Science.gov

Sample records for estrogen receptor modulator

  1. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  2. Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta - regulation by selective estrogen receptor modulators and importance in breast cancer

    PubMed Central

    S Katzenellenbogen, Benita; A Katzenellenbogen, John

    2000-01-01

    Estrogens display intriguing tissue-selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer, for menopausal hormone replacement, and for fertility regulation. Certain compounds that act through the estrogen receptor (ER), now referred to as selective estrogen receptor modulators (SERMs), can demonstrate remarkable differences in activity in the various estrogen target tissues, functioning as agonists in some tissues but as antagonists in others. Recent advances elucidating the tripartite nature of the biochemical and molecular actions of estrogens provide a good basis for understanding these tissue-selective actions. As discussed in this thematic review, the development of optimal SERMs should now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at various gene regulatory sites. Cellular, biochemical, and structural approaches have also shown that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coregulator proteins. Growth factors and protein kinases that control the phosphorylation state of the complex also regulate the bioactivity of the ER. These interactions and changes determine the magnitude of the transcriptional response and the potency of different SERMs. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents. PMID:11250726

  3. [Cardiovascular effects of selective estrogen receptor modulators. Current perspectives].

    PubMed

    Simoncini, Tommaso; Mannella, Paolo; Genazzani, Andrea R

    2003-02-01

    The use of hormone replacement therapy (HRT) after the menopause for the prevention of the long-term complications of estrogen deprivation has recently been questioned after the publication of large clinical trials that failed to show benefits for postmenopausal women. Although these trials risk to dump the widespread opinion of the cardioprotective effects of long-term estrogen use, they have many pitfalls that prevent a direct clinical application of these negative results. Furthermore, the large amount of epidemiological and experimental evidence indicating estrogens as protective on the vascular system cannot be ignored, and efforts should be devoted to understand the reasons for the discrepancy of results of these recent large trials. In the meanwhile, different molecules should be studied in depth as for the actions on the cardiovascular system, and their specific mechanisms of actions should be elucidated. Selective estrogen receptor modulators (SERM) are a promising family of molecules and some of these compounds have positive effects on cardiovascular risk parameters as well as on vascular cells. Large trials are ongoing to study the impact of these substances on cardiovascular risk, and the near future should provide us with answers on the possible use of SERM as possible safer alternatives to HRT for the long-term prevention of cardiovascular disease in postmenopausal women.

  4. Bazedoxifene: a novel selective estrogen receptor modulator for postmenopausal osteoporosis.

    PubMed

    de Villiers, T J

    2010-06-01

    Several new selective estrogen receptor modulators (SERMs) are currently under clinical development for the prevention and/or treatment of postmenopausal osteoporosis, with the goal of optimizing the estrogen receptor agonist/antagonist activity in target tissues. Bazedoxifene is a novel SERM under clinical investigation for the prevention and treatment of postmenopausal osteoporosis. Emerging clinical data have shown that bazedoxifene is effective in preventing bone loss and osteoporotic fractures in postmenopausal women, with no evidence of breast or endometrial stimulation. Two large, prospective, international phase 3 studies have been completed. In postmenopausal women at risk for osteoporosis, bazedoxifene has been shown to preserve bone mineral density and to reduce bone turnover. In postmenopausal women with osteoporosis, bazedoxifene has demonstrated significant protection against new vertebral fractures and against non-vertebral fractures in women at higher fracture risk. The treatment effects of bazedoxifene were supported by findings from independent re-analyses using the Fracture Risk Assessment Tool (FRAX), which showed that bazedoxifene significantly reduced the risk of all clinical and morphometric vertebral fracture and of non-vertebral fracture in women at or above a FRAX-based threshold. Bazedoxifene was generally safe and well tolerated in the phase 3 studies and showed neutral effects on the breast and an excellent endometrial safety profile; such attributes allow for the partnering of bazedoxifene with conjugated estrogens for menopausal symptom relief. Collectively, these results suggest that bazedoxifene may be a promising new therapy for the prevention and treatment of postmenopausal osteoporosis as a monotherapy or in combination with conjugated estrogens in menopausal hormone therapy.

  5. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  6. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    SciTech Connect

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  7. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides.

    PubMed

    Kucinska, Malgorzata; Giron, Maria-Dolores; Piotrowska, Hanna; Lisiak, Natalia; Granig, Walter H; Lopez-Jaramillo, Francisco-Javier; Salto, Rafael; Murias, Marek; Erker, Thomas

    2016-01-01

    The cytotoxicity of 27 benzanilides and dithiobenzanilides built on a stilbene scaffold and possessing various functional groups in aromatic rings previously described for their spasmolytic properties was assayed on three human cancer cell lines (A549 -lung adenocarcinoma, MCF-7 estrogen dependent breast adenocarcinoma and MDA-MB-231 estrogen independent breast adenocarcinoma) and 2 non-tumorigenic cell lines (CCD39Lu-lung fibroblasts, MCF-12A - breast epithelial). Three compounds (6, 15 and 18) showed selective antiproliferative activity against estrogen dependent MCF-7 cancer cells and their estrogenic activity was further confirmed in MCF-7 transfected with an estrogen receptor reporter plasmid and in HEK239 cells over-expressing the estrogen receptor alpha (ERα). Compound 18 is especially interesting as a potential candidate for therapy since it is highly toxic and selective towards estrogen dependent MCF7 cell lines (IC50 = 5.07 μM versus more than 100 μM for MDA-MB-231) and almost innocuous for normal breast cells (IC50 = 91.46 μM for MCF-12A). Docking studies have shown that compound 18 interacts with the receptor in the same cavity as estradiol although the extra aromatic ring is involved in additional binding interactions with residue W383. The role of W383 and the extended binding mode were confirmed by site-directed mutagenesis.

  8. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides

    PubMed Central

    Kucinska, Malgorzata; Giron, Maria-Dolores; Piotrowska, Hanna; Lisiak, Natalia; Granig, Walter H.; Lopez-Jaramillo, Francisco-Javier; Salto, Rafael; Murias, Marek; Erker, Thomas

    2016-01-01

    The cytotoxicity of 27 benzanilides and dithiobenzanilides built on a stilbene scaffold and possessing various functional groups in aromatic rings previously described for their spasmolytic properties was assayed on three human cancer cell lines (A549 –lung adenocarcinoma, MCF-7 estrogen dependent breast adenocarcinoma and MDA-MB-231 estrogen independent breast adenocarcinoma) and 2 non-tumorigenic cell lines (CCD39Lu–lung fibroblasts, MCF-12A - breast epithelial). Three compounds (6, 15 and 18) showed selective antiproliferative activity against estrogen dependent MCF-7 cancer cells and their estrogenic activity was further confirmed in MCF-7 transfected with an estrogen receptor reporter plasmid and in HEK239 cells over-expressing the estrogen receptor alpha (ERα). Compound 18 is especially interesting as a potential candidate for therapy since it is highly toxic and selective towards estrogen dependent MCF7 cell lines (IC50 = 5.07 μM versus more than 100 μM for MDA-MB-231) and almost innocuous for normal breast cells (IC50 = 91.46 μM for MCF-12A). Docking studies have shown that compound 18 interacts with the receptor in the same cavity as estradiol although the extra aromatic ring is involved in additional binding interactions with residue W383. The role of W383 and the extended binding mode were confirmed by site-directed mutagenesis. PMID:26730945

  9. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  10. Estradiol-induced modulation of estrogen receptor-beta and GABA within the adult neocortex: a potential transsynaptic mechanism for estrogen modulation of BDNF.

    PubMed

    Blurton-Jones, Mathew; Tuszynski, Mark H

    2006-12-01

    Estrogen influences brain-derived neurotrophic factor (BDNF) expression in the neocortex. However, BDNF-producing cortical neurons do not express detectable levels of nuclear estrogen receptors; instead, the most abundant cortical nuclear estrogen receptor, ER-beta, is present in GABAergic neurons, prompting us to test the hypothesis that estrogen effects on BDNF are mediated via cortical inhibitory interneurons. Adult female ovariectomized rats were provided acute estrogen replacement and the number of cortical GABA, ER-beta, and ER-beta/GABA double-labeled neurons was examined. Within 48 hours of injection of 17-beta-estradiol, the number of perirhinal neurons double-labeled for ER-beta/GABA was reduced by 28% (P<0.01 compared to vehicle-treated ovariectomized controls), and all cells expressing detectable levels of GABA were reduced by 19% (P<0.01). To investigate potential relationships between estrogen receptors, GABAergic neurons, and BDNF-expressing cells, brain sections were double- or triple-labeled for ER-beta, GABAergic, and BDNF immunomarkers. The findings indicated that ER-beta-bearing inhibitory neurons project onto other GABAergic neurons that lack nuclear estrogen receptors; these inhibitory neurons in turn innervate BDNF-expressing excitatory cells. High estrogen states reduce cortical GABA levels, presumably releasing inhibition on BDNF-expressing neurons. This identifies a putative two-step transsynaptic mechanism whereby estrogen availability modulates expression of inhibitory transmitters, resulting in increased BDNF expression.

  11. Relaxant Effects of the Selective Estrogen Receptor Modulator, Bazedoxifene, and Estrogen Receptor Agonists in Isolated Rabbit Basilar Artery.

    PubMed

    Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique

    2016-10-01

    We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).

  12. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors that Also Modulate Estrogen Receptors

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A.; Cushman, Mark

    2016-01-01

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor-α (ER-α) and estrogen receptor-β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment. PMID:26704594

  13. Modulation of the estrogen receptor structure, evidence of a heterogeneity

    SciTech Connect

    Toulas, C.; Guilbaud, N.; Delassus, F.; Bayard, F.; Faye, J.C. )

    1990-01-01

    In order to analyse the molecular weight polymorphism of the estrogen receptor (ER) in MCF-7 cells, we have developed a procedure which allowed in situ linkage of ER by (3H) tamoxifen aziridine and provided labelled proteins in conditions which minimized protease activities. After labelling, cell lysis was performed in SDS buffer containing various concentrations of mercaptoethanol. Proteins extracted with phenolic solution and precipitated by cold acetone were analysed by SDS PAGE. It appears that beside the form of 67 kDa already described, binding entities of tamoxifen aziridine were also present at a molecular mass of 110 kDa and 45 kDa. On the other hand, investigations on the effect of 12-0-Tetradecanoyl Phorbol 13-Acetate (TPA) showed that TPA induces a decrease of the 67 kDa entity.

  14. The Role of Estrogen Related Receptor in Modulating Estrogen Receptor Mediated Transcription in Breast Cancer Cells

    DTIC Science & Technology

    2005-04-01

    receptors ) by demonstrating that mitochondrial biogenesis and fatty acid P- oxidation , processes ERRa is known to regulate , are robustly...gluconeogenesis, and fatty acid oxidation (Lin 2003; Puigserver 1998; Wu 1999; Yoon 2001). In addition to its activity on a number of nuclear receptors , this...in target cells. They were generated by replacing the receptor interaction domains in peroxisome proliferator activated receptor

  15. CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions

    PubMed Central

    Fiorito, Elisa; Sharma, Yogita; Gilfillan, Siv; Wang, Shixiong; Singh, Sachin Kumar; Satheesh, Somisetty V.; Katika, Madhumohan R.; Urbanucci, Alfonso; Thiede, Bernd; Mills, Ian G.; Hurtado, Antoni

    2016-01-01

    Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells. PMID:27638884

  16. Estrogen effects on angiotensin receptors are modulated by pituitary in female rats

    SciTech Connect

    Douglas, J.G.

    1987-01-01

    The present studies were designed to test the hypothesis that changes in angiotensin II (ANG II) receptors might modulate the layered target tissue responsiveness accompanying estradiol administration. Estradiol was infused continuously in oophorectomized female rats. Aldosterone was also infused in control and experimental animals to avoid estrogen-induced changes in renin and ANG II. ANG II binding constants were determined in radioreceptor assays. Estradiol increased binding site concentration in adrenal glomerulosa by 76% and decreased binding sites of uterine myometrium and glomeruli by 45 and 24%, respectively. There was an accompanying increase in the affinity of ANG II binding to adrenal glomerulosa and uterine myometrium. Because estrogen is a potent stimulus of prolactin release from the pituitary of rodents, studies were also designed to test the hypothesis that prolactin may mediate some or all of the estrogen-induced effects observed. Hypophysectomy abolished estradiol stimulation of prolactin release and most ANG II receptor changes. Prolactin administration to pituitary intact rats was associated with a 50% increase in receptor density of adrenal glomerulosa simulating estradiol administration. However, the changes in glomeruli and uterine myometrium were opposite in that both tissues also increased receptor density, suggesting that prolactin was not the sole mediator of the estrogen-induced receptor changes. In conclusion, regulation of ANG II receptors in a number of diverse target tissues by estradiol is complex with contributions from estrogens and pituitary factors, which include but do not exclusively involve prolactin.

  17. Histone Deacetylase Inhibitors Equipped with Estrogen Receptor Modulation Activity

    PubMed Central

    Gryder, Berkley E.; Rood, Michael K.; Johnson, Kenyetta A.; Patil, Vishal; Raftery, Eric D.; Yao, Li-Pan D.; Rice, Marcie; Azizi, Bahareh; Doyle, Donald F.; Oyelere, Adegboyega K.

    2013-01-01

    We described a set of novel histone deacetylase inhibitors (HDACi) equipped with either an antagonist or an agonist of the estrogen receptor (ER) to confer selective activity against breast cancers. These bifunctional compounds potently inhibit HDAC at nanomolar concentrations, and either agonize or antagonize ERα and ERβ. The ER antagonist activities of tamoxifen-HDACi conjugates (Tam-HDACi) are nearly identical to those of tamoxifen. Conversely, ethynyl-estradiol HDACi conjugates (EED-HDACi) have attenuated ER agonist activities relative to the parent ethynyl-estradiol. In silico docking analysis provides structural basis for the trends of ER agonism/antagonism and ER subtype selectivity. Excitingly, lead Tam-HDACi conjugates show anticancer activity that is selectively more potent against MCF-7 (ERα positive breast) compared to MDA-MB-231 (triple negative breast cancer), DU145 (prostate cancer) or Vero (non-cancerous cell line). This dual-targeting approach illustrates the utility of designing small molecules with an emphasis on cell-type selectivity, not merely improved potency, working towards a higher therapeutic index at the earliest stages of drug development. PMID:23786452

  18. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a

    PubMed Central

    Seredynski, Aurore L.; Balthazart, Jacques; Ball, Gregory F.

    2015-01-01

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER–mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. SIGNIFICANCE STATEMENT The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  19. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  20. Progesterone receptor modulates estrogen receptor-α action in breast cancer

    PubMed Central

    Mohammed, Hisham; Russell, I. Alasdair; Stark, Rory; Rueda, Oscar M.; Hickey, Theresa E.; Tarulli, Gerard A.; Serandour, Aurelien A. A.; Birrell, Stephen N.; Bruna, Alejandra; Saadi, Amel; Menon, Suraj; Hadfield, James; Pugh, Michelle; Raj, Ganesh V.; Brown, Gordon D.; D’Santos, Clive; Robinson, Jessica L. L.; Silva, Grace; Launchbury, Rosalind; Perou, Charles M.; Stingl, John; Caldas, Carlos; Tilley, Wayne D.; Carroll, Jason S.

    2015-01-01

    Summary Progesterone receptor (PR) expression is employed as a biomarker of estrogen receptor-α (ERα) function and breast cancer prognosis. We now show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited estrogen-mediated growth of ERα+ cell line xenografts and primary ERα+ breast tumour explants and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PgR is a common feature in ERα+ breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions. PMID:26153859

  1. Selective Estrogen Receptor Modulators Suppress Hif1α Protein Accumulation in Mouse Osteoclasts

    PubMed Central

    Iwasaki, Ryotaro; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi

    2016-01-01

    Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions. PMID:27802325

  2. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression

    PubMed Central

    Wei, Zhisheng; Wang, Mengxia; Hong, Mingfan; Diao, Shengpeng; Liu, Aiqun; Huang, Yeqing; Yu, Qingyun; Peng, Zhongxing

    2016-01-01

    Background: Estrogen exerts neuroprotective and anti-inflammatory effects in EAE and multiple sclerosis (MS), but its clinical application is hindered due to side effects and risk of tumor. Phytoestrogen structurally or functionally mimics estrogen with fewer side effects than endogenous estrogen. Icariin (ICA), an active component of Epimedium extracts, demonstrates estrogen-like neuroprotective effects. However, it is unclear whether ICA is effective in EAE and what are the underlying mechanisms. Objective: To determine the therapeutic effects of ICA in EAE and explore the possible mechanisms. Methods: C57BL/6 EAE mice were treated with Diethylstilbestrol, different dose of ICA and mid-dose ICA combined with ICI 182780. The clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT) concentrations were then analyzed. Western blot were performed to investigate the expressions of glucocorticoid receptor (GR), estrogen receptor alpha (ERα) and ERβ in the cerebral white matter of EAE mice. Results: High dose ICA is equally effective in ameliorating neurological signs of EAE as estrogen. Estrogen and ICA has no effects on serum concentrations of IL-17 in EAE. While the CORT levels were decreased by ICA at mid or high doses, the expressions of GR, ERα and ERβ were up-regulated by estrogen or different doses of ICA in a dosedependent manner. Estrogen induced the elevation of ERα more markedly than ICA. In contrast, ICA at mid and high doses promoted ERβ more significantly than estrogen. Conclusion: ICA exerts estrogen-like activity in ameliorating EAE via mediating ERβ, modulating HPA function and up-regulating the expression of GR in cerebral white matter. ICA may be a promising therapeutic option for MS. PMID:27186315

  3. Licorice Root Components in Dietary Supplements are Selective Estrogen Receptor Modulators with a Spectrum of Estrogenic and Anti-Estrogenic Activities

    PubMed Central

    Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar; Chittiboyina, Amar G.; Khan, Ikhlas; Doerge, Daniel R.; Helferich, William G.; Carlson, Kathryn E.; Martin, Teresa; Piyachaturawat, Pawinee; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2016-01-01

    Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs. PMID:26631549

  4. Potential of Selective Estrogen Receptor Modulators as Treatments and Preventives of Breast Cancer

    PubMed Central

    Peng, Jing; Sengupta, Surojeet; Jordan, V Craig

    2013-01-01

    Estrogen plays vital roles in human health and diseases. Estrogen mediates its actions almost entirely by binding to estrogen receptors (ER), alpha and beta which further function as transcription factors. Selective estrogen receptor modulators (SERMs) are synthetic molecules which bind to ER and can modulate its transcriptional capabilities in different ways in diverse estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted therapy of ER positive breast cancers and is also approved as the first chemo-preventive agent for lowering breast cancer incidence in high risk women. The therapeutic and preventive efficacy of tamoxifen was initially proven by series of experiments in the laboratory which laid the foundation of its clinical use. Unfortunately, use of tamoxifen is associated with de-novo and acquired resistance and some undesirable side effects. The molecular study of the resistance provides an opportunity to precisely understand the mechanism of SERM action which may further help in designing new and improved SERMs. Recent clinical studies reveal that another SERM, raloxifene, which is primarily used to treat post-menopausal osteoporosis, is as efficient as tamoxifen in preventing breast cancers with fewer side effects. Overall, these findings open a new horizon for SERMs as a class of drug which not only can be used for therapeutic and preventive purposes of breast cancers but also for various other diseases and disorders. Major efforts are therefore directed to make new SERMs with a better therapeutic profile and fewer side effects. PMID:19519291

  5. Ospemifene: a novel selective estrogen receptor modulator for treatment of dyspareunia.

    PubMed

    Eder, Scott Evan

    2014-09-01

    Ospemifene is a novel, oral selective estrogen receptor modulator that has been approved in the USA for treatment of dyspareunia. The decline in estrogen during menopause creates vulvovaginal changes that can cause symptoms that adversely impact women psychosexually. Many women are reluctant to discuss painful sex and providers must proactively inquire about sexuality issues. Ospemifene has been shown to reverse changes associated with vulvovaginal atrophy and relieve symptoms of dyspareunia. Safety studies of treatment up to 52 weeks have shown ospemifene to be safe with no impact on endometrial hyperplasia/carcinoma, venous thrombotic events or pelvic organ prolapse. Further studies are needed to evaluate its role in bone and breast health.

  6. From empirical to mechanism-based discovery of clinically useful Selective Estrogen Receptor Modulators (SERMs)

    PubMed Central

    Wardell, Suzanne E.; Nelson, Erik R.; McDonnell, Donald P.

    2014-01-01

    Our understanding of the molecular mechanisms underlying the pharmacological actions of estrogen receptor (ER) ligands has evolved considerably in recent years. Much of this knowledge has come from a detailed dissection of the mechanism(s) of action of the Selective Estrogen Receptor Modulators (SERMs) tamoxifen and raloxifene, drugs whose estrogen receptor (ER) agonist/antagonist properties are influenced by the cell context in which they operate. These studies have revealed that notwithstanding differences in drug pharmokinetics, the activity of an ER ligand is determined primarily by (a) the impact that a given ligand has on the receptor conformation and (b) the ability of structurally distinct ER-ligand complexes to interact with functionally distinct coregulators. Exploitation of the established relationships between ER structure and activity has led to the development of improved SERMs with more favorable therapeutic properties and of tissue-selective estrogen complexes, drugs in which a SERM and an ER agonist are combined to yield a blended activity that results in distinct clinical profiles. Remarkably, endogenous ligands that exhibit SERM activity have also been identified. One of these ligands, 27-hydroxycholesterol (27HC), has been shown to manifest ER-dependent pathological activities in the cardiovascular system, bone and mammary gland. Whereas the physiological activity of 27HC remains to be determined, its discovery highlights how cells have adopted mechanisms to allow the same receptor ligand complex to manifest different activities in different cells, and also how these processes can be exploited for new drug development. PMID:25084324

  7. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  8. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    SciTech Connect

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  9. Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells.

    PubMed

    Cappelletti, Vera; Miodini, Patrizia; Di Fronzo, Giovanni; Daidone, Maria Grazia

    2006-05-01

    High consumption of phytoestrogen-rich food correlates with reduced incidence of breast cancer. However, the effect of phytoestrogens on growth of pre-existing breast tumors presents concerns when planning the use of phytoestrogens as chemoprevention st rategy. Genistein, the active phytoestrogen in soy, displays weak estrogenic activity mediated by estrogen receptor (ER) with a preferential binding for the ER-beta species. However, no information is at present available on the interaction between phytoestrogens and the various isoforms generated by alternative splicing. In two human breast cancer cell lines, T47D and BT20, which express variable levels of ER-beta, the effect of genistein and quercetin was evaluated singly and in comparison with 17beta-estradiol, on mRNA expression of estrogen receptor-beta (ER-beta) isoforms evaluated by a triple primer RT-PCR assay. In T47D cells estradiol caused a 6-fold up-regulation of total ER-beta, and modified the relative expression pattern of the various isoforms, up-regulating the beta2 and down-regulating the beta5 isoform. Genistein up-regulated ER-beta2 and ER-beta1 in T47D cells, and after treatment the ER-beta2 isoform became prevalent, while in BT20 cells it almost doubled the percent contribution of ER-beta1 and ER-beta2 to total ER-beta. Quercetin did not alter the total levels nor the percent distribution of ER-beta isoforms in either cell line. Genistein, through the modulation of ER-beta isoform RNA expression inhibited estrogen-promoted cell growth, without interfering on estrogen-regulated transcription. ER-beta and its ER-beta mRNA isoforms may be involved in a self-limiting mechanism of estrogenic stimulation promoted either by the natural hormone or by weaker estrogen agonists like genistein.

  10. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  11. Soy isoflavones--benefits and risks from nature's selective estrogen receptor modulators (SERMs).

    PubMed

    Setchell, K D

    2001-10-01

    Phytoestrogens have become one of the more topical areas of interest in clinical nutrition. These non-nutrient bioactive compounds are ubiquitous to the plant kingdom and possess a wide range of biological properties that contribute to the many different health-related benefits reported for soy foods and flaxseeds--two of the most abundant dietary sources of phytoestrogens. Reviewed is the recent knowledge related to their pharmacokinetics and clinical effects, focusing mainly on isoflavones that are found in high concentrations in soy foods. Arguments are made for considering soy isoflavones as natural selective estrogen receptor modulators (SERMs) based upon recent data of their conformational binding to estrogen receptors. Rebuttal is made to several key and important issues related to the recent concerns about the safety of soy and its constituent isoflavones. This article is not intended to be a comprehensive review of the literature but merely highlight recent research with key historical perspectives.

  12. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells.

    PubMed

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2-30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production.

  13. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells

    PubMed Central

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production. PMID:27101408

  14. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs).

    PubMed

    Simons, Rudy; Gruppen, Harry; Bovee, Toine F H; Verbruggen, Marian A; Vincken, Jean-Paul

    2012-08-01

    Isoflavonoids are a class of secondary metabolites, which comprise amongst others the subclasses of isoflavones, isoflavans, pterocarpans and coumestans. Isoflavonoids are abundant in Leguminosae, and many of them can bind to the human estrogen receptor (hER) with affinities similar to or lower than that of estradiol. Dietary intake of these so-called phytoestrogens has been associated with positive effects on menopausal complaints, hormone-related cancers, and osteoporosis. Therefore, phytoestrogens are used as nutraceuticals in functional foods or food supplements. Most of the isoflavonoids show agonistic activity towards both hERα and hERβ, the extent of which is modulated by the substitution pattern of their skeleton (i.e.-OH, -OCH(3)). Interestingly, substitutions consisting of a five-carbon prenyl group often seem to result in an antiestrogenic activity. There is growing evidence that the action of some of these prenylated isoflavonoids is tissue-specific, suggesting that they act like selective estrogen receptor modulators (SERMs), such as the well-known chemically synthesized raloxifene and tamoxifen. These so-called phytoSERMS might have high potential for realizing new food and pharma applications. In this review, the structural features of isoflavonoids (i.e. the kind of skeleton and prenylation (e.g. chain or pyran), position of the prenyl group on the skeleton, and the extent of prenylation (single, double)) are discussed in relation to their estrogenic activity. Anti-estrogenic and SERM activity of isoflavonoids was always associated with prenylation, but these activities did not seem to be confined to one particular kind/position of prenylation or isoflavonoid subclass. Few estrogens with agonistic activity were prenylated, but these were not tested for antagonistic activity; possibly, these molecules will turn out to be phytoSERMs as well. Furthermore, the data on the dietary occurrence, bioavailability and metabolism of prenylated isoflavonoids

  15. Selective estrogen receptor modulators for postmenopausal osteoporosis: current state of development.

    PubMed

    Gennari, Luigi; Merlotti, Daniela; Valleggi, Fabrizio; Martini, Giuseppe; Nuti, Ranuccio

    2007-01-01

    Selective estrogen receptor modulators (SERMs) are structurally different compounds that interact with intracellular estrogen receptors in target organs as estrogen receptor agonists and antagonists. These drugs have been intensively studied over the past decade and have proven to be a highly versatile group for the treatment of different conditions associated with aging, including hormone-responsive cancer and osteoporosis. Tamoxifen and toremifene are currently used to treat advanced breast cancer and also have beneficial effects on bone mineral density and serum lipids in postmenopausal women. Raloxifene is the only SERM approved worldwide for the prevention and treatment of postmenopausal osteoporosis and vertebral fractures. However, although these SERMs have many benefits, they may also be responsible for some potentially very serious adverse effects, such as thromboembolic disorders and, in the case of tamoxifen, uterine cancer. These adverse effects represent a major concern given that long-term therapy is required to prevent osteoporosis. Moreover, both preclinical and clinical reports suggest that tamoxifen, toremifene and raloxifene are considerably less potent than estrogen. The search for the 'ideal' SERM, which would have estrogenic effects on bone and serum lipids, neutral effects on the uterus, and antiestrogenic effects on breast tissue, but none of the adverse effects associated with current therapies, is currently under way. Ospemifene, lasofoxifene, bazedoxifene and arzoxifene, which are new SERM molecules with potential greater efficacy and potency than previous SERMs, are currently under investigation for use in the treatment and prevention of osteoporosis. These drugs have been shown to be comparably effective to conventional hormone replacement therapy in animal models of osteoporosis, with potential indications for an improved safety profile. Clinical efficacy data from ongoing phase III trials are awaited so that a true understanding of

  16. FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection

    PubMed Central

    Johansen, Lisa M.; Brannan, Jennifer M.; Delos, Sue E.; Shoemaker, Charles J.; Stossel, Andrea; Lear, Calli; Hoffstrom, Benjamin G.; DeWald, Lisa Evans; Schornberg, Kathryn L.; Scully, Corinne; Lehár, Joseph; Hensley, Lisa E.; White, Judith M.; Olinger, Gene G.

