicated in the regulation of mammalian intestinal function, the presence and the distribution of estrogen receptor (ER)-positive cells in the intestine are still controversial. The present study was designed to localize ERalpha- and ERbeta-expressing cells in female and male mouse intestines immunohistochemically under various estrogen conditions, especially in female mice, ovariectomized as well at various phases of the estrous cycle. Western blot analysis detected both ERalpha (66-kDa band) and ERbeta (56-kDa band). Immunohistochemical staining of paraffin-embedded sections after antigen-retrieval treatment with autoclaving revealed staining for ERalpha in submucosal interstitial cells, and double staining identified these cells as a subtype of intestinal macrophages. The number of these cells varied according to the estrous cycle phase. Administration of 17beta-estradiol to ovariectomized mice resulted in a significant increase in the number of ERalpha-positive macrophages. On the other hand, the nuclei of nerve cells in Auerbach and Meissner plexuses were positive for both ERalpha and ERbeta, but the number of positive nerve cells was not affected by estrogen. Our results indicate that estrogen and estrogenic compounds may exert their actions on the intestine in two ways; one is through interstitial macrophages and the other is through intestinal neurons.

  9. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    SciTech Connect

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  10. Characterization of the ovarian and reproductive abnormalities in prepubertal and adult estrogen non-responsive estrogen receptor alpha knock-in (ENERKI) mice.

    PubMed

    Sinkevicius, K W; Woloszyn, K; Laine, M; Jackson, K S; Greene, G L; Woodruff, T K; Burdette, J E

    2009-11-01

    Estrogen non-responsive estrogen receptor alpha (ERalpha) knock-in (ENERKI) mice have a mutation (glycine 525 to leucine, G525L) in the ligand-binding domain of ERalpha. The mutant ERalpha protein has a significantly lower affinity and response to endogenous estrogens, while not altering growth factor activated ligand-independent pathways. ENERKI females demonstrated signs of early follicle development as determined by a significant increase in antral follicle formation by 20 days of age. Adult ENERKI females were infertile, had hemorrhagic ovarian follicular cysts, and failed to develop corpora lutea in response to a superovulation regimen. These results illustrate the importance of ERalpha ligand-induced signaling for ovarian development and for estrogen feedback on the hypothalamus and pituitary. Although ERalpha ligand-induced signaling by endogenous estrogens is lost in ENERKI females, the ERalpha selective agonist propyl pyrazole triol (PPT), a synthetic nonsteroidal compound, is still able to activate G525L ERalphain vivo to increase uterine weight. To test whether PPT could restore ligand-dependent receptor activation, ENERKI females were treated with PPT and evaluated for spontaneous ovulation, ovarian hemorrhagic cysts, and LH serum levels. Daily PPT treatments beginning on day 4 of life prevented formation of ovarian hemorrhagic cysts in adult ENERKI animals. In accordance with this result, preputial gland weight and LH levels were also lowered in these animals, indicating PPT treatments most likely led to restoration of ERalpha negative feedback of the hypothalamic-pituitary axis.

  11. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential

    PubMed Central

    Paterni, Ilaria; Granchi, Carlotta; Katzenellenbogen, John A.; Minutolo, Filippo

    2014-01-01

    Estrogen receptors alpha (ERα) and beta (ERβ) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. Modulation of these receptors by prospective therapeutic agents is currently being considered for prevention and treatment of a wide variety of pathological conditions, such as, cancer, metabolic and cardiovascular diseases, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update of compounds that have been recently reported as modulators of ERs, with a particular focus on their potential clinical applications. PMID:24971815

  12. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway.

    PubMed

    Oviedo, Pilar J; Sobrino, Agua; Laguna-Fernandez, Andrés; Novella, Susana; Tarín, Juan J; García-Pérez, Miguel-Angel; Sanchís, Juan; Cano, Antonio; Hermenegildo, Carlos

    2011-03-30

    Migration and proliferation of endothelial cells are involved in re-endothelialization and angiogenesis, two important cardiovascular processes that are increased in response to estrogens. RhoA, a small GTPase which controls multiple cellular processes, is involved in the control of cell migration and proliferation. Our aim was to study the role of RhoA on estradiol-induced migration and proliferation and its dependence on estrogen receptors activity. Human umbilical vein endothelial cells were stimulated with estradiol, in the presence or absence of ICI 182780 (estrogen receptors antagonist) and Y-27632 (Rho kinase inhibitor). Estradiol increased Rho GEF-1 gene expression and RhoA (gene and protein expression and activity) in an estrogen receptor-dependent manner. Cell migration, stress fiber formation and cell proliferation were increased in response to estradiol and were also dependent on the estrogen receptors and RhoA activation. Estradiol decreased p27 levels, and significantly raised the expression of cyclins and CDK. These effects were counteracted by the use of either ICI 182780 or Y-27632. In conclusion, estradiol enhances the RhoA/ROCK pathway and increases cell cycle-related protein expression by acting through estrogen receptors. This results in an enhanced migration and proliferation of endothelial cells.

  13. Induction of mammary gland development in estrogen receptor-alpha knockout mice.

    PubMed

    Bocchinfuso, W P; Lindzey, J K; Hewitt, S C; Clark, J A; Myers, P H; Cooper, R; Korach, K S

    2000-08-01

    Mammary glands from the estrogen receptor-a knockout (alphaERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted ERalpha signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute to the alphaERKO mammary phenotype. We report that circulating PRL is reduced in the female alphaERKO mouse. Implantation of an age-matched, heterozygous ERalpha pituitary isograft under the renal capsule of 25-day-old or 12-week-old alphaERKO mice increased circulating PRL and progesterone levels, and induced mammary gland development. Grafted alphaERKO mice also possessed hypertrophied corpora lutea demonstrating that PRL is luteotropic in the alphaERKO ovary. By contrast, ovariectomy at the time of pituitary grafting prevented mammary gland development in alphaERKO mice despite elevated PRL levels. Hormone replacement using pellet implants demonstrated that pharmacological doses of estradiol induced limited mammary ductal elongation, and estradiol in combination with progesterone stimulated lobuloalveolar development. PRL alone or in combination with progesterone or estradiol did not induce alphaERKO mammary growth. Estradiol and progesterone are required for the structural development of the alphaERKO mammary gland, and PRL contributes to this development by inducing ovarian progesterone levels. Therefore, the manifestation of the alphaERKO mammary phenotype appears due to the lack of direct estrogen action at the mammary gland and an indirect contributory role of estrogen signaling at the hypothalamic/pituitary axis.

  14. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia.

    PubMed

    Khan, Mohammad M; Wakade, Chandramohan; de Sevilla, Liesl; Brann, Darrell W

    2015-02-01

    Selective estrogen receptor modulators (SERMs) have been reported to enhance synaptic plasticity and improve cognitive performance in adult rats. SERMs have also been shown to induce neuroprotection against cerebral ischemia and other CNS insults. In this study, we sought to determine whether acute regulation of neurogenesis and spine remodeling could be a novel mechanism associated with neuroprotection induced by SERMs following cerebral ischemia. Toward this end, ovariectomized adult female rats were either implanted with pellets of 17β-estradiol (estrogen) or tamoxifen, or injected with raloxifene. After one week, cerebral ischemia was induced by the transient middle-cerebral artery occlusion (MCAO) method. Bromodeoxyuridine (BrdU) was injected to label dividing cells in brain. We analyzed neurogenesis and spine density at day-1 and day-5 post MCAO. In agreement with earlier findings, we observed a robust induction of neurogenesis in the ipsilateral subventricular zone (SVZ) of both the intact as well as ovariectomized female rats following MCAO. Interestingly, neurogenesis in the ipsilateral SVZ following ischemia was significantly higher in estrogen and raloxifene-treated animals compared to placebo-treated rats. In contrast, this enhancing effect on neurogenesis was not observed in tamoxifen-treated rats. Finally, both SERMs, as well as estrogen significantly reversed the spine density loss observed in the ischemic cortex at day-5 post ischemia. Taken, together these results reveal a profound structural remodeling potential of SERMs in the brain following cerebral ischemia. This article is part of a Special Issue entitled "Sex steroids and brain disorders".

  15. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  16. Molecular cloning, expression, and regulation of estrogen receptors in pigeon oviduct epithelial cells.

    PubMed

    Zhang, H; Chen, F; Li, G L; Ding, Y Y; Tao, Z R; Li, J J; Zhong, S L; Lu, L Z

    2014-03-17

    Estrogen regulates reproductive behavior and drives the proliferation and differentiation of several cell types. These physiological functions of estrogen are mediated by estrogen receptors (ERs), and each ER isoform plays a distinct role. To clarify the molecular mechanism of estrogen action and to evaluate the effect of ERs on the secretion of ovalbumin (OVA) in pigeon oviduct epithelial cells (POECs), we determined the complete coding sequences encoding ER alpha (ERα) and ER beta (ERβ) in pigeons. The abundance of pigeon ERα and ERβ mRNA was detected using quantitative polymerase chain reaction. These results revealed that pigeon ERα is highly expressed in the oviduct, while pigeon ERb is highly expressed in the ovary and kidney. We hypothesize that ERα mRNA predominates over that of ERβ in the oviduct. The expression of ERα can be down-regulated by 17β-estradiol, and the knockdown of ERα promoted OVA mRNA expression in cultured POECs, indicating that ERα may play an important role in OVA secretion.

  17. Prostate cancer stem cells: the role of androgen and estrogen receptors

    PubMed Central

    Di Zazzo, Erika; Galasso, Giovanni; Giovannelli, Pia; Di Donato, Marzia; Di Santi, Annalisa; Cernera, Gustavo; Rossi, Valentina; Abbondanza, Ciro; Moncharmont, Bruno; Sinisi, Antonio Agostino; Castoria, Gabriella; Migliaccio, Antimo

    2016-01-01

    Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy. PMID:26506594

  18. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  19. A variant of estrogen receptor-α, hER-α36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling

    PubMed Central

    Wang, ZhaoYi; Zhang, XinTian; Shen, Peng; Loggie, Brian W.; Chang, YunChao; Deuel, Thomas F.

    2006-01-01

    The status of the 66-kDa human estrogen receptor-α (hER-α66) is a critical determinant in the assessment of the prognosis and in the design of treatment strategies of human breast cancer. Recently, we cloned the cDNA of an alternatively spliced variant of hER-α66, termed hER-α36; the predicted protein lacks both transcriptional activation domains of hER-α66 but retains its DNA-binding domain, partial dimerization, and ligand-binding domains and three potential myristoylation sites located near the N terminus. These findings thus predict that hER-α36 functions very differently from hER-α66 in response to estrogen signaling. We now demonstrate that hER-α36 inhibits the estrogen-dependent and estrogen-independent transactivation activities of hER-α66 and hER-β. We further demonstrate that hER-α36 is predominantly associated with the plasma membrane where it transduces both estrogen- and antiestrogen-dependent activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and stimulates cell growth. We conclude that hER-α36 is a predominantly membrane-based, unique alternatively spliced variant of hER-α66 that acts as a dominant-negative effector of both estrogen-dependent and estrogen-independent transactivation functions signaled through hER-α66 and ER-β; it also transduces membrane-initiated estrogen-dependent activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase mitogenic signaling pathway. The estrogen and antiestrogen signaling pathways mediated by hER-α36 provide an alternative explanation for why some human breast cancers are resistant to and others are worsened by antiestrogen therapy; the data suggest that hER-α36 also may be an important marker to direct therapy in human breast cancers, and perhaps hER-α36 also may transduce estrogen-dependent signaling in other estrogen target tissues. PMID:16754886

  20. Egr1 is rapidly and transiently induced by estrogen and bisphenol A via activation of nuclear estrogen receptor-dependent ERK1/2 pathway in the uterus.

    PubMed

    Kim, Hye-Ryun; Kim, Yeon Sun; Yoon, Jung Ah; Lyu, Sang Woo; Shin, Hyejin; Lim, Hyunjung J; Hong, Seok-Ho; Lee, Dong Ryul; Song, Haengseok

    2014-12-01

    Coordinate actions of ovarian estrogen (E2) and progesterone (P4) via their own receptors are critical for establishing uterine receptivity for embryo implantation in the uterus. E2 regulates expression of an array of genes to mediate its major actions on heterogeneous uterine cell types. Here we have investigated regulatory mechanism(s) of E2 and bisphenol A (BPA), an endocrine disruptor with potent estrogenic activity on expression of early growth response 1 (Egr1), a zinc finger transcription factor that regulates cell growth, differentiation and apoptosis in the uterus. Egr1 was rapidly and transiently induced by E2 and BPA mainly in stromal cells via nuclear estrogen receptor (ER)-ERK1/2 pathway. ICI 182,780, an ER antagonist, effectively inhibited their actions on EGR1 expression following ERK1/2 phosphorylation. Administration of pharmacological inhibitors for ERK1/2, but not AKT significantly blocked EGR1 expression induced by E2 and BPA. P4 effectively dampened action(s) of E2 and BPA on Egr1 expression via nuclear progesterone receptor. Its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, EGR1 is specifically induced in stromal cells surrounding implanting blastocyst. Collectively, our results show that through nuclear ER-dependent ERK1/2 phosphorylation, not only E2 but also endocrine disruptors with estrogenic activity such as BPA rapidly and transiently induce Egr1 which may be important for embryo implantation and decidualization in mouse uterus.

  1. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified

    PubMed Central

    Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-01

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795

  2. Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in estrogen receptor expressing ovarian cancer cells.

    PubMed

    Shin, Sam; Go, Ryeo-Eun; Kim, Cho-Won; Hwang, Kyung-A; Nam, Ki-Hoan; Choi, Kyung-Chul

    2016-07-01

    Epithelial-mesenchymal transition (EMT) is an important process in embryonic development and cancer progression and metastasis. EMT is influenced by 17β-estradiol (E2), an endogenous estrogen. Benzophenone-1 (2,4-dihydroxybenzophenone, BP-1) and 4-tert-octylphenol (OP) are suspected endocrine disrupting chemicals (EDCs) because they can exhibit estrogenic properties. In this study, we examined whether BP-1 and OP can lead to EMT of BG-1 ovarian cancer cells expressing estrogen receptors (ERs). A wound healing assay and western blot assay were conducted to show the effect of BP-1 and OP on the migration of BG-1 cells and protein expression of EMT-related genes. BP-1 (10(-6) M) and OP (10(-6) M) significantly enhanced the migration capability of BG-1 cells by reducing the wounded area in the cell monolayer relative to the control, similar to E2 (10(-9) M). However, when BG-1 cells were co-treated with ICI 182,780, an ER antagonist, the uncovered area was maintained at the level of the control. N-cadherin, snail, and slug were increased by BP-1 and OP while E-cadherin was reduced compared to the control. However, this effect was also restored by co-treatment with ICI 182,780. Taken together, these results indicate that BP-1 and OP, the potential EDCs, may have the ability to induce ovarian cancer metastasis via regulation of the expression of EMT markers and migration of ER-expressing BG-1 ovarian cancer cells. PMID:27145024

  3. Immunohistochemical analysis of estrogen and progesterone receptors in benign breast diseases.

    PubMed

    Tóth, J; De Sombre, E R; Greene, G L

    1991-01-01

    Surgical specimens of 62 patients with fibrocystic disease, 39 with fibroadenoma and 11 with intraductal papilloma were evaluated with ER-ICA and PgR-ICA methods. Positive nuclear staining was only observed in the epithelial components. The myoepithelium, myofibroblasts, fibroblasts and the so called apocrine epithelium, however, did not contain steroid receptors. Some steroid receptor negative cases occurred among the atrophic and non-proliferating fibrocystic diseases. In the proliferating benign alterations, particularly in those considered preneoplastic, e.g. radial scar, ductal and lobular atypical epithelioses, such as carcinoma lobulare in situ and florid intraductal papilloma there was a positive staining for estrogen receptor and progesterone receptor in the epithelial cells. Authors' results seem to serve as a theoretical basis for the hormonal influence of precarcinomatous cases and to explain the success of antisteroid therapy in patients with fibrocystic disease.