    2014-01-01

    Ebola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)– and ex–US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV). From this screen, we identified a set of selective estrogen receptor modulators (SERMs), including clomiphene and toremifene, which act as potent inhibitors of EBOV infection. Anti-EBOV activity was confirmed for both of these SERMs in an in vivo mouse infection model. This anti-EBOV activity occurred even in the absence of detectable estrogen receptor expression, and both SERMs inhibited virus entry after internalization, suggesting that clomiphene and toremifene are not working through classical pathways associated with the estrogen receptor. Instead, the response appeared to be an off-target effect where the compounds interfere with a step late in viral entry and likely affect the triggering of fusion. These data support the screening of readily available approved drugs to identify therapeutics for the Ebola viruses and other infectious diseases. The SERM compounds described in this report are an immediately actionable class of approved drugs that can be repurposed for treatment of filovirus infections. PMID:23785035

  17. The Selective Estrogen Receptor Modulator Raloxifene Inhibits Neutrophil Extracellular Trap Formation

    PubMed Central

    Flores, Roxana; Döhrmann, Simon; Schaal, Christina; Hakkim, Abdul; Nizet, Victor; Corriden, Ross

    2016-01-01

    Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effects on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA), a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs). Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Similar to raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation, but not reactive oxygen species production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production. PMID:28003814

  18. Selective Estrogen Receptor Modulators (SERMs) Enhance Neurogenesis and Spine Density Following Focal Cerebral Ischemia

    PubMed Central

    Khan, Mohammad M.; Wakade, Chandramohan; de Sevilla, Liesl; Brann, Darrell W.

    2014-01-01

    Selective estrogen receptor modulators (SERMs) have been reported to enhance synaptic plasticity and improve cognitive performance in adult rats. SERMs have also been shown to induce neuroprotection against cerebral ischemia and other CNS insults. In this study, we sought to determine whether acute regulation of neurogenesis and spine remodeling could be a novel mechanism associated with neuroprotection induced by SERMs following cerebral ischemia. Toward this end, ovariectomized adult female rats were either implanted with pellets of 17β-estradiol (estrogen) or tamoxifen, or injected with raloxifene. After one week, cerebral ischemia was induced by the transient middle-cerebral artery occlusion (MCAO) method. Bromodeoxyuridine (BrdU) was injected to label dividing cells in brain. We analyzed neurogenesis and spine density at day-1 and day-5 post MCAO. In agreement with earlier findings, we observed a robust induction of neurogenesis in the ipsilateral subventricular zone (SVZ) of both the intact as well as ovariectomized female rats following MCAO. Interestingly, neurogenesis in the ipsilateral SVZ following ischemia was significantly higher in estrogen and raloxifene-treated animals compared to placebo-treated rats. In contrast, this enhancing effect on neurogenesis was not observed in tamoxifen-treated rats. Finally, both SERMs, as well as estrogen significantly reversed the spine density loss observed in the ischemic cortex at day-5 post ischemia. Taken, together these results reveal a profound structural remodeling potential of SERMs in the brain following cerebral ischemia. PMID:24815952

  19. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia.

    PubMed

    Khan, Mohammad M; Wakade, Chandramohan; de Sevilla, Liesl; Brann, Darrell W

    2015-02-01

    Selective estrogen receptor modulators (SERMs) have been reported to enhance synaptic plasticity and improve cognitive performance in adult rats. SERMs have also been shown to induce neuroprotection against cerebral ischemia and other CNS insults. In this study, we sought to determine whether acute regulation of neurogenesis and spine remodeling could be a novel mechanism associated with neuroprotection induced by SERMs following cerebral ischemia. Toward this end, ovariectomized adult female rats were either implanted with pellets of 17β-estradiol (estrogen) or tamoxifen, or injected with raloxifene. After one week, cerebral ischemia was induced by the transient middle-cerebral artery occlusion (MCAO) method. Bromodeoxyuridine (BrdU) was injected to label dividing cells in brain. We analyzed neurogenesis and spine density at day-1 and day-5 post MCAO. In agreement with earlier findings, we observed a robust induction of neurogenesis in the ipsilateral subventricular zone (SVZ) of both the intact as well as ovariectomized female rats following MCAO. Interestingly, neurogenesis in the ipsilateral SVZ following ischemia was significantly higher in estrogen and raloxifene-treated animals compared to placebo-treated rats. In contrast, this enhancing effect on neurogenesis was not observed in tamoxifen-treated rats. Finally, both SERMs, as well as estrogen significantly reversed the spine density loss observed in the ischemic cortex at day-5 post ischemia. Taken, together these results reveal a profound structural remodeling potential of SERMs in the brain following cerebral ischemia. This article is part of a Special Issue entitled "Sex steroids and brain disorders".

  20. Recent advances in the synthesis of raloxifene: a selective estrogen receptor modulator.

    PubMed

    Dadiboyena, Sureshbabu

    2012-05-01

    Estrogens are a group of steroids that exert important effects on reproductive and many non-reproductive tissues. Selective estrogen receptor modulators (SERM) are a class of therapeutic agents widely prescribed for the treatment and prevention of breast cancer, osteoporosis, and postmenopausal symptoms. Raloxifene, an example of oral SERM is prescribed primarily for the treatment and prevention of postmenopausal disorders in woman. The current review provides an outline of practical methodologies used to access benzothiophenyl scaffolds of raloxifene and relevant structural analogs. The contents are discussed in five sections: (a) synthesis of raloxifene, (b) organometallic analogs, (c) radiolabelled analogs, (d) constrained raloxifene analogs, and (e) other oxygen, sulfur, and nitrogen based raloxifene analogs. In addition to the synthesis, biological activity of a few synthetic analogs has been discussed.

  1. Synthesis of 4,4'-Diaminotriphenylmethanes with Potential Selective Estrogen Receptor Modulator (SERM)-like Activity.

    PubMed

    Guedes, Gema; Amesty, Ángel; Jiménez-Monzón, Roberto; Marrero-Alonso, Jorge; Díaz, Mario; Fernández-Pérez, Leandro; Estévez-Braun, Ana

    2015-08-01

    In this study, a series of new 4,4'-diaminotriphenylmethanes was efficiently synthesized from aromatic aldehydes and 2,5-dimethoxybenzenamine under microwave irradiation in the presence of Sc(OTf)3 as a catalyst. Antiproliferative activity was assessed by using the MCF-7 estrogen receptor (ER)-positive breast cancer cell line, and antagonist/agonist transcriptional activities were determined. Docking studies and competition studies of triphenylmethanes and radiolabeled estradiol determined that these compounds do not bind the ER, indicating that triphenylmethane-induced changes in proliferative and transcriptional activities differ from conventional mechanisms of action triggered by other selective ER modulators.

  2. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network

    PubMed Central

    Nwachukwu, Jerome C; Srinivasan, Sathish; Bruno, Nelson E; Parent, Alexander A; Hughes, Travis S; Pollock, Julie A; Gjyshi, Olsi; Cavett, Valerie; Nowak, Jason; Garcia-Ordonez, Ruben D; Houtman, René; Griffin, Patrick R; Kojetin, Douglas J; Katzenellenbogen, John A; Conkright, Michael D; Nettles, Kendall W

    2014-01-01

    Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity. DOI: http://dx.doi.org/10.7554/eLife.02057.001 PMID:24771768

  3. The effect of selective estrogen receptor modulators on type 2 diabetes onset in women: Basic and clinical insights.

    PubMed

    Xu, Beibei; Lovre, Dragana; Mauvais-Jarvis, Franck

    2017-01-20

    Selective estrogen receptor modulators (SERMs) are a class of compounds that interact with estrogen receptors (ERs) and exert agonist or antagonist effects on ERs in a tissue-specific manner. Tamoxifen, a first generation SERM, is used for treatment of ER positive breast cancer. Raloxifene, a second generation SERM, was used to prevent postmenopausal osteoporosis. The third-generation SERM bazedoxifene (BZA) effectively prevents osteoporosis while preventing estrogenic stimulation of breast and uterus. Notably, BZA combined with conjugated estrogens (CE) is a new menopausal treatment. The menopausal state predisposes to metabolic syndrome and type 2 diabetes, and therefore the effects of SERMs on metabolic homeostasis are gaining attention. Here, we summarize knowledge of SERMs' impacts on metabolic, homeostasis, obesity and diabetes in rodent models and postmenopausal women.

  4. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    PubMed

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status.

  5. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  6. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    PubMed

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues.

  7. Modulation of mitochondrial Ca2+ uptake by estrogen receptor agonists and antagonists

    PubMed Central

    Lobatón, Carmen D; Vay, Laura; Hernández-SanMiguel, Esther; SantoDomingo, Jaime; Moreno, Alfredo; Montero, Mayte; Alvarez, Javier

    2005-01-01

    Ca2+ uptake by mitochondria is a key element in the control of cellular Ca2+ homeostasis and Ca2+-dependent phenomena. It has been known for many years that this Ca2+ uptake is mediated by the mitochondrial Ca2+ uniporter, a specific Ca2+ channel of the inner mitochondrial membrane. We have shown previously that this channel is strongly activated by a series of natural phytoestrogenic flavonoids. We show here that several agonists and antagonists of estrogen receptors (ERs) also modulate the activity of the uniporter. The specific α-ER agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was the strongest activator, increasing the rate of mitochondrial Ca2+ uptake in permeabilized HeLa cells by 10-fold at 2 μM. Consistently, PPT largely increased the histamine-induced mitochondrial [Ca2+] peak and reduced the cytosolic one. Diethylstilbestrol and 17-β-estradiol (but not 17-α-estradiol) were active at pharmacological concentrations while the β-estrogen-receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) was little effective. The ER modulators tamoxifen and 4-hydroxy-tamoxifen inhibited mitochondrial Ca2+ uptake (IC50 2.5±1.5 and 2.5±1.4 μM, mean±s.d., respectively) both in the presence and in the absence of PPT, but raloxifene and the pure estrogen antagonist ICI 182,780 produced no effect. Activation by PPT was immediate and inhibition by tamoxifen or 4-hydroxy-tamoxifen required only 5 min to reach maximum. Tamoxifen did not modify mitochondrial membrane potential and PPT induced a slow mitochondrial depolarization at higher concentrations than those required to activate mitochondrial Ca2+ uptake. These results suggest that some kind of ER or related protein located in mitochondria controls the activity of the Ca2+ uniporter by a nongenomic mechanism. This novel mechanism of action of estrogen agonists and antagonists can provide a new interpretation for several previously reported effects of these compounds. PMID

  8. Modulation of mitochondrial Ca(2+) uptake by estrogen receptor agonists and antagonists.

    PubMed

    Lobatón, Carmen D; Vay, Laura; Hernández-Sanmiguel, Esther; Santodomingo, Jaime; Moreno, Alfredo; Montero, Mayte; Alvarez, Javier

    2005-08-01

    Ca(2+) uptake by mitochondria is a key element in the control of cellular Ca(2+) homeostasis and Ca(2+)-dependent phenomena. It has been known for many years that this Ca(2+) uptake is mediated by the mitochondrial Ca(2+) uniporter, a specific Ca(2+) channel of the inner mitochondrial membrane. We have shown previously that this channel is strongly activated by a series of natural phytoestrogenic flavonoids. We show here that several agonists and antagonists of estrogen receptors (ERs) also modulate the activity of the uniporter. The specific alpha-ER agonist 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was the strongest activator, increasing the rate of mitochondrial Ca(2+) uptake in permeabilized HeLa cells by 10-fold at 2 microM. Consistently, PPT largely increased the histamine-induced mitochondrial [Ca(2+)] peak and reduced the cytosolic one. Diethylstilbestrol and 17-beta-estradiol (but not 17-alpha-estradiol) were active at pharmacological concentrations while the beta-estrogen-receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) was little effective. The ER modulators tamoxifen and 4-hydroxy-tamoxifen inhibited mitochondrial Ca(2+) uptake (IC(50) 2.5+/-1.5 and 2.5+/-1.4 microM, mean+/-s.d., respectively) both in the presence and in the absence of PPT, but raloxifene and the pure estrogen antagonist ICI 182,780 produced no effect. Activation by PPT was immediate and inhibition by tamoxifen or 4-hydroxy-tamoxifen required only 5 min to reach maximum. Tamoxifen did not modify mitochondrial membrane potential and PPT induced a slow mitochondrial depolarization at higher concentrations than those required to activate mitochondrial Ca(2+) uptake. These results suggest that some kind of ER or related protein located in mitochondria controls the activity of the Ca(2+) uniporter by a nongenomic mechanism. This novel mechanism of action of estrogen agonists and antagonists can provide a new interpretation for several previously reported

  9. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  10. Who will benefit from treatment with selective estrogen receptor modulators (SERMs)?

    PubMed

    Sambrook, Philip

    2005-12-01

    Clinical trials have demonstrated that the selective estrogen receptor modulator raloxifene can reduce the risk of vertebral fracture, but have not unequivocally demonstrated an effect on non-vertebral fracture. Consequently it is recommended that raloxifene be used mainly in postmenopausal women with milder osteoporosis as a preventive measure or for treatment in those with predominantly spinal osteoporosis. Since the effects of raloxifene on bone mineral density and bone turnover may reverse soon after cessation, it is recommended that raloxifene be used as long-term therapy for 5-10 years. Because of its quicker offset, use of raloxifene may have advantages over potent bisphosphonates if use of anabolic agents are contemplated in an individual patient.

  11. Selective Estrogen Receptor Modulators Regulate Dendritic Spine Plasticity in the Hippocampus of Male Rats

    PubMed Central

    González-Burgos, Ignacio; Rivera-Cervantes, Martha C.; Velázquez-Zamora, Dulce A.; Feria-Velasco, Alfredo; Garcia-Segura, Luis Miguel

    2012-01-01

    Some selective estrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation in several experimental models of neurodegeneration. In addition, raloxifene and tamoxifen counteract cognitive deficits caused by gonadal hormone deprivation in male rats. In this study, we have explored whether raloxifene and tamoxifen may regulate the number and geometry of dendritic spines in CA1 pyramidal neurons of the rat hippocampus. Young adult male rats were injected with raloxifene (1 mg/kg), tamoxifen (1 mg/kg), or vehicle and killed 24 h after the injection. Animals treated with raloxifene or tamoxifen showed an increased numerical density of dendritic spines in CA1 pyramidal neurons compared to animals treated with vehicle. Raloxifene and tamoxifen had also specific effects in the morphology of spines. These findings suggest that raloxifene and tamoxifen may influence the processing of information by hippocampal pyramidal neurons by affecting the number and shape of dendritic spines. PMID:22164341

  12. Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium

    PubMed Central

    Fan, Hanlu; Du, Xiaohong; Zhang, Jingyuan; Zheng, Han; Lu, Xiaohui; Wu, Qihui; Li, Haifeng; Wang, Han; Shi, Yi; Gao, George; Zhou, Zhuan; Tan, Dun-Xian; Li, Xiangdong

    2017-01-01

    The Ebola crisis occurred in West-Africa highlights the urgency for its clinical treatments. Currently, no Food and Drug Administration (FDA)-approved therapeutics are available. Several FDA-approved drugs, including selective estrogen receptor modulators (SERMs), possess selective anti-Ebola activities. However, the inhibitory mechanisms of these drugs remain elusive. By analyzing the structures of SERMs and their incidental biological activity (cholesterol accumulation), we hypothesized that this incidental biological activity induced by SERMs could be a plausible mechanism as to their inhibitory effects on Ebola infection. Herein, we demonstrated that the same dosages of SERMs which induced cholesterol accumulation also inhibited Ebola infection. SERMs reduced the cellular sphingosine and subsequently caused endolysosomal calcium accumulation, which in turn led to blocking the Ebola entry. Our study clarified the specific anti-Ebola mechanism of SERMs, even the cationic amphiphilic drugs (CADs), this mechanism led to the endolysosomal calcium as a critical target for development of anti-Ebola drugs. PMID:28117364

  13. Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone.

    PubMed Central

    Smith, C L; Conneely, O M; O'Malley, B W

    1993-01-01

    It has been previously demonstrated that several members of the steroid receptor superfamily may be activated by the neurotransmitter dopamine in the apparent absence of cognate ligand. We have examined wild-type and mutant human estrogen receptors (ERs, [Gly400]ER and [Val400]ER, respectively) for their abilities to activate ER-dependent transcription of a transgene in a ligand-independent manner. In cells expressing the wild-type ER, dopamine was nearly as effective as 17 beta-estradiol at inducing the chloramphenicol acetyltransferase activity of the reporter gene in a dose-dependent manner; simultaneous addition of suboptimal concentrations of 17 beta-estradiol and dopamine stimulated transcription more than either compound alone. Dopamine alone was unable to induce gene expression in cells expressing [Val400]ER mutant receptors, but concomitant treatment with 17 beta-estradiol produced a synergistic increase in transcription, suggesting that the ligand may alter the mutant receptor's conformation such that it can be activated subsequently by a dopaminergic signaling mechanism. In the presence of the antiestrogen ICI 164,384, dopamine-stimulated gene expression was undetectable in cells expressing either form of ER. However, simultaneous treatment of cells expressing wild-type ER with trans-4-hydroxytamoxifen and dopamine resulted in transgene expression that was additive in nature compared to either compound alone; similar treatment of cells expressing [Val400]ER produced a synergistic increase. Our results suggest that ligand and ligand-independent activation of the ER initiate from distinct pathways and that the latter may occur in a variety of target tissues subject to modulation by receptor ligands. Images Fig. 5 PMID:8327492

  14. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  15. The selective estrogen receptor modulator, bazedoxifene, reduces ischemic brain damage in male rat.

    PubMed

    Castelló-Ruiz, María; Torregrosa, Germán; Burguete, María C; Miranda, Francisco J; Centeno, José M; López-Morales, Mikahela A; Gasull, Teresa; Alborch, Enrique

    2014-07-11

    While the estrogen treatment of stroke is under debate, selective estrogen receptor modulators (SERMs) arise as a promising alternative. We hypothesize that bazedoxifene (acetate, BZA), a third generation SERM approved for the treatment of postmenopausal osteoporosis, reduces ischemic brain damage in a rat model of transient focal cerebral ischemia. For comparative purposes, the neuroprotective effect of 17β-estradiol (E2) has also been assessed. Male Wistar rats underwent 60min middle cerebral artery occlusion (intraluminal thread technique), and grouped according to treatment: vehicle-, E2- and BZA-treated rats. Optimal plasma concentrations of E2 (45.6±7.8pg/ml) and BZA (20.7±2.1ng/ml) were achieved 4h after onset of ischemia, and maintained until the end of the procedure (24h). Neurofunctional score and volume of the damaged brain regions were the main end points. At 24h after ischemia-reperfusion, neurofunctional examination of the animals did not show significant differences among the three experimental groups. By contrast, both E2- and BZA-treated groups showed significantly lower total infarct volumes, BZA acting mainly in the cortical region and E2 acting mainly at the subcortical level. Our results demonstrate that: (1) E2 at physiological plasma levels in female rats is neuroprotective in male rats when given at the acute stage of the ischemic challenge and (2) BZA at clinically relevant plasma levels mimics the neuroprotective action of E2 and could be, therefore, a candidate in stroke treatment.

  16. Estrogen-responsive genes encoding egg yolk proteins vitellogenin and apolipoprotein II in chicken are differentially regulated by selective estrogen receptor modulators.

    PubMed

    Ratna, Warren N; Bhatt, Vrushank D; Chaudhary, Kawshik; Bin Ariff, Ammar; Bavadekar, Supriya A; Ratna, Haran N

    2016-02-01

    In a hen, large quantities of the egg yolk proteins, apolipoprotein II (apo-II) and vitellogenin (VG), are expressed in the liver and transported to the oviduct during egg production. Estrogenic stimulation of the hepatic expression of apo-II and VG is due to both transcriptional increase and mRNA stabilization. The nucleolytic degradation of apo-II messenger RNA (mRNA) is prevented by estrogen-regulated mRNA-stabilizing factor (E-RmRNASF). Gene-specific effects of a select panel of selective estrogen receptor modulators (SERMs) on the hepatic expression of the estrogen-responsive genes encoding apo-II, VG, and E-RmRNASF in the chicken liver were investigated. In the present study, 6-week-old roosters were treated with the vehicle, estrogen, the SERMs genistein, resveratrol, tamoxifen, pterostilbene, raloxifene, catechin, and clomiphene or a combination of estrogen and a 200-fold excess of each of the SERMs. Results from mRNA stabilization studies conducted to investigate the stimulation of expression of E-RmRNASF in the liver by these agents showed that the expression of E-RmRNASF in the liver was stimulated by estrogen and the SERMs genistein, resveratrol, tamoxifen, pterostilbene, and catechin but not by the vehicle, clomiphene or raloxifene. The expression of apo-II and VG from the aforementioned treatments was determined by Northern blot analysis, RNase protection assays, and Western blot analysis. The transcription and protein expression of both apo-II and VG genes were seen in response to treatment with estrogen but not with the SERMs or combinations of estrogen and each of the SERMs. The SERMs that stimulated the expression of E-RmRNASF antagonized the stimulation of the expression of both apo-II and VG by estrogen, demonstrating a gene-specific, selective regulation of the aforementioned genes in the chicken liver by the SERMs. The above panel of SERMs may likely have adverse effects on egg production.

  17. In Silico Elucidation of the Molecular Mechanism Defining the Adverse Effect of Selective Estrogen Receptor Modulators

    PubMed Central

    Xie, Lei; Wang, Jian; Bourne, Philip E

    2007-01-01

    Early identification of adverse effect of preclinical and commercial drugs is crucial in developing highly efficient therapeutics, since unexpected adverse drug effects account for one-third of all drug failures in drug development. To correlate protein–drug interactions at the molecule level with their clinical outcomes at the organism level, we have developed an integrated approach to studying protein–ligand interactions on a structural proteome-wide scale by combining protein functional site similarity search, small molecule screening, and protein–ligand binding affinity profile analysis. By applying this methodology, we have elucidated a possible molecular mechanism for the previously observed, but molecularly uncharacterized, side effect of selective estrogen receptor modulators (SERMs). The side effect involves the inhibition of the Sacroplasmic Reticulum Ca2+ ion channel ATPase protein (SERCA) transmembrane domain. The prediction provides molecular insight into reducing the adverse effect of SERMs and is supported by clinical and in vitro observations. The strategy used in this case study is being applied to discover off-targets for other commercially available pharmaceuticals. The process can be included in a drug discovery pipeline in an effort to optimize drug leads and reduce unwanted side effects. PMID:18052534

  18. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

    PubMed

    Fernández-Suárez, María E; Escolà-Gil, Joan C; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-09-07

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.

  19. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  20. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells.

    PubMed

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Sánchez-Martínez, Ruth; Vargas, Teodoro; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2014-06-01

    Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy.

  1. [Selective Estrogen Receptor Modulators (SERMs) for prevention and treatment of postmenopausal osteoporosis].

    PubMed

    Birkhäuser, Martin

    2012-03-01

    The three modern Selective Estrogen Receptor Modulators (SERMs) Raloxifene, Lasoxifene and Bazedoxifene registered in Europe reduce in postmenopausal women with a high risk for osteoporosis the incidence of vertebral fractures by 30 - 50 %, depending on the subgroup they belong to. Solid prospective fracture data for risk reduction in non-vertebral fractures, including the hip, are missing for Raloxifene and Bazedoxifene. However, a post hoc analysis suggests that the risk for non-vertebral fractures is significantly reduced by Raloxfene in women with severe osteoporosis. The simultaneous decrease of the incidence of ER-positive invasive breast cancer in Raloxifene users is highly relevant for clinicians. Unfortunately, Raloxifene and Bazedoxifene are, in the EU and in Switzerland, only labelled for the use in the prevention and treatment of postmenopausal osteoporosis. SERMs may induce or augment vasomotor symptoms. Therefore, SERMs are not a first line therapy in early postmenopause. Looking at other hormonal options, Hormone Replacement Therapy (HRT) remains the first line therapy for fracture reduction in the peri- and early postmenopause. SERMs are an appropriate choice for the continuation of fracture prevention after an initial HRT, particularly for the prevention of vertebral fractures. SERMs are safe if (as in oral HRT) the slightly increased risk for venous thrombo-embolism is respected. In conclusion, SERMs have today their well established place in the prevention and treatment of postmenopausal osteoporosis, particularly in women with a simultaneously increased breast cancer risk.

  2. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

    PubMed

    Grassi, Daniela; Ghorbanpoor, Samar; Acaz-Fonseca, Estefania; Ruiz-Palmero, Isabel; Garcia-Segura, Luis M

    2015-10-01

    The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.).

  3. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  4. Anti-proliferative effects of estrogen receptor-modulating compounds isolated from Rheum palmatum.

    PubMed

    Kang, Se Chan; Lee, Chang Min; Choung, Eui Su; Bak, Jong Phil; Bae, Jong Jin; Yoo, Hyun Sook; Kwak, Jong Hwan; Zee, Ok Pyo

    2008-06-01

    The Rheum palmatum L., a traditional medicine in Korea, was screened for their estrogenic activity in a recombinant yeast system with a human estrogen receptor (ER) expression plasmid and a reporter plasmid used in a previous study. The EC50 values of the n-hexane, dichloromethane, ethyl acetate, n-butanol, and water fractions of the methanolic extract of R. palmatum in the yeast-based estrogenicity assay system were 0.145, 0.093, 0.125, 1.459, 2.853 microg/mL, respectively, with marked estrogenic activity in the dichloromethane fraction. Using an activity-guided fractionation approach, five known anthraquinones, chrysophanol (1), physcion (2), emodin (3), aloe-emodin (4) and rhein (5), were isolated from the dichloromethane fraction. Compound 3 had the highest estrogenic relative potency (RP, 17bestradiol = 1.00) (6.3 x 10(-2)), followed by compound 4 (3.8 x 10(-3)), compound 5 (2.6 x 10(-4)), a compound 1 (2.1 x 10(-4)). Also, compound 3 and fraction 3 (which contained compound 3) of the dichloromethane fraction of R. palmatum showed strong cytotoxicity in both ER-positive (MCF-7) and-negative (MDA-MB-231) breast cancer cell lines.

  5. Cell proliferation and modulation of interaction of estrogen receptors with coregulators induced by ERα and ERβ agonists.

    PubMed

    Evers, Nynke M; van den Berg, Johannes H J; Wang, Si; Melchers, Diana; Houtman, René; de Haan, Laura H J; Ederveen, Antwan G H; Groten, John P; Rietjens, Ivonne M C M

    2014-09-01

    The aim of the present study was to investigate modulation of the interaction of the ERα and ERβ with coregulators in the ligand responses induced by estrogenic compounds. To this end, selective ERα and ERβ agonists were characterized for intrinsic relative potency reflected by EC50 and maximal efficacy towards ERα and ERβ mediated response in ER selective reporter gene assays, and subsequently tested for induction of cell proliferation in T47D-ERβ cells with variable ERα/ERβ ratio, and finally for ligand dependent modulation of the interaction of ERα and ERβ with coregulators using the MARCoNI assay, with 154 unique nuclear receptor coregulator peptides derived from 66 different coregulators. Results obtained reveal an important influence of the ERα/ERβ ratio and receptor selectivity of the compounds tested on induction of cell proliferation. ERα agonists activate cell proliferation whereas ERβ suppresses ERα mediated cell proliferation. The responses in the MARCoNI assay reveal that upon ERα or ERβ activation by a specific agonist, the modulation of the interaction of the ERs with coregulators is very similar indicating only a limited number of differences upon ERα or ERβ activation by a specific ligand. Differences in the modulation of the interaction of the ERs with coregulators between the different agonists were more pronounced. Based on ligand dependent differences in the modulation of the interaction of the ERs with coregulators, the MARCoNI assay was shown to be able to classify the ER agonists discriminating between different agonists for the same receptor, a characteristic not defined by the ER selective reporter gene or proliferation assays. It is concluded that the ultimate effect of the model compounds on proliferation of estrogen responsive cells depends on the intrinsic relative potency of the agonist towards ERα and ERβ and the cellular ERα/ERβ ratio whereas differences in the modulation of the interaction of the ERα and

  6. Inhibitory effects of Chinese nutritional herbs in isogenic breast carcinoma cells with modulated estrogen receptor function

    PubMed Central

    Telang, Nitin; Li, Guo; Katdare, Meena; Sepkovic, Daniel; Bradlow, Leon; Wong, George

    2016-01-01

    In estrogen receptor (ER)+ MCF-7 cells, ER represents a ligand-activated transcription factor, and 17β-estradiol (E2) represents its physiological ligand. Maintenance of the human breast carcinoma-derived MCF-7 cells with 0.7% serum selected a proliferative sub-population of E2-responsive cells with transiently non-functional ER due to limited availability of E2. Culture of MCF-7 cells in the presence of either 0.7% serum, <1 nM E2 or 0.7% serum + 20 nM E2 selected isogenic cells with either non-functional ER (ER-NF) or functional ER (ER-F) phenotype. The two phenotypes responded to the growth-promoting effects of E2 and to the growth-inhibitory effects of the selective ER modulator tamoxifen, indicating retention of E2 responsiveness. Comparative dose-response experiments with Chinese nutritional herbs on ER-NF and ER-F cells identified the inhibitory concentration (IC)50 values for these herbs, while the IC50 ratios for the ER-NF:ER-F phenotypes facilitated their rank ordering in terms of efficacy. Out of the 11 efficacious herbs tested, five herbs exhibited ER-F > ER-NF inhibitory activity, four exhibited ER-F = ER-NF inhibitory activity and two exhibited ER-NF > ER-F inhibitory activity. Extracts from representative herbs, Lycium barbarum bark, Epimedium grandiflorum and Cornus officinalis, from each of the three groups inhibited anchorage-independent growth, induced G1 or G2/M arrest and/or apoptosis, and generated anti-proliferative E2 metabolites. The differential growth inhibition in ER-NF and ER-F phenotypes, together with the mechanistic efficacy of representative herbs, identified potential leads for their efficacy on ER+ and/or ER- breast cancer. PMID:27895755

  7. Inhibitory effects of Chinese nutritional herbs in isogenic breast carcinoma cells with modulated estrogen receptor function.

    PubMed

    Telang, Nitin; Li, Guo; Katdare, Meena; Sepkovic, Daniel; Bradlow, Leon; Wong, George

    2016-11-01

    In estrogen receptor (ER)+ MCF-7 cells, ER represents a ligand-activated transcription factor, and 17β-estradiol (E2) represents its physiological ligand. Maintenance of the human breast carcinoma-derived MCF-7 cells with 0.7% serum selected a proliferative sub-population of E2-responsive cells with transiently non-functional ER due to limited availability of E2. Culture of MCF-7 cells in the presence of either 0.7% serum, <1 nM E2 or 0.7% serum + 20 nM E2 selected isogenic cells with either non-functional ER (ER-NF) or functional ER (ER-F) phenotype. The two phenotypes responded to the growth-promoting effects of E2 and to the growth-inhibitory effects of the selective ER modulator tamoxifen, indicating retention of E2 responsiveness. Comparative dose-response experiments with Chinese nutritional herbs on ER-NF and ER-F cells identified the inhibitory concentration (IC)50 values for these herbs, while the IC50 ratios for the ER-NF:ER-F phenotypes facilitated their rank ordering in terms of efficacy. Out of the 11 efficacious herbs tested, five herbs exhibited ER-F > ER-NF inhibitory activity, four exhibited ER-F = ER-NF inhibitory activity and two exhibited ER-NF > ER-F inhibitory activity. Extracts from representative herbs, Lycium barbarum bark, Epimedium grandiflorum and Cornus officinalis, from each of the three groups inhibited anchorage-independent growth, induced G1 or G2/M arrest and/or apoptosis, and generated anti-proliferative E2 metabolites. The differential growth inhibition in ER-NF and ER-F phenotypes, together with the mechanistic efficacy of representative herbs, identified potential leads for their efficacy on ER(+) and/or ER- breast cancer.

  8. A novel carborane analog, BE360, with a carbon-containing polyhedral boron-cluster is a new selective estrogen receptor modulator for bone

    SciTech Connect

    Hirata, Michiko; Inada, Masaki; Matsumoto, Chiho; Takita, Morichika; Ogawa, Takumi; Endo, Yasuyuki; Miyaura, Chisato

    2009-03-06

    Carboranes are a class of carbon-containing polyhedral boron-cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors. Estrogen deficiency results in marked bone loss due to increased osteoclastic bone resorption in females, but estrogen replacement therapy is not generally used for postmenopausal osteoporosis due to the risk of uterine cancer. We synthesized a novel carborane compound BE360 to clarify its anti-osteoporosis activity. BE360 showed a high binding affinity to estrogen receptors (ER), ER{alpha} and ER{beta}. In ovariectomized (OVX) mice, femoral bone volume was markedly reduced and BE360 dose-dependently restored bone loss in OVX mice. However, BE360 did not exhibit any estrogenic activity in the uterus. BE360 also restored bone loss in orchidectomized mice without androgenic action in the sex organs. Therefore, BE360 is a novel selective estrogen receptor modulator (SERM) that may offer a new therapy option for osteoporosis.

  9. Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator.

    PubMed

    An, Byoung Ha; Jeong, Hyesoo; Zhou, Wenmei; Liu, Xiyuan; Kim, Soolin; Jang, Chang Young; Kim, Hyun-Sook; Sohn, Johann; Park, Hye-Jin; Sung, Na-Hye; Hong, Cheol Yi; Chang, Minsun

    2016-06-01

    Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17β-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Determination and confirmation of selective estrogen receptor modulators (SERMs), anti-estrogens and aromatase inhibitors in bovine and porcine urine using UHPLC-MS/MS.

    PubMed

    Meijer, Thijs; Essers, Martien L; Kaklamanos, George; Sterk, Saskia S; van Ginkel, Leendert A

    2017-04-01

    Selective estrogen receptor modulators (SERMs), anti-estrogens and aromatase inhibitors are prohibited in human sports doping. However, they also present a risk of being used illegally in animal husbandry for fattening purposes. A method was developed and validated using UHPLC-MS/MS for the determination and confirmation of SERMs, anti-estrogens and aromatase inhibiters in bovine and porcine urine. This method was used in a survey of more than 200 bovine and porcine urine samples from Dutch farms. In 18 out of 103 porcine urine samples (17%) and two out of 114 bovine samples (2%) formestane, an aromatase inhibitor, was detected. None of the other compounds was detected. From human doping control it is known that formestane can, in some cases, be of natural origin. Analyses of reference samples from untreated bovine and porcine animals demonstrated the presence of formestane in bovine animals, but not yet in porcine animals. Future research will focus on whether the detected formestane in porcine and bovine urine is from endogenous or exogenous origin, using GC-c-IRMS.

  11. High-Dose Estrogen and Clinical Selective Estrogen Receptor Modulators Induce Growth Arrest, p21, and p53 in Primate Ovarian Surface Epithelial Cells

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2005-06-09

    Ovarian cancer is the most lethal gynecological cancer affecting women. Hormone-based therapies are variably successful in treating ovarian cancer, but the reasoning behind these therapies is paradoxical. Clinical reagents such as tamoxifen are considered to inhibit or reverse tumor growth by competitive inhibition of the estrogen receptor (ER); however high dose estrogen is as clinically effective as tamoxifen, and it is unlikely that estrogen is acting by blocking ER activity; however, it may be activating a unique function of the ER that is nonmitogenic. For poorly defined reasons, 90% of varian cancers derive from the ovarian surface epithelium (OSE). In vivo the ER-positive OSE is exposed to high estrogen levels, reaching micromolar concentrations in dominant ovarian follicles. Using cultured OSE cells in vitro, we show that these levels of estradiol (1 ug/ml; {approx}3um) block the actions of serum growth factors, activate the G1 phase retinoblastoma AQ:A checkpoint, and induce p21, an inhibitor of kinases that normally inactivate the retinoblastoma checkpoint. We also show that estradiol increases p53 levels, which may contribute to p21 induction. Supporting the hypothesis that clinical selective ER modulators activate this novel ER function, we find that micromolar doses of tamoxifen and the ''pure antiestrogen'' ICI 182,780 elicit the same effects as estradiol. We propose that, in the context of proliferation, these data clarify some paradoxical aspects of hormone-based therapy and suggest that fuller understanding of normal ER function is necessary to improve therapeutic strategies that target the ER. (J Clin Endocrinol Metab 90: 0000-0000, 2005)

  12. Role of pocket flexibility in the modulation of estrogen receptor alpha by key residue arginine 394.

    PubMed

    Mu, Yunsong; Peng, Sufen; Zhang, Aiqian; Wang, Liansheng

    2011-02-01

    Estradiol derivatives, with similar structures as estradiol (E2) or estradiol metabolites, have been recognized to have detrimental health effects on wildlife and humans. However, data at the molecular level about interactions of these compounds with biological targets are still lacking. Herein, a flexible docking approach was used to characterize the molecular interaction of nine estradiol derivatives with estrogen receptor alpha (ERα) in the ligand-binding domain. All ligands were docked in the buried hydrophobic cavity of the steroid hormone pocket. In addition, the plasticity of an active site was also identified by reversing amino acid arginine 394 for better ligand-receptor binding affinity. Finally, bioassays based on genetically modified yeast strains were used to validate the quality of molecular simulation because of their rapidity and high sensitivity. The experimental findings about logarithm values of the median effective concentration (EC50) value had a linear correlation with computational binding affinity from molecular docking, which described a pattern of interaction between estradiol derivatives and ER. The estrogenic activity of all compounds, although more or less lower than E2, was proved to possess high severe environmental risks. Considering the sidechain flexibility in the ligand binding pocket, 17α-ethylestradiol-3-cyclopentylether was reported to correlate highly significantly with known induced fit conformational changes based upon proof-of-principle calculations on human ERα with the preservation of a strong salt bridge between glutamic acid 353 and arginine 394.

  13. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  14. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    SciTech Connect

    Liu, Xiyuan; An, Byoung Ha; Kim, Min Jung; Park, Jong Hoon; Kang, Young Sook; Chang, Minsun

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  15. The benefits of estrogen or selective estrogen receptor modulator on kidney and its related disease-chronic kidney disease-mineral and bone disorder: osteoporosis.

    PubMed

    Lee, Wen-Ling; Cheng, Ming-Huei; Tarng, Der-Cherng; Yang, Wu-Chang; Lee, Fa-Kung; Wang, Peng-Hui

    2013-07-01

    An umbrella concept addressing the relationship between chronic kidney disease (CKD) and mineral and bone disorders has been developed in recent years. Given the high prevalence of osteoporosis-related fractures in postmenopausal women with CKD, especially those undergoing chronic hemodialysis, the strategy used in the prevention and management of CKD and its associated osteoporosis in these postmenopausal women has become a topic of substantial debate. This controversy has ongoing relevance because osteoporosis results in a significant economic burden secondary to increased morbidity and mortality. The perfect goal of treatment and prevention includes both bone protection and renal protection, or at least protection of one disease without compromising the other disease. Both CKD and osteoporosis are frequently observed in the same patients, and often have parallel progression in postmenopausal women. Estrogen, the main female hormone during reproductive age, has been reported to have a protective effect on kidney fibrosis in several animal models, and is also considered one of the most effective drugs in the management of postmenopausal women with osteoporosis and prevention of osteoporosis. However, due to the many adverse events associated with the use of estrogen with and without progestin, some of which have contributed to significant morbidity and mortality, drug modification, which has had fewer reported incidences of adverse events without compromising the protective effect on both the kidney and bone, may have an easier road to acceptance. Therapeutic alternatives, such as the selective estrogen receptor modulators (SERMs), have shown the benefits of estrogen on bone, serum lipid levels, and renal protection, without any adverse effects on the breast and endometrium. The Multiple Outcomes of Raloxifene Evaluation trial (MORE) and its extension-Continuing Outcomes Relevant to Evista (CORE), a double-blind, randomized clinical trial encompassing

  16. In vivo characterization of estrogen receptor modulators with reduced genomic versus nongenomic activity in vitro.

    PubMed

    Otto, Christiane; Fuchs, Iris; Altmann, Helga; Klewer, Mario; Schwarz, Gilda; Bohlmann, Rolf; Nguyen, Duy; Zorn, Ludwig; Vonk, Richardus; Prelle, Katja; Osterman, Thua; Malmström, Chira; Fritzemeier, Karl-Heinrich

    2008-07-01

    Estrogen receptor (ER) ligands that are able to prevent postmenopausal bone loss, but have reduced activity in the uterus and the mammary gland might be of great value for hormone therapy. It is well established that the classical ER can activate genomic as well as nongenomic signal transduction pathways. In this study, we analyse the in vivo behaviour of ER ligands that stimulate nongenomic ER effects to the same extent as estradiol, but show clearly reduced activation of genomic ER effects in vitro. Using different readout parameters such as morphological changes, cellular proliferation, and target gene induction, we are able to demonstrate that ER ligands with reduced genomic activity in vitro show a better dissociation of bone versus uterine and mammary gland effects than estradiol that stimulates genomic and nongenomic effects to the same extent. We conclude that pathway-selective ER ligands may represent an interesting option for hormone therapy.

  17. Receptors for leptin and estrogen in the subcommissural organ of rabbits are differentially modulated by fasting.

    PubMed

    Dall'Aglio, Cecilia; Ceccarelli, Piero; Pascucci, Luisa; Brecchia, Gabriele; Boiti, Cristiano

    2006-12-08

    In rabbits, the fasting-dependent reduction of LH secretion is likely mediated by leptin and estrogens via receptors in the brain. For the first time, using immunohistochemistry, the presence and regulation of receptors for leptin (Ob-R) and estradiol-17beta subtype alpha (ERalpha) were studied in the subcommissural organ (SCO) of rabbits, which were fed either ad libitum (control) or fasted for 48 h (treated) to verify whether this brain structure is a potential site of integration for metabolism and reproduction. In control rabbits, the cytoplasm of glial cells lining the SCO evidenced strong Ob-R immunoreactivity, whereas both ependymal and hypendymal cells of this glandular-like structure were negative. The Ob-R positive glial cells were identified as fibrous astrocytes using the phosphotungstic acid-hematoxylin histochemical (PTAH) and glial fibrillary acidic protein (GFAP) immunohistochemical techniques. ERalpha immunoreactive nuclei were detectable exclusively in the specialized cells forming the SCO, whereas surrounding astrocytes and neurons were negative. Compared to controls, in fasted rabbits, the staining of Ob-R immunoreaction was reduced in the cytoplasm of positive astrocytes, but greatly enhanced in plasma membranes, whereas the number of ERalpha immunoreactive SCO cells was increased (13.2+/-2.7 vs. 5.2+/-2.0, P<0.01). Ependymal cells lining the third ventricle were negative for both Ob-R and ERalpha. Our results indicate, although indirectly, that the SCO, together with the astrocytes in close contact with this structure, is a likely target for nutritional and gonadal signals carried by leptin and estrogens, suggesting that these specialized glial cells may regulate reproduction and metabolism through mechanisms still unknown.

  18. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  19. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation.

    PubMed

    Kauss, M Ariel; Reiterer, Gudrun; Bunaciu, Rodica P; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G(1) to S to G(2)/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G(0) cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  20. A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors

    SciTech Connect

    Kumar, Rajeev; Verma, Vikas; Sharma, Vikas; Jain, Ashish; Singh, Vishal; Sarswat, Amit; Maikhuri, Jagdamba P.; Sharma, Vishnu L.; Gupta, Gopal

    2015-03-15

    Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~ 25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasL (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P < 0.01) and increased expression of ER-β target TNF-α (P < 0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization. - Highlights: • BP with benzopyran core of genistein was identified for ER-β selective action. • BP was 14-times more potent than genistien in targeting prostate cancer cells. • It behaved as a potent ER-β agonist and ER-α antagonist in gene reporter assays. • BP's anti-proliferative action was inhibited significantly in ER-β deficient cells. • BP — a unique lead structure

  1. Estrogen receptors in breast carcinoma.

    PubMed

    Huaman, A

    1979-11-01

    On the basis of estrogen receptor assays, breast carcinomas are presently classified as estrogen-dependent tumors, which respond to endocrine therapy, and autonomous tumors, for which endocrine therapy is useless. This paper presents a short review of the biochemical principles of estrogen dependence, the procedures used to determine estrogen receptors, and the clinical applications of the findings of these assay procedures. Biobhemically, the estroogen dependence of normal breast cells is explained as a biochemical reaction occurring between the circulating estradiol and the breast cell, which occurs in 3 steps: 1) circulating estradiol penetrates the cellular membrane by passive diffusion, followed by 2) combining of estradiol with the estrogen-binding protein (estrophilin) and formation of an estrogen receptor complex which undergoes activation and translocation into the nucleus, to result in 3) the activated steroid receptor which combines with the nuclear charomatin and stimulates ribonucleic acid synthesis for the formation of estradiol binding proteins or estradiol receptors. The cytosol method of Wittliff et al. is described in brief and entails radioactive competitive analysis; the other available laboratory procedure is immunofluorescence of tumor sections. Quantification of estrogen receptor content can be used clinically to decide on ablative endocrine therapy, to determine the effectiveness of anti-estrogen administration, to determine the primary site of metastatic carcinoma, and as a screenng device.

  2. Testosterone attenuates and the selective estrogen receptor modulator, raloxifene, potentiates amphetamine-induced locomotion in male rats.

    PubMed

    Purves-Tyson, Tertia D; Boerrigter, Danny; Allen, Katherine; Zavitsanou, Katerina; Karl, Tim; Djunaidi, Vanezha; Double, Kay L; Desai, Reena; Handelsman, David J; Weickert, Cynthia Shannon

    2015-04-01

    Although sex steroids are known to modulate brain dopamine, it is still unclear how testosterone modifies locomotor behaviour controlled, at least in part, by striatal dopamine in adolescent males. Our previous work suggests that increasing testosterone during adolescence may bias midbrain neurons to synthesise more dopamine. We hypothesised that baseline and amphetamine-induced locomotion would differ in adult males depending on testosterone exposure during adolescence. We hypothesised that concomitant stimulation of estrogen receptor signaling, through a selective estrogen receptor modulator (SERM), raloxifene, can counter testosterone effects on locomotion. Male Sprague-Dawley rats at postnatal day 45 were gonadectomised (G) or sham-operated (S) prior to the typical adolescent testosterone increase. Gonadectomised rats were either given testosterone replacement (T) or blank implants (B) for six weeks and sham-operated (i.e. intact or endogenous testosterone group) were given blank implants. Subgroups of sham-operated, gonadectomised and gonadectomised/testosterone-replaced rats were treated with raloxifene (R, 5mg/kg) or vehicle (V), daily for the final four weeks. There were six groups (SBV, GBV, GTV, SBR, GBR, GTR). Saline and amphetamine-induced (1.25mg/kg) locomotion in the open field was measured at PND85. Gonadectomy increased amphetamine-induced locomotion compared to rats with endogenous or with exogenous testosterone. Raloxifene increased amphetamine-induced locomotion in rats with either endogenous or exogenous testosterone. Amphetamine-induced locomotion was negatively correlated with testosterone and this relationship was abolished by raloxifene. Lack of testosterone during adolescence potentiates and testosterone exposure during adolescence attenuates amphetamine-induced locomotion. Treatment with raloxifene appears to potentiate amphetamine-induced locomotion and to have an opposite effect to that of testosterone in male rats.

  3. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    PubMed

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  4. The presence of Estrogen Receptor β modulates the response of breast cancer cells to therapeutic agents.

    PubMed

    Pons, Daniel Gabriel; Torrens-Mas, Margalida; Nadal-Serrano, Mercedes; Sastre-Serra, Jorge; Roca, Pilar; Oliver, Jordi

    2015-09-01

    Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.

  5. Selective estrogen-receptor modulators (SERMs) in the cyclopentadienylrhenium tricarbonyl series: synthesis and biological behaviour.

    PubMed

    Top, Siden; Vessières, Anne; Pigeon, Pascal; Rager, Marie-Noëlle; Huché, Michel; Salomon, Emmanuel; Cabestaing, Claude; Vaissermann, Jacqueline; Jaouen, Gérard

    2004-08-06

    A series of organometallic antiestrogens based on the OH-tamoxifen (OH-Tam) skeleton and bearing the (eta(5)-C(5)H(4))Re(I)(CO)(3) unit has been prepared by using McMurry coupling for the purpose of studying their biological behaviour. The cyclopentadienylrhenium tricarbonyl moiety is indeed stable in biological media, compact, lipophilic and easy to handle. Furthermore, this study allowed us to select the best candidates for subsequent use as radiopharmaceuticals either for imaging or therapy by using appropriate radionucleides, namely (99m)Tc and (188)Re. In these molecules the beta-phenyl group of OH-Tam has been replaced by the (eta(5)-C(5)H(4))Re(CO)(3) moiety, and the length of the dimethylamino side chain --O(CH(2))(n)N(CH(3))(2) was varied (n=2, 3, 4, 5 and 8). The compounds 7 a-7 e were obtained as mixtures of their Z and E isomers, which could be separated by semipreparative HPLC. Unlike their ferrocene homologues, the compounds do not isomerise in solution. Structural identification was carried out with NMR spectroscopy by using the HMBC and NOE techniques and was confirmed by the X-ray structural determination of (E)-7 a (n=2). These molecules were more lipophilic than OH-Tam (log P(o/w)=4.5-6.3) and they were all reasonably well recognized by the two forms of the estrogen receptor (ERalpha and ERbeta). For example, (Z)-7 b (n=3) has high relative binding affinity (RBA) values of 31 % for ERalpha and 16.8 % for ERbeta. The antiproliferative effects of two pairs of isomers, (Z)- and (E)-7 b (n=3) and (Z)- and (E)-7 d (n=5), were studied at a molarity of 1 microM on two breast-cancer cell lines, MCF7 (ERalpha positive) and MDA-MB231 (ERalpha negative). These molecules had an antiproliferative effect on MCF7 cells slightly higher than that of OH-Tam and no effect on MDA-MB231 cells. Thus, the antiproliferative effect observed on the MCF7 cells seemed essentially to be linked to an antiestrogenic effect. Molecular modelling studies have allowed us to

  6. Estrogenic status modulates aryl hydrocarbon receptor - mediated hepatic gene expression and carcinogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...

  7. Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status

    PubMed Central

    Gasparini, Pierluigi; Ngankeu, Apollinaire; Taccioli, Cristian; Briskin, Daniel; Cheung, Douglas G.; Bolon, Brad; Anderlucci, Laura; Alder, Hansjuerg; Nuovo, Gerard; Li, Meng; Iorio, Marilena V.; Galasso, Marco; Ramasamy, Santhanam; Marcucci, Guido; Perrotti, Danilo; Powell, Kimerly A.; Bratasz, Anna; Garofalo, Michela; Nephew, Kenneth P.; Croce, Carlo M.

    2013-01-01

    MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells. PMID:23505378

  8. In Vivo Estradiol, Tamoxifen and Raloxifene Modulation of Association/Dissociation Kinetics for Estrogen Receptor, Interacting Co-Factors and DNA Binding Sites

    DTIC Science & Technology

    2002-06-01

    is preferred clinically (3, 5 , 7 , 13). It is our goal to understand the molecular and cellular basis of the tissue-specific actions of these...IFinal (14 May 01 - 23 May 02) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS In Vivo Estradiol, Tamoxifen and Raloxifene Modulation of DAMDl7-01-1-0498...Association/Dissociation Kinetics for Estrogen Receptor, Interacting Co-Factors and DNA Binding Sites 6. AUTHOR(S) Fred J. Schaufele, Ph.D. 7

  9. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  10. Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways.

    PubMed

    Duluc, Lucie; Jacques, Caroline; Soleti, Raffaella; Iacobazzi, Francesco; Simard, Gilles; Andriantsitohaina, Ramaroson

    2013-04-01

    Red wine polyphenolic compounds (RWPC) are reported to exert vasculoprotective properties on endothelial cells, involving nitric oxide (NO) release via a redox-sensitive pathway. This NO release involves the activation of the estrogen receptor-alpha (ERα). Paradoxical effects of a RWPC treatment occur in a rat model of post-ischemic neovascularization, where a low-dose is pro-angiogenic while a higher dose is anti-angiogenic. NO and ERα are key regulators of mitochondrial capacity, and angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial capacity has never been addressed. We investigated the effects of RWPC at low (10(-4)g/l, LCP) and high concentration (10(-2)g/l, HCP) in human endothelial cells. Mitochondrial respiration, expression of mitochondrial biogenesis factors and mitochondrial DNA content were assessed using oxygraphy and quantitative PCR respectively. In vitro capillary formation using ECM gel(®) was also performed. Treatment with LCP increased mitochondrial respiration, with a maximal effect achieved at 48h. LCP also increased expression of several mitochondrial biogenesis factors and mitochondrial DNA content. In contrast, HCP did not affect these parameters. Furthermore, LCP modulated both mitochondrial capacity and angiogenesis through mechanisms sensitive to ER, NADPH oxidase and NO-synthase inhibitors. Finally, the inhibition of mitochondrial protein synthesis abolished the pro-angiogenic capacity of LCP. These results suggest a possible association between the modulation of mitochondrial capacity by LCP and its pro-angiogenic activity. These data provide evidence for a role of mitochondria in the regulation of angiogenesis by RWPC.

  11. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  12. The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer.

    PubMed

    Jaouen, Gérard; Top, Siden; Vessières, Anne; Leclercq, G; McGlinchey, Michael J

    2004-09-01

    In the overall scheme of the future development of new drugs for the treatment of breast cancer, specially tamoxifen resistant tumours, we have explored the unprecedented use of organometallic SERMs. The initial idea is to enhance the efficacy of the current standard, i.e. tamoxifen, by modifying the structure through judicious incorporation of an organometallic moiety possessing novel properties. Results have been varied, justifying a systematic approach that has proved to be full of surprised. The following differing situations were observed (a) the anti-proliferative effect is due to the vector and the organometallic moiety does not improve the effects of the SERM, no matter what concentration is used. In particular, this is the case for the hydroxytamoxifen derivative bearing a CpRe(CO)3 group, which behaves almost identically to hydroxytamoxifen. These stable species have future promise for use with radionucleides of Re and Tc (b) the effect of the organometallic moiety counteracts the anti-estrogenic behaviour of the vector and leads to species with proliferative activity; this is the case with Cp2TiCl2 entity, which when attached to tamoxifen behaves as a powerful estrogen, probably due to in situ release of Ti(IV) (c) a synergy exists between the cytotoxic organometallic moiety and its organic vector, leading to unique anti-proliferative effects on breast cancer cells classed ER+ and ER-. This result opens a new window on organometallic oncology. It is also clear that the range of possibilities is broad, varied and currently unpredictable. A systematic study combining organometallic chemistry and biology is the only option in the search for new SERMs with novel properties.

  13. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus.

    PubMed

    Waters, Elizabeth M; Thompson, Louisa I; Patel, Parth; Gonzales, Andreina D; Ye, Hector Zhiyu; Filardo, Edward J; Clegg, Deborah J; Gorecka, Jolanta; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2015-02-11

    Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions.

  14. G-Protein-Coupled Estrogen Receptor 1 Is Anatomically Positioned to Modulate Synaptic Plasticity in the Mouse Hippocampus

    PubMed Central

    Thompson, Louisa I.; Patel, Parth; Gonzales, Andreina D.; Ye, Hector (Zhiyu); Filardo, Edward J.; Clegg, Deborah J.; Gorecka, Jolanta; Akama, Keith T.; McEwen, Bruce S.; Milner, Teresa A.

    2015-01-01

    Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions. PMID:25673833

  15. Selective Estrogen Receptor Modulator-Associated Nonalcoholic Fatty Liver Disease Improved Survival in Patients With Breast Cancer

    PubMed Central

    Zheng, Qiufan; Xu, Fei; Nie, Man; Xia, Wen; Qin, Tao; Qin, Ge; An, Xin; Xue, Cong; Peng, Roujun; Yuan, Zhongyu; Shi, Yanxia; Wang, Shusen

    2015-01-01

    Abstract Selective estrogen receptor modulator (SERM)-associated nonalcoholic fatty liver disease (NAFLD) might be related to treatment efficacy in patients with breast cancer because of circulating estrogen antagonism. The aim of the study was to investigate the relationship between NAFLD and survival outcomes in patients with breast cancer who were treated with tamoxifen or toremifene. This single-center, retrospective, cohort study included 785 eligible patients who received tamoxifen or toremifene, after curative resection for breast cancer, at the Sun Yat-sen University Cancer Center between January 2005 and December 2009. Data were extracted from patient medical records. All patients underwent abdominal ultrasonography, at least once, at baseline and at the annual follow-up. Patients who were diagnosed with NAFLD on ultrasonography were classified into the NAFLD or the non-NAFLD arm at the 3-year follow-up visit. Univariate and multivariate Cox regression analyses were conducted to evaluate any associations between NAFLD and disease-free survival (DFS) or overall survival (OS). One hundred fifty-eight patients were diagnosed with NAFLD. Patients who developed NAFLD had better DFS and OS compared with those who did not. Univariate analyses revealed that the 5-year DFS rates were 91.56% and 85.01% for the NAFLD and non-NAFLD arms, respectively (hazard ratio [HR], 0.59; 95% confidence interval [CI], 0.37–0.96; log-rank P = 0.032). The 5-year OS rates were 96.64% and 93.31% for the NAFLD and non-NAFLD arms, respectively (HR, 0.39; 95% CI, 0.16–0.99; log-rank P = 0.039). Multivariate analysis revealed that NAFLD was an independent prognostic factor for DFS, improving the DFS rate by 41% compared with that in the non-NAFLD arm (HR, 0.59; 95% CI, 0.36–0.96; P = 0.033). SERM-associated NAFLD was independently associated with improved DFS and might be useful for predicting treatment responses in breast cancer patients treated with SERMs. PMID

  16. AroER tri-screen is a biologically relevant assay for endocrine disrupting chemicals modulating the activity of aromatase and/or the estrogen receptor.