  4. Estrogen receptors in the temporomandibular joint of the baboon (Papio cynocephalus): an autoradiographic study

    SciTech Connect

    Aufdemorte, T.B.; Van Sickels, J.E.; Dolwick, M.F.; Sheridan, P.J.; Holt, G.R.; Aragon, S.B.; Gates, G.A.

    1986-04-01

    Using an autoradiographic method, the temporomandibular joint (TMJ) complex of five aged female baboons was studied for the presence of receptors for estradiol-17 beta. The study was performed in an effort to learn more of the pathophysiology of this joint and in an attempt to provide a scientific basis to explain the reported preponderance of women who seek and undergo treatment for signs and symptoms referable to the TMJ. This experiment revealed that the TMJ complex contains numerous cells with receptors for estrogen, particularly the articular surface of the condyle, articular disk, and capsule. Muscles of mastication contained relatively fewer receptors. As a result, one may postulate a role for the sex steroid hormones in the maintenance, repair, and/or pathogenesis of the TMJ. Additional studies are necessary to fully determine the significance of hormone receptors in this site and any correlation between diseases of the TMJ and the endocrine status of affected patients.

  5. Effect of anti-PMSG on distribution of estrogen receptor alpha and progesterone receptor in mouse ovary, oviduct and uterus.

    PubMed

    Lin, Zi Li; Ni, He Min; Liu, Yun Hai; Sheng, Xi Hui; Cui, Xiang Shun; Kim, Nam Hyung; Guo, Yong

    2015-10-01

    It is well established that estrogen and progesterone are critical endogenous hormones that are essential for implantation and pregnancy in females. However, the distribution of estrogen receptor α (ERα) and progesterone receptor (PR) in female reproductive tracts is elusive. Herein, we report that after serial treatments with pregnant mare's serum gonadotrophin (PMSG) with or without anti-PMSG (AP), mice could regulate the distribution of ERα and PR in the murine ovary, oviduct and uterus and the level of estradiol in serum. ERα and PR regulation by PMSG and anti-PMSG was estrous cycle-dependent and critical for promoting the embryo-implantation period. Furthermore, our results suggested that AP-42 h treatment is more effective than the other treatments. In contrast, other treatment groups also affected the distribution of ERα and PR in mouse reproductive tracts. Thus, we found that anti-PMSG has the potential to restore the distribution of ERα and PR, which could effectively reduce the negative impact of residual estrogen caused by the normal superovulation effect of PMSG in mice.

  6. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+

    PubMed Central

    Rybalchenko, Volodymyr; Grillo, Michael A.; Gastinger, Matthew J.; Rybalchenko, Nataliya; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Ca2+ release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca2+-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical “non-genomic” effects mediated by estrogen receptors (ER) include rapid Ca2+ release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of co-localization between RyR type 2 (RyR2) and ER type β (ERβ) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ERβ (ERβ1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca2+] concentrations of 100 nM, suggesting a synergistic action of ERβ1 and Ca2+ in RyR activation, and a potential contribution to Ca2+-induced Ca2+ release rather than to basal intracellular Ca2+ concentration level at rest. This RyR/ERβ interaction has potential effects on cellular physiology, including roles of shorter ERβ isoforms and modulation of the RyR/ERβ complexes by exogenous estrogens. PMID:19899956

  7. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes.

    PubMed

    Daniel, A R; Gaviglio, A L; Knutson, T P; Ostrander, J H; D'Assoro, A B; Ravindranathan, P; Peng, Y; Raj, G V; Yee, D; Lange, C A

    2015-01-22

    Progesterone and estrogen are important drivers of breast cancer proliferation. Herein, we probed estrogen receptor-α (ER) and progesterone receptor (PR) cross-talk in breast cancer models. Stable expression of PR-B in PR-low/ER+ MCF7 cells increased cellular sensitivity to estradiol and insulin-like growth factor 1 (IGF1), as measured in growth assays performed in the absence of exogenous progestin; similar results were obtained in PR-null/ER+ T47D cells stably expressing PR-B. Genome-wide microarray analyses revealed that unliganded PR-B induced robust expression of a subset of estradiol-responsive ER target genes, including cathepsin-D (CTSD). Estradiol-treated MCF7 cells stably expressing PR-B exhibited enhanced ER Ser167 phosphorylation and recruitment of ER, PR and the proline-, glutamate- and leucine-rich protein 1 (PELP1) to an estrogen response element in the CTSD distal promoter; this complex co-immunoprecipitated with IGF1 receptor (IGFR1) in whole-cell lysates. Importantly, ER/PR/PELP1 complexes were also detected in human breast cancer samples. Inhibition of IGF1R or phosphoinositide 3-kinase blocked PR-B-dependent CTSD mRNA upregulation in response to estradiol. Similarly, inhibition of IGF1R or PR significantly reduced ER recruitment to the CTSD promoter. Stable knockdown of endogenous PR or onapristone treatment of multiple unmodified breast cancer cell lines blocked estradiol-mediated CTSD induction, inhibited growth in soft agar and partially restored tamoxifen sensitivity of resistant cells. Further, combination treatment of breast cancer cells with both onapristone and IGF1R tyrosine kinase inhibitor AEW541 was more effective than either agent alone. In summary, unliganded PR-B enhanced proliferative responses to estradiol and IGF1 via scaffolding of ER-α/PELP1/IGF1R-containing complexes. Our data provide a strong rationale for targeting PR in combination with ER and IGF1R in patients with luminal breast cancer.

  8. STX, a novel membrane estrogen receptor ligand, protects against Aβ toxicity

    PubMed Central

    Gray, Nora E.; Zweig, Jonathan A.; Kawamoto, Colleen; Quinn, Joseph F.; Copenhaver, Philip F.

    2016-01-01

    Because STX is a selective ligand for membrane estrogen receptors, it may be able to confer the beneficial effects of estrogen without eliciting the deleterious side effects associated with activation of the nuclear estrogen receptors. This study evaluates the neuroprotective properties of STX in the context of amyloid-β (Aβ) exposure. MC65 and SH-SY5Y neuroblastoma cell lines, as well as primary hippocampal neurons from wild type (WT) and Tg2576 mice, were used to investigate the ability of STX to attenuate cell death, mitochondrial dysfunction, dendritic simplification, and synaptic loss induced by Aβ. STX prevented Aβ-induced cell death in both neuroblastoma cell lines; it also normalized the decrease in ATP and mitochondrial gene expression caused by Aβ in these cells. Notably, STX also increased ATP content and mitochondrial gene expression in control neuroblastoma cells (in the absence of Aβ). Likewise in primary neurons, STX increased ATP levels and mitochondrial gene expression in both genotypes. In addition, STX treatment enhanced dendritic arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites caused by Aβ exposure in Tg2576 neurons. These data suggest that STX can act as an effective neuroprotective agent in the context of Aβ toxicity, improving mitochondrial function as well as dendritic growth and synaptic differentiation. In addition, since STX also improved these endpoints in the absence of Aβ, this compound may have broader therapeutic value beyond Alzheimer’s disease. PMID:26890746

  9. Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells.

    PubMed

    Clark, Sara; Rainville, Jennifer; Zhao, Xing; Katzenellenbogen, Benita S; Pfaff, Donald; Vasudevan, Nandini

    2014-01-01

    While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17β-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Gαq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERα phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERα is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.

  10. STX, a Novel Membrane Estrogen Receptor Ligand, Protects Against Amyloid-β Toxicity.

    PubMed

    Gray, Nora E; Zweig, Jonathan A; Kawamoto, Colleen; Quinn, Joseph F; Copenhaver, Philip F

    2016-01-01

    Because STX is a selective ligand for membrane estrogen receptors, it may be able to confer the beneficial effects of estrogen without eliciting the deleterious side effects associated with activation of the nuclear estrogen receptors. This study evaluates the neuroprotective properties of STX in the context of amyloid-β (Aβ) exposure. MC65 and SH-SY5Y neuroblastoma cell lines, as well as primary hippocampal neurons from wild type (WT) and Tg2576 mice, were used to investigate the ability of STX to attenuate cell death, mitochondrial dysfunction, dendritic simplification, and synaptic loss induced by Aβ. STX prevented Aβ-induced cell death in both neuroblastoma cell lines; it also normalized the decrease in ATP and mitochondrial gene expression caused by Aβ in these cells. Notably, STX also increased ATP content and mitochondrial gene expression in control neuroblastoma cells (in the absence of Aβ). Likewise in primary neurons, STX increased ATP levels and mitochondrial gene expression in both genotypes. In addition, STX treatment enhanced dendritic arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites caused by Aβ exposure in Tg2576 neurons. These data suggest that STX can act as an effective neuroprotective agent in the context of Aβ toxicity, improving mitochondrial function as well as dendritic growth and synaptic differentiation. In addition, since STX also improved these endpoints in the absence of Aβ, this compound may have broader therapeutic value beyond Alzheimer's disease. PMID:26890746

  11. STX, a Novel Membrane Estrogen Receptor Ligand, Protects Against Amyloid-β Toxicity.

    PubMed

    Gray, Nora E; Zweig, Jonathan A; Kawamoto, Colleen; Quinn, Joseph F; Copenhaver, Philip F

    2016-01-01

    Because STX is a selective ligand for membrane estrogen receptors, it may be able to confer the beneficial effects of estrogen without eliciting the deleterious side effects associated with activation of the nuclear estrogen receptors. This study evaluates the neuroprotective properties of STX in the context of amyloid-β (Aβ) exposure. MC65 and SH-SY5Y neuroblastoma cell lines, as well as primary hippocampal neurons from wild type (WT) and Tg2576 mice, were used to investigate the ability of STX to attenuate cell death, mitochondrial dysfunction, dendritic simplification, and synaptic loss induced by Aβ. STX prevented Aβ-induced cell death in both neuroblastoma cell lines; it also normalized the decrease in ATP and mitochondrial gene expression caused by Aβ in these cells. Notably, STX also increased ATP content and mitochondrial gene expression in control neuroblastoma cells (in the absence of Aβ). Likewise in primary neurons, STX increased ATP levels and mitochondrial gene expression in both genotypes. In addition, STX treatment enhanced dendritic arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites caused by Aβ exposure in Tg2576 neurons. These data suggest that STX can act as an effective neuroprotective agent in the context of Aβ toxicity, improving mitochondrial function as well as dendritic growth and synaptic differentiation. In addition, since STX also improved these endpoints in the absence of Aβ, this compound may have broader therapeutic value beyond Alzheimer's disease.

  12. The Effect of Selective Estrogen Receptor Modulators (SERMs) on the Tamoxifen Resistant Breast Cancer Cells.

    PubMed

    Chang, Bo Yoon; Kim, Sae Am; Malla, Bindu; Kim, Sung Yeon

    2011-06-01

    Selective estrogen receptor modulators (SERMs) are synthetic molecules which bind to estrogen receptors (ER) and can modulate its transcriptional capabilities in different ways in diverse estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted therapy of ER positive breast cancers. Unfortunately, the use of tamoxifen is associated with acquired resistance and some undesirable side effects. This study investigated the availability of the conventional SERMs on the TAM-resistance breast cancer cells. SERMs showed more effectiveness in MCF-7 cells than tamoxifen resistant cells, except toremifene and ospemifene. Especially, toremifene was more efficacious in tamoxifen resistant cells than MCF-7. Ospemifene had similar cytotoxic activity on the two types of breast cancers. The other SERMs used in this experiment didn't inhibit efficiently the proliferation of tamoxifen resistant cells. These results support the possibility to usage of toremifene on tamoxifen resistant cancer. The effectiveness by toremifene on tamoxifen resistant cells might be different pathways from the apoptosis and the autophagy. Further study should be needed to elucidate the underlying mechanism of effect of toremifene on tamoxifen resistant cancer.

  13. Angiogenesis in Breast Cancer and its Correlation with Estrogen, Progesterone Receptors and other Prognostic Factors

    PubMed Central

    Rani, Poonam; Kamal, Vinay; Agarwal, Prem Narayan

    2015-01-01

    Purpose: The aim of study is to evaluate angiogenesis using CD34, in estrogen, progesterone positive and negative breastcancer and to correlate the microvessel density with known histological prognostic factors, morphological type of breast carcinoma and lymph node metastasis. Materials and Methods: Twenty eight untreated cases of breast cancer were included in the study and paraffin embedded sections were obtained from representative mastectomy specimen of breast cancer patient. The sections were stained with hematoxylin and eosin stain and immunohistochemistry was performed using CD34, estrogen, progesterone, cytokeratin and epithelial membrane antigen antibody. Angiogenesis was analysed using CD 34 antibody. For statistical analysis, cases were grouped into estrogen, progesterone positive and negative receptors. Results: Mean microvessel density in ER-/PR-, ER-/ PR+, ER+/PR-, ER+/PR+ was 15.45, 14.83, 11, 10.89 respectively. A significant correlation was found between ER receptors and mean vascular density with p-value (< 0.05). A significant difference was observed in mean vascular density between the four groups comprising (p-value < 0.05). Infiltrating duct carcinoma (NOS) grade III has got the highest mean microvessel density (14.17) followed by grade II (12.93) and grade I (12.33). Conclusion: Information about prognostic factors in breast cancer patients may lead to better ways to identify those patients at high risk who might benefit from adjuvant therapies. PMID:25737993

  14. Effects of estrogen receptor α and β gene deletion on estrogenic induction of progesterone receptors in the locus coeruleus in female mice

    PubMed Central

    Helena, Cleyde; Gustafsson, Jan-Åke; Korach, Kenneth; Pfaff, Donald; Ogawa, Sonoko

    2016-01-01

    Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ERα (αERKO) or ERβ (βERKO) knockout mice, and their wild-type (αWT and βWT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ERβ was more abundant. Estradiol benzoate (EB) decreased ERα-positive cells in WT and βERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ERβ expression. ERβ deletion increased ERα while ERα deletion did not alter ERβ expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in αERKO animals but to a lesser extent, suggesting that ERα is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in βERKO mice were similar to those in the αERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses αER, βER, and PR, and that a balance between them may be critical for the physiological control of reproductive function. PMID:19551522

  15. Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer's disease.