    PubMed

    Chen, Shiuan; Zhou, Dujin; Hsin, Li-Yu; Kanaya, Noriko; Wong, Cynthie; Yip, Richard; Sakamuru, Srilatha; Xia, Menghang; Yuan, Yate-Ching; Witt, Kristine; Teng, Christina

    2014-05-01

    Endocrine disrupting chemicals (EDCs) interfere with the biosynthesis, metabolism, and functions of steroid hormones, including estrogens and androgens. Aromatase enzyme converts androgen to estrogen. Thus, EDCs against aromatase significantly impact estrogen- and/or androgen-dependent functions, including the development of breast cancer. The current study aimed to develop a biologically relevant cell-based high-throughput screening assay to identify EDCs that act as aromatase inhibitors (AIs), estrogen receptor (ER) agonists, and/or ER antagonists. The AroER tri-screen assay was developed by stable transfection of ER-positive, aromatase-expressing MCF-7 breast cancer cells with an estrogen responsive element (ERE) driven luciferase reporter plasmid. The AroER tri-screen can identify: estrogenic EDCs, which increase luciferase signal without 17β-estradiol (E2); anti-estrogenic EDCs, which inhibit the E2-induced luciferase signal; and AI-like EDCs, which suppress a testosterone-induced luciferase signal. The assay was first optimized in a 96-well plate format and then miniaturized into a 1536-well plate format. The AroER tri-screen was demonstrated to be suitable for high-throughput screening in the 1536-well plate format, with a 6.9-fold signal-to-background ratio, a 5.4% coefficient of variation, and a screening window coefficient (Z-factor) of 0.78. The assay suggested that bisphenol A (BPA) functions mainly as an ER agonist. Results from screening the 446 drugs in the National Institutes of Health Clinical Collection revealed 106 compounds that modulated ER and/or aromatase activities. Among these, two AIs (bifonazole and oxiconazole) and one ER agonist (paroxetine) were confirmed through alternative aromatase and ER activity assays. These findings indicate that AroER tri-screen is a useful high-throughput screening system for identifying ER ligands and aromatase-inhibiting chemicals.

  17. Estrogen receptor 1 (ESR1; ERα), not ESR2 (ERβ), modulates estrogen-induced sex reversal in the American alligator, a species with temperature-dependent sex determination.

    PubMed

    Kohno, Satomi; Bernhard, Melissa C; Katsu, Yoshinao; Zhu, Jianguo; Bryan, Teresa A; Doheny, Brenna M; Iguchi, Taisen; Guillette, Louis J

    2015-05-01

    All crocodilians and many turtles exhibit temperature-dependent sex determination where the temperature of the incubated egg, during a thermo-sensitive period (TSP), determines the sex of the offspring. Estrogens play a critical role in sex determination in crocodilians and turtles, as it likely does in most nonmammalian vertebrates. Indeed, administration of estrogens during the TSP induces male to female sex reversal at a male-producing temperature (MPT). However, it is not clear how estrogens override the influence of temperature during sex determination in these species. Most vertebrates have 2 forms of nuclear estrogen receptor (ESR): ESR1 (ERα) and ESR2 (ERβ). However, there is no direct evidence concerning which ESR is involved in sex determination, because a specific agonist or antagonist for each ESR has not been tested in nonmammalian species. We identified specific pharmaceutical agonists for each ESR using an in vitro transactivation assay employing American alligator ESR1 and ESR2; these were 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), respectively. Alligator eggs were exposed to PPT or WAY 200070 at a MPT just before the TSP, and their sex was examined at the last stage of embryonic development. Estradiol-17β and PPT, but not WAY 200070, induced sex reversal at a MPT. PPT-exposed embryos exposed to the highest dose (5.0 μg/g egg weight) exhibited enlargement and advanced differentiation of the Müllerian duct. These results indicate that ESR1 is likely the principal ESR involved in sex reversal as well as embryonic Müllerian duct survival and growth in American alligators.

  18. Selectively targeting estrogen receptors for cancer treatment

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2010-01-01

    Estrogens regulate growth and development through the action of two distinct estrogen receptors (ERs), ERα and ERβ, which mediate proliferation and differentiation of cells. For decades, ERα mediated estrogen signaling has been therapeutically targeted to treat breast cancer, most notably with the selective estrogen receptor modulator (SERM) tamoxifen. Selectively targeting ERs occurs at two levels: tissue selectivity and receptor subtype selectivity. SERMs have been developed with emphasis on tissue selectivity to target ER signaling for breast cancer treatment. Additionally, new approaches to selectively target the action of ERα going beyond ligand-dependent activity are under current investigation. As evidence of the anti-proliferative role of ERβ accumulates, selectively targeting ERβ is an attractive approach for designing new cancer therapies with the emphasis shifted to designing ligands with subtype selectivity. This review will present the mechanistic and structural features of ERs that determine tissue and subtype selectivity with an emphasis on current approaches to selectively target ERα and ERβ for cancer treatment. PMID:20708050

  19. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers.

    PubMed

    Hajjo, Rima; Setola, Vincent; Roth, Bryan L; Tropsha, Alexander

    2012-06-28

    We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure-Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT(6)R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT(6)R actives. Second, we queried chemogenomics data from the Connectivity Map ( http://www.broad.mit.edu/cmap/ ) with the gene expression profile signatures of Alzheimer's disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT(6)R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT(6)R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations.

  20. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    SciTech Connect

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-02-10

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 /sup 0/C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17..beta..-(/sup 3/H)estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins.

  1. CHEMICAL MODIFICATION MODULATES ESTROGENIC ACTIVITY, OXIDATIVE REACTIVITY, & METABOLIC STABILITY IN 4′F-DMA, A NEW BENZOTHIOPHENE SELECTIVE ESTROGEN RECEPTOR MODULATOR

    PubMed Central

    Liu, Hong; Bolton, Judy L.; Thatcher, Gregory R. J.

    2008-01-01

    The benzothiophene SERMs raloxifene and arzoxifene, in the clinic or clinical trials for treatment of breast cancer and postmenopausal symptoms, are highly susceptible to oxidative metabolism and formation of electrophilic metabolites. 4′F-DMA, fluoro-substituted desmethyl arzoxifene (DMA), showed attenuated oxidation to quinoids in incubation with rat hepatocytes as well as in rat and human liver microsomes. Incubations of 4′F-DMA with hepatocytes yielded only one glucuronide conjugate and no GSH conjugates; whereas DMA underwent greater metabolism giving two glucuronide conjugates, one sulfate conjugate, and two GSH conjugates. Phase I and phase II metabolism was further evaluated in human small intestine microsomes and in human intestinal Caco-2 cells. In comparison to DMA, 4′F-DMA formed significantly less glucuronide and sulfate conjugates. The formation of quinoids was futher explored in hepatocytes in which DMA was observed to give concentration and time dependent depletion of GSH accompanied by damage to DNA which showed inverse dependence on GSH; in contrast, GSH depletion and DNA damage were almost completely abrogated in incubations with 4′F-DMA. 4′F-DMA shows ligand binding affinity to ERα and ERβ with similarity to both raloxifene and to DMA. ER-mediated biological activity was measured with the ERE-luciferase reporter system in transfected MCF-7 cells and Ishikawa cells, and in MCF-7 cells proliferation was measured. In all systems, 4′F-DMA exhibited anitestrogenic acitivty of comparable potency to raloxifene, but did not manifest estrogenic properties, mirroring previous results on inhibition of estradiol-mediated induction of alkaline phosphatase activity in Ishikawa cells. These results suggest that 4′F-DMA might be an improved benzothiophene SERM with similar antiestrogenic activity to raloxifene, but improved metabolic stability and attenuated toxicity; showing that simple chemical modification can abrogate oxidative bioactivation

  2. Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0400 TITLE: Targeting Epigenetics Therapy for Estrogen Receptor...2014 4. TITLE AND SUBTITLE Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers 5a. CONTRACT NUMBER 5b...estrogen- receptor positive breast cancer, estrogen receptor negative breast cancer, epigenetics , nuclear hormone receptor, estrogen Overall

  3. Estrogen modulates cognitive and cholinergic processes in surgically menopausal monkeys.

    PubMed

    Tinkler, Gregory Paul; Voytko, Mary Lou

    2005-03-01

    Estrogen deficiency in postmenopausal women is associated with changes in physiological processes. The extent to which estrogen loss is associated with cognitive changes noted by postmenopausal women has been more difficult to determine for a variety of reasons. Primate models of menopause are now being used to determine the effects of estrogen loss and replacement on cognitive abilities and to investigate the neural mechanisms by which estrogen may influence cognitive function. The present report presents data from cognitive and neurobiological studies in surgically menopausal monkeys that have examined how estrogen loss and replacement may be affecting cognitive abilities and the cholinergic system; a neural system that is known to influence memory and attention function. These studies are indicating that visuospatial attention function is especially sensitive to estrogen states in young monkeys, but that multiple cognitive domains are sensitive to estrogen states in middle-aged monkeys. In addition, anatomical and functional imaging studies indicate that the primate cholinergic system is modulated by estrogen, and pharmacological studies demonstrate that estrogen uses cholinergic muscarinic receptors to influence visuospatial attention. These studies demonstrate that estrogen influences cognitive abilities in monkey models of menopause and the cholinergic system may be one of the mechanisms by which estrogen modulates cognitive function. Given the current unknowns and concerns regarding the use of hormone replacement therapy in postmenopausal women, continued studies in monkey models of menopause are especially needed to further elucidate the effects of estrogen on cognitive and neurobiological processes, with particular emphasis on studies in middle-aged monkeys, determining the optimal aspects of ERT regimens, and identifying the relationships between estrogen effects on cognitive and neurobiological function.

  4. Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels

    PubMed Central

    Smiley, Dia A.; Khalil, Raouf A.

    2010-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  5. Ospemifene: a first-in-class, non-hormonal selective estrogen receptor modulator approved for the treatment of dyspareunia associated with vulvar and vaginal atrophy.

    PubMed

    DeGregorio, Michael W; Zerbe, Robert L; Wurz, Gregory T

    2014-11-01

    Ospemifene is a selective estrogen receptor modulator (SERM) approved for the treatment of dyspareunia associated with vulvar and vaginal atrophy (VVA) due to menopause. As the first non-hormonal treatment for this indication, the approval of ospemifene represents a significant milestone in postmenopausal women's health. Ospemifene is a triphenylethylene similar in chemical structure to tamoxifen and toremifene. Consistent with other SERMs such as tamoxifen, toremifene, and raloxifene, ospemifene possesses a distinctive mix of estrogenic and antiestrogenic tissue-specific effects in bone, breast tissue, serum lipids, and the vagina. Among the approved SERMs, ospemifene is the only agent with a nearly full estrogen agonist effect on the vaginal epithelium while having neutral to slight estrogenic effects in the endometrium, making ospemifene uniquely suited for the treatment of dyspareunia associated with VVA, also known as atrophic vaginitis, which affects up to 50% of postmenopausal women. This review begins with a brief history of the discovery of ospemifene, its mechanism of action, and its preclinical development, with an emphasis on its tissue-specific effects on bone, breast, uterus and endometrium, serum lipids and vagina. A brief discussion on the genotoxicity of ospemifene compared to tamoxifen and toremifene is included. The focus then shifts to the clinical development of ospemifene from Phase I through Phase III. We will close with the FDA approval of ospemifene and a justification of the future clinical evaluation of ospemifene as a potential breast cancer chemopreventive agent, where several preclinical studies in different rodent breast cancer models strongly suggest ospemifene is as effective as tamoxifen.

  6. Estrogen-Responsive Genes Encoding Egg Yolk Proteins Vitellogenin and Apolipoprotein II in Chicken are differentially regulated by Selective Estrogen Receptor Modulators

    PubMed Central

    Ratna, Warren N.; Bhatt, Vrushank D.; Chaudhary, Kawshik; Ariff, Ammar Bin; Bavadekar, Supriya A.; Ratna, Haran N.

    2015-01-01

    In a hen, large quantities of the egg yolk proteins apolipoprotein (apo) II and vitellogenin (VG), are expressed in the liver and transported to the oviduct during egg production. Estrogenic stimulation of the hepatic expression of apo II and VG is due to both transcriptional increase and mRNA stabilization. The nucleolytic degradation of apo II mRNA is prevented by estrogen-regulated mRNA stabilizing factor (E-RmRNASF). Gene-specific effects of a select panel of SERMs on the hepatic expression of the estrogen-responsive genes encoding apo II, VG and E-RmRNASF in the chicken liver were investigated. In the present study, 6-week-old roosters were treated with the vehicle, estrogen, the SERMs genistein, resveratrol, tamoxifen, pterostilbene, raloxifene, catechin and clomiphene or a combination of estrogen and a 200-fold excess of each of the SERMs. Results from mRNA stabilization studies, conducted to investigate the stimulation of expression of E-RmRNASF in the liver by these agents showed that the expression of E-RmRNASF in the liver, was stimulated by estrogen, and the SERMs genistein, resveratrol, tamoxifen, pterostilbene, and catechin, but not by the vehicle, clomiphene or raloxifene. The expression of apo II and VG from the above treatments was determined by Northern blot analysis, RNase protection assays and Western blot analysis. The transcription and protein expression of both apo II and VG genes were seen in response to treatment with estrogen but not with the SERMs or combinations of estrogen and each of the SERMs. The SERMs that stimulated the expression of E-RmRNASF, antagonized the stimulation of the expression of both apo II and VG by estrogen, demonstrating a gene-specific, selective regulation of the above genes in the chicken liver by the SERMs. The above panel of SERMs may likely have adverse effects on egg production. PMID:26452509

  7. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery.

    PubMed

    Therrien, Eric; Englebienne, Pablo; Arrowsmith, Andrew G; Mendoza-Sanchez, Rodrigo; Corbeil, Christopher R; Weill, Nathanael; Campagna-Slater, Valérie; Moitessier, Nicolas

    2012-01-23

    As part of a large medicinal chemistry program, we wish to develop novel selective estrogen receptor modulators (SERMs) as potential breast cancer treatments using a combination of experimental and computational approaches. However, one of the remaining difficulties nowadays is to fully integrate computational (i.e., virtual, theoretical) and medicinal (i.e., experimental, intuitive) chemistry to take advantage of the full potential of both. For this purpose, we have developed a Web-based platform, Forecaster, and a number of programs (e.g., Prepare, React, Select) with the aim of combining computational chemistry and medicinal chemistry expertise to facilitate drug discovery and development and more specifically to integrate synthesis into computer-aided drug design. In our quest for potent SERMs, this platform was used to build virtual combinatorial libraries, filter and extract a highly diverse library from the NCI database, and dock them to the estrogen receptor (ER), with all of these steps being fully automated by computational chemists for use by medicinal chemists. As a result, virtual screening of a diverse library seeded with active compounds followed by a search for analogs yielded an enrichment factor of 129, with 98% of the seeded active compounds recovered, while the screening of a designed virtual combinatorial library including known actives yielded an area under the receiver operating characteristic (AU-ROC) of 0.78. The lead optimization proved less successful, further demonstrating the challenge to simulate structure activity relationship studies.

  8. Both estrogen receptor alpha and estrogen receptor beta agonists enhance cell proliferation in the dentate gyrus of adult female rats.

    PubMed

    Mazzucco, C A; Lieblich, S E; Bingham, B I; Williamson, M A; Viau, V; Galea, L A M

    2006-09-15

    This study investigated the involvement of estrogen receptors alpha and beta in estradiol-induced enhancement of hippocampal neurogenesis in the adult female rat. Subtype selective estrogen receptor agonists, propyl-pyrazole triol (estrogen receptor alpha agonist) and diarylpropionitrile (estrogen receptor beta agonist) were examined for each receptor's contribution, individual and cooperative, for estradiol-enhanced hippocampal cell proliferation. Estradiol increases hippocampal cell proliferation within 4 h [Ormerod BK, Lee TT, Galea LA (2003) Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats. J Neurobiol 55:247-260]. Therefore, animals received s.c. injections of estradiol (10 microg), propyl-pyrazole triol and diarylpropionitrile alone (1.25, 2.5, 5.0 mg/0.1 ml dimethylsulfoxide) or in combination (2.5 mg propyl-pyrazole triol+2.5 mg diarylpropionitrile/0.1 ml dimethylsulfoxide) and 4 h later received an i.p. injection of the cell synthesis marker, bromodeoxyuridine (200 mg/kg). Diarylpropionitrile enhanced cell proliferation at all three administered doses (1.25 mg, P<0.008; 2.5 mg, P<0.003; 5 mg, P<0.005), whereas propyl-pyrazole triol significantly increased cell proliferation (P<0.0002) only at the dose of 2.5 mg. Our results demonstrate both estrogen receptor alpha and estrogen receptor beta are individually involved in estradiol-enhanced cell proliferation. Furthermore both estrogen receptor alpha and estrogen receptor beta mRNA was found co-localized with Ki-67 expression in the hippocampus albeit at low levels, indicating a potential direct influence of each receptor subtype on progenitor cells and their progeny. Dual receptor activation resulted in reduced levels of cell proliferation, supporting previous studies suggesting that estrogen receptor alpha and estrogen receptor beta may modulate each other's activity. Our results also suggest that a component

  9. Downregulation of Steroid Receptor Coactivator-2 Modulates Estrogen-Responsive Genes and Stimulates Proliferation of MCF-7 Breast Cancer Cells

    PubMed Central

    Fenne, Ingvild S.; Helland, Thomas; Flågeng, Marianne H.; Dankel, Simon N.; Mellgren, Gunnar; Sagen, Jørn V.

    2013-01-01

    The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells. PMID:23936147

  10. Differential estradiol and selective estrogen receptor modulator (SERM) regulation of Keratin 13 gene expression and its underlying mechanism in breast cancer cells.

    PubMed

    Sheng, Shubin; Barnett, Daniel H; Katzenellenbogen, Benita S

    2008-12-16

    Expression of the Keratin 13 (KRT13) gene, which encodes a cytoskeletal protein thought to play important roles in breast cancer growth and metastasis, is differentially regulated by estradiol (E2) and the selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene. While stimulation of KRT13 by tamoxifen is robust and prolonged, stimulation by E2 is more transient and raloxifene has virtually no effect. To investigate the mechanistic basis for the differential ligand regulation of KRT13, we have defined the regulatory regions of KRT13, compared gene expression by E2 and SERMs, and explored the magnitudes and time courses of estrogen receptor (ER) and cofactor recruitment patterns on these regions. Using a ChIP scanning approach and reporter transactivation assays, we identified a 2.5 kb upstream ER-binding regulatory region for KRT13. Directed composite mutations in this region revealed that three estrogen response elements and three Sp1 sites were involved in its ligand-dependent regulation. Differential recruitment of ERalpha and cofactors to the KRT13 regulatory sites paralleled the different time course and magnitude of regulation by these ligands: there was almost no ERalpha or cofactor recruitment with raloxifene, whereas there was strong, prolonged ER recruitment and histone acetylation with tamoxifen, and an early and more transient recruitment with E2. Taken together, our results suggest that the different ligand regulations of KRT13 are due to ligand-differential recruitment of ER and coactivators, and they provide insight into the mechanisms responsible for the different agonistic activities and differential gene regulation by estradiol and the SERMs tamoxifen and raloxifene.

  11. Estrogen Receptor β (ERβ1) Transactivation Is Differentially Modulated by the Transcriptional Coregulator Tip60 in a cis-Acting Element-dependent Manner*

    PubMed Central

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-01-01

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1. PMID:23857583

  12. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    SciTech Connect

    Lo, Raymond; Matthews, Jason

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  13. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    PubMed

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  14. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation

    PubMed Central

    Abot, Anne; Fontaine, Coralie; Buscato, Mélissa; Solinhac, Romain; Flouriot, Gilles; Fabre, Aurélie; Drougard, Anne; Rajan, Shyamala; Laine, Muriel; Milon, Alain; Muller, Isabelle; Henrion, Daniel; Adlanmerini, Marine; Valéra, Marie-Cécile; Gompel, Anne; Gerard, Céline; Péqueux, Christel; Mestdagt, Mélanie; Raymond-Letron, Isabelle; Knauf, Claude; Ferriere, François; Valet, Philippe; Gourdy, Pierre; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Lenfant, Françoise; Greene, Geoffrey L; Foidart, Jean-Michel; Arnal, Jean-François

    2014-01-01

    Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further. PMID:25214462

  15. Adjunctive selective estrogen receptor modulator increases neural activity in the hippocampus and inferior frontal gyrus during emotional face recognition in schizophrenia

    PubMed Central

    Ji, E; Weickert, C S; Lenroot, R; Kindler, J; Skilleter, A J; Vercammen, A; White, C; Gur, R E; Weickert, T W

    2016-01-01

    Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, P<0.05). There was no significant difference in performance accuracy or reaction time between active and placebo conditions. To the best of our knowledge, this study provides the first evidence suggesting that adjunctive raloxifene treatment changes neural activity in brain regions associated with facial emotion recognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia. PMID:27138794

  16. Adjunctive selective estrogen receptor modulator increases neural activity in the hippocampus and inferior frontal gyrus during emotional face recognition in schizophrenia.

    PubMed

    Ji, E; Weickert, C S; Lenroot, R; Kindler, J; Skilleter, A J; Vercammen, A; White, C; Gur, R E; Weickert, T W

    2016-05-03

    Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, P<0.05). There was no significant difference in performance accuracy or reaction time between active and placebo conditions. To the best of our knowledge, this study provides the first evidence suggesting that adjunctive raloxifene treatment changes neural activity in brain regions associated with facial emotion recognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia.

  17. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  18. Design and structure of stapled peptides binding to estrogen receptors.

    PubMed

    Phillips, Chris; Roberts, Lee R; Schade, Markus; Bazin, Richard; Bent, Andrew; Davies, Nichola L; Moore, Rob; Pannifer, Andrew D; Pickford, Andrew R; Prior, Stephen H; Read, Christopher M; Scott, Andrew; Brown, David G; Xu, Bin; Irving, Stephen L

    2011-06-29

    Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.

  19. The Molecular, Cellular and Clinical Consequences of Targeting the Estrogen Receptor Following Estrogen Deprivation Therapy

    PubMed Central

    Fan, Ping; Maximov, Philipp Y.; Curpan, Ramona F.; Abderrahman, Balkees; Jordan, V. Craig

    2015-01-01

    During the past twenty years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed “morning after pill”, was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite “antiestrogen” resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER Modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women’s health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term Hormone Replacement Therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells. PMID:26052034

  20. Assessment of estrogen receptor--histone interactions.

    PubMed Central

    Kallos, J; Fasy, T M; Hollander, V P

    1981-01-01

    Several different in vitro binding assays show that the estrogen receptor from rabbit uterus interacts selectively with purified histones from calf thymus. The estrogen receptor binds strongly to histones H2B and H2A, moderately to histones H3 and H4, and poorly to histone H1. In the presence of histones H2B or H2A, the position at which the estrogen receptor focuses in an isoelectric gradient is shifted to a more basic zone. Kinetic experiments show that, if histone H2B is bound to a DNA, the estrogen receptor dissociates more slowly from that DNA. The portion of the estrogen receptor molecule required for binding to histone H2B is relatively stable to tryptic digestion; in contrast, the portion of the receptor molecule responsible for DNA binding is promptly lost during limited tryptic digestion. These in vitro findings suggest that the mechanism by which the estrogen receptor selectively alters gene expression may involve specific contacts with histone molecules. PMID:6942408

  1. Function of Estrogen Receptor Tryosine Phosphorylation

    DTIC Science & Technology

    1998-07-01

    6219 TITLE: Function of Estrogen Receptor Tryosine Phosphorylation PRINCIPAL INVESTIGATOR: Matthew R. Yudt CONTRACTING ORGANIZATION: University of...Estrogen Receptor Tryosine Phosphorylation ~DAMD17-96-1-6219 6. AUTHOR(S) Matthew R. Yudt 7. PERFORMING ORGANIZATION NAME11S) AND AODRESS(ES...this model, tyrosine 537 (Y537) phosphorylation of one monomer interacts with another tyrosine phosphorylated monomer to constitute an hER dimer

  2. [Estrogen receptors and the mammary gland].

    PubMed

    Barrón, A; Bermejo, L; Castro, I

    1997-01-01

    For several decades it has been known that steroid hormones, estrogen and progesterone, regulate some genes involved in the growth, proliferation and differentiation of the mammary-gland in animals and humans. In the last years, the presence or absence of the nuclear estrogen receptor has been used by clinicians as a marker for tumor malignancy, as a prognostic index or as an important parameter for hormonal therapy with anti-estrogenic compounds of some hormone-dependent breast cancers. This review shows some advances in the knowledge of the structure, function, molecular mechanisms of estrogenic activity, and interaction with proteins like protooncogenes and growth factors. Also, we refer to the role of the estrogen receptor in the physiophatology of breast cancer.

  3. Function of Estrogen Receptor Tryosine Phosphorylation

    DTIC Science & Technology

    1997-07-01

    localization of the receptors, ligand binding, DNA binding, transcriptional activation, and receptor turnover ( LeGoff et al. 1994; Lahooti et al. 1994...1040-1049 (1995). LeGoff P., M.M. Montano, D.J. Schodin, and B. Katzenellenbogen. Phosphorylation of the Human Estrogen Receptor. J. Biol. Chem

  4. Estrogen Receptors and Their Implications in Colorectal Carcinogenesis

    PubMed Central

    Caiazza, Francesco; Ryan, Elizabeth J.; Doherty, Glen; Winter, Desmond C.; Sheahan, Kieran

    2015-01-01

    Upon binding their cognate receptors, ERα (ESR1) and ERβ (ESR2), estrogens activate intracellular signaling cascades that have important consequences for cellular behavior. Historically linked to carcinogenesis in reproductive organs, estrogens have also been implicated in the pathogenesis of different cancer types of non-reproductive tissues including the colon. ERβ is the predominant estrogen receptor expressed in both normal and malignant colonic epithelium. However, during colon cancer progression, ERβ expression is lost, suggesting that estrogen signaling may play a role in disease progression. Estrogens may in fact exert an anti-tumor effect through selective activation of pro-apoptotic signaling mediated by ERβ, inhibition of inflammatory signals and modulation of the tumor microenvironment. In this review, we analyze the estrogen pathway as a possible therapeutic avenue in colorectal cancer, we report the most recent experimental evidence to explain the cellular and molecular mechanisms of estrogen-mediated protection against colorectal tumorigenesis, and we discuss future challenges and potential avenues for targeted therapy. PMID:25699240

  5. p150/Glued Modifies Nuclear Estrogen Receptor Function

    PubMed Central

    Lee, Soo Jung; Chae, Christina; Wang, Michael M.

    2009-01-01

    Estrogen modulates gene expression through interactions with estrogen receptors (ERs) that bind chromosomal target genes. Recent studies have suggested an interaction between the cytoskeletal system and estrogen signaling; these have implicated a role of cytoplasmic microtubules in scaffolding ERα and enhancing nongenomic function; in addition, other experiments demonstrate that dynein light chain 1 may chaperone ERα to the nucleus, indirectly increasing transcriptional potency. Actin/myosin and dynein light chain 1 are also required for estrogen-mediated chromosomal movement that is required for transcriptional up-regulation of ERα targets. We present evidence that the dynactin component, p150/glued, directly influences the potency of nuclear ER function. Increasing the stoichiometric ratio of p150/glued and ERα by overexpression enhances estrogen responses. ERα enhancement by p150/glued does not appear to be influenced by shifts in subcellular localization because microtubule disruption fails to increase nuclear ERα. Rather, we find that modest amounts of p150/glued reside in the nucleus of cells, suggesting that it plays a direct role in nuclear transcription. Notably, p150/glued is recruited to the pS2 promoter in the presence of hormone, and, in MCF-7 cells, knockdown of p150/glued levels reduces estrogen-dependent transcription. Our results suggest that p150/glued modulates estrogen sensitivity in cells through nuclear mechanisms. PMID:19228793

  6. Maternal Regulation of Estrogen Receptor α Methylation

    PubMed Central

    Champagne, Frances A.; Curley, James P.

    2008-01-01

    Summary Advances in molecular biology have provided tools for studying the epigenetic factors which modulate gene expression. DNA methylation is an epigenetic modification which can have sustained effects on transcription and is associated with long-term gene silencing. In this review, we focus on the regulation of estrogen receptor alpha (ERα) expression by hormonal and environmental cues, the consequences of these cues for female maternal and sexual behavior and recent studies which explore the role of DNA methylation in mediating these developmental effects, with particular focus on the mediating role of maternal care. The methylation status of ERα has implications for reproductive behavior, cancer susceptibility and recovery from ischemic injury suggesting an epigenetic basis for risk and resilience across the life span. PMID:18644464

  7. Colocalization of Estrogen Receptors with the Fluorescent Tamoxifen Derivative, FLTX1, Analyzed by Confocal Microscopy.

    PubMed

    Morales, Araceli; Marín, Raquel; Marrero-Alonso, Jorge; Boto, Alicia; Díaz, Mario

    2016-01-01

    Tamoxifen is a selective estrogen receptor modulator that competitively binds the ligand-binding domain of estrogen receptors. Binding of tamoxifen displaces its cognate ligand, 17β-estradiol, thereby hampering the activation of estrogen receptors. Cellular labeling of ER is typically carried out using specific antibodies which require permeabilization of cells, incubation with secondary antibodies, and are expensive and time consuming. In this article, we describe the usefulness of FLTX1, a novel fluorescent tamoxifen derivative, which allows the labeling of estrogen receptors in immunocytochemistry and immunohistochemistry studies, both under permeabilized and non-permeabilized conditions. Further, besides labeling canonical estrogen receptors, this novel fluorescent probe is also suitable for the identification of unconventional targets such membrane estrogen receptors as well as other noncanonical targets, some of which are likely responsible for the number of undesired side effects reported during long-term tamoxifen treatments.

  8. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD.