    PubMed

    Lan, Yu-Long; Zhao, Jie; Li, Shao

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and disordered cognition. Women have a higher AD incidence than men, indicating that the declining estrogen levels during menopause may influence AD pathogenesis. However, the mechanism underlying estrogen's neuroprotective effect is not fully clarified and is complicated by the presence of several distinct estrogen receptor (ER) types and the identification of a growing number of ER splice variants. Thus, a deeper analysis of ERs could elucidate the role of estrogen in age-related cognitive changes. Intracellular calcium signaling cascades play a pivotal role in ERα neuroprotection against AD. The ERα-mediated inhibition of Death domain-associated protein (Daxx) translocation and the combination of membrane ERα and caveolin in caveolae may protect against AD. Moreover, the voltage-dependent anion channel (VDAC)/ERα association may be important for maintaining channel inactivation and may be relevant in neuronal preservation against Aβ injury. Additionally, ERα may prevent glutamate excitotoxic injury by Aβ through estrogen signaling mechanisms. ERα and IGF-IR co-activation may mediate neuroprotection, and many other growth factors and intracellular signaling responses triggered by ERα may also play important roles in this process. Furthermore, details regarding the genes and mRNA variants of ERα that are expressed in different parts of the human organs have been clarified recently. Therefore, here we review the literature to clarify the neuroprotective role of ERα. This review focuses on the potential mechanisms mediated by ERα in the intracellular signaling events in nervous system cells, thereby clarifying ERα-mediated protection against AD.

  16. Distinct expression and activity profiles of largemouth bass (Micropterus salmoides) estrogen receptors in response to estradiol and nonylphenol.

    PubMed

    Sabo-Attwood, Tara; Blum, Jason L; Kroll, Kevin J; Patel, Vishal; Birkholz, Detlef; Szabo, Nancy J; Fisher, Suzanne Z; McKenna, Robert; Campbell-Thompson, Martha; Denslow, Nancy D

    2007-10-01

    The estrogen receptor (ER) signaling cascade is a vulnerable target of exposure to environmental xenoestrogens, like nonylphenol (NP), which are causally associated with impaired health status. However, the impact of xenoestrogens on the individual receptor isotypes (alpha, beta a, and beta b) is not well understood. The goal of these studies was to determine the impact of NP on largemouth bass (Micropterus salmoides) ER isotype expression and activity. Here, we show that hepatic expression levels of three receptors are not equivalent in male largemouth bass exposed to NP by injection. Transcript levels of the ER alpha subtype were predominantly induced in concert with vitellogenin similarly to fish exposed to 17beta-estradiol (E(2)) as measured by quantitative real-time PCR. NP also induced circulating plasma levels of estrogen, which may contribute to overall activation of the ERs. To measure the activation of each receptor isotype by E(2) and NP, we employed reporter assays using an estrogen response element (ERE)-luciferase construct. Results from these studies show that ER alpha had the greatest activity following exposure to E(2) and NP. This activity was inhibited by the antagonists ICI 182 780 and ZM 189 154. Furthermore, both beta b and beta a subtypes depressed ER alpha activation, suggesting that the cellular composition of receptor isotypes may contribute to the overall actions of estrogen and estrogenic contaminants via the receptors. Results from these studies collectively reveal the differential response of fish ER isotypes in response to xenoestrogens.

  17. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  18. Estrogens and Spermiogenesis: New Insights from Type 1 Cannabinoid Receptor Knockout Mice

    PubMed Central

    Cacciola, Giovanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2013-01-01

    Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model. PMID:24324492

  19. [Current advances and issues in selective estrogen receptor modulator (SERM) treatment].

    PubMed

    Ohta, Hiroaki

    2014-01-01

    The use of selective estrogen receptor modulators (SERMs) was limited at first to relatively young women and was overestimated for the risk of venous thromboembolism (VTE) due to their estrogen-like effects. Ten years of clinical experience with the SERMs in Japan suggest that they can be used without concern for VTE and are efficacious in older women. Thus, the SERMs are now being recognized as agents readily available for clinical use. Furthermore, unlike the bisphosphonates, their physiological hormone-like effects have led to their widespread use in clinical settings. Future issues in treatment with the SERMs include generation of evidence for their efficacy in improving bone quality as well as for their efficacy in the oldest population. Given their excellent, well-balanced efficacy and safety profile as well as their convenience, however, the SERMs are thought likely to become further established as the standard of care in osteoporosis and other diseases. PMID:24369279

  20. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M. PMID:23325100

  1. IQGAP1 binds to estrogen receptor-α and modulates its function.

    PubMed

    Erdemir, Huseyin H; Li, Zhigang; Sacks, David B

    2014-03-28

    The estrogen receptor (ER) is a steroid hormone receptor that acts as a transcription factor, modulating genes that regulate a vast range of cellular functions. IQGAP1 interacts with several signaling proteins, cytoskeletal components, and transmembrane receptors, thereby serving as a scaffold to integrate signaling pathways. Both ERα and IQGAP1 contribute to breast cancer. In this study, we report that IQGAP1 binds ERα and ERβ. In vitro analysis with pure proteins revealed a direct interaction between IQGAP1 and ERα. Investigation with multiple short fragments of each protein showed that ERα binds to the IQ domain of IQGAP1, whereas the hinge region of ERα is responsible for binding IQGAP1. In addition, IQGAP1 and ERα co-immunoprecipitated from cells, and the association was modulated by estradiol. The interaction has functional effects. Knockdown of endogenous IQGAP1 attenuated the ability of estradiol to induce transcription of the estrogen-responsive genes pS2, progesterone receptor, and cyclin D1. These data reveal that IQGAP1 binds to ERα and modulates its transcriptional function, suggesting that IQGAP1 might be a target for therapy in patients with breast carcinoma.

  2. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling.

    PubMed

    Auld, Kathryn L; Berasi, Stephen P; Liu, Yan; Cain, Michael; Zhang, Ying; Huard, Christine; Fukayama, Shoichi; Zhang, Jing; Choe, Sung; Zhong, Wenyan; Bhat, Bheem M; Bhat, Ramesh A; Brown, Eugene L; Martinez, Robert V

    2012-04-01

    Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

  3. Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia.

    PubMed

    Carswell, H V O; Macrae, I M; Gallagher, L; Harrop, E; Horsburgh, K J

    2004-10-01

    The present study employs selective estrogen receptor (ER) agonists to determine whether 17beta-estradiol-induced neuroprotection in global ischemia is receptor mediated and, if so, which subtype of receptor (ERalpha or ERbeta) is predominantly responsible. Halothane-anesthetized female C57Bl/6J mice were ovariectomized, and osmotic minipumps containing ERbeta agonist diarylpropiolnitrile (DPN) (8 mg.kg(-1).day(-1), n = 12) or vehicle (50% DMSO in 0.9% saline) (n = 9) or ERalpha agonist propyl pyrazole triol (PPT) (2 mg.kg(-1).day(-1), n = 13) or vehicle (50% DMSO in 0.9% saline) (n = 10) were implanted subcutaneously. One week later transient global ischemia was induced by bilateral carotid artery occlusion under halothane anesthesia, and the mice were perfusion fixed 72 h later. ERbeta agonist DPN significantly reduced ischemic damage by 70% in the caudate nucleus and 55% in the CA1 region compared with vehicle controls (P < 0.05, Mann-Whitney U-statistic). In contrast, pretreatment with the ERalpha agonist PPT had no effect on the extent of neuronal damage compared with controls. The data indicate a significant estrogen receptor-mediated neuroprotection in a global cerebral ischemia model involving ERbeta.

  4. The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth.

    PubMed

    Xu, Defeng; Lin, Tzu-Hua; Yeh, Chiuan-Ren; Cheng, Max A; Chen, Lu-Min; Chang, Chawnshang; Yeh, Shuyuan

    2014-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling pathways play important roles in the etiology and progression of human breast, endometrial, and ovarian cancers. Attenuating ER activities by natural products and their derivatives is a relatively practical strategy to control and reduce breast, endometrial, and ovarian cancer risk. Here, we found 3-butoxy-1,8,9-trihydroxy-6H-benzofuro[3,2-c]benzopyran-6-one (BTB), a new derivative of wedelolactone, could effectively inhibit the 17-estradiol (E2)-induced ER transactivation and suppress the growth of breast cancer as well as endometrial and ovarian cancer cells. Our results indicate that 2.5 μM BTB effectively suppresses ER-positive, but not ER-negative, breast, endometrial, and ovarian cancer cells. Furthermore, our data indicate that BTB can modulate ER transactivation and suppress the expression of E2-mediated ER target genes (Cyclin D1, E2F1, and TERT) in the ER-positive MCF-7, Ishikawa, and SKOV-3 cells. Importantly, this BTB mediated inhibition of ER activity is selective since BTB does not suppress the activities of other nuclear receptors, including glucocorticoid receptor and progesterone receptor, suggesting that BTB functions as a selective ER signaling inhibitor with the potential to treat breast, endometrial, and ovarian cancers.

  5. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells

    PubMed Central

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production. PMID:27101408

  6. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells.

    PubMed

    Nassa, Giovanni; Tarallo, Roberta; Guzzi, Pietro H; Ferraro, Lorenzo; Cirillo, Francesca; Ravo, Maria; Nola, Ernesto; Baumann, Marc; Nyman, Tuula A; Cannataro, Mario; Ambrosino, Concetta; Weisz, Alessandro

    2011-03-01

    Estrogen Receptor alpha and beta (ER-α and -β) are members of the nuclear receptor family of transcriptional regulators with distinct roles in mediating estrogen dependent breast cancer cell growth and differentiation. Following activation by the hormone, these proteins undergo conformation changes and accumulate in the nucleus, where they bind to chromatin at regulatory sites as homo- and/or heterodimers and assemble in large multiprotein complexes. Although the two ERs share a conserved structure, they exert specific and distinct functional roles in normal and transformed mammary epithelial cells and other cell types. To investigate the molecular bases of such differences, we performed a comparative computational analysis of the nuclear interactomes of the two ER subtypes, exploiting two datasets of receptor interacting proteins identified in breast cancer cell nuclei by Tandem Affinity Purification for their ability to associate in vivo with ligand-activated ER-α and/or ER-β. These datasets comprise 498 proteins, of which only 70 are common to both ERs, suggesting that differences in the nature of the two ER interactomes are likely to sustain the distinct roles of the two receptor subtypes. Functional characterization of the two interactomes and their topological analysis, considering node degree and closeness of the networks, confirmed this possibility. Indeed, clustering and network dissection highlighted the presence of distinct and ER subtype-specific subnetworks endowed with defined functions. Altogether, these data provide new insights on the protein-protein interaction networks controlled by ER-α and -β that mediate their ability to transduce estrogen signaling in breast cancer cells. PMID:21173974

  7. A novel mutation of estrogen receptor gene detected in girls with precocious puberty.

    PubMed

    Li, Bing; Liu, Li; Fu, Xin; Zhou, Wen-Qu; Zou, Dong-Ting; Zhao, Xiao-Yuan; Cai, Yan-Na; Tu, Hong-Bin; Liu, Qi-Cai; Chen, Yao-Yong

    2005-10-01

    Female precocious puberty is caused by premature activation of the hypothalamic-pituitary-gonadal axis, exposure to exogenous sex steroid hormones, and the presence of endogenous sex steroids caused by various factors. Estrogen is the final key factor to start onset of puberty. However,in some cases of precocious puberty in girls estrogen elevation could not be detected. The raised sensitivity of estrogen receptor, which may caused by ESR1 mutation or polymorphism, has been frequently mentioned for interpreting the etiology of sporadic low estrogen type cases. But no case evidence has been found in clinical practice. For the purpose of screening possible mutations in estrogen receptor gene, leukocyte genomic DNA were collected from 16 girls with precocious puberty of sporadic low estrogen,and exons of ESR1 were amplified and analysized using PCR-SSCP/silver staining method. A single strand conformation change in exon 8 was found in one of the patients (No. 14). The suspected fragment were cloned to a T vector and sequenced for analysis. Sequencing of these clones revealed that this conformation change is caused by a C to T transition. This mutation results in the replacement of arginine by cystine at position 548 of ESR1 protein. The mutation created an extra Btsl digest site and made it can be readily identified by PCR-PFLP method. Further detection using this method, and sequencing of cloned exon8 colonies from patients proved that the patient No. 14 is Arg548/Cys548 heterozagous in genotype. This mutation increased hydrophobility of the area dramatically. The position and the conservative of this residue in vertebrates suggested Arg548 may play an important role in ESR1 function. For study the role of this mutation in the onset of precocious puberty, a firefly luciferase reporter plasmid pGL3-promoter-ERE was constructed,and a pCR3. 1-hermut pisimid expressing Cys548 ER was constructed based on wild type pCR3. 1her. Co-transfection of reporter and pCR3. 1

  8. Role of Cadmium and Nickel in Estrogen Receptor Signaling and Breast Cancer: Metalloestrogens or Not?

    PubMed Central

    Aquino, Natalie B.; Sevigny, Mary B.; Sabangan, Jackielyn; Louie, Maggie C.

    2012-01-01

    During the last half-century, incidences of breast cancer have increased globally. Various factors—genetic and environmental— have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e. cadmium and nickel), can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens— metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether or not these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis. PMID:22970719

  9. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies.

    PubMed

    Zheng, Zhengui; Armfield, Brooke A; Cohn, Martin J

    2015-12-29

    Congenital penile anomalies (CPAs) are among the most common human birth defects. Reports of CPAs, which include hypospadias, chordee, micropenis, and ambiguous genitalia, have risen sharply in recent decades, but the causes of these malformations are rarely identified. Both genetic anomalies and environmental factors, such as antiandrogenic and estrogenic endocrine disrupting chemicals (EDCs), are suspected to cause CPAs; however, little is known about the temporal window(s) of sensitivity to EDCs, or the tissue-specific roles and downstream targets of the androgen receptor (AR) in external genitalia. Here, we show that the full spectrum of CPAs can be produced by disrupting AR at different developmental stages and in specific cell types in the mouse genital tubercle. Inactivation of AR during a narrow window of prenatal development results in hypospadias and chordee, whereas earlier disruptions cause ambiguous genitalia and later disruptions cause micropenis. The neonatal phase of penile development is controlled by the balance of AR to estrogen receptor α (ERα) activity; either inhibition of androgen or augmentation of estrogen signaling can induce micropenis. AR and ERα have opposite effects on cell division, apoptosis, and regulation of Hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling in the genital tubercle. We identify Indian hedgehog (Ihh) as a novel downstream target of AR in external genitalia and show that conditional deletion of Ihh inhibits penile masculinization. These studies reveal previously unidentified cellular and molecular mechanisms by which antiandrogenic and estrogenic signals induce penile malformations and demonstrate that the timing of endocrine disruption can determine the type of CPA.

  10. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies

    PubMed Central

    Armfield, Brooke A.; Cohn, Martin J.

    2015-01-01

    Congenital penile anomalies (CPAs) are among the most common human birth defects. Reports of CPAs, which include hypospadias, chordee, micropenis, and ambiguous genitalia, have risen sharply in recent decades, but the causes of these malformations are rarely identified. Both genetic anomalies and environmental factors, such as antiandrogenic and estrogenic endocrine disrupting chemicals (EDCs), are suspected to cause CPAs; however, little is known about the temporal window(s) of sensitivity to EDCs, or the tissue-specific roles and downstream targets of the androgen receptor (AR) in external genitalia. Here, we show that the full spectrum of CPAs can be produced by disrupting AR at different developmental stages and in specific cell types in the mouse genital tubercle. Inactivation of AR during a narrow window of prenatal development results in hypospadias and chordee, whereas earlier disruptions cause ambiguous genitalia and later disruptions cause micropenis. The neonatal phase of penile development is controlled by the balance of AR to estrogen receptor α (ERα) activity; either inhibition of androgen or augmentation of estrogen signaling can induce micropenis. AR and ERα have opposite effects on cell division, apoptosis, and regulation of Hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling in the genital tubercle. We identify Indian hedgehog (Ihh) as a novel downstream target of AR in external genitalia and show that conditional deletion of Ihh inhibits penile masculinization. These studies reveal previously unidentified cellular and molecular mechanisms by which antiandrogenic and estrogenic signals induce penile malformations and demonstrate that the timing of endocrine disruption can determine the type of CPA. PMID:26598695

  11. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer

    PubMed Central

    Marquez-Garban, Diana C.; Mah, Vei; Alavi, Mohammad; Maresh, Erin L.; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J.

    2011-01-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC. PMID:21600232

  12. The role of estrogen receptor-α in estrogen-mediated regulation of basal and exercise-induced Hsp70 and Hsp27 expression in rat soleus.

    PubMed

    Bombardier, Eric; Vigna, Chris; Bloemberg, Darin; Quadrilatero, Joe; Tiidus, Peter M; Tupling, A Russell

    2013-10-01

    We examined the influence of estrogen receptor-alpha (ERα) activation on estrogen-mediated regulation of heat shock proteins 70 (Hsp70) and 27 (Hsp27) in soleus. Ovariectomized rats received estrogen (EST), an ERα agonist (propyl pyrazole triol, PPT), both (EST+PPT), or a sham, and they served as either unexercised controls or were subjected to exercise by having to run downhill (17 m/min, -13.5° grade) for 90 min. At 72 h postexercise, soleus muscles were removed and either immunohistochemically stained for Hsp70 and myosin heavy chain or homogenized for Western blotting for Hsp70 and Hsp27. Elevated (p < 0.05) basal Hsp70 in both type I and II fibres in the unexercised EST, PPT, and EST+PPT groups relative to unexercised sham animals was noted. Compared with Hsp70 levels in the unexercised animals, that in exercised animals was elevated (p < 0.05) in both sham and PPT groups but not in EST and EST+PPT groups. Western blot determined that Hsp27 levels were not significantly different between groups. Hence, the ability of estrogen to augment resting type I and type II muscle fibre Hsp70 content is primarily mediated via muscle ERα. However, the blunted Hsp70 response following damaging exercise in estrogen-supplemented animals does not appear to be fully accounted for by ERα-mediated effects.

  13. Acute relaxation of mouse duodenum [correction of duodenun] by estrogens. Evidence for an estrogen receptor-independent modulation of muscle excitability.

    PubMed

    Díaz, Mario; Ramírez, Cristina M; Marin, Raquel; Marrero-Alonso, Jorge; Gómez, Tomás; Alonso, Rafael

    2004-10-01

    17-beta-Estradiol, the stereoisomer 17-alpha-estradiol and the synthetic estrogen diethylstilbestrol (DES), all caused a rapid (<3 min) dose-dependent reversible relaxation of mouse duodenal spontaneous activity, reduced basal tone and depressed the responses to CaCl(2) and KCl. The steroidal antiestrogen 7alpha-[9-[(4,4,5,5,5,-pentafluoropenty)sulphinyl]nonyl]-estra-1,3,5(19)-triene-3,17beta-diol (ICI182,780) failed to either mimic or prevent the effect of 17-beta-estradiol. The effect of estrogens was unrelated to activation of nitric oxide (NO), mitogen-activated protein kinase (MAPK), protein kinase A (PKA), protein kinase G (PKG) or protein kinase C (PKC). Estrogen-induced relaxation was partially reversed by 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-pyridine-3-carboxilic acid methyl ester (BAY-K8644), depolarization, or by application of tetraethylammonium or 4-aminopyridine, but not by glibenclamide, apamin, charybdotoxin, paxilline or verruculogen. The effects of BAY-K8644 and K(+) channel blockers were synergistic, and allowed relaxed tissues to recover spontaneous activity and basal tone. We hypothesize that the rapid non-genomic spasmolytic effect of estrogens on mouse duodenal muscle might be triggered by an estrogen-receptor-independent mechanism likely involving activation of tetraethylamonium- and 4-aminopyridine-sensitive K(+) channels and inhibition of L-type Ca2(+) channels on the smooth muscle cells. PMID:15464075

  14. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17. cap alpha. -methylestradiol in normal and tumor-bearing rats

    SciTech Connect

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.

    1983-06-01

    Tritiated 17..cap alpha..-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17..cap alpha..-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10/sup -10/M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17..cap alpha..-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 ..cap alpha..-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical.

  15. 17β-Estradiol regulates the gene expression of voltage-gated sodium channels: role of estrogen receptor α and estrogen receptor β.

    PubMed

    Hu, Fang; Wang, Qiang; Wang, Peizhi; Wang, Wenjuan; Qian, Wenyi; Xiao, Hang; Wang, Lin

    2012-04-01

    Estradiol (E2) plays a key role in pain modulation, and the biological effects of E2 are transduced by binding estrogen receptors (ERs). Voltage-gated sodium (Nav) channels are responsible for the generation and propagation of action potentials in the membranes of most neurons and excitable cells. Adult dorsal root ganglion (DRG) neurons can express the ERs (ERα and ERβ), and Nav channels (TTX-S: Nav1.1, Nav1.6, and Nav1.7; and TTX-R: Nav1.8, and Nav1.9). Although E2 modulates Nav channel currents, little is known about the molecular mechanisms involved. In this study, we investigate the mRNA expressions of Nav channel subtypes mediated differentially by the ERs in the DRGs of wild-type (WT) and estrogen receptor knockout (αERKO and βERKO) mice. By means of quantitative real-time PCR, we found that the expressions of Nav1.1, Nav1.7, Nav1.8, and Nav1.9 subtypes were elevated in αERKO and βERKO mice, whereas Nav1.6 mRNA decreased in αERKO, but not in βERKO mice. The mRNA expressions of Nav subtypes were increased in E2-treated WT ovariectomized animals. We also found that E2-regulation of Nav1.1 and Nav1.9 mRNA expressions is dependent on ERα, ERβ, and another ER, whereas E2-regulation of Nav1.8 appears to be in an ERβ-dependent manner. PMID:22169964

  16. Preliminary genetic imaging study of the association between estrogen receptor-α gene polymorphisms and harsh human maternal parenting.

    PubMed

    Lahey, Benjamin B; Michalska, Kalina J; Liu, Chunyu; Chen, Qi; Hipwell, Alison E; Chronis-Tuscano, Andrea; Waldman, Irwin D; Decety, Jean

    2012-09-01

    A failure of neural changes initiated by the estrogen surge in late pregnancy to reverse the valence of infant stimuli from aversive to rewarding is associated with dysfunctional maternal behavior in nonhuman mammals. Estrogen receptor-α plays the crucial role in mediating these neural effects of estrogen priming. This preliminary study examines associations between estrogen receptor-α gene polymorphisms and human maternal behavior. Two polymorphisms were associated with human negative maternal parenting. Furthermore, hemodynamic responses in functional magnetic resonance imaging to child stimuli in neural regions associated with social cognition fully mediated the association between genetic variation and negative parenting. This suggests testable hypotheses regarding a biological pathway between genetic variants and dysfunctional human maternal parenting.

  17. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP MODELS FOR PREDICTION OF ESTROGEN RECEPTOR BINDING AFFINITY OF STRUCTURALLY DIVERSE CHEMICALS

    EPA Science Inventory

    The demonstrated ability of a variety of structurally diverse chemicals to bind to the estrogen receptor has raised the concern that chemicals in the environment may be causing adverse effects through interference with nuclear receptor pathways. Many structure-activity relationsh...

  18. Synthesis and Characterization of Liquid Chromatographic Columns Containing the Immobilized Ligand Binding Domain of the Estrogen Related Receptor α and Estrogen Related Receptor γ

    PubMed Central

    Sanghvi, M.; Moaddel, R.; Frazier, C.; Wainer, I.W.

    2010-01-01

    The ligand binding domains of the estrogen related receptors, ERRα and ERRγ were covalently immobilized onto the surface of an aminopropyl silica liquid chromatography stationary phase to create the ERRα-silica and ERRγ-silica columns and onto the surface of open tubular capillaries to create the ERRα-OT and ERRγ-OT columns. The ERR-silica and ERR-OT columns were characterized using frontal chromatographic techniques with diethylstibesterol and the binding affinities, Kd values, to the immobilized receptors were consistent with the values obtained by a radioligand binding assay. The ERRγ-silica column was also characterized using non-linear chromatographic techniques using a series of tamoxifen derivatives. The relative Kd values obtained for the derivatives were consistent with the relative ability of the compounds to inhibit the cellular proliferation of the human-derived T98G glioma cell line, expressed as IC50 values. The results indicate that the columns containing immobilized ERRα and ERRγ can be created and used to characterize the binding of compounds to the immobilized receptors and that the relative retention of compounds on these columns reflects the magnitude of their inhibitory activity. PMID:20542653

  19. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays.

    PubMed

    Schreurs, Richard H M M; Sonneveld, Edwin; Jansen, Jenny H J; Seinen, Willem; van der Burg, Bart

    2005-02-01

    Two important ingredients of personal care products, namely polycyclic musk fragrances and UV filters, can be found in the environment and in humans. In previous studies, several compounds of both classes have been tested for their interaction with the estrogen receptor. Two polycyclic musk fragrances, namely AHTN and HHCB, turned out to be anti-estrogenic both in vitro and in vivo in a transgenic zebrafish assay. Several UV filters have been shown to exert estrogenic effects in vitro and in some in vivo studies. Here, we assessed the interaction of five polycyclic musk compounds and seven UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone (PR) receptor, using sensitive and specific reporter gene cell lines. Four polycyclic musks (AHTN, HHCB, AETT, and AHMI) were found to be antagonists toward the ERbeta, AR and PR. The UV filters that showed estrogenic effects (benzophenone-3, Bp-3; 3-benzylidene camphor, 3-BC; homosalate, HMS; and 4-methylbenzylidene camphor, 4-MBC) were found to be antagonists toward the AR and PR. The ERalpha agonistic UV filter octyl-dimethyl-p-aminobenzoic acid (OD-PABA) did not show activity toward the AR and PR. Octyl methoxy cinnamate (OMC) showed weak ERalpha agonism, but potent PR antagonism. Butyl methoxydibenzoylmethane (B-MDM) only showed weak ERalpha agonism and weak AR antagonism. Most effects were observed at relatively high concentrations (above 1 muM); however, the anti-progestagenic effects of the polycyclic musks AHMI and AHTN were detected at concentrations as low as 0.01 muM. The activity of anti-progestagenic xenobiotics at low concentrations indicates the need to undertake more research to find out about the potential endocrine disrupting effects of these compounds in vivo.

  20. Regulation of hepatic progesterone and estrogen receptors in the female turtle, Chrysemys picta: relationship to vitellogenesis.

    PubMed

    Custodia-Lora, Noemí; Novillo, Apolonia; Callard, Ian P

    2004-04-01

    Previous studies using the fresh water turtle Chrysemys picta have demonstrated the differential expression of the two progesterone receptor isoforms (PRA and PRB) in the liver during the turtle seasonal cycle, correlating with ER mRNA levels and hepatic vitellogenesis. During the inter-vitellogenic periods the ratio of PRB:PRA favors PRA, suggesting that the PRB:PRA ratio may be important in the regulation of vitellogenesis. Based on these and other studies we hypothesize that progesterone may have differential effects on the estrogen (E)-induced vitellogenin response (inhibitory or stimulatory), depending on the PRB:PRA ratio. In this study, we determined the expression pattern and the hormonal regulation of progesterone receptor (PR) isoforms in the liver, during the estrogen-induced vitellogenin response in female C. picta. Northern blot analysis was used to evaluate the changes in vitellogenin mRNA, estrogen receptor (ER) mRNA, and PR mRNA expression; Western blot to determine changes in PR isoform expression and a homologous ELISA for measurement of plasma vitellogenin. The expression of PR isoforms in the liver of female turtles at the mRNA and protein levels was differentially regulated by estradiol and progesterone. Estradiol treatment enhanced the transcription of PR mRNA isoforms and possibly translation and/or increased stability of PRB protein in the female turtle liver. In contrast, this hormone decreased PRA protein levels. Progesterone alone down-regulated progesterone receptor isoform A (PRA) and progesterone receptor isoform B (PRB) proteins equally, but did not affect PR mRNA levels. Estradiol markedly increased hepatic ER mRNA, vtg mRNA, and vtg in plasma, but this effect was not impacted significantly by progesterone. The results presented here indicate that in female turtles hepatic PRB:PRA ratios are markedly changed by estradiol treatment due primarily to a decrease in PRA. The change in the PRB:PRA ratio after hormonal treatment confirms

  1. Estrogen retention and estrogen receptor distribution in uterus of rats deficient in zinc and/or vitamin B/sub 6/

    SciTech Connect

    Bunce, G.E.; Vessal, M.

    1986-03-01

    Holley et al have reported that uptake and retention of a tracer dose of (/sup 3/H)-estradiol (E/sub 2/) by rat uteri nuclei was increased four-fold in pyridoxine-deprived young rats as compared to controls. The diet lacked a specific input of zinc, a nutrient which may also influence estrogen impact on target cells. The authors have tested the effect of diets restricted in either zinc or pyridoxine singly or in combination upon both retention of estrogen and subcellular distribution of estrogen receptor in rat uterus. Female Sprague-Dawley rats were fed their respective diets for five weeks. Stage of estrous cycle was determined by examination of vaginal smears. On the morning of estrous, each rat was given an IP injection of (/sup 3/H) E/sub 2/. Nuclear and cytosolic E/sub 2/ was determined after 20 minutes. A second series of animals were killed at estrous after the same period of dietary treatment and nuclear and cytosolic estradiol receptors were measured. Uterine retention of injected E/sub 2/ was increased 2-fold when Zn was limiting (3 ppm), 1.5-fold when B/sub 6/ was low and 3.5-fold when both were low. Dually deficient rats displayed a 10-fold increase in nuclear content of E/sub 2/ receptor but no significant change in total cellular receptor content.