  9. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  10. SCREENING CHEMICALS FOR ESTROGEN RECEPTOR ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) is considering the use high-throughput and computational methods for regulatory applications in the Endocrine Disruptor Screening Program (EDSP). To use these new tools for regulatory decision making, computational methods must be appropriately validated. Traditional validations of toxicity tests are time intensive, evaluate a relatively small number of chemicals, and are not well-suited to high-throughput methods. Here we describe a multi-step, performance-based validation establishing scientific confidence in new computational methods and demonstrating these tools are sufficiently robust to be used in a regulatory context. Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays, measuring different points along the signaling pathway with different assay technologies, were integrated into a computational model. The resulting ToxCast ER model scores range from 0 (no activity) to 1 (bioactivity of the native ligand, 17β-estradiol) and can discriminate ER bioactivity from assay-specific interference and cytotoxicity. ToxCast ER model performance was evaluated for 40 in vitro and 43 in vivo reference chemicals. ToxCast ER model results were also compared to EDSP Tier 1 screening assays in current regulatory practice for a diverse set of more than 100 chemicals. ToxCast ER model accuracy was 95% when compared to the large set of in vitro and in vivo reference chemicals. In addition, the T

  11. miR-219–5p Modulates Cell Growth of Papillary Thyroid Carcinoma by Targeting Estrogen Receptor α

    PubMed Central

    Huang, Chen; Cai, Zhaogeng; Huang, Mingzhu; Mao, Chaoming; Zhang, Qifa; Lin, Yi; Zhang, Xiaomei; Tang, Bi; Chen, Yuqing; Wang, Xiaojing; Qian, Zhongqing; Ye, Lei

    2015-01-01

    Context: Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. It has been demonstrated that micro-RNAs (miRNAs) are involved in the development of PTC. The miRNA-chromatin immunoprecipitation microarray assay revealed down-regulation of miR-219–5p; however, the effect of miR-219–5p on PTC cell growth remains unknown. This result implied the critical role of miR-219–5p in the development of PTC. Methods: We investigated the association between miR-219–5p and PTC development. Expression of miR-219–5p was monitored in 30 PTC tissue specimens and compared with that in 30 normal thyroid tissue specimens. The effect of miR-219–5p on PTC development was studied by cell proliferation, migration, and apoptosis assays. The underlying mechanism was clarified by a reporter assay and rescue experiment. Results: The current study confirmed that miR-219–5p expression was inhibited in PTC tissue samples. There were statistically significant differences in the expression of miR-219–5p with regard to sex, tumor size, and lymph node metastasis in patients with PTC. Forced expression of miR-219–5p suppressed PTC cell proliferation and migration and promoted apoptosis. Further study showed that estrogen receptor (ER) α was the direct target of miR-219–5p and mediated the effect of miR-219–5p on PTC occurrence. Expression of miR-219–5p was inversely correlated with that of ERα. Importantly, ERα overexpression in PTC cells rescued the inhibitory effect of miR-219–5p on PTC cell proliferation and migration. Thus, our results indicated that miR-219–5p played a critical role in PTC growth by inhibiting ERα. Conclusion: Our investigation identified miR-219–5p as a negative regulator of PTC development through targeting of ERα. PMID:25423566

  12. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity.

    PubMed

    Xin, D; Wang, H; Yang, J; Su, Y-F; Fan, G-W; Wang, Y-F; Zhu, Y; Gao, X-M

    2010-02-01

    The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China. In our study, the estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL showed significant activity in activating either ERalpha or ERbeta whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta. The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. In conclusion, both ER subtype-selective and nonselective activities in compounds derived from PCL suggested that PCL could be a new source for selective estrogen-receptor modulators.

  13. Modulation of vitellogenin synthesis through estrogen receptor beta-1 in goldfish (Carassius auratus) juveniles exposed to 17-{beta} estradiol and nonylphenol

    SciTech Connect

    Soverchia, L.; Ruggeri, B.; Palermo, F.; Mosconi, G.; Cardinaletti, G.; Scortichini, G.; Gatti, G.; Polzonetti-Magni, A.M. . E-mail: alberta.polzonetti@unicam.it

    2005-12-15

    Many synthetic chemicals, termed xenoestrogens, have been shown to interact as agonists with the estrogen receptor (ER) to elicit biological responses similar to those of natural hormones. To date, the regulation of vitellogenesis in oviparous vertebrates has been widely used for evaluation of estrogenic effects. Therefore, Carassius auratus juveniles were chosen as a fish model for studying the effects of estradiol-17{beta} and different concentrations (10{sup -6} and 10{sup -7} M) of 4-nonylphenol (4-NP) on the expression of liver ER{beta}-1 subtype; plasma vitellogenin and sex steroids (androgens and estradiol-17{beta}) were also evaluated together with the bioaccumulation process, through mass-spectrometry. C. auratus is a species widespread in the aquatic environment and, on the toxicological point of view, can be considered a good 'sentinel' species. Juveniles of goldfish were maintained in tanks with only tap water or water with different concentrations (10{sup -6} and 10{sup -7} M) of 4-nonylphenol (4-NP), or 10{sup -7} M of estradiol-17{beta}. After 3 weeks of treatment, animals were anesthetized within 5 min after capture, and blood was immediately collected into heparinized syringes by cardiac puncture and stored at -70 deg. C; the gonads were fixed, then frozen and stored at -70 deg. C; the whole fish, liver, and muscle tissues were harvested and immediately stored at -70 deg. C for molecular biology experiments and bioaccumulation measurements. The estrogenic effects of 4-NP were evidenced by the presence of plasma vitellogenin in juveniles exposed both to estradiol-17{beta} and the two doses of 4-NP; moreover, exposure to 4-NP also increased aromatization of androgens, as suggested by decreasing androgens and increasing estradiol-17{beta} plasma levels. The changes of these parameters were in agreement with the increasing transcriptional rate of ER{beta}-1 mRNA in the liver, demonstrating that both estradiol-17{beta} and 4-NP modulate the vitellogenin

  14. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  15. Effects of a novel estrogen-free, progesterone receptor modulator contraceptive vaginal ring on inhibition of ovulation, bleeding patterns and endometrium in normal women

    PubMed Central

    Brache, Vivian; Sitruk-Ware, Regine; Williams, Alistair; Blithe, Diana; Croxatto, Horacio; Kumar, Narender; Kumar, Sushma; Tsong, Yun-Yen; Sivin, Irving; Nath, Anita; Sussman, Heather; Cochon, Leila; Miranda, Maria Jose; Reyes, Verónica; Faundes, Anibal; Mishell, Daniel

    2012-01-01

    Background Progesterone receptor modulators (PRMs) delivered by contraceptive vaginal rings provide an opportunity for development of an estrogen-free contraceptive that does not require daily oral intake of steroids. The objective of this proof-of-concept study was to determine whether continuous delivery of 600–800 mcg of ulipristal acetate (UPA) from a contraceptive vaginal ring could achieve 80% to 90% inhibition of ovulation. Study Design This was a prospective, controlled, open-labeled, multicenter international trial to examine the effectiveness and safety of this prototype vaginal ring. Thirty-nine healthy women, 21–40 years old and not at risk of pregnancy, were enrolled at three clinic sites. Volunteers participated in a control cycle, a 12-week treatment period and a post-treatment cycle. Pharmacodynamic effects on follicular function and inhibition of ovulation, effects on endometrium, bleeding patterns and serum UPA levels were evaluated. Results Mean UPA levels during treatment were nearly constant, approximately 5.1 ng/mL throughout the study. Ovulation was documented in 32% of 111 “4-week treatment cycles.” A correlation was observed between serum UPA and degree of inhibition of ovarian activity. There was no evidence of hyperplasia of endometrium, but PRM-associated endometrial changes were frequently observed (41%). Conclusion In this study, the minimum effective contraceptive dose was not established. Further studies are required testing higher doses of UPA to attain ovulation suppression in a higher percentage of subjects. PMID:22176795

  16. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning.

    PubMed

    Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena

    2015-08-01

    Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning.

  17. MEMBRANE ESTROGEN RECEPTOR REGULATION OF HYPOTHALAMIC FUNCTION

    PubMed Central

    Micevych, Paul E.; Kelly, Martin J.

    2012-01-01

    Over the decades, our understanding of estrogen receptor (ER) function has evolved. Today we are confronted by at least two nuclear ERs: ERα and ERβ; and a number of putative membrane ERs, including ERα, ERβ, ER-X, GPR30 and Gq-mER. These receptors all bind estrogens or at least estrogenic compounds and activate intracellular signaling pathways. In some cases, a well-defined pharmacology, and physiology has been discovered. In other cases, the identity or the function remains to be elucidated. This mini-review attempts to synthesize our understanding of 17β-estradiol membrane signaling within hypothalamic circuits involved in homeostatic functions focusing on reproduction and energy balance. PMID:22538318

  18. Estrogen receptor-alpha mediates estrogen facilitation of baroreflex heart rate responses in conscious mice.

    PubMed

    Pamidimukkala, Jaya; Xue, Baojian; Newton, Leslie G; Lubahn, Dennis B; Hay, Meredith

    2005-03-01

    Estrogen facilitates baroreflex heart rate responses evoked by intravenous infusion of ANG II and phenylephrine (PE) in ovariectomized female mice. The present study aims to identify the estrogen receptor subtype involved in mediating these effects of estrogen. Baroreflex responses to PE, ANG II, and sodium nitroprusside (SNP) were tested in intact and ovariectomized estrogen receptor-alpha knockout (ERalphaKO) with (OvxE+) or without (OvxE-) estrogen replacement. Wild-type (WT) females homozygous for the ERalpha(+/+) were used as controls. Basal mean arterial pressures (MAP) and heart rates were comparable in all the groups except the ERalphaKO-OvxE+ mice. This group had significantly smaller resting MAP, suggesting an effect of estrogen on resting vascular tone possibly mediated by the ERbeta subtype. Unlike the WT females, estrogen did not facilitate baroreflex heart rate responses to either PE or ANG II in the ERalphaKO-OvxE+ mice. The slope of the line relating baroreflex heart rate decreases with increases in MAP evoked by PE was comparable in ERalphaKO-OvxE- (-6.97 +/- 1.4 beats.min(-1).mmHg(-1)) and ERalphaKO-OvxE+ (-6.18 +/- 1.3) mice. Likewise, the slope of the baroreflex bradycardic responses to ANG II was similar in ERalphaKO-OvxE- (-3.87 +/- 0.5) and ERalphaKO-OvxE+(-2.60 +/- 0.5) females. Data suggest that estrogen facilitation of baroreflex responses to PE and ANG II is predominantly mediated by ERalpha subtype. A second important observation in the present study is that the slope of ANG II-induced baroreflex bradycardia is significantly blunted compared with PE in the intact as well as the ERalphaKO-OvxE+ females. We have previously reported that this ANG II-mediated blunting of cardiac baroreflexes is observed only in WT males and not in ovariectomized WT females independent of their estrogen replacement status. The present data suggest that in females lacking ERalpha, ANG II causes blunting of cardiac baroreflexes similar to males and may be

  19. Function of Estrogen Receptor Tryosine Phosphorylation

    DTIC Science & Technology

    1999-07-01

    phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America... Vivat , V., Chambon, P., Moras, D., and Gronemeyer, H. (1996) Nat. Struct. Biol. 3, 87-94 8. Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L

  20. Estrogen receptor expert system overview and examples

    EPA Science Inventory

    The estrogen receptor expert system (ERES) is a rule-based system developed to prioritize chemicals based upon their potential for binding to the ER. The ERES was initially developed to predict ER affinity of chemicals from two specific EPA chemical inventories, antimicrobial pe...

  1. Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats.

    PubMed

    Kudwa, Andrea E; McGivern, Robert F; Handa, Robert J

    2014-04-22

    The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors.

  2. A randomized study on pharmacodynamic effects of vaginal rings delivering the progesterone receptor modulator, Ulipristal acetate. Research for a novel estrogen-free, method of contraception

    PubMed Central

    Huang, YongMei; Jensen, Jeffrey T.; Brache, Vivian; Cochon, Leila; Williams, Alistair; Miranda, Maria-José; Croxatto, Horacio; Kumar, Narender; Sussman, Heather; Hoskin, Elena; Plagianos, Marlena; Roberts, Kevin; Merkatz, Ruth; Blithe, Diana; Sitruk-Ware, Regine

    2014-01-01

    Objective To determine whether a 3-month contraceptive vaginal ring (CVR) delivering ulipristal acetate (UPA) can inhibit ovulation in 90% of cycles. Study Design This was a randomized dose-finding parallel group clinical trial. Fifty-five healthy women with normal ovulation at baseline were randomized to receive a low-dose (1500μg/day) or a high-dose (2500μg/d) UPA-CVR for two consecutive 12-week treatment periods, followed by a recovery cycle. A subgroup of women received levonorgestrel (LNG) 1.5 mg orally twice (at the end of both 12-week ring periods) or once (at the end of the 24-week treatment). The primary outcome was ovulation suppression assessed by transvaginal ultrasound and hormone levels. Secondary outcomes included endometrial safety and bleeding patterns. Results All subjects showed normal ovulation at baseline and recovery. Ovulation suppression was seen in 81.8% (95% CI: 73.3%, 88.5%) and 86.1% (95% CI: 78.1%, 92%) of treatment cycles with low and high-dose, respectively. Benign progesterone receptor modulator associated endometrial changes (PAEC) were seen during treatment; 78.8% at week 24, but resolved at recovery cycle. A few cases of heavy bleeding occurred near the end of the 24-week treatment, but a single dose of LNG every 12weeks reduced the increase in endometrial thickness during the second treatment period and prevented excessive bleeding. Conclusion The 3-month UPA-CVR may become an effective long-acting, user-controlled estrogen-free contraceptive. The greatest suppression of ovulation was seen with the 2500 μg/d ring. PMID:25193534

  3. From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative "Superbugs" Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators.

    PubMed

    Hussein, Maytham H; Schneider, Elena K; Elliott, Alysha G; Han, Meiling; Reyes-Ortega, Felisa; Morris, Faye; Blastovich, Mark A T; Jasim, Raad; Currie, Bart; Mayo, Mark; Baker, Mark; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2016-12-09

    Novel therapeutic approaches are urgently needed to combat nosocomial infections caused by extremely drug-resistant (XDR) "superbugs." This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with selective estrogen receptor modulators (SERMs) against problematic Gram-negative pathogens. In vitro synergistic antibacterial activity of polymyxin B and the SERMs tamoxifen, raloxifene, and toremifene was assessed using the microdilution checkerboard and static time-kill assays against a panel of Gram-negative isolates. Polymyxin B and the SERMs were ineffective when used as monotherapy against polymyxin-resistant minimum inhibitory concentration ([MIC] ≥8 mg/L) Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. However, when used in combination, clinically relevant concentrations of polymyxin B and SERMs displayed synergistic killing against the polymyxin-resistant P. aeruginosa, K. pneumoniae, and A. baumannii isolates as demonstrated by a ≥2-3 log10 decrease in bacterial count (CFU/ml) after 24 hours. The combination of polymyxin B with toremifene demonstrated very potent antibacterial activity against P. aeruginosa biofilms in an artificial sputum media assay. Moreover, polymyxin B combined with toremifene synergistically induced cytosolic green fluorescence protein release, cytoplasmic membrane depolarization, permeabilizing activity in a nitrocefin assay, and an increase of cellular reactive oxygen species from P. aeruginosa cells. In addition, scanning and transmission electron micrographs showed that polymyxin B in combination with toremifene causes distinctive damage to the outer membrane of P. aeruginosa cells, compared with treatments with each compound per se. In conclusion, the combination of polymyxin B and SERMs illustrated a synergistic activity against XDR Gram-negative pathogens, including highly polymyxin-resistant P. aeruginosa isolates, and represents a novel combination

  4. Estrogens as Antioxidant Modulators in Human Fertility

    PubMed Central

    Mancini, A.; Raimondo, S.; Persano, M.; Di Segni, C.; Cammarano, M.; Gadotti, G.; Silvestrini, A.; Pontecorvi, A.; Meucci, E.

    2013-01-01

    Among treatments proposed for idiopathic male infertility, antiestrogens, like tamoxifen, play a possible role. On the other hand, oxidative stress is a mechanism well recognized for deleterious effects on spermatozoa function. After reviewing the literature on the effects of estrogens in modulation of antioxidant systems, in both sexes, and in different in vivo and in vitro models, we suggest, also on the basis of personal data, that a tamoxifen treatment could be active via an increase in seminal antioxidants. PMID:24363671

  5. Cell Cycle Regulation of Estrogen and Androgen Receptor

    DTIC Science & Technology

    2002-07-01

    Estrogen and Androgen Receptor PRINCIPAL INVESTIGATOR: Elisabeth D. Martinez CONTRACTING ORGANIZATION: Georgetown University Medical Center...Cycle Regulation of Estrogen and Androgen DAMD17-99-1-9199 Receptor 6. AUTHOR(S) Elisabeth D. Martinez 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...with androgens. 14. SUBJECT TERMS 15. NUMBER OF PAGES breast cancer, cell cycle, androgen receptor, estrogen receptor, non- 66 steroidal activators, L

  6. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals☆☆☆

    PubMed Central

    Bannister, Richard; Beresford, Nicola; Granger, David W.; Pounds, Nadine A.; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J.

    2013-01-01

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p > 0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10−6 M for Gen and >10−5 M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of

  7. 4-Nitrophenol induces Leydig cells hyperplasia, which may contribute to the differential modulation of the androgen receptor and estrogen receptor-α and -β expression in male rat testes.

    PubMed

    Zhang, Yonghui; Piao, Yuanguo; Li, Yansen; Song, Meiyan; Tang, Pingli; Li, Chunmei

    2013-11-25

    4-Nitrophenol (PNP) is generally regarded as an environmental endocrine disruptor capable of estrogenic and anti-androgenic activities. To investigate PNP-induced reproductive effects, immature male rats were injected subcutaneously with PNP (0.1, 1, 10mg/kg body weight or vehicle) daily for 4 weeks. We assessed reproductive tract alterations, sex hormone balance in the serum and estrogen receptor (ER)-α, -β and androgen receptor (AR) expression in testes. Although no significant difference was observed in body weight or testes weights of PNP-treated rats compared with the controls, the serum concentrations of testosterone in the 10mg/kg PNP-treated group were significantly elevated. This effect was accompanied by Leydig cells hyperplasia in the testes. Conversely, there was a significant decrease in estradiol concentration and aromatase expression in the testes of the 10mg/kg PNP-treated group. Furthermore, we observed a significant increase in ERα expression in the testes of the 10mg/kg PNP-treated group compared with the control group. Conversely, ERβ expression displayed a significant reduction. Moreover, AR expression was significantly increased in the 10mg/kg PNP-treated group compared with the control group. The existence of AR, ER-α and -β in the testes suggests that estradiol and testosterone directly affect germ cells and that differential modulation of AR, ER-α and -β in the testis may be involved in the direct effects of PNP or either the indirect effects of PNP-induced disruption of the estradiol-to-testosterone balance or the Leydig cells hyperplasia. Thus, the measurement of many endpoints is necessary for good risk assessment.

  8. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review.

    PubMed

    Jameera Begam, A; Jubie, S; Nanjan, M J

    2017-04-01

    Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described.

  9. Impact of Apparent Antagonism of Estrogen Receptor β by Fulvestrant on Anticancer Activity of 2-Methoxyestradiol.

    PubMed

    Gorska, Magdalena; Wyszkowska, Roksana Maja; Kuban-Jankowska, Alicja; Wozniak, Michal

    2016-05-01

    Osteosarcoma is one of the most malignant bone tumors of childhood and adolescence. Interestingly, the presence of estrogen receptors α and β has been reported in human bone cells, including osteosarcoma. Thus, inhibitors of estrogens such as fulvestrant, are considered candidates for novel endocrine therapy in treatment of osteosarcoma. Another anticancer agent that seems to be very effective in treatment of osteosarcoma is a derivative of 17β-estradiol, 2-methoxyestradiol. The aim of this study was to determine the anticancer activities of pure anti-estrogen, fulvestrant and combined treatment of fulvestrant and 2-methoxyestradiol towards highly metastatic osteosarcoma 143B cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used in order to determine the antiproliferative potential of the compounds, and western blotting for estrogen receptors α and β. Flow cytometry was used in order to determine induction of cell death, cell-cycle arrest, mitochondrial depolarization, and DNA damage. Herein, we showed that fulvestrant has anticancer activity only at high concentrations. We were able to find and expression of estrogen receptor β, while we did not detect estrogen receptor α in osteosarcoma 143B cells. Moreover, fulvestrant down-regulated the expression of estrogen receptor β, and this effect was reversed by 2-methoxyestradiol. Thus, the obtained data suggest that 2-methoxyestradiol may exert part of its anticancer activity through modulation of expression of estrogen receptor β.

  10. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  11. Cell Cycle Regulation of Estrogen and Androgen Receptor

    DTIC Science & Technology

    2001-07-01

    EC50 . "* It has been established that the estrogen receptor shows highest activity when the cells are treated by serum starvation and are mainly in GO...of Estrogen and Androgen Receptor PRINCIPAL INVESTIGATOR: Elisabeth D. Martinez CONTRACTING ORGANIZATION: Georgetown University Medical Center... Estrogen and Androgen Receptor DAMD 17-99-1- 9199 6. AUTHOR(S) Elisabeth D. Martinez 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  12. Aromatase, estrogen receptors and brain development in fish and amphibians.

    PubMed

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  13. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    SciTech Connect

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay; Pakdel, Farzad; Brion, François; Aït-Aïssa, Sélim; Cavaillès, Vincent; Bourguet, William; Gustafsson, Jan-Ake; and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  14. Synergistic activation of estrogen receptor with combinations of environmental chemicals

    SciTech Connect

    Arnold, S.F.; Klotz, D.M.; Collins, B.M.

    1996-06-07

    Certain chemicals in the environment are estrogenic. The low potencies of the compounds, when studied singly, suggest that they may have little effect on biological systems. The estrogenic potencies of combinations of such chemicals were screened in a simple yeast estrogen potencies of combination of such chemicals were screened in a simple yeast estrogen systems (YES) containing human estrogen receptor (hER). Combinations of two weak environmental estrogens, such as dieldrin, endosulfan, or toxaphene, were 100 times as potent in hER-mediated transactivation as any chemical alone. Hydroxylated polychlorinated biphenyls shown previously to synergistically alter sexual development in turtles also synergized in the YES. The synergistic interaction of chemical mixtures with the estrogen receptor may have profound environmental implications. These results may represent a previously uncharacterized level of regulation of estrogen-associated responses. 32 refs., 3 figs., 3 tabs.

  15. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  16. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    PubMed

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  17. beta-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process.

    PubMed

    Audesirk, T; Cabell, L; Kern, M; Audesirk, G

    2003-01-01

    We utilized morphometric analysis of 3 day cultures of hippocampal neurons to determine the effects of both estradiol and the synthetic estrogen receptor modulator raloxifene on several parameters of neuronal growth and differentiation. These measurements included survival, neurite production, dendrite number, and axon and dendrite length and branching. 17 beta-Estradiol (10 nM) selectively stimulated dendrite branching; this effect was neither mimicked by alpha-estradiol, nor blocked by the estrogen receptor antagonist ICI 182780. The selective estrogen receptor modulator raloxifene (100 nM) neither mimicked nor reversed the effects of estradiol on dendritic branching. Western immunoblotting for the alpha and beta subtypes of estrogen receptor revealed the presence of alpha, but not beta, estrogen receptors in our hippocampal cultures. There is growing recognition of the effects of 17 beta-estradiol on neuronal development and physiology, with implications for brain sexual dimorphism, plasticity, cognition, and the maintenance of cognitive function during aging. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. These data support the hypothesis that 17 beta-estradiol is acting via alpha estrogen receptors in influencing hippocampal development in vitro. Raloxifene, prescribed to combat osteoporosis in post-menopausal women, is a selective estrogen receptor modulator with tissue-specific agonist/antagonist properties. Because raloxifene had no effect on dendritic branching, we hypothesize that it does not interact with the alpha estrogen receptor in this experimental paradigm.

  18. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors.

    PubMed

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay; Pakdel, Farzad; Brion, François; Aït-Aïssa, Sélim; Cavaillès, Vincent; Bourguet, William; Gustafsson, Jan-Ake; Bondesson, Maria; Balaguer, Patrick

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.

  19. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  20. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D).

  1. Inhibition of Advanced Glycation End Products (AGEs) Accumulation by Pyridoxamine Modulates Glomerular and Mesangial Cell Estrogen Receptor α Expression in Aged Female Mice.

    PubMed

    Pereira-Simon, Simone; Rubio, Gustavo A; Xia, Xiaomei; Cai, Weijing; Choi, Rhea; Striker, Gary E; Elliot, Sharon J

    2016-01-01

    Age-related increases in oxidant stress (OS) play a role in regulation of estrogen receptor (ER) expression in the kidneys. In this study, we establish that in vivo 17β-estradiol (E2) replacement can no longer upregulate glomerular ER expression by 21 months of age in female mice (anestrous). We hypothesized that advanced glycation end product (AGE) accumulation, an important source of oxidant stress, contributes to these glomerular ER expression alterations. We treated 19-month old ovariectomized female mice with pyridoxamine (Pyr), a potent AGE inhibitor, in the presence or absence of E2 replacement. Glomerular ERα mRNA expression was upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Histological sections of kidneys demonstrated decreased type IV collagen deposition in mice receiving Pyr and E2 compared to placebo control mice. In addition, anti-AGE defenses Sirtuin1 (SIRT1) and advanced glycation receptor 1 (AGER1) were also upregulated in glomeruli following treatment with Pyr and E2. Mesangial cells isolated from all groups of mice demonstrated similar ERα, SIRT1, and AGER1 expression changes to those of whole glomeruli. To demonstrate that AGE accumulation contributes to the observed age-related changes in the glomeruli of aged female mice, we treated mesangial cells from young female mice with AGE-BSA and found similar downregulation of ERα, SIRT1, and AGER1 expression. These results suggest that inhibition of intracellular AGE accumulation with pyridoxamine may protect glomeruli against age-related oxidant stress by preventing an increase of TGFβ production and by regulation of the estrogen receptor.

  2. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations. PMID:26528239

  3. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  4. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  5. Hippocampal cytosolic estrogen receptors regulate fear generalization in females.

    PubMed

    Lynch, Joseph F; Winiecki, Patrick; Vanderhoof, Tyler; Riccio, David C; Jasnow, Aaron M

    2016-04-01

    Generalization of fear responses is a symptom of many anxiety disorders and we have previously demonstrated that female rats generalize fear to a neutral context at a faster rate compared to males. This effect is due in part, to activation of ER and modulation of memory retrieval mechanisms resulting in fear generalization. Given that the effects of estradiol on fear generalization required approximately 24h, our data suggested possible genomic actions on fear generalization. To determine whether these actions were due to cytosolic versus membrane bound receptors, female rats were given infusions of ICI 182,780, a cytosolic estrogen receptor antagonist, into the lateral ventricle or dorsal hippocampus simultaneously with estradiol treatment or with an ER agonist (DPN). Infusions of ICI into the lateral ventricle or the dorsal hippocampus blocked fear generalization induced by peripheral or central treatment with estradiol or DPN, suggesting that estradiol acts through cytosolic ERβ receptors. In further support of these findings, intracerebroventricular or intra-hippocampal infusions of bovine serum conjugated estradiol (E2-BSA), activating membrane-bound estrogen receptors only, did not induce fear generalization. Moreover, rats receiving intra-hippocampal infusions of the ERK/MAPK inhibitor, U0126, continued to display estradiol-induced generalization, again suggesting that membrane-bound estrogen receptors do not contribute to fear generalization. Overall, these data suggest that estradiol-induced enhancements in fear generalization are mediated through activation of cytosolic/nuclear ER within the dorsal hippocampus. This region seems to be an important locus for the effects of estradiol on fear generalization although additional neuroanatomical regions have yet to be identified.

  6. Estrogen Receptor Alpha G525L Knock-In-Mice

    DTIC Science & Technology

    2006-03-01

    Padilla-Banks E, Clark G, Newbold RR. Assessing estrogenic activity of phytochemicals using transcriptional activation and immature mouse...AD_________________ Award Number: W81XWH-04-1-0347 TITLE: Estrogen Receptor Alpha G525L...TITLE AND SUBTITLE Estrogen Receptor Alpha G525L Knock-In Mice 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0347 5c. PROGRAM ELEMENT

  7. The Role of Estrogen Modulators in Male Hypogonadism and Infertility

    PubMed Central

    Rambhatla, Amarnath; Mills, Jesse N.; Rajfer, Jacob

    2016-01-01

    Estradiol, normally considered a female hormone, appears to play a significant role in men in a variety of physiologic functions, such as bone metabolism, cardiovascular health, and testicular function. As such, estradiol has been targeted by male reproductive and sexual medicine specialists to help treat conditions such as infertility and hypogonadism. The compounds that modulate estradiol levels in these clinical conditions are referred to as selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs). In a certain subset of infertile men, particularly those with hypogonadism, or those who have a low serum testosterone to estradiol ratio, there is some evidence suggesting that SERMs and AIs can reverse the low serum testosterone levels or the testosterone to estradiol imbalance and occasionally improve any associated infertile or subfertile state. This review focuses on the role these SERMs and AIs play in the aforementioned reproductive conditions. PMID:27601965

  8. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    PubMed Central

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  9. Drug targeting of estrogen receptor signaling in the cardiovascular system: preclinical and clinical studies.

    PubMed

    Sanz-González, Silvia M; Cano, Antonio; Valverde, M A; Hermenegildo, Carlos; Andrés, Vicente

    2004-04-01

    Atherosclerosis and associated coronary heart disease events have lower prevalence in women than in men, especially during young adult years. Although multiple lines of evidence suggest that estrogens contribute to this difference, the efficacy of hormone replacement therapy for the prevention of cardiovascular disease in postmenopausal women is controversial. The protective action of estrogen in the cardiovascular system appears to be mediated indirectly by an effect on serum lipoprotein and triglyceride profiles and on the expression of coagulant and fibrinolytic proteins, and by a direct effect on the vessel wall itself. Estrogen has both rapid effects involving alteration of membrane ionic permeability and activation of membrane-bound enzymes and increases in endothelial cell nitric oxide synthase activity, as well as longer-term effects on gene expression that are mediated, at least in part, by the ligand-activated transcription factors, estrogen receptor alpha and beta. Compounds with pure antiestrogenic activity and selective estrogen receptor modulators that regulate estrogen receptor function in a tissue-specific manner have been developed in an attempt to achieve the cardioprotective effects of estrogens while minimizing the undesirable risks associated with hormone replacement therapy (e.g., endometrial and breast cancer). In this review, we will discuss recent developments on the mechanisms of estrogen action in the cardiovascular system. The results of clinical trials testing the long-term efficacy of hormone replacement therapy for the treatment of cardiovascular disease will also be discussed.

  10. Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effect of estrogen receptor gene disruption.

    PubMed Central

    Rubanyi, G M; Freay, A D; Kauser, K; Sukovich, D; Burton, G; Lubahn, D B; Couse, J F; Curtis, S W; Korach, K S

    1997-01-01

    The present study was designed to test the hypothesis that estrogen receptors (ER) in the blood vessel wall play a role in the modulation of the release of endothelium-derived nitric oxide (EDNO). Both basal and stimulated release of EDNO were determined in aortic rings isolated from female and male wild-type and male homozygous estrogen receptor knock-out (ERKO) mice. 125I-17beta-estradiol binding in aortic tissue showed significantly more high affinity cytosolic- nuclear-binding sites in male compared with female wildtype mice. Estrogen receptor transcripts were present in the aorta of male wild-type mice, but they were absent in male ERKO animals. Basal release of EDNO (determined by endothelium-dependent contraction caused by NG-nitro-arginine) was significantly higher in aorta of wild-type male mice compared with wild-type female mice, and significantly lower in the aorta of male ERKO compared with male wild-type mice. Acetylcholine-induced endothelium-dependent relaxation was similar in all groups studied. No difference was observed in the activity of calcium-dependent nitric oxide synthase in homogenates of lungs and brain taken from male wild-type and ERKO mice. These studies show a significant association between the number of estrogen receptors and basal release of EDNO in the aorta of mice, and suggest that decreased vascular estrogen receptor number may represent a novel risk factor for cardiovascular diseases. PMID:9153286

  11. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    SciTech Connect

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-05-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of (/sup 32/P)-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions.

  12. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  13. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  14. Insights into Rapid Modulation of Neuroplasticity by Brain Estrogens

    PubMed Central

    Woolfrey, Kevin M.; Penzes, Peter

    2013-01-01

    Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits

  15. Alpha-Estrogen and Progesterone Receptors Modulate Kisspeptin Effects on Prolactin: Role in Estradiol-Induced Prolactin Surge in Female Rats.

    PubMed

    Aquino, Nayara S S; Araujo-Lopes, Roberta; Henriques, Patricia C; Lopes, Felipe E F; Gusmao, Daniela O; Coimbra, Candido C; Franci, Celso R; Reis, Adelina M; Szawka, Raphael E

    2017-04-06

    Kisspeptin regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian-steroid receptors and kisspeptin in the control of PRL secretion. Intracerebroventricular injections of kisspeptin-10 (Kp-10) or kisspeptin-234 (Kp-234) were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacet acid (DOPAC) levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol (PPT), but not of ERβ, diarylpropionitrile (DPN). Furthermore, the Kp-10-induced increase in PRL was 2-fold higher in OVX+E rats further treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist, RU486. We also determined the effect of kisspeptin antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive ELISA. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence for the first time that kisspeptin stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, kisspeptin seems to play a role in the peak phase of the estradiol-induced PRL surge.

  16. Tamoxifen regulation of bone growth and endocrine function in the ovariectomized rat: discrimination of responses involving estrogen receptor α/estrogen receptor β, G protein-coupled estrogen receptor, or estrogen-related receptor γ using fulvestrant (ICI 182780).

    PubMed

    Fitts, James M; Klein, Robert M; Powers, C Andrew

    2011-07-01

    Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterine and somatic growth, bone, the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis, and pituitary prolactin were analyzed to pharmacologically discriminate tamoxifen effects that may be mediated by ERα/ERβ versus ERRγ versus GPER. Ovariectomized rats received tamoxifen (0.6 mg/kg/daily) plus fulvestrant at 0, 3, 6, or 12 mg/kg/daily for 5 weeks; controls received vehicle or 6 mg/kg fulvestrant daily. Tamoxifen effects to increase uterine weight, decrease serum IGF-I, increase pituitary prolactin, and increase bone mineral density could be fully blocked by fulvestrant, indicating mediation by ERα/ERβ. Tamoxifen effects to decrease pituitary GH, tibia length, and body weight were only partially blocked by fulvestrant, indicating involvement of mechanisms unrelated to ERα/ERβ. Fulvestrant did not inhibit tamoxifen actions to reduce total pituitary protein, again indicating effects not mediated by ERα/ERβ. Tamoxifen actions to reduce serum GH were mimicked rather than inhibited by fulvestrant, pharmacological features consistent with GPER involvement. However, fulvestrant alone increased IGF-I and also blocked tamoxifen-evoked IGF-I decreases; thus fulvestrant effects on serum GH might reflect increased IGF-I feedback inhibition. Fulvestrant alone had no effect on the other parameters. The findings indicate that mechanisms unrelated to ERα/ERβ contribute to tamoxifen effects on body weight, bone growth, and pituitary function.

  17. Estrogen Receptor Ligands: A Review (2013–2015)

    PubMed Central

    Farzaneh, Shabnam; Zarghi, Afshin

    2016-01-01

    Estrogen receptors (ERs) are a group of compounds named for their importance in both menstrual and estrous reproductive cycles. They are involved in the regulation of various processes ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. Estrogens attract great attention due to their wide applications in female reproductive functions and treatment of some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER ligands published in international journals patented between 2013 and 2015. The broad physiological profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor, subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse side effects, based on the different distributions and relative levels of the two ER subtypes in different estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory, and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved in the regulation of many complex physiological functions in humans. Selective estrogen ligands are highly promising targets for treatment of some types of cancer, as well as for cardiovascular, inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of ER ligands based on small molecules indicate that many different structural scaffolds may provide high

  18. Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity

    PubMed Central

    Martini, Paolo G. V.; Delage-Mourroux, Regis; Kraichely, Dennis M.; Katzenellenbogen, Benita S.

    2000-01-01

    We find that prothymosin alpha (PTα) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTα interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTα, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTα increases the magnitude of ERα transcriptional activity three- to fourfold. It shows lesser enhancement of ERβ transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTα or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTα (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTα or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTα, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTα to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain its ability to selectively enhance

  19. Immunohistochemical profiling of estrogen-related receptor gamma in rat brain and colocalization with estrogen receptor alpha in the preoptic area.

    PubMed

    Tanida, Takashi; Matsuda, Ken Ichi; Yamada, Shunji; Kawata, Mitsuhiro; Tanaka, Masaki

    2017-03-15

    Estrogen-related receptor (ERR) is a member of the nuclear receptor superfamily that has strong homology with estrogen receptor (ER) α. Despite the lack of endogenous ligands, ERR serves as transcription factors through their constitutively active structure with or without interaction with ERα. Among the three subtypes of ERR (α, β, and γ), ERRγ is highly expressed in brain, but the distribution of ERRγ is poorly characterized. Therefore, we investigated ERRγ immunoreactivity throughout the rostro-caudal axis in rat brain. Immunohistochemistry revealed localization of ERRγ protein in the cell nucleus, and a ubiquitous distribution of ERRγ in brain regions including the olfactory bulb, cerebrum, brain stem, and cerebellum. Selective intense immunoreactivity was observed in the reticular thalamic nucleus, zona incerta, circular nucleus, interpeduncular nucleus, pontine nucleus, and parasolitary nucleus. Most ERRγ-immunoreactive (ir) regions were also positive for ERα and/or ERβ, which suggests that ERRγ is involved in modulation of estrogen signaling in adult rat brain. Double immunofluorescence demonstrated colocalization of ERRγ with ERα within the anteroventral periventricular nucleus of the preoptic area (AVPV) and medial preoptic nucleus (MPO), which are major target sites for estrogen action. The results of this study suggest that ERRγ function in the brain is affected by estrogens through an interaction with ERα. The findings also provide basic information on brain region-specific ERRγ function.

  20. Molecular Cloning, Characterization, and Chromosome Mapping of Reptilian Estrogen Receptors

    PubMed Central

    Katsu, Yoshinao; Matsubara, Kazumi; Kohno, Satomi; Matsuda, Yoichi; Toriba, Michihisa; Oka, Kaori; Guillette, Louis J.; Ohta, Yasuhiko; Iguchi, Taisen

    2010-01-01

    In many vertebrates, steroid hormones are essential for ovarian differentiation during a critical developmental stage as well as promoting the growth and differentiation of the adult female reproductive system. Although studies have been extensively conducted in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens) action have been poorly examined in reptiles. Here, we evaluate hormone receptor and ligand interactions in two species of snake, the Okinawa habu (Protobothrops flavoviridis, Viperidae) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae) after the isolation of cDNAs encoding estrogen receptor α (ESR1) and estrogen receptor β (ESR2). Using a transient transfection assay with mammalian cells, the transcriptional activity of reptilian (Okinawa habu, Japanese four-striped rat snake, American alligator, and Florida red-belly freshwater turtle) ESR1 and ESR2 was examined. All ESR proteins displayed estrogen-dependent activation of transcription via an estrogen-response element-containing promoter; however, the responsiveness to various estrogens was different. Further, we determined the chromosomal locations of the snake steroid hormone receptor genes. ESR1 and ESR2 genes were localized to the short and long arms of chromosome 1, respectively, whereas androgen receptor was localized to a pair of microchromosomes in the two snake species examined. These data provide basic tools that allow future studies examining receptor-ligand interactions and steroid endocrinology in snakes and also expands our knowledge of sex steroid hormone receptor evolution. PMID:20926589

  1. In Vivo Imaging of Activated Estrogen Receptors in Utero by Estrogens and Bisphenol A

    PubMed Central

    Lemmen, Josephine G.; Arends, Roel J.; van der Saag, Paul T.; van der Burg, Bart

    2004-01-01

    Environmental estrogens are of particular concern when exposure occurs during embryonic development. Although there are good models to study estrogenic activity of chemicals in adult animals, developmental exposure is much more difficult to test. The weak estrogenic activity of the environmental estrogen bisphenol A (BPA) in embryos is controversial. We have recently generated transgenic mice that carry a reporter construct with estrogen-responsive elements coupled to luciferase. We show that, using this in vivo model in combination with the IVIS imaging system, activation of estrogen receptors (ERs) by maternally applied BPA and other estrogens can be detected in living embryos in utero. Eight hours after exposure to 1 mg/kg BPA, ER transactivation could be significantly induced in the embryos. This was more potent than would be estimated from in vitro assays, although its intrinsic activity is still lower than that of diethylstilbestrol and 17β-estradiol dipropionate. On the basis of these results, we conclude that the estrogenic potency of BPA estimated using in vitro assays might underestimate its estrogenic potential in embryos. PMID:15531440

  2. In vivo imaging of activated estrogen receptors in utero by estrogens and bisphenol A.

    PubMed

    Lemmen, Josephine G; Arends, Roel J; van der Saag, Paul T; van der Burg, Bart

    2004-11-01

    Environmental estrogens are of particular concern when exposure occurs during embryonic development. Although there are good models to study estrogenic activity of chemicals in adult animals, developmental exposure is much more difficult to test. The weak estrogenic activity of the environmental estrogen bisphenol A (BPA) in embryos is controversial. We have recently generated transgenic mice that carry a reporter construct with estrogen-responsive elements coupled to luciferase. We show that, using this in vivo model in combination with the IVIS imaging system, activation of estrogen receptors (ERs) by maternally applied BPA and other estrogens can be detected in living embryos in utero. Eight hours after exposure to 1 mg/kg BPA, ER transactivation could be significantly induced in the embryos. This was more potent than would be estimated from in vitro assays, although its intrinsic activity is still lower than that of diethylstilbestrol and 17beta-estradiol dipropionate. On the basis of these results, we conclude that the estrogenic potency of BPA estimated using in vitro assays might underestimate its estrogenic potential in embryos.

  3. Characterization and Consequences of Estrogen Receptor Exon Five Deletion.

    DTIC Science & Technology

    1997-08-01

    the assembly of an adhesion belt (whose contraction has been implicated in lumen formation during gland development) [17], and tight junctions...down regulation by gonadotropins. Molecular Endocrinology, 1997. 11: p. 172-182. 87. Kuiper , G., et al., Cloning of a novel estrogen receptor...and K. Korach, Editorial: A new actor in the estrogen receptor drama - enter ER-B3. Endocrinology, 1997. 138(3): p. 861-862. 90. Kuiper , G.G.J.M., et

  4. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review.

  5. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  6. Fulvestrant, a selective estrogen receptor down-regulator, sensitizes estrogen receptor negative breast tumors to chemotherapy.

    PubMed

    Jiang, Donghai; Huang, Yuan; Han, Ning; Xu, Mingjie; Xu, Liang; Zhou, Lin; Wang, Shu; Fan, Weimin

    2014-05-01

    Drug resistance frequently results in poor prognosis and high 5-year recurrence rate in estrogen receptor-negative (ER-) breast cancer patients. Herein, we examined the reversal effects of fulvestrant on multidrug resistance (MDR) in ER- breast cancer cells. Co-administration of fulvestrant significantly sensitized ER- MDR tumors to paclitaxel both in vitro and in vivo. Further analyses indicated that fulvestrant did not affect P-gp expression, but could inhibit P-gp function and subsequently reverse P-gp mediated drug resistance in ER- breast cancer cells. These results showed that combination of fulvestrant and chemotherapeutic agents might provide an effective treatment for ER- MDR breast cancers.

  7. Estrogen receptor-related receptors in the killifish Fundulus heteroclitus: diversity, expression, and estrogen responsiveness.

    PubMed

    Tarrant, A M; Greytak, S R; Callard, G V; Hahn, M E

    2006-08-01

    The estrogen receptor-related receptors (ERRs) are a group of nuclear receptors that were originally identified on the basis of sequence similarity to the estrogen receptors. The three mammalian ERR genes have been implicated in diverse physiological processes ranging from placental development to maintenance of bone density, but the diversity, function, and regulation of ERRs in non-mammalian species are not well understood. In this study, we report the cloning of four ERR cDNAs from the Atlantic killifish, Fundulus heteroclitus, along with adult tissue expression and estrogen responsiveness. Phylogenetic analysis indicates that F. heteroclitus (Fh)ERRalpha is an ortholog of the single ERRalpha identified in mammals, pufferfish, and zebrafish. FhERRbetaa and FhERRbetab are co-orthologs of the mammalian ERRbeta. Phylogenetic placement of the fourth killifish ERR gene, tentatively identified as FhERRgammab, is less clear. The four ERRs showed distinct, partially overlapping mRNA expression patterns in adult tissues. FhERRalpha was broadly expressed. FhERRbetaa was expressed at apparently low levels in eye, brain, and ovary. FhERRbetab was expressed more broadly in liver, gonad, eye, brain, and kidney. FhERRgammab was expressed in multiple tissues including gill, heart, kidney, and eye. Distinct expression patterns of FhERRbetaa and FhERRbetab are consistent with subfunctionalization of the ERRbeta paralogs. Induction of ERRalpha mRNA by exogenous estrogen exposure has been reported in some mammalian tissues. In adult male killifish, ERR expression did not significantly change following estradiol injection, but showed a trend toward a slight induction (three- to five-fold) of ERRalpha expression in heart. In a second, more targeted experiment, expression of ERRalpha in adult female killifish was downregulated 2.5-fold in the heart following estradiol injection. In summary, our results indicate that killifish contain additional ERR genes relative to mammals, including

  8. ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY

    PubMed Central

    Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.

    2016-01-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  9. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions.

  10. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2011-01-01

    Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and non-genomic ER activity through direct interactions with ERs, indirectly through transcription factors like the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study. PMID:21053929

  11. Delayed puberty and estrogen resistance in a woman with estrogen receptor α variant.

    PubMed

    Quaynor, Samuel D; Stradtman, Earl W; Kim, Hyung-Goo; Shen, Yiping; Chorich, Lynn P; Schreihofer, Derek A; Layman, Lawrence C

    2013-07-11

    Although androgen resistance has been characterized in men with a normal chromosome complement and mutations in the androgen-receptor gene, a mutation in the gene encoding estrogen receptor α (ESR1) was previously described only in one man and not, to our knowledge, in a woman. We now describe an 18-year-old woman without breast development and with markedly elevated serum levels of estrogens and bilateral multicystic ovaries. She was found to have a homozygous loss-of-function ESR1 mutation in a completely conserved residue that interferes with estrogen signaling. Her clinical presentation was similar to that in the mouse orthologue knockout. This case shows that disruption of ESR1 causes profound estrogen resistance in women. (Funded by the National Institutes of Health.).

  12. Estrogenic modulation of delta(9)-Tetrahydrocannabinol effects on nigrostriatal dopaminergic activity in the female rat brain.

    PubMed

    Bonnin, A; Ferández-Ruiz, J J; Martín, M; De Fonseca, F R; De Miguel, R; Ramos, J A

    1992-08-01

    In this work we studied the possible estrogenic modulation of the effects of delta(9)-tetrahydrocannabinol (THC) on nigrostriatal dopaminergic activity. Thus, we examined the effects of an acute dose of this cannabinoid: (i) during the three phases of the estrous cycle; (ii) after ovariectomy, chronic estrogen replacement, and/or tamoxifen (TMX)-induced blockade of cytosolic estrogenic receptors; and (iii) combined with a single and physiological injection of estradiol to ovariectomized rats, whose effects were measured early, with no time for genomic induction. THC increased the activity of tyrosine hydroxylase in the striatum of ovariectomized rats implanted with estradiol-filled Silastic capsules or ovariectomized rats. This effect: (i) depended on the presence of an intact estrogenic receptor mechanism, because it was prevented by pretreatment with TMX, and (ii) did not appear when THC was coadministered with estradiol, suggesting an inhibitory modulation of cannabinoid effect by the nongenomic mechanism of action of this steroid. The striatal content of l-3,4-dihydroxyphenylacetic acid and its ratio with dopamine content, which can be used as an index of neuronal activity, also increased following acute THC administration. However, this effect was seen only in ovariectomized rats without estrogen replacement. The administration of THC in combination with a single estradiol injection or to estradiol-implanted ovariectomized rats was ineffective for both parameters. All these effects appeared after ovariectomy with/without estrogen replacement. However, we did not observe any statistically significant effects when THC was administered to normal cycling rats during each phase of the estrous cycle. This observation might be related to the fact that the affinity of striatal cannabinoid receptors, which are the main candidates to mediate cannabinoid effects on this area, significantly increased after ovariectomy compared with that measured in normal cycling rats. In

  13. The Impact of 27-Hydroxycholesterol, a Macrophage-Produced Estrogen Receptor and Liver X Receptor Agonist, on Breast Cancer Pathophysiology

    DTIC Science & Technology

    2011-02-01

    Umetani M , Shaul PW, Mangelsdorf DJ, McDonnell DP 2008 27- hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol 22:65...receptor alpha. Endocrinology 141:4180-4184 5. Umetani M , Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, Mangelsdorf...angiogenesis in polyoma middle T transgenic mouse mammary tumor explants. Breast Cancer Res Treat 78:1-6 11. Maglione JE, Moghanaki D, Young LJ, Manner CK

  14. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  15. Photoperiod affects estrogen receptor α, estrogen receptor β and aggressive behavior

    PubMed Central

    Trainor, Brian C.; Rowland, Michael R.; Nelson, Randy J.

    2007-01-01

    Estrogens have important effects on male and female social behavior. Despite growing knowledge of the anatomy and behavioral effects of the two predominant estrogen receptor subtypes in mammals (ERα and ERβ), relatively little is known about how these receptors respond to salient environmental stimuli. Many seasonally breeding species respond to changing photoperiods that predict seasonal changes in resource availability. We characterized the effects of photoperiod on aggressive behavior in two species of Peromyscus that exhibit gonadal regression in short days. P. polionotus (old field mice) were more aggressive than P. maniculatus (deer mice) and both species were more aggressive in short days. We used immunocytochemistry and real-time polymerase chain reaction to characterize the effects of photoperiod on ERα and ERβ expression. In both species ERα-immunoreactive staining in the posterior bed nucleus of the stria terminalis (BNST) was increased in short vs. long days. Both species had reduced ERβ-immunoreactive expression in the posterior BNST in short days. In the medial amygdala ERβ immunoreactivity was increased in long days for both species. Using real-time polymerase chain reaction on punch samples that included the BNST, we observed that ERα mRNA was increased and ERβ mRNA was decreased in short days. These data suggest that the effects of photoperiod on ERα and ERβ expression may thus have important behavioral consequences. PMID:17614949

  16. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  17. Estrogen receptor polymorphisms: significance to human physiology, disease and therapy.

    PubMed

    Figtree, Gemma A; Noonan, Jonathon E; Bhindi, Ravinay; Collins, Peter

    2009-01-01

    Other than its well-recognized effects on reproductive physiology, estrogen has important actions in a wide variety of other body systems with important examples including bone, blood vessels and the heart. These effects are seen in both females and males. Investigators have hypothesized those genetic variants in the genes coding for estrogen signaling proteins may cause variable sensitivity to the hormone and influence an individual's estrogen-sensitive phenotypes. The most obvious candidate genes are the estrogen receptors alpha and (ERalpha and beta). However, the regulation of these genes is complex and not well understood. Furthermore, their coding exons, and regulatory sequences are dispersed across large segments of the genome. A number of common polymorphisms have been identified in both ERalpha and ERbeta, with variable degrees of evidence of their direct biological significance and their association with human disease. The identification of genetic variations associated with altered estrogen response is of potential public health importance. Insights may be gained into the pathogenesis of estrogen sensitive diseases such as osteoporosis, breast cancer and cardiovascular disease contributing to the development and application of newer therapies for these disorders. Furthermore, genetic variants that alter sensitivity to estrogen may affect both therapeutic and harmful responses to exogenous estrogen administered in the form of the oral contraceptive pill or hormone replacement therapy. This clinical significance has led to the publication of a number of patents which will be reviewed.

  18. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System.

    PubMed

    Menazza, Sara; Murphy, Elizabeth

    2016-03-18

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.

  19. Characterization and Consequences of Estrogen Receptor Exon Five Deletion.

    DTIC Science & Technology

    1998-08-01

    adhesion belt (whose 127 contraction has been implicated in lumen formation during gland development) (17), and tight junctions (necessary for...G.G.J.M. Kuiper , J.-A. Gustafsson, and O.-K. Park-Sarge, Estrogen receptor-fl mRNA expression in rat ovary: down regulation by gonadotropins...Molecular Endocrinology, 1997. 11: p. 172-182. 87. Kuiper , G., E. Enmark, M. Pelto-Huikko, S. Nilsson, and J.-A. Gustafsson, Cloning of a novel estrogen

  20. Current medical treatment of estrogen receptor-positive breast cancer

    PubMed Central

    Lumachi, Franco; Santeufemia, Davide A; Basso, Stefano MM

    2015-01-01

    Approximately 80% of breast cancers (BC) are estrogen receptor (ER)-positive and thus endocrine therapy (ET) should be considered complementary to surgery in the majority of patients. The advantages of oophorectomy, adrenalectomy and hypophysectomy in women with advanced BC have been demonstrated many years ago, and currently ET consist of (1) ovarian function suppression (OFS), usually obtained using gonadotropin-releasing hormone agonists (GnRHa); (2) selective estrogen receptor modulators or down-regulators (SERMs or SERDs); and (3) aromatase inhibitors (AIs), or a combination of two or more drugs. For patients aged less than 50 years and ER+ BC, there is no conclusive evidence that the combination of OFS and SERMs (i.e., tamoxifen) or chemotherapy is superior to OFS alone. Tamoxifen users exhibit a reduced risk of BC, both invasive and in situ, especially during the first 5 years of therapy, and extending the treatment to 10 years further reduced the risk of recurrences. SERDs (i.e., fulvestrant) are especially useful in the neoadjuvant treatment of advanced BC, alone or in combination with either cytotoxic agents or AIs. There are two types of AIs: type I are permanent steroidal inhibitors of aromatase, while type II are reversible nonsteroidal inhibitors. Several studies demonstrated the superiority of the third-generation AIs (i.e., anastrozole and letrozole) compared with tamoxifen, and adjuvant therapy with AIs reduces the recurrence risk especially in patients with advanced BC. Unfortunately, some cancers are or became ET-resistant, and thus other drugs have been suggested in combination with SERMs or AIs, including cyclin-dependent kinase 4/6 inhibitors (palbociclib) and mammalian target of rapamycin (mTOR) inhibitors, such as everolimus. Further studies are required to confirm their real usefulness. PMID:26322178

  1. Functional associations between two estrogen receptors, environmental estrogens, and sexual disruption in the roach (Rutilus rutilus).

    PubMed

    Katsu, Yoshinao; Lange, Anke; Urushitani, Hiroshi; Ichikawa, Rie; Paull, Gregory C; Cahill, Laura L; Jobling, Susan; Tyler, Charles R; Iguchi, Taisen

    2007-05-01

    Wild male roach (Rutilus rutilus) living in U.K. rivers contaminated with estrogenic effluents from wastewater treatment works show feminized responses and have a reduced reproductive capability, but the chemical causation of sexual disruption in the roach has not been established. Feminized responses were induced in male roach exposed to environmentally relevant concentrations of the pharmaceutical estrogen 17alpha-ethinylestradiol, EE2 (up to 4 ng/ L), during early life (from fertilization to 84 days posthatch, dph), and these effects were signaled by altered patterns of expression of two cloned roach estrogen receptor (ER) subtypes, ERalpha. and ERbeta, in the brain and gonad/ liver. Transactivation assays were developed for both roach ER subtypes and the estrogenic potencies of steroidal estrogens differed markedly at the different ER subtypes. EE2 was by far the most potent chemical, and estrone (E1, the most prevalent environmental steroid in wastewater discharges) was equipotent with estradiol (E2) in activating the ERs. Comparison of the EC50 values for the compounds tested showed that ERbeta was 3-21-fold more sensitive to natural steroidal estrogens and 54-fold more sensitive to EE2 as compared to ERalpha. These findings add substantial support to the hypothesis that steroidal estrogens play a significant role in the induction of intersex in roach populations in U.K. rivers and that the molecular approach described could be usefully applied to understand interspecies sensitivity to xenoestrogens.

  2. Comparative analysis of the interaction of various estrogens with the estrogen-receptor system of the uterus

    SciTech Connect

    Fanchenko, N.D.; Alekseeva, M.L.; Minina, L.S.; Novikov, E.A.; Khel'mun, D.K.

    1986-05-20

    The binding of various labeled estrogens under conditions of equilibrium in the cytosol of the uterus of sexually immature Wistar rats was studied. An analysis of the data obtained, as well as the kinetics of the dissociation of the complexes of the ligands used with specific high-affinity estrogen-binding sites of the cytosol, suggested that the population of estrogen receptors in the rat uterus is homogeneous. The possibility of intracellular regulation of the action of estrogens in the target cell in the presence of a homogeneous population of receptors, both at the receptor and at the post-receptor stages, is suggested.

  3. Estrogen Receptor (ER)-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models

    PubMed Central

    Fang, Chen; Ji, Xiaofei; Liang, Xiaofeng; Liu, Yang; Han, Chao; Huang, Liang; Zhang, Qiqi; Li, Hongyan; Zhang, Yejun; Liu, Jinqiu

    2015-01-01

    The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen. PMID:26484775

  4. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen

    SciTech Connect

    Sasson, S.; Notides, A.C.

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-(/sup 3/H)hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-(/sup 3/H)hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with (/sup 3/H)estradiol. However, a competitive binding assay with a saturating concentration of (/sup 3/H) estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with (/sup 3/H)estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  5. Structure, tissue distribution and estrogen regulation of splice variants of the sea bream estrogen receptor α gene.