  2. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells

    PubMed Central

    Lopes, Juliana; Arnosti, David; Trosko, James E.; Tai, Mei-Hui; Zuccari, Debora

    2016-01-01

    Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 μM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer. PMID:27551335

  3. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells.

    PubMed

    Lopes, Juliana; Arnosti, David; Trosko, James E; Tai, Mei-Hui; Zuccari, Debora

    2016-05-01

    Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 μM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer. PMID:27551335

  4. A new avenue for obtaining insight into the functional characteristics of long noncoding RNAs associated with estrogen receptor signaling

    PubMed Central

    Wu, Liangcai; Xu, Qianqian; Zhang, Haohai; Li, Ming; Zhu, Chengpei; Jiang, Minjie; Sang, Xinting; Zhao, Yi; Sun, Qiang; Zhao, Haitao

    2016-01-01

    Estrogen receptor signalling plays important regulatory roles in multiple mammalian physiological processes. Dysregulation of estrogen receptor (ER) expression and/or its associated signalling pathway is strongly associated with the development, progression, transition, and endocrine-resistance of breast cancer. Non-coding transcripts are essential regulators of almost every level of gene regulation. However, few long non-coding transcripts (lncRNAs) associated with the estrogen receptor signalling pathway have been well-described. We used array-based methods to identify 33 estrogen receptor agitation-related (ERAR) lncRNAs. A coding–non-coding gene co-expression network analysis suggested that 15 ERAR lncRNAs were associated with mitosis, DNA damage, and DNA repair. Kaplan–Meier analysis indicated that five ERAR lncRNAs selected using the Random Forest-Recursive Feature Elimination algorithm were significantly correlated with endocrine resistance-free survival and distant metastasis-free survival as well as disease free survival. Our results suggest that ERAR lncRNAs may serve as novel biomarkers for guiding breast cancer treatment and prognosis. Furthermore, our findings reveal a new avenue by which estrogen receptor signalling can be further explored. PMID:27539025

  5. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  6. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region.

    PubMed

    Kassotis, Christopher D; Tillitt, Donald E; Davis, J Wade; Hormann, Annette M; Nagel, Susan C

    2014-03-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized that a selected subset of chemicals used in natural gas drilling operations and also surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas-related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operations may result in elevated endocrine-disrupting chemical activity in surface and ground water.

  7. Using three-dimensional quantitative structure-activity relationships to examine estrogen receptor binding affinities of polychlorinated hydroxybiphenyls

    SciTech Connect

    Waller, C.L.; Minor, D.L.; McKinney, J.D.

    1995-07-01

    Certain phenyl-substituted hydrocarbons of environmental concern have the potential to disrupt the endocrine system of animals, apparently in association with their estrogenic properties. Competition with natural estrogens for the estrogen receptor is a possible mechanism by which such effects could occur. We used comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (QSAR) paradigm, to examine the underlying structural properties of ortho-chlorinated hydroxybiphenyl analogs known to bind to the estrogen receptor. The cross-validated and conventional statistical results indicate a high degree of internal predictability for the molecules included in the training data set. In addition to the phenolic (A) ring system, conformational restriction of the overall structure appears to play an important role in estrogen receptor binding affinity. Hydrophobic character as assessed using hydropathic interaction fields also contributes in a positive way to binding affinity. The CoMFA-derived QSARs may be useful in examining the estrogenic activity of a wider range of phenyl-substituted hydrocarbons of environmental concern. 37 refs., 2 figs., 2 tabs.

  8. Increased sensitivity of estrogen receptor alpha overexpressing antral follicles to methoxychlor and its metabolites.

    PubMed

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S; Peretz, Jackye; Flaws, Jodi A

    2011-04-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary.

  9. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. PMID:25061109

  10. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17β-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures.

  11. Sphingosine-1-phosphate receptor 1 transmits estrogens' effects in endothelial cells.

    PubMed

    Sukocheva, Olga; Wadham, Carol; Gamble, Jennifer; Xia, Pu

    2015-12-01

    We have previously reported that the steroid hormone estrogens stimulate activation of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) receptors in breast cancer cells. Both estrogens and S1P are potent biological modulators of endothelial function in vasculature able to activate multiple effectors, including endothelial nitric oxide synthase (eNOS). In this study we report that treatment of endothelial cells (ECs) with 17β-estradiol (E2) resulted in a rapid, transient, and dose-dependent increase in SphK activity and increased S1P production. The effect was not reproduced by the inactive E2 analogue 17α-E2. Expression of the dominant-negative mutant SphK1(G82D) or transfection of SphK1-targeted siRNA in ECs caused not only a defect in SphK activation by E2, but also a significant inhibition of E2-induced activation of Akt/eNOS. Furthermore, E2 treatment induced internalization of plasma membrane S1P1 receptor, accompanied with an increase in the amount of cytosolic S1P1. By down-regulating S1P1 receptor expression, the S1P1-specific antisense oligonucleotides significantly inhibited E2-induced activation of Akt/eNOS in ECs. E2-induced EC migration and tube formation were also inhibited by S1P1 down-regulation. Thus, the findings indicate an important role of the SphK1/S1P1 pathway in mediating estrogen signaling and its actions in vasculature.

  12. Generation of an estrogen receptor beta-iCre knock-in mouse.

    PubMed

    Cacioppo, Joseph A; Koo, Yongbum; Lin, Po-Ching Patrick; Osmulski, Sarah A; Ko, Chunjoo D; Ko, CheMyong

    2016-01-01

    A novel knock-in mouse that expresses codon-improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatiotemporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2-iCre mice were bred with ROSA26-lacZ and Ai9-RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2-iCre mice will serve as a novel line for conditionally ablating genes in Esr2-expressing tissues, identifying novel Esr2-expressing cells, and differentiating the functions of ESR2 and ESR1.

  13. Telomerase activity, estrogen receptors (α, β), Bcl-2 expression in human breast cancer and treatment response

    PubMed Central

    Murillo-Ortiz, Blanca; Astudillo-De la Vega, Horacio; Castillo-Medina, Sebastian; Malacara, JM; Benitez-Bribiesca, Luis

    2006-01-01

    Background The mechanism for maintaining telomere integrity is controlled by telomerase, a ribonucleoprotein enzyme that specifically restores telomere sequences, lost during replication by means of an intrinsic RNA component as a template for polymerization. Among the telomerase subunits, hTERT (human telomerase reverse transcriptase) is expressed concomitantly with the activation of telomerase. The role of estrogens and their receptors in the transcriptional regulation of hTERT has been demonstrated. The current study determines the possible association between telomerase activity, the expression of both molecular forms of estrogen receptor (ERα and ERβ) and the protein bcl-2, and their relative associations with clinical parameters. Methods Tissue samples from 44 patients with breast cancer were used to assess telomerase activity using the TRAP method and the expression of ERα, ERβ and bcl-2 by means of immunocytochemical techniques. Results Telomerase activity was detected in 59% of the 44 breast tumors examined. Telomerase activity ranged from 0 to 49.93 units of total product generated (TPG). A correlation was found between telomerase activity and differentiation grade (p = 0.03). The only significant independent marker of response to treatment was clinical stage. We found differences between the frequency of expression of ERα (88%) and ERβ (36%) (p = 0.007); bcl-2 was expressed in 79.5% of invasive breast carcinomas. We also found a significant correlation between low levels of telomerase activity and a lack of ERβ expression (p = 0.03). Conclusion Lower telomerase activity was found among tumors that did not express estrogen receptor beta. This is the first published study demonstrating that the absence of expression of ERβ is associated with low levels of telomerase activity. PMID:16911782

  14. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression

    PubMed Central

    Godoy, Guilherme; Gakis, Georgios; Smith, Carolyn L.; Fahmy, Omar

    2016-01-01

    Epidemiologic studies have long demonstrated clear differences in incidence and progression of bladder cancer between genders suggesting that the mechanisms of development and progression in these tumors have a strong association with steroid hormonal pathways. Such observations led to preclinical studies investigating the role of androgen and estrogen receptors, as well as their cognate hormones in bladder cancer initiation and progression. Using various in vitro cell line assays and in vivo mouse models, studies have elucidated different mechanisms and signaling pathways through which these steroid receptors may participate in this disease. More recently, RNA expression data from multiple studies revealed a luminal subtype of bladder cancer that exhibited an estrogen receptor signaling pathway, making it a strong candidate for further consideration of targeted therapies in the future. Despite the promising preclinical data demonstrating potential roles for both antiandrogen and antiestrogen strategies targeting these pathways in different stages of bladder cancer, only two clinical trials are currently active and accruing patients for such clinical studies. Targeted therapies in bladder cancer are a large unmet need and have the potential to change treatment paradigms and improve oncological outcomes of patients with bladder cancer. PMID:27376135

  15. Expression and Clinicopathological Significance of Estrogen and Progesterone Receptors in Gallbladder Cancer

    PubMed Central

    Agarwal, Asha; Gupta, Vishal; Singh, Prem K.; Pantola, Chayanika; Amit, Sonal

    2012-01-01

    ABSTRACT BACKGROUND: Clinical significance of sex hormone receptors in gallbladder cancer is not yet established. This study was performed to assess the expression pattern of estrogen and progesterone receptors in benign and malignant gallbladder lesions, and to assess their clinicopathological significance. METHODS: Tissue samples from resected gallbladder for cholelithiasis (n = 20) and carcinoma gallbladder (n = 25) were evaluated for estrogen and progesterone receptor (ER, PR) expression by automated immunohistochemistry. Their expression was correlated with different clinicopathological parameters. RESULTS: ER expression was significantly high (28%, 95% confidence interval [CI], 14–47) in gallbladder cancer than in chronic cholecystitis (0%; P = .012). PR expression did not differ in two groups (benign 40%, 95% CI, 21.8–61.4; malignant 52%, 95% CI, 33.5–69.9). Metaplastic benign lesions had near significant higher expression of PR (71.4%) than nonmetaplastic lesion (15.9%; P = .062). Their expression did not correlate with gender, age, menopausal status, presence of gallstones, tumor differentiation, and tumor stage. CONCLUSION: Female sex hormones play an important role in the gallbladder carcinogenesis. ER and PR may not have prognostic value. Presence of ER in ∼1/3 and PR in 1/2 of patients with carcinoma gallbladder suggests the potential role of antihormonal therapy. PMID:22690257

  16. Rational design of an estrogen receptor mutant with altered DNA-binding specificity

    PubMed Central

    Nguyen, Denis; Bail, Martine; Pesant, Genevieve; Dupont, Virginie N.; Rouault, Étienne; Deschênes, Julie; Rocha, Walter; Melançon, Geneviève; Steinberg, Sergey V.; Mader, Sylvie

    2007-01-01

    Although artificial C2-H2 zinc fingers can be designed to recognize specific DNA sequences, it remains unclear to which extent nuclear receptor C4 zinc fingers can be tailored to bind novel DNA elements. Steroid receptors bind as dimers to palindromic response elements differing in the two central base pairs of repeated motifs. Predictions based on one amino acid—one base-pair relationships may not apply to estrogen receptors (ERs), which recognize the two central base pairs of estrogen response elements (EREs) via two charged amino acids, each contacting two bases on opposite DNA strands. Mutagenesis of these residues, E203 and K210 in ERα, indicated that both contribute to ERE binding. Removal of the electric charge and steric constraints associated with K210 was required for full loss of parental DNA-binding specificity and recognition of novel sequences by E203 mutants. Although some of the new binding profiles did not match predictions, the double mutation E203R-K210A generated as predicted a mutant ER that was transcriptionally active on palindromes of PuGCTCA motifs, but not on consensus EREs. This study demonstrates the feasibility of designing C4 zinc finger mutants with novel DNA-binding specificity, but also uncovers limitations of this approach. PMID:17478511

  17. QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic EDCs.

    PubMed

    Li, J; Gramatica, P

    2010-10-01

    Endocrine disrupting chemicals (EDCs) are suspected of posing serious threats to human and wildlife health through a variety of mechanisms, these being mainly receptor-mediated modes of action. It is reported that some EDCs exhibit dual activities as estrogen receptor (ER) and androgen receptor (AR) binders. Indeed, such compounds can affect the normal endocrine system through a dual complex mechanism, so steps should be taken not only to identify them a priori from their chemical structure, but also to prioritize them for experimental tests in order to reduce and even forbid their usage. To date, very few EDCs with dual activities have been identified. The present research uses QSARs, to investigate what, so far, is the largest and most heterogeneous ER binder data set (combined METI and EDKB databases). New predictive classification models were derived using different modelling methods and a consensus approach, and these were used to virtually screen a large AR binder data set after strict validation. As a result, 46 AR antagonists were predicted from their chemical structure to also have potential ER binding activities, i.e. pleiotropic EDCs. In addition, 48 not yet recognized ER binders were in silico identified, which increases the number of potential EDCs that are substances of very high concern (SVHC) in REACH. Thus, the proposed screening models, based only on structure information, have the main aim to prioritize experimental tests for the highlighted compounds with potential estrogenic activities and also to design safer alternatives.

  18. Effective Targeting of Estrogen Receptor Negative Breast Cancers with the Protein Kinase D inhibitor CRT0066101

    PubMed Central

    Borges, Sahra; Perez, Edith A.; Thompson, E. Aubrey; Radisky, Derek C.; Geiger, Xochiquetzal J.; Storz, Peter

    2015-01-01

    Invasive ductal carcinomas (IDCs) of the breast are associated with altered expression of hormone receptors (HR), amplification or overexpression of HER2, or a triple-negative phenotype. The most aggressive cases of IDC are characterized by a high proliferation rate, a great propensity to metastasize and their ability to resist to standard chemotherapy, hormone therapy or HER2 targeted therapy. Using progression tissue microarrays we here demonstrate that the serine/threonine kinase Protein Kinase D3 (PKD3) is highly up-regulated in estrogen receptor (ER)-negative tumors. We identify direct binding of the estrogen receptor to the PRKD3 gene promoter as a mechanism of inhibition of PKD3 expression. Loss of ER results in upregulation of PKD3 leading to all hallmarks of aggressive IDC, including increased cell proliferation, migration and invasion. This identifies ER-negative breast cancers as ideal for treatment with the PKD inhibitor CRT0066101. We show that similar to a knockdown of PKD3, treatment with this inhibitor targets all tumorigenic processes in vitro and decreases growth of primary tumors and metastasis in vivo. Our data strongly support the development of PKD inhibitors for clinical use for ER-negative breast cancers, including the triple-negative phenotype. PMID:25852060

  19. Androgen dependent mammary gland virilism in rats given the selective estrogen receptor modulator LY2066948 hydrochloride.

    PubMed

    Rudmann, Daniel G; Cohen, Ilene R; Robbins, Michelle R; Coutant, David E; Henck, Judith W

    2005-01-01

    A selective estrogen receptor modulator (SERM) is a nonsteroidal compound with tissue specific estrogen receptor (ER) agonist or antagonist activities. In animals, SERMs may produce morphologic changes in hormonally-sensitive tissues like the mammary gland. Mammary glands from female rats given the SERM LY2066948 hydrochloride (LY2066948) for 1 month at >or= 175 mg/kg had intralobular ducts and alveoli lined by multiple layers of vacuolated, hypertrophied epithelial cells, resembling in part the morphology of the normal male rat mammary gland. We hypothesized that these SERM-mediated changes represented an androgen-dependent virilism of the female rat mammary gland. To test this hypothesis, the androgen receptor antagonist flutamide was co-administered with LY2066948 (175 mg/kg) to female rats for 1 month. Female rats given SERM alone had hyperandrogenemia and the duct and alveolar changes described here. Flutamide cotreatment did not affect serum androgen levels but completely blocked the SERM-mediated mammary gland change. In the mouse, a species that does not have the sex-specific differences in the mammary gland observed in the rat, SERM treatment resulted in hyperandrogenemia but did not alter mammary gland morphology. These studies demonstrate that LY2066948 produces species-specific, androgen-dependent mammary gland virilism in the female rat.

  20. An efficient asymmetric synthesis of an estrogen receptor modulator by sulfoxide-directed borane reduction.

    PubMed

    Song, Zhiguo J; King, Anthony O; Waters, Marjorie S; Lang, Fengrui; Zewge, Daniel; Bio, Matthew; Leazer, Johnnie L; Javadi, Gary; Kassim, Amude; Tschaen, David M; Reamer, Robert A; Rosner, Thorsten; Chilenski, Jennifer R; Mathre, David J; Volante, R P; Tillyer, Richard

    2004-04-20

    An efficient asymmetric synthesis of a selective estrogen receptor modulator (SERM) that has a dihydrobenzoxathiin core structure bearing two stereogenic centers is reported. The stereogenic centers were established by an unprecedented chiral sulfoxide-directed stereospecific reduction of an alpha,beta-unsaturated sulfoxide to the saturated sulfide in one step. Studies to elucidate the mechanism for this reduction are reported. Highly efficient Cu(I)-mediated ether formation was used to install the ether side chain, and selective debenzylation conditions were developed to remove the benzyl protecting groups on the phenols.

  1. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    PubMed Central

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  2. The Estrogen Receptor-β Expression in De Quervain’s Disease

    PubMed Central

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain’s disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain’s. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand’s factor (vWF). De Quervain’s occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors—IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain’s disease is. ER-β might be a useful target for novel de Quervain’s disease therapy. PMID:26556342

  3. Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment.

    PubMed

    Palierne, Gaëlle; Fabre, Aurélie; Solinhac, Romain; Le Péron, Christine; Avner, Stéphane; Lenfant, Françoise; Fontaine, Coralie; Salbert, Gilles; Flouriot, Gilles; Arnal, Jean-François; Métivier, Raphaël

    2016-07-01

    Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue.

  4. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma

    PubMed Central

    Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  5. Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation.

    PubMed

    Li, Wenbo; Hu, Yiren; Oh, Soohwan; Ma, Qi; Merkurjev, Daria; Song, Xiaoyuan; Zhou, Xiang; Liu, Zhijie; Tanasa, Bogdan; He, Xin; Chen, Aaron Yun; Ohgi, Kenny; Zhang, Jie; Liu, Wen; Rosenfeld, Michael G

    2015-07-16

    Enhancers instruct spatio-temporally specific gene expression in a manner tightly linked to higher-order chromatin architecture. Critical chromatin architectural regulators condensin I and condensin II play non-redundant roles controlling mitotic chromosomes. But the chromosomal locations of condensins and their functional roles in interphase are poorly understood. Here we report that both condensin complexes exhibit an unexpected, dramatic estrogen-induced recruitment to estrogen receptor α (ER-α)-bound eRNA(+) active enhancers in interphase breast cancer cells, exhibiting non-canonical interaction with ER-α via its DNA-binding domain (DBD). Condensins positively regulate ligand-dependent enhancer activation at least in part by recruiting an E3 ubiquitin ligase, HECTD1, to modulate the binding of enhancer-associated coactivators/corepressors, including p300 and RIP140, permitting full eRNA transcription, formation of enhancer:promoter looping, and the resultant coding gene activation. Collectively, our results reveal an important, unanticipated transcriptional role of interphase condensins in modulating estrogen-regulated enhancer activation and coding gene transcriptional program.

  6. Estrogen-related receptor gamma and hearing function: evidence of a role in humans and mice

    PubMed Central

    Nolan, Lisa S.; Maier, Hannes; Hermans-Borgmeyer, Irm; Girotto, Giorgia; Ecob, Russell; Pirastu, Nicola; Cadge, Barbara A.; Hübner, Christian; Gasparini, Paolo; Strachan, David P.; Davis, Adrian; Dawson, Sally J.

    2013-01-01

    Since estrogen is thought to protect pre-menopausal women from age-related hearing loss, we investigated whether variation in estrogen-signalling genes is linked to hearing status in the 1958 British Birth Cohort. This analysis implicated the estrogen-related receptor gamma (ESRRG) gene in determining adult hearing function and was investigated further in a total of 6134 individuals in 3 independent cohorts: (i) the 1958 British Birth Cohort; (ii) a London ARHL case-control cohort; and (iii) a cohort from isolated populations of Italy and Silk Road countries. Evidence of an association between the minor allele of single nucleotide polymorphism (SNP) rs2818964 and hearing status was found in females, but not in males in 2 of these cohorts: p = 0.0058 (London ARHL) and p = 0.0065 (Carlantino, Italy). Furthermore, assessment of hearing in Esrrg knock-out mice revealed a mild 25-dB hearing loss at 5 weeks of age. At 12 weeks, average hearing thresholds in female mice(-/-) were 15 dB worse than in males(-/-). Together these data indicate ESRRG plays a role in maintenance of hearing in both humans and mice. PMID:23540940

  7. Diarylpropionitrile (DPN) Enantiomers: Synthesis and Evaluation of Estrogen Receptor Beta-Selective Ligands

    PubMed Central

    Carroll, Vincent M.; Jeyakumar, M.; Carlson, Kathryn E.; Katzenellenbogen, John A.

    2011-01-01

    Two estrogen receptor (ER) subtypes, ERα and ERβ, mediate the actions of estrogens in diverse reproductive and non-reproductive target tissues. ER subtype-selective ligands, which bind to and activate these subtypes differentially, have proved to be useful in elucidating which actions of estrogens proceed through ERα vs. ERβ. Some of these ligands show potential as novel therapeutic agents. Diarylpropionitrile (DPN), an ERβ selective ligand that we developed, is a chiral molecule, but it has been studied almost exclusively as the racemic mixture (rac-DPN, 1). Herein we report the development of an efficient enantioselective synthesis of the two isomers, R-DPN (3) and S-DPN (2), and we have compared the in vitro ligand binding affinities, coactivator binding affinities and recruitment potencies, and cellular transcriptional potencies of these isomers. Both enantiomers show a very high affinity and potency preference for ERβ over ERα, typically in the range of 80-300 fold. Although the enantioselectivity is only modest (3-4 fold), the R-enantiomer is the higher affinity and more potent isomer. While ERβ can be effectively and selectively stimulated by rac-DPN or by either R-DPN or S-DPN, R-DPN might be the preferred member of this isomeric series for biological studies of ERβ function. PMID:22122563

  8. Diarylpropionitrile (DPN) enantiomers: synthesis and evaluation of estrogen receptor β-selective ligands.

    PubMed

    Carroll, Vincent M; Jeyakumar, M; Carlson, Kathryn E; Katzenellenbogen, John A

    2012-01-12

    Two estrogen receptor (ER) subtypes, ERα and ERβ, mediate the actions of estrogens in diverse reproductive and nonreproductive target tissues. ER subtype-selective ligands, which bind to and activate these subtypes differentially, have proved to be useful in elucidating which actions of estrogens proceed through ERα vs ERβ. Some of these ligands show potential as novel therapeutic agents. Diarylpropionitrile (DPN), an ERβ selective ligand that we developed, is a chiral molecule, but it has been studied almost exclusively as the racemic mixture (rac-DPN, 1). Herein we report the development of an efficient enantioselective synthesis of the two isomers, R-DPN (3) and S-DPN (2), and we have compared the in vitro ligand binding affinities, coactivator binding affinities, recruitment potencies, and cellular transcriptional potencies of these isomers. Both enantiomers show a very high affinity and potency preference for ERβ over ERα, typically in the range of 80-300-fold. Although the enantioselectivity is only modest (3-4-fold), the R-enantiomer is the higher affinity and more potent isomer. While ERβ can be effectively and selectively stimulated by rac-DPN or by either R-DPN or S-DPN, R-DPN might be the preferred member of this isomeric series for biological studies of ERβ function.

  9. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer.

    PubMed

    Kwa, Maryann; Plottel, Claudia S; Blaser, Martin J; Adams, Sylvia

    2016-08-01

    The huge communities of residential microbes, including bacteria, viruses, Archaea, and Eukaryotes, that colonize humans are increasingly recognized as playing important roles in health and disease. A complex populous ecosystem, the human gastrointestinal (GI) tract harbors up to 10(11) bacterial cells per gram of luminal content, whose collective genome, the gut metagenome, contains a vastly greater number of individual genes than the human genome. In health, the function of the microbiome might be considered to be in dynamic equilibrium with the host, exerting both local and distant effects. However, 'disequilibrium' may contribute to the emergence of disease, including malignancy. In this review, we discuss how the intestinal bacterial microbiome and in particular how an 'estrobolome,' the aggregate of enteric bacterial genes capable of metabolizing estrogens, might affect women's risk of developing postmenopausal estrogen receptor-positive breast cancer. Estrobolome composition is impacted by factors that modulate its functional activity. Exploring variations in the composition and activities of the estrobolome in healthy individuals and in women with estrogen-driven breast cancer may lead to development of microbiome-based biomarkers and future targeted interventions to attenuate cancer risk. PMID:27107051

  10. Brain aromatase (Cyp19A2) and estrogen receptors, in larvae and adult pejerrey fish Odontesthes bonariensis: Neuroanatomical and functional relations

    USGS Publications Warehouse

    Strobl-Mazzulla, P. H.; Lethimonier, C.; Gueguen, M.M.; Karube, M.; Fernandino, J.I.; Yoshizaki, G.; Patino, R.; Strussmann, C.A.; Kah, O.; Somoza, G.M.

    2008-01-01

    Although estrogens exert many functions on vertebrate brains, there is little information on the relationship between brain aromatase and estrogen receptors. Here, we report the cloning and characterization of two estrogen receptors, ?? and ??, in pejerrey. Both receptors' mRNAs largely overlap and were predominantly expressed in the brain, pituitary, liver, and gonads. Also brain aromatase and estrogen receptors were up-regulated in the brain of estradiol-treated males. In situ hybridization was performed to study in more detail, the distribution of the two receptors in comparison with brain aromatase mRNA in the brain of adult pejerrey. The estrogen receptors' mRNAs exhibited distinct but partially overlapping patterns of expression in the preoptic area and the mediobasal hypothalamus, as well as in the pituitary gland. Moreover, the estrogen receptor ??, but not ??, were found to be expressed in cells lining the preoptic recess, similarly as observed for brain aromatase. Finally, it was shown that the onset expression of brain aromatase and both estrogen receptors in the head of larvae preceded the morphological differentiation of the gonads. Because pejerrey sex differentiation is strongly influenced by temperature, brain aromatase expression was measured during the temperature-sensitive window and was found to be significantly higher at male-promoting temperature. Taken together these results suggest close neuroanatomical and functional relationships between brain aromatase and estrogen receptors, probably involved in the sexual differentiation of the brain and raising interesting questions on the origin (central or peripheral) of the brain aromatase substrate. ?? 2008 Elsevier Inc.

  11. Dissection of Estrogen Receptor Alpha Signaling Pathways in Osteoblasts Using RNA-Sequencing

    PubMed Central

    Roforth, Matthew M.; Atkinson, Elizabeth J.; Levin, Ellis R.; Khosla, Sundeep; Monroe, David G.

    2014-01-01

    The effects of 17-β-estradiol in osteoblasts are primarily mediated by the nuclear transcription factors, estrogen receptor (ER)α and ERβ. ERs function through three general modes of action: DNA-binding dependent through estrogen response elements (EREs; designated nuclear ERE signaling); nuclear signaling via protein-protein interactions to other transcription factors (nuclear non-ERE signaling); and extra-nuclear signaling (membrane-bound functions of ERs). Identification of the specific transcriptional signatures regulated by each of these modes of action should contribute to an enhanced understanding of estrogen signaling in osteoblasts. To achieve this goal, we utilized specific mutations of ERα that eliminate the ability of the receptor to signal through a specific mode of action. The non-classical ERα knock-in (NERKI) mutation is incapable of signaling through direct DNA binding to EREs and the nuclear only ERα (NOER) mutation eliminates all membrane-localized signaling. Comparison of the gene expression patterns elicited by these mutations with the wild-type ERα (WT) pattern provides mode-specific data concerning transcriptional regulation by ERα. We expressed these constructs in the ER-negative osteoblastic cell line hFOB (−/+ estrogen) and performed global RNA-sequencing. Using a series of pair-wise comparisons, we generated three lists of genes that were regulated either by the nuclear ERE-dependent, nuclear ERE-independent, or extra-nuclear actions of ERα. Pathway and gene ontology analyses revealed that genes regulated through the nuclear ERE and nuclear non-ERE pathways were largely involved in transcriptional regulation, whereas genes regulated through extra-nuclear mechanisms are involved in cytoplasmic signaling transduction pathways. We also intersected our data with genes linked to bone density and fractures from a recent genome-wide association study and found 25 of 72 genes (35%) regulated by estrogen. These data provide a

  12. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    SciTech Connect

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  13. Estrogen-negative feedback and estrous cyclicity are critically dependent upon estrogen receptor-α expression in the arcuate nucleus of adult female mice.