    PubMed

    Pinto, P I S; Teodósio, R; Socorro, S; Power, D M; Canário, A V M

    2012-07-15

    Estrogen actions are mainly mediated by specific nuclear estrogen receptors (ERs), for which different genes and a diversity of transcript variants have been identified, mainly in mammals. In this study, we investigated the presence of ER splice variants in the teleost fish gilthead sea bream (Sparus auratus), by comparison with the genomic organization of the related species Takifugu rubripes. Two exon2-deleted ERα transcript variants were isolated from liver cDNA of estradiol-treated fish. The ΔE2 variant lacks ERα exon 2, generating a premature termination codon and a putative C-terminal truncated receptor, while the ΔE2,3* variant contains an in-frame deletion of exon 2 and part of exon 3 and codes for a putative ERα protein variant lacking most of the DNA-binding domain. Both variants were expressed at very low levels in several female and male sea bream tissues, and their expression was highly inducible in liver by estradiol-17β treatment with a strong positive correlation with the typical wild-type (wt) ERα response in this tissue. These findings identify novel estrogen responsive splice variants of fish ERα, and provide the basis for future studies to investigate possible modulation of wt-ER actions by splice variants.

  6. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    PubMed

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.

  7. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  8. Estrogen-related receptor β (ERRβ) – renaissance receptor or receptor renaissance?

    PubMed Central

    Divekar, Shailaja D.; Tiek, Deanna M.; Fernandez, Aileen; Riggins, Rebecca B.

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  9. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential

    PubMed Central

    Paterni, Ilaria; Granchi, Carlotta; Katzenellenbogen, John A.; Minutolo, Filippo

    2014-01-01

    Estrogen receptors alpha (ERα) and beta (ERβ) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. Modulation of these receptors by prospective therapeutic agents is currently being considered for prevention and treatment of a wide variety of pathological conditions, such as, cancer, metabolic and cardiovascular diseases, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update of compounds that have been recently reported as modulators of ERs, with a particular focus on their potential clinical applications. PMID:24971815

  10. RIME proteomics of estrogen and progesterone receptors in breast cancer

    PubMed Central

    D’Santos, Clive; Taylor, Christopher; Carroll, Jason S.; Mohammed, Hisham

    2015-01-01

    Nuclear receptors play an important role in transcriptional regulation of diverse cellular processes and is also relevant in diseases such as cancer. In breast cancer, the nuclear receptorsestrogen receptor (ER) and progesterone receptor (PR) are classical markers of the disease and are used to classify breast cancer subtypes. Using a recently developed affinity purification MS technique (RIME) [1], we investigate the protein interactors of ER and PR in breast cancer cell lines upon stimulation by the ligands – estrogen and progesterone. The data is deposited at proteomeXchange (PXD002104) and is part of a publication [2] that explains the link between the two nuclear receptors and potential consequences of this in breast cancer. In this manuscript, we describe the methodology used and provide details on experimental procedures, analysis methods and analysis of raw data. The purpose of this article is to enable reproducibility of the data and provide technical recommendations on performing RIME in hormonal contexts. PMID:26543891

  11. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system.

    PubMed

    Ueda, Kazutaka; Karas, Richard H

    2013-06-01

    Estrogen receptors are classically known as ligand-activated transcription factors that regulate gene transcription in cells in response to hormone binding. In addition to this "genomic" signaling pathway, a "rapid, non-nuclear" signaling pathway mediated by cell membrane-associated estrogen receptors also has been recognized. Although for many years there was little evidence to support any physiological relevance of rapid-signaling, very recently evidence has been accumulating supporting the importance of the rapid, non-nuclear signaling as potentially critical for the protective effects of estrogen in the cardiovascular system. Better understanding of the rapid, non-nuclear signaling potentially provides an opportunity to design "pathway-specific" selective estrogen receptor modulators capable of differentially regulating non-nuclear vs. genomic effects that may prove useful ultimately as specific therapies for cardiovascular diseases.

  12. A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine.

    PubMed

    Jiang, M S; Hart, G W

    1997-01-24

    Estrogen receptors (ER) are ligand-inducible transcription factors regulated by Ser(Thr)-O-phosphorylation. Many transcription factors and eukaryotic RNA polymerase II itself are also dynamically modified by Ser(Thr)-O-linked N-acetylglucosamine moieties (O-GlcNAc). Here we report that subpopulations of murine, bovine, and human estrogen receptors are modified by O-GlcNAc. O-GlcNAc moieties were detected on insect cell-expressed, mouse ER (mER) by probing with bovine milk galactosyltransferase, followed by structural analysis. Wheat germ agglutinin-Sepharose affinity chromatography also readily detected terminal GlcNAc residues on subpopulations of ER purified from calf uterus, from human breast cancer cells (MCF-7), or from mER produced by in vitro translation. These data suggest that greater than 10% of these populations of estrogen receptors bear O-GlcNAc. Site mapping of insect cell expressed mER localized one major site of O-GlcNAc addition to Thr-575, within a PEST region of the carboxyl-terminal F domain. Based upon their relative resistance to both hexosaminidase and to in vitro galactosylation, O-GlcNAc moieties appear to be largely buried on native mER. This dynamic saccharide modification, like phosphorylation, may play a role in modulating the dimerization, stability, or transactivation functions of estrogen receptors.

  13. Δ(9)-Tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ).

    PubMed

    Takeda, Shuso; Yoshida, Kazutaka; Nishimura, Hajime; Harada, Mari; Okajima, Shunsuke; Miyoshi, Hiroko; Okamoto, Yoshiko; Amamoto, Toshiaki; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2013-07-15

    Δ(9)-Tetrahydrocannabinol (Δ(9)-THC) has been reported as possessing antiestrogenic activity, although the mechanisms underlying these effects are poorly delineated. In this study, we used the estrogen receptor α (ERα)-positive human breast cancer cell line, MCF-7, as an experimental model and showed that Δ(9)-THC exposures markedly suppresses 17β-estradiol (E2)- induced MCF-7 cell proliferation. We demonstrate that these effects result from Δ(9)-THC's ability to inhibit E2-liganded ERα activation. Mechanistically, the data obtained from biochemical analyses revealed that (i) Δ(9)-THC up-regulates ERβ, a repressor of ERα, inhibiting the expression of E2/ERα-regulated genes that promote cell growth and that (ii) Δ(9)-THC induction of ERβ modulates E2/ERα signaling in the absence of direct interaction with the E2 ligand binding site. Therefore, the data presented support the concept that Δ(9)-THC's antiestrogenic activities are mediated by the ERβ disruption of E2/ERα signaling.

  14. Estrogen receptor-beta, estrogen receptor-alpha, and progesterone resistance in endometriosis.

    PubMed

    Bulun, Serdar E; Cheng, You-Hong; Pavone, Mary Ellen; Xue, Qing; Attar, Erkut; Trukhacheva, Elena; Tokunaga, Hideki; Utsunomiya, Hiroki; Yin, Ping; Luo, Xia; Lin, Zhihong; Imir, Gonca; Thung, Stephen; Su, Emily J; Kim, J Julie

    2010-01-01

    Loss of progesterone signaling in the endometrium may be a causal factor in the development of endometriosis, and progesterone resistance is commonly observed in women with this disease. In endometriotic stromal cells, the levels of progesterone receptor (PR), particularly the PR-B isoform, are significantly decreased, leading to a loss of paracrine signaling. PR deficiency likely underlies the development of progesterone resistance in women with endometriosis who no longer respond to progestin therapy. Here we review the complex epigenetic and transcriptional mechanisms leading to PR deficiency. The initial event may involve deficient methylation of the estrogen receptor (ER)beta promoter resulting in pathologic overexpression of ERbeta in endometriotic stromal cells. We speculate that alterations in the relative levels of ERbeta and ERalpha in endometrial tissue dictate E2-regulated PR expression, such that a decreased ERalpha-tauomicron-ERbeta ratio may result in suppression of PR. In this review, we propose a molecular model that may be responsible for changes in ERbeta and ERalpha leading to PR loss and progesterone resistance in endometriosis.

  15. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    PubMed

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-02-17

    With increased life expectancy, women will spend over three decades of life post-menopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions.

  16. Estrogen Receptor Mutants/Variants in Human Breast Cancer.

    DTIC Science & Technology

    1997-12-01

    Recherche Louis- Charles Simard, Montreal, Canada. Four nor- mal human breast tissues from reduction mammoplasties of pre- menopausal women were obtained...to hormone resistance. Cancer Res 1990; 50: 6208-17. 22. Karnik PS, Kulkarni S, Lui XP, Budd GT, Bukowski RM. Estrogen receptor mutations in

  17. Estrogen Receptor Polymorphisms and the Vascular Effects of Hormone Therapy

    PubMed Central

    Rossouw, Jacques; Bray, Paul; Liu, Jingmin; Kooperberg, Charles; Hsia, Judith; Lewis, Cora; Cushman, Mary; Bonds, Denise; Hendrix, Susan; Papanicolaou, George; Howard, Tim; Herrington, David

    2010-01-01

    Objective To test whether estrogen receptor polymorphisms modify the effects of postmenopausal hormone therapy on biomarkers and on risk of coronary heart disease events, stroke, or venous thrombo-embolism. Methods and Results The design was a nested case-control study in the Women’s Health Initiative trials of postmenopausal hormone therapy. The study included all cases in the first 4 years: coronary heart disease, 359; stroke, 248; venous thrombo-embolism, 217). Six estrogen receptor-αand one estrogen receptor-β polymorphisms were genotyped; 8 biomarkers known to be affected by hormone therapy were measured at baseline and one year after randomization. The polymorphisms were not associated with risk of vascular events, and did not modify the increased risks of coronary heart disease, stroke, or venous thrombo-embolism due to hormone therapy. However, a reduced response of plasmin-antiplasmin (PAP) to hormone therapy was noted for ESR1 IVS1-354 (interaction P<0.0001, corrected for multiple comparisons P=0.014) and ESR1 IVS1-1415 (interaction P<0.0001, corrected P= 0.014). Conclusions Estrogen receptor polymorphisms reduce the effect of postmenopausal hormone therapy on PAP, a marker of coagulation and fibrinolysis. However screening for ER polymorphisms to identify women at less risk of adverse cardiovascular outcomes is not likely to be useful for making HT treatment decisions. PMID:21106950

  18. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    SciTech Connect

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoforms with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  19. Estrogen Accelerates Cell Proliferation through Estrogen Receptor α during Rat Liver Regeneration after Partial Hepatectomy

    PubMed Central

    Batmunkh, Baatarsuren; Choijookhuu, Narantsog; Srisowanna, Naparee; Byambatsogt, Uugantsetseg; Synn Oo, Phyu; Noor Ali, Mohmand; Yamaguchi, Yuya; Hishikawa, Yoshitaka

    2017-01-01

    Although estrogen is implicated in the regulation of cell growth and differentiation in many organs, the exact mechanism for liver regeneration is not completely understood. We investigated the effect of estrogen on liver regeneration in male and female Wistar rats after 70% partial hepatectomy (PHx) and performed immunohistochemistry, western blotting and Southwestern histochemistry. 17β-estradiol (E2) and ICI 182,780 were injected into male rats on the day before PHx. The proliferating cell nuclear antigen (PCNA) labeling index reached a maximum at 48 hr after PHx in males, and at 36 hr in females and E2-treated male rats. Estrogen receptor α (ERα) was expressed in zones 1 and 2 in male rats, but was found in all zones in female rats. Interestingly, ERα was not detected at 6–12 hr after PHx but was found at 24–168 hr in male rats. However, ERα expression was found at all sampling time-points in female and E2-treated male rats. The activity of estrogen responsive element binding proteins was detected from 12 hr after PHx in male rats but was found from 6 hr in female and E2-treated male rats. ERα was co-expressed with PCNA during liver regeneration. These results indicate that estrogen may play an important role in liver regeneration through ERα. PMID:28386149

  20. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration

    PubMed Central

    Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K.

    2014-01-01

    Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

  1. Estrogen receptors regulate innate immune cells and signaling pathways.

    PubMed

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  2. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  3. Selective human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer

    PubMed Central

    Gutgesell, Lauren M.; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N.D.; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A.; Moore, Terry W.; Tonetti, Debra A.; Thatcher, Gregory R. J.

    2016-01-01

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2), have demonstrated clinical efficacy in patients with heavily-treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy, but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and, in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  4. Estrogen receptor genes in gastropods: phylogenetic divergence and gene expression responses to a synthetic estrogen.

    PubMed

    Hultin, Cecilia L; Hallgren, Per; Hansson, Maria C

    2016-11-01

    Endocrine disrupting chemicals (EDCs) have the potential to affect development and reproduction in gastropods. However, one is today lacking basic understanding of the Molluscan endocrine system and one can therefore not fully explain these EDC-induced affects. Furthermore, only a few genes that potentially may be connected to the endocrine system have been sequenced in gastropods. An example is the estrogen receptor gene (er) that have been identified in a restricted number of freshwater and marine gastropods. Here, we have identified a new partial coding sequence of an estrogen receptor gene (er) in the European common heterobranch Radix balthica. The following phylogenetic analysis divided the ers of heterobranchs and ceanogastropods in two branches. Furthermore, exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) showed that exposure could significantly affect er expression level in the heterobranch R. balthica. This paper is the first that phylogenetically compares gastropods' er, basal er expression profiles, and transcriptional estrogenic responses in gastropods from two different evolutionary groups.

  5. The CYP17A1 inhibitor abiraterone exhibits estrogen receptor agonist activity in breast cancer.

    PubMed

    Capper, Cameron P; Larios, José M; Sikora, Matthew J; Johnson, Michael D; Rae, James M

    2016-05-01

    Cytochrome P450 17A1 (CYP17A1) is the requisite enzyme for synthesis of sex steroids, including estrogens and androgens. As such, inhibition of CYP17A1 is a target for inhibiting the growth of hormone-dependent cancers including prostate and breast cancer. Abiraterone, is a first in class potent and selective CYP17A1 inhibitor that has been approved for the treatment of castration-resistant prostate cancer. Given that, androgens are the precursors for estrogen production, it has been proposed that abiraterone could be an effective form of treatment for estrogen receptor (ER)-positive breast cancer, though its utility in this context has yet to be established. Abiraterone has a core steroid-like chemical structure, and so we hypothesized that it may bind to nuclear steroid receptors including ER and have estrogenic activity. We tested this hypothesis by investigating abiraterone's ability to directly modulate ER signaling in breast cancer cell line models. We show that abiraterone directly activates ER, induces ER-target gene expression, and elicits estrogen-response-element reporter activity in the ER-positive cell lines MCF-7 and T47D. Abiraterone also induced cell proliferation by ~2.5-fold over vehicle in both MCF-7 and T47D cells. Importantly, abiraterone-induced cell proliferation and ER-activity was blocked by the selective estrogen receptor downregulator (SERD) fulvestrant, confirming that abiraterone directly acts at the ER. These data suggest that abiraterone should be combined with other ER antagonists when used for the clinical management of ER-positive breast cancer.

  6. Molecular biology of beta-estradiol-estrogen receptor complex binding to estrogen response element and the effect on cell proliferation.

    PubMed

    Heger, Zbynek; Zitka, Ondrej; Krizkova, Sona; Beklova, Miroslava; Kizek, Rene; Adam, Vojtech

    2013-01-01

    Group of estrogen pollutants, where the highest estrogen activity is reported at estradiol, is characterized by the fact that even at very low concentrations have potential to cause xenoestrogenic effects. During exposure of excessive amounts of estradiols may be produced undesirable effects resulting in the feminization of males of water organisms. The presence of estradiols in drinking water implies also a risk for the human population in the form of cancers of endocrine systems, abnormalities in reproduction or dysfunctions of neuronal and immune system. Currently, the research is focused mainly to uncover the relationship between the estrogen receptors binding affinity with an estrogen response element and estradiol. In this review we summarized facts about molecular biological principles of β estradiol-estrogen receptor complex binding with estrogen response element and its successive effect on cancer genes expression.

  7. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  8. Estrogen binding and estrogen receptor activity in the human prostate: a preliminary report.

    PubMed

    Fondo, E Y; Menendez-Botet, C J; Schwartz, M K; Whitmore, W F

    1981-03-01

    Assay of estrogen receptor activity in prostates from patients who ranged in age from 22 to 78 years and had not received any previous hormonal therapy was carried out by incubation of cytosols with (3)H-estradiol in the presence and absence of excess, nonradioactive estradiol. Hyperplastic prostatic tissues were used in the study. The kinetics of each reaction were studied and analysis of the data revealed 3.4 to 35.7 femtomoles of receptor protein per mg of cytosol protein; the dissociation constants obtained from a Scatchard plot ranged from 1.1 × 10(-10) to 1.2 × 10(-8)M.The small number of patients prevents realistic quantitative assessment of the apparent estrogen binding activity demonstrated in these preliminary studies, but the qualitative identification of such activity provides possible grounds for further insight into the hormonal mechanisms in the pathophysiology of prostatic diseases and of their responses to endocrine therapy.

  9. Rat uterine oxytocin receptor and estrogen receptor α and β mRNA levels are regulated by estrogen through multiple estrogen receptors.

    PubMed

    Murata, Takuya; Narita, Kazumi; Ichimaru, Toru

    2014-03-07

    Estrogen action is mediated through several types of receptors (ERs), such as ERα, ERβ and putative membrane ERs. Oxytocin receptor (OTR) and ER expression levels in the rat uterus are regulated by estrogen; however, which types of ERs are involved has not been elucidated. This study examined OTR, ERα and ERβ levels in ovariectomized rats treated with 17β-estradiol (E2), an ERα agonist (PPT), an ERβ agonist (DPN) or estren (Es). E2 and PPT increased OTR mRNA levels and decreased ERα and ERβ mRNA levels 3 and 6 h posttreatment. DPN decreased ERα and ERβ mRNA levels at 3 and 6 h, while OTR mRNA levels increased at 3 h and decreased at 6 h. OTR mRNA levels increased 3 h after the Es treatment and then declined until 6 h. ERα and ERβ mRNA levels decreased by 3 h and remained low until 6 h posttreatment with Es. The ER antagonist ICI182,780 (ICI) suppressed the increases in OTR mRNA levels induced 3 h after the Es treatment. However, ICI and tamoxifen (Tam) had no significant effect on ERα and ERβ mRNA levels in the Es-treated or vehicle-treated group. In intact rats, proestrus-associated increases in OTR mRNA levels were antagonized by both ICI and Tam. However, decreases in ERα and ERβ mRNA levels were not antagonized by Tam and ICI, respectively. Therefore, uterine OTR gene expression is upregulated by estrogen through the classical nuclear (or non-nuclear) ERs, ERα and ERβ, while the levels of these ERs are downregulated by estrogen through multiple pathways including Es-sensitive nonclassical ERs.

  10. Neonatal oxytocin alters subsequent estrogen receptor alpha protein expression and estrogen sensitivity in the female rat.

    PubMed

    Perry, Adam N; Paramadilok, Auratip; Cushing, Bruce S

    2009-12-14

    In most species, the effects of oxytocin (OT) on female reproductive behavior are dependent upon estrogen, which increases both OT and OT receptor expression. It is also becoming apparent that OT neurotransmission can influence estrogen signaling, especially during development, as neonatal OT manipulations in prairie voles alter ERalpha expression and estrogen-dependent behaviors. We tested the hypothesis that OT developmentally programs ERalpha expression and estrogen sensitivity in female Sprague-Dawley rats, a species previously used to establish the estrogen-dependence of OT signaling in adulthood. OT treatment for the first postnatal week significantly increased ERalpha-immunoreactivity in the ventromedial nucleus of the hypothalamus (VMH), but not in the medial preoptic area (MPOA). Conversely, neonatal OT antagonist (OTA) treatment significantly reduced ERalpha-immunoreactivity in the MPOA, but not in the VMH. Both treatments increased OT-immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN) and reduced estrogen sensitivity, indicated by reduced sexual receptivity following chronic estradiol benzoate (EB) administration. Behavioral deficits in OTA-treated females were apparent during both paced and non-paced tests with 0.5 microg EB (but not 5.0 or 10.0 microg EB), whereas deficits in OT-treated females were only observed during the initial paced test with 0.5 and 5.0 microg EB (but not 10.0 microg EB). The current results demonstrate that OT can positively regulate ERalpha expression within the MPOA and VMH during development; however, endogenous OT selectively programs ERalpha expression within the MPOA. Thus, exogenous OT or OTA exposure during development may have long-term consequences on behavior through stable changes in ERalpha and OT expression.

  11. To modulate and be modulated: estrogenic influences on auditory processing of communication signals within a socio-neuro-endocrine framework.

    PubMed

    Yoder, Kathleen M; Vicario, David S

    2012-02-01

    Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1) Local estradiol action within an auditory area is necessary for socially relevant sounds to induce normal physiological responses in the brains of both sexes; 2) These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3) Estradiol action within the auditory forebrain enables behavioral discrimination among socially relevant sounds in males; and 4) Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors.

  12. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    EPA Science Inventory

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  13. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  14. COMPARISON OF FATHEAD MINNOW AND HUMAN ESTROGEN RECEPTOR BINDING TO ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Environmental estrogens have the potential to disrupt endocrine function in a myriad of species. However, in vitro assays designed to detect and characterize endocrine disrupting chemicals (EDCs) typically utilize mammalian estrogen receptors. Our overall objective is to charac...

  15. Cancer therapy using natural ligands that target estrogen receptor beta

    PubMed Central

    Sareddy, Gangadhara R; Vadlamudi, Ratna K.

    2016-01-01

    Estrogen receptor beta (ERβ) is one of the two key receptors (ERα, ERβ) that facilitate biological actions of 17β-estradiol (E2). ERβ is widely expressed in many tissues, and its expression is reduced or lost during progression of many tumors. ERβ facilitates estrogen signaling by both genomic (classical and non-classical) and extra-nuclear signaling. Emerging evidence suggests that ERβ functions as a tissue-specific tumor suppressor with anti-proliferative actions. Recent studies have identified a number of naturally available selective ERβ agonists. Targeting ERβ using its naturally available ligands is an attractive approach for treating and preventing cancers. This review presents the beneficial actions of ERβ signaling and clinical utility of several natural ERβ ligands as potential cancer therapy. PMID:26614454

  16. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  17. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina

    PubMed Central

    Oh, Kyung-Jin; Ahn, Kyuyoun

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230–240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication. PMID:27127786

  18. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina.

    PubMed

    Oh, Kyung-Jin; Lee, Hyun-Suk; Ahn, Kyuyoun; Park, Kwangsung

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230-240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication.

  19. Cloning, expression and functional characterization of carp, Cyprinus carpio, estrogen receptors and their differential activations by estrogens.

    PubMed

    Katsu, Yoshinao; Lange, Anke; Miyagawa, Shinichi; Urushitani, Hiroshi; Tatarazako, Norishisa; Kawashima, Yukio; Tyler, Charles R; Iguchi, Taisen

    2013-01-01

    Sex-steroid hormones are essential for normal reproductive activity in both sexes. Estrogens are necessary for ovarian differentiation during a critical developmental stage in vertebrates and promote the growth and differentiation of the female reproductive system. Importantly, environmental estrogens can influence the reproductive system and have been shown to disrupt gametogenesis in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor ligand interactions in the carp, Cyprinus carpio, a species used widely for both field- and laboratory-based studies, we cloned all three carp estrogen receptors (ER; ERα, ERβ1 and ERβ2) and applied an estrogen-responsive (ERE)-luciferase reporter assay system to characterize the interactions of these receptors with steroidal and synthetic estrogens. DNA fragments encoding all three ERs in carp, ERα, ERβ1 and ERβ2, were obtained from the ovary using degenerate primer sets and PCR techniques, and full-length carp ER (cER) cDNAs were then obtained using RACE (rapid amplification of the cDNA end) techniques. Amino acid sequences of cERs showed overall homology of 46% (α vs β1), 49% (α vs β2) and 53% (β1 vs β2). In the transient transfection ERE-luciferase reporter assay system (using mammalian cells) the cER proteins displayed estrogen-dependent activation of transcription and cERβ2 showed a higher sensitivity to the natural steroid oestrogen, 17β-estradiol, than cERα. The assay system developed is a powerful assay for toxicology and provides a tool for future studies examining the receptor-environmental chemical interactions and estrogen-disrupting mechanisms in carp. The data presented also expand our knowledge of estrogen receptor evolution.

  20. Multiple Estrogen Receptor Subtypes Influence Ingestive Behavior in Female Rodents

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles specific estrogen receptor subtypes play in mediating estradiol’s anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. PMID:26037634

  1. Splice isoform estrogen receptors as integral transmembrane proteins.

    PubMed

    Kim, Kyung Hee; Toomre, Derek; Bender, Jeffrey R

    2011-11-01

    In addition to enhancing or repressing transcription, steroid hormone receptors rapidly transduce kinase activation signals. On ligand engagement, an N-terminus-truncated splice isoform of estrogen receptor (ER) α, ER46, triggers membrane-initiated signals, resulting in endothelial nitric oxide synthase (eNOS) activation and endothelial NO production. The orientation of ER46 at the plasma membrane is incompletely defined. With the use of ecliptic pHluorin-fused ER46, total internal reflection fluorescence microscopy in live human endothelial cells illustrates that ER46 can topologically conform to a type I transmembrane protein structure. Mutation of isoleucine-386 at the center of ER46's transmembrane hydrophobic core prevents membrane spanning, obscures the N-terminal ectodomain, and effects a marked reduction in membrane-impermeant estrogen binding with diminished rapid eNOS activation and NO production, despite maintained genomic induction of an estrogen response element-luciferase reporter. Thus there exist pools of transmembrane steroid hormone receptors that are efficient signaling molecules and potential novel therapeutic targets.

  2. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.

  3. Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2016-04-01

    In vertebrates, estrogens play fundamental roles in regulating reproductive activities through estrogen receptors (ESRs), and disruption of estrogen signaling is now of global concern for both wildlife and human health. To date, ESRs of only a limited number of species have been characterized. We investigated the functional diversity and molecular basis or ligand sensitivity of ESRs among ray-finned fish species (Actinopterygii), the most variable group within vertebrates. We cloned and characterized ESRs from several key species in the evolution of ray-finned fish including bichir (Polypteriformes, ESR1 and ESR2) at the basal lineage of ray-finned fish, and arowana (Osteoglossiformes, ESR1 and ESR2b) and eel (Anguilliformes, ESR1, ESR2a and ESR2b) both belonging to ancient early-branching lineages of teleosts, and suggest that ESR2a and ESR2b emerged through teleost-specific whole genome duplication, but an ESR1 paralogue has been lost in the early lineage of euteleost fish species. All cloned ESR isoforms showed similar responses to endogenous and synthetic steroidal estrogens, but they responded differently to non-steroidal estrogenic endocrine disrupting chemicals (EDCs) (e.g., ESR2a exhibits a weaker reporter activity compared with ESR2b). We show that variation in ligand sensitivity of ESRs can be attributed to phylogeny among species of different taxonomic groups in ray-finned fish. The molecular information provided contributes both to understanding of the comparative role of ESRs in the reproductive biology of fish and their comparative responses to EDCs.

  4. The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response

    PubMed Central

    Castellano, Leandro; Giamas, Georgios; Jacob, Jimmy; Coombes, R. Charles; Lucchesi, Walter; Thiruchelvam, Paul; Barton, Geraint; Jiao, Long R.; Wait, Robin; Waxman, Jonathan; Hannon, Gregory J.; Stebbing, Justin

    2009-01-01

    Following estrogenic activation, the estrogen receptor-α (ERα) directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) modulated by ERα have the potential to fine tune these regulatory systems and also provide an alternate mechanism that could impact on estrogen-dependent developmental and pathological systems. Through a microarray approach, we identify the subset of microRNAs (miRNAs) modulated by ERα, which include upregulation of miRNAs derived from the processing of the paralogous primary transcripts (pri-) mir-17–92 and mir-106a-363. Characterization of the mir-17–92 locus confirms that the ERα target protein c-MYC binds its promoter in an estrogen-dependent manner. We observe that levels of pri-mir-17–92 increase earlier than the mature miRNAs derived from it, implicating precursor cleavage modulation after transcription. Pri-mir-17–92 is immediately cleaved by DROSHA to pre-miR-18a, indicating that its regulation occurs during the formation of the mature molecule from the precursor. The clinical implications of this novel regulatory system were confirmed by demonstrating that pre-miR-18a was significantly upregulated in ERα-positive compared to ERα-negative breast cancers. Mechanistically, miRNAs derived from these paralogous pri-miRNAs (miR-18a, miR-19b, and miR-20b) target and downregulate ERα, while a subset of pri-miRNA-derived miRNAs inhibit protein translation of the ERα transcriptional p160 coactivator, AIB1. Therefore, different subsets of miRNAs identified act as part of a negative autoregulatory feedback loop. We propose that ERα, c-MYC, and miRNA transcriptional programs invoke a sophisticated network of interactions able to provide the wide range of coordinated cellular responses to estrogen. PMID:19706389

  5. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes.

    PubMed

    Botelho, Mónica C; Alves, Helena; Barros, Alberto; Rinaldi, Gabriel; Brindley, Paul J; Sousa, Mário

    2015-06-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility.

  6. Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics.

    PubMed

    Zhao, Liqin; Woody, Sarah K; Chhibber, Anindit

    2015-11-01

    Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines the current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans.

  7. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus

    SciTech Connect

    Golding, T.S.; Korach, K.S.