    PubMed

    Yeo, Shel-Hwa; Herbison, Allan E

    2014-08-01

    The location and characteristics of cells within the brain that suppress GnRH neuron activity to contribute to the estrogen-negative feedback mechanism are poorly understood. Using adeno-associated virus (AAV)-mediated Cre-LoxP recombination in estrogen receptor-α (ERα) floxed mice (ERα(flox/flox)), we aimed to examine the role of ERα-expressing neurons located in the arcuate nucleus (ARN) in the estrogen-negative feedback mechanism. Bilateral injection of AAV-Cre into the ARN of ERα(flox/flox) mice (n = 14) resulted in the time-dependent ablation of up to 99% of ERα-immunoreactive cell numbers throughout the rostrocaudal length of the ARN. These mice were all acyclic by 5 weeks after AAV-Cre injections with most mice in constant estrous. Control wild-type mice injected with AAV-Cre (n = 13) were normal. Body weight was not altered in ERα(flox/flox) mice. After ovariectomy, a significant increment in LH secretion was observed in all genotypes, although its magnitude was reduced in ERα(flox/flox) mice. Acute and chronic estrogen-negative feedback were assessed by administering 17β-estradiol to mice as a bolus (LH measured 3 h later) or SILASTIC brand capsule implant (LH measured 5 d later). This demonstrated that chronic estrogen feedback was absent in ERα(flox/flox) mice, whereas the acute feedback was normal. These results reveal a critical role for ERα-expressing cells within the ARN in both estrous cyclicity and the chronic estrogen negative feedback mechanism in female mice. This suggests that ARN cells provide a key indirect, transsynpatic route through which estradiol suppresses the activity of GnRH neurons.

  14. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals.

    PubMed

    Brennan, Jennifer C; Bassal, Arzoo; He, Guochun; Denison, Michael S

    2016-01-01

    Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals. PMID:26139245

  15. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals.

    Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  16. CLONING AND IN VITRO EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR α FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    In vitro screening assays designed to identify hormone mimics or antagonists typically use mammalian (rat, human) estrogen (ER) and androgen receptors (AR). Although we know that the amino acid sequences of steroid receptors in nonmammalian vertebrates are not identical to the ma...

  17. The Selective Estrogen Receptor Modulator (SERM) Lasofoxifene Forms Reactive Quinones Similar to Estradiol

    PubMed Central

    Michalsen, Bradley T.; Gherezghiher, Teshome B.; Choi, Jaewoo; Esala, R.; Chandrasena, P.; Qin, Zhihui; Thatcher, Gregory R.J.; Bolton, Judy L.

    2012-01-01

    The bioactivation of both endogenous and equine estrogens to electrophilic quinoid metabolites has been postulated as a contributing factor in carcinogenic initiation and/or promotion in hormone sensitive tissues. Bearing structural resemblance to estrogens, extensive studies have shown that many selective estrogen receptor modulators (SERMs) are subject to similar bioactivation pathways. Lasofoxifene (LAS), a third generation SERM which has completed Phase III clinical trials for the prevention and treatment of osteoporosis, is currently approved in the European Union for this indication. Previously, Prakash et al. (Drug Metab. Dispos. 2008, 36, 1218-26) reported that similar to estradiol, two catechol regioisomers of LAS are formed as primary oxidative metabolites, accounting for roughly half of total LAS metabolism. However, the potential for further oxidation of these catechols to electrophilic o-quinones has not been reported. In the present study, LAS was synthesized and its oxidative metabolism investigated in vitro under various conditions. Incubation of LAS with tyrosinase, human liver microsomes, or rat liver microsomes in the presence of GSH as a trapping reagent resulted in formation of two mono-GSH and two di-GSH catechol conjugates which were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Similar conjugates were also detected in incubations with P450 3A4, P450 2D6, and P450 1B1 supersomes. Interestingly, these conjugates were also detected as major metabolites when compared to competing detoxification pathways such as glucuronidation and methylation. The 7-hydroxylasofoxifene (7-OHLAS) catechol regioisomer was also synthesized and oxidized either chemically or enzymatically to an o-quinone that was shown to form depurinating adducts with DNA. Collectively, these data show that analogous to estrogens, LAS is oxidized to catechols and o-quinones which could potentially contribute to in vivo toxicity for this SERM. PMID

  18. Selective estrogen receptor modulator (SERM) lasofoxifene forms reactive quinones similar to estradiol.

    PubMed

    Michalsen, Bradley T; Gherezghiher, Teshome B; Choi, Jaewoo; Chandrasena, R Esala P; Qin, Zhihui; Thatcher, Gregory R J; Bolton, Judy L

    2012-07-16

    The bioactivation of both endogenous and equine estrogens to electrophilic quinoid metabolites has been postulated as a contributing factor in carcinogenic initiation and/or promotion in hormone sensitive tissues. Bearing structural resemblance to estrogens, extensive studies have shown that many selective estrogen receptor modulators (SERMs) are subject to similar bioactivation pathways. Lasofoxifene (LAS), a third generation SERM which has completed phase III clinical trials for the prevention and treatment of osteoporosis, is currently approved in the European Union for this indication. Previously, Prakash et al. (Drug Metab. Dispos. (2008) 36, 1218-1226) reported that similar to estradiol, two catechol regioisomers of LAS are formed as primary oxidative metabolites, accounting for roughly half of the total LAS metabolism. However, the potential for further oxidation of these catechols to electrophilic o-quinones has not been reported. In the present study, LAS was synthesized and its oxidative metabolism investigated in vitro under various conditions. Incubation of LAS with tyrosinase, human liver microsomes, or rat liver microsomes in the presence of GSH as a trapping reagent resulted in the formation of two mono-GSH and two di-GSH catechol conjugates which were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Similar conjugates were also detected in incubations with P450 3A4, P450 2D6, and P450 1B1 supersomes. Interestingly, these conjugates were also detected as major metabolites when compared to competing detoxification pathways such as glucuronidation and methylation. The 7-hydroxylasofoxifene (7-OHLAS) catechol regioisomer was also synthesized and oxidized either chemically or enzymatically to an o-quinone that was shown to form depurinating adducts with DNA. Collectively, these data show that analogous to estrogens, LAS is oxidized to catechols and o-quinones which could potentially contribute to in vivo toxicity for this SERM

  19. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  20. NFkappaB Selectivity of Estrogen Receptor Ligands Revealed By Comparative Crystallographic Analyses

    SciTech Connect

    Nettles, K.W.; Bruning, J.B.; Gil, G.; Nowak, J.; Sharma, S.K.; Hahm, J.B.; Kulp, K.; Hochberg, R.B.; Zhou, H.; Katzenellenbogen, J.A.; Katzenllenbogen, B.S.; Kim, Y.; Joachmiak, A.; Greene, G.L.

    2009-05-22

    Our understanding of how steroid hormones regulate physiological functions has been significantly advanced by structural biology approaches. However, progress has been hampered by misfolding of the ligand binding domains in heterologous expression systems and by conformational flexibility that interferes with crystallization. Here, we show that protein folding problems that are common to steroid hormone receptors are circumvented by mutations that stabilize well-characterized conformations of the receptor. We use this approach to present the structure of an apo steroid receptor that reveals a ligand-accessible channel allowing soaking of preformed crystals. Furthermore, crystallization of different pharmacological classes of compounds allowed us to define the structural basis of NF{kappa}B-selective signaling through the estrogen receptor, thus revealing a unique conformation of the receptor that allows selective suppression of inflammatory gene expression. The ability to crystallize many receptor-ligand complexes with distinct pharmacophores allows one to define structural features of signaling specificity that would not be apparent in a single structure.

  1. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice

    PubMed Central

    Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena

    2012-01-01

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582

  2. Neo-tanshinlactone selectively inhibits the proliferation of estrogen receptor positive breast cancer cells through transcriptional down-regulation of estrogen receptor alpha.

    PubMed

    Lin, Wanjun; Huang, Jiajun; Liao, Xiaolin; Yuan, Zhongwen; Feng, Senling; Xie, Ying; Ma, Wenzhe

    2016-09-01

    Breast cancer, the most frequent cancer in women, is the second leading cause of cancer-related death. Estrogens and estrogen receptors are well recognized to play predominant roles in breast cancer development and growth. Neo-tanshinlactone is a natural product isolated from Salvia miltiorrhiza and showed selective growth inhibition of ER+ breast cancer cell lines as demonstrated by cell proliferation assay and colony formation assay. The selective anti-proliferative effect of neo-tanshinlactone was associated with the induction of apoptosis in ER+ breast cancer cells. We also found that neo-tanshinlactone decreased steady state ESR1 mRNA levels in ER+ breast cancer cells, which was further confirmed by analysis of ER protein levels as well as the mRNA levels of target genes of this transcription factor, such as ESR2, BRCA1, CCND1, GREB1, TFF1, SERPINB9 and ABCA3. Furthermore, analysis of heterogeneous nuclear RNA (hnRNA) demonstrated that neo-tanshinlactone inhibited ESR1 mRNA de novo synthesis. The decrease of steady state ESR1 mRNA upon neo-tanshinlactone treatment was not abolished by protein synthesis inhibitor cycloheximide. And inhibition of mRNA synthesis with actinomycin D revealed no significant effect of neo-tanshinlactone on ESR1 mRNA stability. These results indicated that transcriptional down-regulation of ESR1 mRNA could contribute to the selective activity of neo-tanshinlactone on ER+ breast cancer cells. And as expected, the combination of neo-tanshinlactone and antiestrogen reagent tamoxifen showed a synergistic effect on growth of ER+ MCF7 cells. Our results suggest that neo-tanshinlactone is a promising regimen for ER+ breast tumors. PMID:27491559

  3. Docetaxel, Carboplatin, Trastuzumab, and Pertuzumab With or Without Estrogen Deprivation in Treating Patients With Hormone Receptor-Positive, HER2-Positive Operable or Locally Advanced Breast Cancer

    ClinicalTrials.gov

    2016-11-01

    Estrogen Receptor Positive; HER2/Neu Positive; Progesterone Receptor Positive; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  4. Nuclear Receptor Coregulators Krüppel-like Factor 9 and Prohibitin 2 Expression in Estrogen-Stimulated Proliferation of Mouse Uterine Endometrial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen receptor-alpha (ER alpha) influences many physiological processes by binding to its ligand estrogen (E2) and interacting with nuclear receptor coactivator and corepressor proteins to regulate transcription in target tissues. In the uterus, dysregulated ER-alpha activity leads to aberrant ce...

  5. Nuclear receptor co-regulator Kruppel-like factor 9 and prohibitin 2 expression in estrogen-induced epithelial cell proliferation in the mouse uterus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen, acting through its cognate receptor estrogen receptor-' (ESR1), is a critical regulator of uterine endometrial epithelial proliferation. Although the dynamic communication between endometrial stromal (ST) and epithelial cells is considered to be an important component in this process, key ...

  6. The Discovery and Development of Selective Estrogen Receptor Modulators (SERMs) for Clinical Practice

    PubMed Central

    Maximov, Philipp Y; Lee, Theresa M; Jordan, V. Craig

    2013-01-01

    Selective estrogen receptor modulators (SERMs) are structurally different compounds that interact with intracellular estrogen receptors in target organs as estrogen receptor agonists or antagonists. These drugs have been intensively studied over the past decade and have proven to be a highly versatile group for the treatment of different conditions associated with postmenopausal women’s health, including hormone responsive cancer and osteoporosis. Tamoxifen, a failed contraceptive is currently used to treat all stages of breast cancer, chemoprevention in women at high risk for breast cancer and also has beneficial effects on bone mineral density and serum lipids in postmenopausal women. Raloxifene, a failed breast cancer drug, is the only SERM approved internationally for the prevention and treatment of postmenopausal osteoporosis and vertebral fractures. However, although these SERMs have many benefits, they also have some potentially serious adverse effects, such as thromboembolic disorders and, in the case of tamoxifen, uterine cancer. These adverse effects represent a major concern given that long-term therapy is required to prevent osteoporosis or prevent and treat breast cancer. The search for the ‘ideal’ SERM, which would have estrogenic effects on bone and serum lipids, neutral effects on the uterus, and antiestrogenic effects on breast tissue, but none of the adverse effects associated with current therapies, is currently under way. Ospemifene, lasofoxifene, bazedoxifene and arzoxifene, which are new SERM molecules with potentially greater efficacy and potency than previous SERMs, have been investigated for use in the treatment and prevention of osteoporosis. These drugs have been shown to be comparably effective to conventional hormone replacement therapy in animal models, with potential indications for an improved safety profile. Clinical efficacy data from ongoing phase III trials are available or are awaited for each SERM so that a true

  7. Discovery at the interface: Toward novel anti-proliferative agents targeting human estrogen receptor/S100 interactions.

    PubMed

    Lee, David H; Asare, Bethany K; Rajnarayanan, Rajendram V

    2016-10-17

    Estrogen Receptor Alpha (ER) is expressed in about 70% of breast cancer and mediates various cellular signaling events including cell cycle. The antiestrogen tamoxifen is currently administered to patients in order to induce regression of the tumor growth of estrogen receptor positive (ER+) breast cancer. However, upon continued administration, patients develop resistance to tamoxifen. In addition, calcium binding proteins (EF-hand proteins) such as, Calmodulin and S100, are significantly overexpressed in breast cancer cells, can activate transcription of target genes by directly binding to ER in lieu of estrogen. Calmodulin antagonists (w7 and melatonin) have been shown to significantly inhibit ER mediated activities including cell proliferation and transcriptional activity. Furthermore, S100P is shown to mediate tamoxifen resistance and cell migration capacity in MCF-7 breast cancer cells. Molecules targeting specific ER-EF hand protein interfaces could potentially provide an alternative therapeutic strategy to combat these scenarios. Using theoretical 3D models of ER-S100 protein we identified ER conformation-sensing regions of the interacting EF hand proteins and evaluated their ability to bind to ER in silico and to inhibit breast cancer cell proliferation and viability in vitro. The recognition motif of the binding interface was sensitive to small changes in partner orientation as evidenced by significant anti cell proliferative activity of the short peptide derived from S100P residues 74-78, when compared with a longer peptide with altered orientation of the recognition motif derived from S100P 74-81. Structural clues and pharmacophores from peptide-ER interactions can be used to design novel anti-cancer agents. PMID:27580430

  8. Differential Effect of Phosphorylation-Defective Survivin on Radiation Response in Estrogen Receptor-Positive and -Negative Breast Cancer

    PubMed Central

    Li, Li; Larson, Richard; Xu, Wei; Woodward, Wendy A.

    2015-01-01

    Survivin is a key member of the inhibitor of apoptosis protein family, and is considered a promising therapeutic target due to its universal overexpression in cancers. Survivin is implicated in cellular radiation response through its role in apoptosis, cell division, and DNA damage response. In the present study, analysis of publically available data sets showed that survivin gene expression increased with breast cancer stage (p < 0.00001) and was significantly higher in estrogen receptor-negative cancers as compared to estrogen receptor-positive cancers (p = 9e-46). However, survivin was prognostic in estrogen receptor-positive tumors (p = 0.03) but not in estrogen receptor-negative tumors (p = 0.28). We assessed the effect of a survivin dominant-negative mutant on colony-formation (2D) and mammosphere-formation (3D) efficiency, and radiation response in the estrogen receptor-positive MCF7 and estrogen receptor-negative SUM149 breast cancer cell lines. The colony-formation efficiency was significantly lower in the dominant-negative survivin-transduced cells versus control MCF7 cells (0.42 vs. 0.58, p < 0.01), but it was significantly higher in dominant-negative population versus control-transduced SUM149 cells (0.29 vs. 0.20, p < 0.01). A similar, non-significant, trend in mammosphere-formation efficiency was observed. We compared the radiosensitivity of cells stably expressing dominant-negative survivin with their controls in both cell lines under 2D and 3D culture conditions following exposure to increasing doses of radiation. We found that the dominant-negative populations were radioprotective in MCF7 cells but radiosensitive in SUM149 cells compared to the control-transduced population; further, Taxol was synergistic with the survivin mutant in SUM149 but not MCF7. Our data suggests that survivin modulation influences radiation response differently in estrogen receptor-positive and estrogen receptor-negative breast cancer subtypes, warranting further

  9. Repression of estrogen receptor {beta} function by putative tumor suppressor DBC1

    SciTech Connect

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-02-12

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) {alpha} appears to promote the proliferation of cancer tissues, while ER{beta} can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ER{alpha} and ER{beta} may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ER{alpha} expression and promotes breast cancer cell survival by binding to ER{alpha}. Here we report an ER{beta}-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ER{beta} and DBC1 interact in a ligand-independent manner similar to ER{alpha}. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ER{beta}. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ER{alpha}, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ER{beta}in vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ER{beta}. These results implicate the principal role of DBC1 in regulating ER{beta}-dependent gene expressions.

  10. Significance of microRNA targeted estrogen receptor in male fertility

    PubMed Central

    Abhari, Alireza; Zarghami, Nosratollah; Shahnazi, Vahideh; Barzegar, Abolfazl; Farzadi, Laya; Karami, Hadi; Zununi Vahed, Sepideh; Nouri, Mohammad

    2014-01-01

    Objective(s): Estrogen receptor-alpha (ERα) mediates estrogen action in regulation of different levels of the hypothalamic-pituitary-testis axis. It has a key role in spermatogenesis. Estrogen receptor alpha knock-out (ER koα) male mice were infertile and severe impairment in spermatogenesis and seminiferous tubules was observed. Recently, it has been reported that microRNA (miRNA) mir-100 and let-7b were predicted to target ERα gene. MiRNA are small, endogenous, single stranded RNA molecules that regulate gene expression and have been implicated in various disease states. It has been proved that some miRNAs expression is tissue- and disease-specific, giving potential for identifying miRNAs as a diagnostic tool. Materials and Methods: In this study, the change in the expression levels of mir-100, let-7b and ERα expression levels were evaluated in oligospermic infertile patients (n=43) compared to control fertile subjects (n=43). After washing and separating sperms, total RNA was isolated and then cDNA was synthesized. The expression levels of mir-100 and let-7b and ERα were evaluated by real time PCR. Results: Mir-100, let-7b levels were significantly higher than those in control group (P=0.008 and P=0.009, respectively). We have found that, ERα level was significantly decreased in comparison with normal group (P< 0.0001). Conclusion: Changes in mir-100, let-7b and ERα expression levels in oligospermic patients may be associated with the susceptibility and progression of infertility. The results of this study indicate that miRNA can have a key role in spermatogenesis and might have a diagnostic and prognostic value in men infertility. PMID:24711889

  11. Effects of the estrogen receptor antagonist fulvestrant on F344 rat prolactinoma models.

    PubMed

    Cao, Lei; Gao, Hua; Gui, Songbai; Bai, Giwei; Lu, Runchun; Wang, Fei; Zhang, Yazhuo

    2014-02-01

    The relationship between estrogen and prolactinoma is well documented. But the anti-tumor effects of a pure estrogen receptor antagonist fulvestrant on prolactinomas, especially in vivo, and the possible mechanisms are still unclear. Therefore, the aim of this study was to evaluate the effects of fulvestrant and the involvement of the Wnt signaling pathway on rat prolactinoma models. Forty female F344 rat prolactinoma models were established by subcutaneous administration of 10 mg 17β-estradiol for 6 weeks. Rats were intramuscularly injected with fulvestrant (0, 0.5, 3, 20, 40 mg/kg), and tumor size, weight and serum prolactin (PRL) levels were evaluated before and after fulvestrant treatment at 3, 7 and 14 days. Expression of estrogen receptor α (ERα), β-catenin and Wnt inhibitory factor-1 (WIF-1) in prolactinomas was measured using quantitative PCR and western blotting, and methylation of the WIF-1 promoter was investigated using pyrosequencing. Tumor size, weight and serum PRL levels were inhibited in dose-dependent and time-dependent manners after fulvestrant treatments. β-catenin expression was downregulated but WIF-1 expression was upregulated following fulvestrant treatment. The methylation of the CpG site of the WIF-1 promoter was negatively correlated to the expression of WIF-1. In addition, the anti-cell proliferation of fulvestrant on GH3 cells was partly disrupted by Wnt signaling pathway agonist SB 216763. In conclusion, fulvestrant inhibited tumor proliferation and PRL secretion of prolactinomas via ERα, and the Wnt signaling pathway was involved in this anti-tumor effect. Therefore, fulvestrant may be a potential new drug for prolactinomas.

  12. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches.

    PubMed

    Veiga, G A L; Milazzotto, M P; Nichi, M; Lúcio, C F; Silva, L C G; Angrimani, D S R; Vannucchi, C I

    2015-04-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregnancy (41 to 60 days), and parturition (first stage of labor). All tissues expressed ERα and OTR mRNA, and are thus possibly able to respond to eventual estrogen and oxytocin hormonal stimuli. No statistically significant differences in the expression of ERα mRNA were verified in the endometrium and myometrium throughout pregnancy and parturition, but expression of OTR mRNA increased at both parturition and late pregnancy. We concluded that the increase of endometrial and myometrial OTR mRNA expression in dogs is not an event dependent on estrogenic stimulation. Moreover, the contractility response of the canine uterus to oxytocin begins during pregnancy and maintains myometrial activity. The expression of OTR mRNA in canine uterine tissues varied over time, which supports an interpretation that the sensitivity and response to hormone therapy varies during the course of pregnancy and labor. Further studies are needed to elucidate the factors underlying the synthesis of uterine oxytocin receptors and the possible role of ERβ rather than ERα in the uterine tissues during pregnancy and parturition in dogs.

  13. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    PubMed

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status. PMID:24184124

  14. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. PMID:27012396

  15. Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells.

    PubMed

    Chuang, Shu-Chun; Chen, Chung-Hwan; Fu, Yin-Chin; Tai, I-Chun; Li, Ching-Ju; Chang, Li-Fu; Ho, Mei-Ling; Chang, Je-Ken

    2015-12-01

    Simvastatin, an HMG-CoA reductase inhibitor, is known to promote osteogenic differentiation. However, the mechanism underlying simvastatin-induced osteogenesis is not well understood. In this study, we hypothesize that the estrogen receptor (ER) mediates simvastatin-induced osteogenic differentiation. ER antagonists and siRNA were used to determine the involvement of the ER in simvastatin-induced osteogenesis in mouse bone marrow mesenchymal stem cells (D1 cells). Osteogenesis was evaluated by mRNA expression, protein level/activity of osteogenic markers, and mineralization. The estrogen response element (ERE) promoter activity and the ER-simvastatin binding affinity were examined. Our results showed that the simvastatin-induced osteogenic effects were decreased by treatment with ERα antagonists and ERα siRNA but not by an antagonist specific for the G protein-coupled estrogen receptor (GPER-1). The simvastatin-induced osteogenic effects were further increased by E2 treatment and were reversed by ERα antagonists or siRNA treatment. Luciferase reporter gene assays demonstrated that simvastatin increase ERα-dependent transcriptional activity that was suppressed by ERα antagonists. Furthermore, the ERα-simvastatin binding assay showed that IC50 value of simvastatin is 7.85 μM and that of E2 is 32.8 nM, indicating that simvastatin is a weak ligand for ERα. These results suggest that simvastatin-stimulated osteogenesis is mediated by ERα but not GPER-1. Moreover, this is the first report to demonstrate that simvastatin acts as an ERα ligand and a co-activator to enhance ERα-dependent transcriptional activity and thus promotes osteogenesis. These results indicate that simvastatin-induced osteogenesis is mediated via an ERα-dependent pathway.

  16. Estrogen receptors regulate the estrous behavior induced by progestins, peptides, and prostaglandin E2.

    PubMed

    Lima-Hernández, F J; Gómora-Arrati, P; García-Juárez, M; Blaustein, J D; Etgen, A M; Beyer, C; González-Flores, O

    2014-07-01

    The role of classical estrogen receptors (ERs) in priming female reproductive behavior has been studied previously; however, the participation of this receptor during activation of estrous behavior has not been extensively studied. The purpose of this work was to test the possibility that the facilitation of lordosis behavior in estrogen-primed rats by progesterone (P) and its 5α- and 5β-reduced metabolites, gonadotropin-releasing hormone (GnRH), leptin, prostaglandin E2 (PGE2) and vagino-cervical stimulation (VCS) involves interactions with classical ERs by using the selective ER modulator, tamoxifen. To further assess the role of ERs, we also explored the effects of the pure ER antagonist, ICI182780 (ICI), on estrous behavior induced by P and GnRH. Ovariectomized, estrogen-primed rats (5μg estradiol benzoate 40h earlier) were injected intraventricularly with the above-mentioned compounds, or they received VCS. All compounds and VCS effectively facilitated estrous behavior when tested at 60, 120 or 240min after infusion or application of VCS. Intraventricular infusion of tamoxifen (5μg), 30min before, significantly attenuated estrous behaviors induced in estradiol-primed rats by P, most of its 5α- and 5β-reduced metabolites, GnRH, and PGE2, but not by VCS. Although there was a trend for reduction, tamoxifen did not significantly decrease lordosis in females treated with 5β-pregnan-3,20-dione. ICI also inhibited lordosis behavior induced by P and GnRH at some testing intervals. These results suggest that activation of classical ERs participates in the triggering effects on estrous behavior induced by agents with different chemical structures that do not bind directly to ERs.

  17. Cholesterol synthesis inhibitor RO 48-8071 suppresses transcriptional activity of human estrogen and androgen receptor.

    PubMed

    Mafuvadze, Benford; Liang, Yayun; Hyder, Salman M

    2014-10-01

    Breast cancer cells express enzymes that convert cholesterol, the synthetic precursor of steroid hormones, into estrogens and androgens, which then drive breast cancer cell proliferation. In the present study, we sought to determine whether oxidosqualene cyclase (OSC), an enzyme in the cholesterol biosynthetic pathway, may be targeted to suppress progression of breast cancer cells. In previous studies, we showed that the OSC inhibitor RO 48-8071 (RO) may be a ligand which could potentially be used to control the progression of estrogen receptor-α (ERα)-positive breast cancer cells. Herein, we showed, by real-time PCR analysis of mRNA from human breast cancer biopsies, no significant differences in OSC expression at various stages of disease, or between tumor and normal mammary cells. Since the growth of hormone-responsive tumors is ERα-dependent, we conducted experiments to determine whether RO affects ERα. Using mammalian cells engineered to express human ERα or ERβ protein, together with an ER-responsive luciferase promoter, we found that RO dose-dependently inhibited 17β-estradiol (E2)-induced ERα responsive luciferase activity (IC50 value, ~10 µM), under conditions that were non-toxic to the cells. RO was less effective against ERβ-induced luciferase activity. Androgen receptor (AR) mediated transcriptional activity was also reduced by RO. Notably, while ERα activity was reduced by atorvastatin, the HMG-CoA reductase inhibitor did not influence AR activity, showing that RO possesses broader antitumor properties. Treatment of human BT-474 breast cancer cells with RO reduced levels of estrogen-induced PR protein, confirming that RO blocks ERα activity in tumor cells. Our findings demonstrate that an important means by which RO suppresses hormone-dependent growth of breast cancer cells is through its ability to arrest the biological activity of ERα. This warrants further investigation of RO as a potential therapeutic agent for use against hormone

  18. Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury

    PubMed Central

    Barreto, George E.; Santos-Galindo, Maria; Garcia-Segura, Luis Miguel

    2014-01-01

    Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II+ microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: (1) young rats, ovariectomized at 2 months of age; and (2) aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which selective estrogen receptors modulators (SERMs) may exert a neuroprotective effect in the setting of a brain trauma. PMID:24999330

  19. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  20. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer.

    PubMed

    Bratton, Melyssa R; Martin, Elizabeth C; Elliott, Steven; Rhodes, Lyndsay V; Collins-Burow, Bridgette M; McLachlan, John A; Wiese, Thomas E; Boue, Stephen M; Burow, Matthew E

    2015-06-01

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha (α) phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER signaling, specifically we demonstrate an inhibition of ribosomal protein S6 kinase, 70 kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ERα through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition. PMID:25771071

  1. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms.

    PubMed

    Tollefsen, Knut-Erik; Harman, Christopher; Smith, Andy; Thomas, Kevin V

    2007-03-01

    The in vitro estrogen receptor (ER) agonist and androgen receptor (AR) antagonist potencies of offshore produced water effluents collected from the Norwegian Sector were determined using recombinant yeast estrogen and androgen screens. Solid phase extraction (SPE) concentrates of the effluents showed E2 agonist activities similar to those previously reported for the United Kingdom (UK) Continental Shelf (<0.1-4 ng E2 L(-1)). No activity was detected in the filtered oil droplets suggesting that produced water ER activity is primarily associated with the dissolved phase. Targeted analysis for methyl- to nonyl-substituted alkylphenol isomers show the occurrence of known ER agonists in the analysed samples. For the first time, AR antagonists were detected in both the dissolved and oil associated phase at concentrations of between 20 and 8000 microg of flutamide equivalents L(-1). The identity of the AR antagonists is unknown, however this represents a significant input into the marine environment of unknown compounds that exert a known biological effect. It is recommended that further analysis using techniques such as bioassay-directed analysis is performed to identify the compounds/groups of compounds that are responsible in order to improve the assessment of the risk posed by produced water discharges to the marine environment. PMID:17258235

  2. Value of post-operative reassessment of estrogen receptor α expression following neoadjuvant chemotherapy with or without gefitinib for estrogen receptor negative breast cancer.

    PubMed

    Bernsdorf, Mogens; Balslev, Eva; Lykkesfeldt, Anne E; Kroman, Niels; Harder, Eva; von der Maase, Hans; Jakobsen, Erik H; Grabau, Dorthe; Ejlertsen, Bent

    2011-07-01

    The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor α (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the ErbB receptors or downstream effectors may repress ER expression. Here the authors investigated whether gefitinib, given neoadjuvant in combination with epirubicin and cyclophosphamide (EC), could restore ER expression. Eligible patients in the NICE trial were women with unilateral, primary operable, ER negative invasive breast cancer ≥ 2 cm. Material from patients randomized and completing treatment (four cycles of neoadjuvant EC plus 12 weeks of either gefitinib or placebo) in the NICE trial having available ER status both at baseline and after neoadjuvant treatment were eligible for this study. Tumors with indication of changed ER phenotype (based on collected pathology reports) were immunohistochemically reassessed centrally. 115 patients were eligible for this study; 59 patients in the gefiti