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO/sub 4//PAGE. ER derived from nuclei (ER/sub n/) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ER/sub c/) has a single band of 65 kDa. Both partially purified ER/sub c/ and the 8S form of unactivated ER/sub c/ show only the 65-kDa band. The appearance of the ER/sub n/ doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ER/sub n/ doublet was determined by (/sup 3/H)tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ER/sub n/ doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr.

  8. Molecular cloning and characterization of hagfish estrogen receptors.

    PubMed

    Nishimiya, Osamu; Katsu, Yoshinao; Inagawa, Hiroyuki; Hiramatsu, Naoshi; Todo, Takashi; Hara, Akihiko

    2017-01-01

    One or more distinct forms of the nuclear estrogen receptor (ER) have been isolated from many vertebrates to date. To better understand the molecular evolution of ERs, we cloned and characterized er cDNAs from the inshore hagfish, Eptatretus burgeri, a modern representative of the most primitive vertebrates, the agnathans. Two er cDNAs, er1 and er2, were isolated from the liver of a reproductive female hagfish. A phylogenetic analysis placed hagfish ER1 into a position prior to the divergence of vertebrate ERs. Conversely, hagfish ER2 was placed at the base of the vertebrate ERβ clade. The tissue distribution patterns of both ER subtype mRNAs appeared to be different, suggesting that each subtype has different physiological roles associated with estrogen actions. An estrogen responsive-luciferase reporter assay using mammalian HEK293 cells was used to functionally characterize these hagfish ERs. Both ER proteins displayed estrogen-dependent activation of transcription. These results clearly demonstrate that the hagfish has two functional ER subtypes.

  9. Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma

    PubMed Central

    Alvaro, Domenico; Barbaro, Barbara; Franchitto, Antonio; Onori, Paolo; Glaser, Shannon S.; Alpini, Gianfranco; Francis, Heather; Marucci, Luca; Sterpetti, Paola; Ginanni-Corradini, Stefano; Onetti Muda, Andrea; Dostal, David E.; De Santis, Adriano; Attili, Adolfo F.; Benedetti, Antonio; Gaudio, Eugenio

    2006-01-01

    We investigated the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF-1), and IGF-1R (receptor) in human cholangiocarcinoma and cholangiocarcinoma cell lines (HuH-28, TFK-1, Mz-ChA-1), evaluating the role of estrogens and IGF-1 in the modulation of neoplastic cell growth. ER-α, ER-β, IGF-1, and IGF-1R were expressed (immunohistochemistry) in all biopsies (18 of 18) of intrahepatic cholangiocarcinoma. ER-α was expressed (Western blot) only by the HuH-28 cell line (intrahepatic cholangiocarcinoma), whereas ER-β, IGF-1, and IGF-1R were expressed in the three cell lines examined. In serum-deprived HuH-28 cells, serum readmission induced stimulation of cell proliferation that was inhibited by ER and IGF-1R antagonists. 17β-Estradiol and IGF-1 stimulated proliferation of HuH-28 cells to a similar extent to that of MCF7 (breast cancer) but greater than that of TFK-1 and Mz-ChA-1, inhibiting apoptosis and exerting additive effects. These effects of 17β-estradiol and IGF-1 were associated with enhanced protein expression of ER-α, phosphorylated (p)-ERK1/2 and pAKT but with decreased expression of ER-β. Finally, transfection of IGF-1R anti-sense oligonucleotides in HuH-28 cells markedly decreased cell proliferation. In conclusion, human intrahepatic cholangiocarcinomas express receptors for estrogens and IGF-1, which cooperate in the modulation of cell growth and apoptosis. Modulation of ER and IGF-1R could represent a strategy for the management of cholangiocarcinoma. PMID:16936263

  10. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  11. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  12. Sex-specificity and estrogen-dependence of kappa opioid receptor-mediated antinociception and antihyperalgesia

    PubMed Central

    Lawson, Kera P.; Nag, Subodh; Thompson, Analisa D.; Mokha, Sukhbir S.

    2010-01-01

    This investigation determined whether activation of the kappa opioid receptor (KOR) in the spinal cord produces estrogen-dependent, sex-specific modulation of acute and inflammation-induced persistent nociception. We demonstrate for the first time that KOR antinociception and gene expression are enhanced by exogenous or endogenous estrogen in the female. The lack of KOR antinociception and KOR gene expression are not altered by hormonal status (testosterone or estrogen) in males. Cannulae were implanted intrathecally in male, gonadectomized male (GDX), intact and ovariectomized female (OVX) Sprague-Dawley rats. Estradiol was injected subcutaneously, 48 h before testing (GDX+E and OVX+E). Intrathecal injection of U50, 488H, a selective KOR agonist, dose dependently increased heat-evoked tail flick latencies (TFLs) in proestrous and OVX+E groups, but not in male, GDX, GDX+E, OVX, and diestrous groups. Further, estrogen dose-dependently enhanced the effect of U50,488H in OVX rats. KOR selective antagonist, nor-binaltorphimine (Nor-BNI), blocked the antinociceptive effect of U50,488H. U50,488H reversed the carrageenan-induced thermal hyperalgesia in OVX+E rats, but not in male or OVX rats. However, U50,488H treatment did not alter mechanical thresholds in any group, with or without inflammation. KOR gene expression was enhanced in proestrous and OVX+E groups as compared to any other group. We conclude that selective activation of KOR in the spinal cord produces sex-specific, stimulus- and estrogen-dependent attenuation of acute and inflammatory pain in the rat via estrogen-induced upregulation of the KOR gene expression in the spinal cord. These findings may further implicate estrogen dependence of KOR effects in learning, epilepsy, stress response, addiction etc. Selective activation of the kappa opioid receptor by intrathecal U50,488H produces antinociception and antihyperalgesia which are sex-specific, stimulus dependent and require the presence of estrogen. PMID

  13. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...

  14. Distinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor α and estrogen-related receptor γ.

    PubMed

    Zhuang, Shulin; Zhang, Jing; Wen, Yuezhong; Zhang, Chunlong; Liu, Weiping

    2012-11-01

    Dichlorodiphenyltrichloroethane (DDT) is ubiquitous in the environment, and the exposure to DDT and its related pesticides has long been linked to endocrine disruption. The mechanism of endocrine disruption toward targeted receptors, however, remains unclear. Probing the molecular recognition of DDT analogs by targeted receptors at the atomic level is critical for deciphering this mechanism. Molecular dynamics (MD) simulations were applied to probe the molecular recognition process of DDT and its five analogs, including dichlordiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD), methoxychlor (MXC), p,p'-hydroxy-DDT (HPTE), and dicofol by human estrogen receptor (ER) α and human ER-related receptor (ERR) γ. Van der Waals interactions mainly drive the interactions of DDT analogs with ERα ligand-binding domain (LBD) and ERRγ LBD. Minor structural changes of DDT analogs in the number and position of chlorine and phenolic hydroxyl moiety cause differences in binding modes through aromatic stacking and hydrogen bonding and thus affect differently conformational changes of ERα LBD and ERRγ LBD. The binding of DDT analogs affects the helix 12 orientation of ERα LBD but causes no rearrangement of helix 12 of ERRγ LBD. These results extend our understanding of how DDT analogs exert their estrogen-disrupting effects toward different receptors via multiple mechanisms.

  15. Novel biosensors for the detection of estrogen receptor ligands.

    PubMed

    De, Siddhartha; Macara, Ian G; Lannigan, Deborah A

    2005-08-01

    There exists a significant need for the detection of novel estrogen receptor (ER) ligands for pharmaceutical uses, especially for treating complications associated with menopause. We have developed fluorescence resonance energy transfer (FRET)-based biosensors that permit the direct in vitro detection of ER ligands. These biosensors contain an ER ligand-binding domain (LBD) flanked by the FRET donor fluorophore, cyan fluorescent protein (CFP), and the acceptor fluorophore, yellow fluorescent protein (YFP). The ER-LBD has been modified so that Ala 430 has been changed to Asp, which increases the magnitude of the FRET signal in response to ligand-binding by more than four-fold compared to the wild-type LBD. The binding of agonists can be distinguished from that of antagonists on the basis of the distinct ligand-induced conformations in the ER-LBD. The approach to binding equilibrium occurs within 30min, and the FRET signal is stable over 24h. The biosensor demonstrates a high signal-to-noise, with a Z' value (a statistical determinant of assay quality) of 0.72. The affinity of the ER for different ligands can be determined using a modified version of the biosensor in which a truncated YFP and an enhanced CFP are used. Thus, we have developed platforms for high-throughput screens for the identification of novel estrogen receptor ligands. Moreover, we have demonstrated that this FRET technology can be applied to other nuclear receptors, such as the androgen receptor.

  16. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β

    PubMed Central

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions. PMID:26812056

  17. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  18. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors.

    PubMed

    Lee, Cynthia Wei-Sheng; Ho, Ing-Kang

    2013-09-08

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators.

  19. Receptor subtypes and signal transduction mechanisms contributing to the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis

    PubMed Central

    Washburn, Neal; Borgquist, Amanda; Wang, Kate; Jeffery, Garrett S.; Kelly, Martin J.; Wagner, Edward J.

    2013-01-01

    We examined the receptor subtypes and signal transduction mechanisms contributing to the estrogenic modulation of cannabinoid-induced changes in energy balance. Food intake and, in some cases, O2 consumption, CO2 production and the respiratory exchange ratio, were evaluated in ovariectomized female guinea pigs treated s.c. with the cannabinoid receptor agonist WIN 55,212-2 or its cremephor/ethanol/0.9% saline vehicle, and either with estradiol benzoate (EB), the estrogen receptor (ER)α agonist PPT, the ERβ agonist DPN, the Gq-coupled membrane ER agonist STX, the GPR30 agonist G-1 or their respective vehicles. Patch-clamp recordings were performed in hypothalamic slices. EB, STX, PPT and G-1 decreased daily food intake. Of these, EB, STX and PPT blocked the WIN 55,212-2-induced increase in food intake within 1-4 hr. The estrogenic diminution of cannabinoid-induced hyperphagia correlated with a rapid (within 15 min) attenuation of cannabinoid-mediated decreases in glutamatergic synaptic input onto arcuate neurons, which was completely blocked by inhibition of protein kinase C (PKC) and attenuated by inhibition of protein kinase A (PKA). STX, but not PPT, mimicked this rapid estrogenic effect. However, PPT abolished the cannabinoid-induced inhibition of glutamatergic neurotransmission in cells from animals treated 24 hr prior. The estrogenic antagonism of this presynaptic inhibition was observed in anorexigenic POMC neurons. These data reveal that estrogens negatively modulate cannabinoid-induced changes in energy balance via Gq-coupled membrane ER- and ERα-mediated mechanisms involving activation of PKC and PKA. As such, they further our understanding of the pathways through which estrogens act to temper cannabinoid sensitivity in regulating energy homeostasis in females. PMID:22538462

  20. Estrogen receptor-mediated neuroprotection: The role of the Alzheimer’s disease-related gene seladin-1

    PubMed Central

    Peri, Alessandro; Serio, Mario

    2008-01-01

    Experimental evidence supports a protective role of estrogen in the brain. According to the fact that Alzheimer’s disease (AD) is more common in postmenopausal women, estrogen treatment has been proposed. However, there is no general consensus on the beneficial effect of estrogen or selective estrogen receptor modulators in preventing or treating AD. It has to be said that several factors may markedly affect the efficacy of the treatment. A few years ago, the seladin-1 gene (for selective Alzheimer’s disease indicator-1) has been isolated and found to be down-regulated in brain regions affected by AD. Seladin-1 has been found to be identical to the gene encoding the enzyme 3-beta-hydroxysterol delta-24-reductase, involved in the cholesterol biosynthetic pathway, which confers protection against β-amyloid-mediated toxicity and from oxidative stress, and is an effective inhibitor of caspase-3 activity, a key mediator of apoptosis. Interestingly, we found earlier that the expression of this gene is up-regulated by estrogen. Furthermore, our very recent data support the hypothesis that seladin-1 is a mediator of the neuroprotective effects of estrogen. This review will summarize the current knowledge regarding the neuroprotective effects of seladin-1 and the relationship between this protein and estrogen. PMID:19043524

  1. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  2. Estrogen-related receptor alpha and cancer: axis of evil.

    PubMed

    Ranhotra, Harmit S

    2015-01-01

    Cancer is perhaps the fastest growing non-communicable disease in the human population worldwide. Although the molecular mechanism of cancer initiation and progression is known to some extent, however, the majority of pathways responsible for its onset, development and progression are largely unknown. Many members of the nuclear receptors (NRs) superfamily of transcriptional factors have key roles in cancer. Estrogen-related receptor alpha (ERRα) is one of the members of the NR superfamily and studies have linked it with a wide variety of cancers. In endocrine-related cancers such as breast cancer, ERRα regulates a number of target genes directing cell proliferation and growth independent of estrogen receptor alpha (ERα). Knockdown of ERRα in a number of cancer tissues and cell lines significantly reduced tumor growth and malignancy indicating dependence on ERRα activity. The pro-angiogenesis factor vascular endothelial growth factor expression has been shown to be regulated by ERRα and has implications in several types of cancer. The effect of ERRα on cancers seems to be multipronged via regulation of cell cycle regulators, osteopontin, hypoxia inducible factor-1 as well as several energy metabolism genes that are part of glycolysis, TCA cycle, lipogenesis, etc., providing a metabolic twist to cancer. In this article, the action of ERRα on various types of cancers including new developments in this field shall be reviewed.

  3. The Estrogen Receptor-β Expression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  4. G protein-coupled estrogen receptor protects from atherosclerosis.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Howard, Tamara A; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B; Barton, Matthias; Prossnitz, Eric R

    2014-12-23

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.

  5. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  6. Estrogen receptor beta as target for colorectal cancer prevention.

    PubMed

    Williams, Cecilia; DiLeo, Alfredo; Niv, Yaron; Gustafsson, Jan-Åke

    2016-03-01

    Colorectal cancer (CRC) is a leading cause of death in the United States. Despite its slow development and the capacity for early diagnosis, current preventive approaches are not sufficient. However, a role for estrogen has been demonstrated in multiple epidemiologic studies, which may benefit CRC prevention. A large body of evidence from preclinical studies indicates that expression of the estrogen receptor beta (ERβ/ESR2) demonstrates an inverse relationship with the presence of colorectal polyps and stage of tumors, and can mediate a protective response. Natural compounds, including phytoestrogens, or synthetic ERβ selective agonists, can activate or upregulate ERβ in the colon and promote apoptosis in preclinical models and in clinical experience. Importantly, this activity has been associated with a reduction in polyp formation and, in rodent models of CRC, has been shown to lower incidence of colon adenocarcinoma. Collectively, these findings indicate that targeted activation of ERβ may represent a novel clinical approach for management of colorectal adenomatous polyps and prevention of colorectal carcinoma in patients at risk for this condition. In this review, we discuss the potential of new chemopreventive or dietary approaches based on estrogen signaling.

  7. Dietary Estrogens Act through Estrogen Receptor-Mediated Processes and Show No Antiestrogenicity in Cultured Breast Cancer Cells.

    PubMed Central

    Makela, S; Davis, VL; Tally, WC; Korkman, J; Salo, L; Vihko, R; Santti, R; Korach, KS

    1994-01-01

    Dietary estrogens are believed to exert their estrogenic or antiestrogenic (chemopreventive) action in estrogen responsive cells by interacting with the estrogen receptor (ER). The present study was undertaken to evaluate a direct role of ER in estrogenic or antiestrogenic activities of three dietary estrogens (coumestrol, genistein and zearalenone). HeLa cells were transiently co-transfected with an expression vector for ER and an estrogen-responsive reporter gene construct. Coumestrol, genistein, and zearalenone all increased the activity of the reporter gene, only in the presence of the ER, and the activation was blocked with the ER antagonist ICI 164,384, demonstrating an ER-specific, agonist response. In addition, in MCF-7 cells, coumestrol and zearalenone increased the expression of the estrogen-responsive pS2 gene. Coumestrol and genistein inhibited the purified estrogen-specific 17ß-hydroxysteroid oxidoreductase enzyme and the conversion of estrone to 17ß-estradiol in T-47D cells, which contain this enzyme. However, they did not inhibit the estrone-induced proliferation of T-47D cells. In conclusion, coumestrol, genistein, and zearalenone are all potent estrogens in vitro, and they act through ER mediated mechanism. Our findings give no evidence to support the idea that these compounds act as antiestrogens through competition for the binding sites of ER or by inhibition of the conversion of estrone to 17ß-estradiol in breast cancer cells, since this effect was nullified by their agonist action on cell proliferation. Therefore, their suggested chemopreventive action in estrogen-related cancers must be mediated through other mechanisms. Images Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 2. E Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 4. E Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. A Figure 9. B Figure 9. C PMID:9679118

  8. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  9. The Wedelolactone Derivative Inhibits Estrogen Receptor-Mediated Breast, Endometrial, and Ovarian Cancer Cells Growth

    PubMed Central

    Xu, Defeng; Lin, Tzu-Hua; Cheng, Max A.; Chen, Lu-Min; Chang, Chawnshang; Yeh, Shuyuan

    2014-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling pathways play important roles in the etiology and progression of human breast, endometrial, and ovarian cancers. Attenuating ER activities by natural products and their derivatives is a relatively practical strategy to control and reduce breast, endometrial, and ovarian cancer risk. Here, we found 3-butoxy-1,8,9-trihydroxy-6H-benzofuro[3,2-c]benzopyran-6-one (BTB), a new derivative of wedelolactone, could effectively inhibit the 17-estradiol (E2)-induced ER transactivation and suppress the growth of breast cancer as well as endometrial and ovarian cancer cells. Our results indicate that 2.5 μM BTB effectively suppresses ER-positive, but not ER-negative, breast, endometrial, and ovarian cancer cells. Furthermore, our data indicate that BTB can modulate ER transactivation and suppress the expression of E2-mediated ER target genes (Cyclin D1, E2F1, and TERT) in the ER-positive MCF-7, Ishikawa, and SKOV-3 cells. Importantly, this BTB mediated inhibition of ER activity is selective since BTB does not suppress the activities of other nuclear receptors, including glucocorticoid receptor and progesterone receptor, suggesting that BTB functions as a selective ER signaling inhibitor with the potential to treat breast, endometrial, and ovarian cancers. PMID:25221777

  10. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  11. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  12. Stimulation of Estrogen Receptor Signaling in Breast Cancer by a Novel Chaperone Synuclein Gamma

    DTIC Science & Technology

    2006-06-01

    AD_________________ Award Number: W81XWH- 04 -1-0569 TITLE: Stimulation of estrogen receptor...Stimulation of estrogen receptor signaling in breast cancer by a novel chaperone 5a. CONTRACT NUMBER synuclein gamma 5b. GRANT NUMBER W81XWH- 04 -1...UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER North Shore University Hospital

  13. Modulation of the activity of vasopressinergic neurons by estrogen in rats refed with normal or sodium-free food after fasting.

    PubMed

    Lucio-Oliveira, F; Traslaviña, G A A; Borges, B D B; Franci, C R

    2015-01-22

    Feeding increases plasma osmolality and ovarian steroids may influence the balance of fluids. Vasopressin (AVP) neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) express estrogen receptor type β (ERβ), but not estrogen receptor type α (ERα). The circumventricular organs express ERα and project efferent fibers to the PVN and SON. Our aim was to assess whether interactions exist between food state-related osmolality changes and the action of estrogen on AVP neuron activity and estrogen receptor expression. We assessed plasma osmolality and AVP levels; fos-coded protein (FOS)- and AVP-immunoreactivity (-IR) and FOS-IR and ERα-IR in the median preoptic nucleus (MnPO) and organ vasculosum lamina terminalis (OVLT) in estrogen-primed and unprimed ovariectomized rats under the provision of ad libitum food, 48h of fasting, and subsequent refeeding with standard chow or sodium-free food. Refeeding with standard chow increased plasma osmolality and AVP as well as the co-expression of FOS-IR/AVP-IR in the PVN and SON. These responses were not altered by estrogen, with the exception of the decreases in FOS-IR/AVP-IR in the lateral PVN. During refeeding, estrogen modulates only a subpopulation of AVP neurons in the lateral PVN. FOS-ERα co-expression in the ventral median preoptic nucleus (vMnPO) was reduced by estrogen and increased after refeeding with standard chow following fasting. It appears that estrogen may indirectly modulate the activity of AVP neurons, which are involved in the mechanism affected by hyperosmolality-induced refeeding after fasting. This indirect action of estrogen can be at least in part via ERα in the vMnPO.

  14. Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression.

    PubMed

    Tafani, Marco; De Santis, Elena; Coppola, Luigi; Perrone, Giulietta A; Carnevale, Ilaria; Russo, Andrea; Pucci, Bruna; Carpi, Angelo; Bizzarri, Mariano; Russo, Matteo A

    2014-02-01

    Thyroid cancer is a common endocrine-related cancer with a higher incidence in women than in men. Thyroid tumors are classified on the basis of their histopathology as papillary, follicular, medullary, and undifferentiated or anaplastic. Epidemiological and in vitro or in vivo studies have suggested a correlation between incidence of thyroid malignancies and hormones. In particular, growing evidence indicates a role of estrogens and estrogen receptors (ERs) in thyroid tumorigenesis, reprogramming and progression. In this scenario, estrogens are hypothesized to contribute to the observed female predominance of thyroid cancer in reproductive years. However, the precise contribution of estrogens in thyroid proliferative disease initiation and progression is not well understood. HIF-1α and NF-κB are two transcription factors very frequently activated in tumors and involved in tumor growth, progression and resistance to chemotherapy. In fact, HIF-1α and NF-κB together regulate transcription of over a thousand genes that, in turn, control vital cellular processes such as adaptation to the hypoxia, metabolic and differentiation reprogramming, inflammatory-reparative response, extracellular matrix digestion, migration and invasion, adhesion, etc. Because of this wide involvement, they could control in an integrated manner the origin of the malignant phenotype. Interestingly, hypoxia and inflammation have been sequentially bridged in tumors by the discovery that alarmin receptors genes such as RAGE, P2X7 and some TLRs are activated by HIF-1α; and that, in turn, alarmin receptors strongly activate NF-κB and proinflammatory gene expression, evidencing all the hallmarks of the malignant phenotype. Recently, a large number of drugs have been identified that inhibit one or both transcription factors with promising results in terms of controlling tumor progression. In addition, many of these inhibitors are natural compounds or off-label drugs already used to cure other

  15. Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species.

    PubMed Central

    Tong, W; Perkins, R; Strelitz, R; Collantes, E R; Keenan, S; Welsh, W J; Branham, W S; Sheehan, D M

    1997-01-01

    The recognition of adverse effects due to environmental endocrine disruptors in humans and wildlife has focused attention on the need for predictive tools to select the most likely estrogenic chemicals from a very large number of chemicals for subsequent screening and/or testing for potential environmental toxicity. A three-dimensional quantitative structure-activity relationship (QSAR) model using comparative molecular field analysis (CoMFA) was constructed based on relative binding affinity (RBA) data from an estrogen receptor (ER) binding assay using calf uterine cytosol. The model demonstrated significant correlation of the calculated steric and electrostatic fields with RBA and yielded predictions that agreed well with experimental values over the entire range of RBA values. Analysis of the CoMFA three-dimensional contour plots revealed a consistent picture of the structural features that are largely responsible for the observed variations in RBA. Importantly, we established a correlation between the predicted RBA values for calf ER and their actual RBA values for human ER. These findings suggest a means to begin to construct a more comprehensive estrogen knowledge base by combining RBA assay data from multiple species in 3D-QSAR based predictive models, which could then be used to screen untested chemicals for their potential to bind to the ER. Another QSAR model was developed based on classical physicochemical descriptors generated using the CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) program. The predictive ability of the CoMFA model was superior to the corresponding CODESSA model. Images Figure 2. Figure 3. Figure 4. Figure 5. PMID:9353176

  16. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  17. Expression of Estrogen Receptor Alpha in Malignant Melanoma

    PubMed Central

    Rajabi, Parvin; Bagheri, Marzieh; Hani, Mohsen

    2017-01-01

    Background: Features of malignant melanoma (MM) vary in the different geographic regions of the world. This may be attributable to environmental, ethnic, and genetic factors. The aim of this study was to determine the expression of estrogen receptor alpha (ER-α) in MM in Isfahan, Iran. Materials and Methods: This study was planned as a descriptive, analytical, cross-sectional investigation. During this study, paraffin-embedded tissue blocks of patients with a histopathologic diagnosis of MM was studied for ER-α using immunohistochemistry (IHC). Results: In this study, 38 patients (female/male; 20/18) with a definite diagnosis of malignant cutaneous melanoma and mean age of 52.4 ± 11.2 years were investigated. Using envision IHC staining, there were not any cases with ER-α expression. Conclusion: In confirmation to the most previous studies, expression of ER-α was negative in MM. It is recommended to investigate the expression of estrogen receptor beta and other markers in MM. PMID:28299306

  18. Xenoestrogens down-regulate aryl-hydrocarbon receptor nuclear translocator 2 mRNA expression in human breast cancer cells via an estrogen receptor alpha-dependent mechanism.

    PubMed

    Qin, Xian-Yang; Zaha, Hiroko; Nagano, Reiko; Yoshinaga, Jun; Yonemoto, Junzo; Sone, Hideko

    2011-10-10

    Environmental chemicals with estrogenic activity, known as xenoestrogens, may cause impaired reproductive development and endocrine-related cancers in humans by disrupting endocrine functions. Aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) is believed to play important roles in a variety of physiological processes, including estrogen signaling pathways, that may be involved in the pathogenesis and therapeutic responses of endocrine-related cancers. However, much of the underlying mechanism remains unknown. In this study, we investigated whether ARNT2 expression is regulated by a range of representative xenoestrogens in human cancer cell lines. Bisphenol A (BPA), benzyl butyl phthalate (BBP), and 1,1,1-trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p'-DDT) were found to be estrogenic toward BG1Luc4E2 cells by an E-CALUX bioassay. ARNT2 expression was downregulated by BPA, BBP, and o,p'-DDT in a dose-dependent manner in estrogen receptor 1 (ESR1)-positive MCF-7 and BG1Luc4E2 cells, but not in estrogen receptor-negative LNCaP cells. The reduction in ARNT2 expression in cells treated with the xenoestrogens was fully recovered by the addition of a specific ESR1 antagonist, MPP. In conclusion, we have shown for the first time that ARNT2 expression is modulated by xenoestrogens by an ESR1-dependent mechanism in MCF-7 breast cancer cells.

  19. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha.

    PubMed

    Abdelrahim, Maen; Ariazi, Eric; Kim, Kyounghyun; Khan, Shaheen; Barhoumi, Rola; Burghardt, Robert; Liu, Shengxi; Hill, Denise; Finnell, Richard; Wlodarczyk, Bogdan; Jordan, V Craig; Safe, Stephen

    2006-02-15

    3-Methylcholanthrene (3MC) is an aryl hydrocarbon receptor (AhR) agonist, and it has been reported that 3MC induces estrogenic activity through AhR-estrogen receptor alpha (ER alpha) interactions. In this study, we used 3MC and 3,3',4,4',5-pentachlorobiphenyl (PCB) as prototypical AhR ligands, and both compounds activated estrogen-responsive reporter genes/gene products (cathepsin D) in MCF-7 breast cancer cells. The estrogenic responses induced by these AhR ligands were inhibited by the antiestrogen ICI 182780 and by the transfection of a small inhibitory RNA for ER alpha but were not affected by the small inhibitory RNA for AhR. These results suggest that 3MC and PCB directly activate ER alpha, and this was confirmed in a competitive ER alpha binding assay and in a fluorescence resonance energy transfer experiment in which PCB and 3MC induced CFP-ER alpha/YFP-ER alpha interactions. In a chromatin immunoprecipitation assay, PCB and 3MC enhanced ER alpha (but not AhR) association with the estrogen-responsive region of the pS2 gene promoter. Moreover, in AhR knockout mice, 3MC increased uterine weights and induced expression of cyclin D1 mRNA levels. These results show that PCB and 3MC directly activate ER alpha-dependent transactivation and extend the number of ligands that activate both AhR and ER alpha.

  20. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    NASA Astrophysics Data System (ADS)

    Štísová, Viktorie; Goffinont, Stephane; Spotheim-Maurizot, Melanie; Davídková, Marie

    2010-08-01

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERα, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with γ rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  1. Brain estrogen signaling and acute modulation of acoustic communication behaviors: a working hypothesis

    PubMed Central

    Remage-Healey, Luke

    2013-01-01

    Summary Although estrogens are widely considered circulating ‘sex steroid hormones’ typically associated with female reproduction, recent evidence suggests that estrogens can act as local modulators of brain circuits in both males and females. Functional implications of this newly-characterized estrogen signaling system have begun to emerge. This essay summarizes evidence in support of the hypothesis that the rapid production of estrogens in brain circuits can drive acute changes in both the production and perception of acoustic communication behaviors. These studies reveal two fundamental neurobiological concepts: 1) estrogens can be produced locally in brain circuits independent of levels in nearby circuits and in the circulation, and 2) estrogens can have very rapid effects within these brain circuits to modulate social vocalizations, acoustic processing, and sensorimotor integration. This research relies on a vertebrate-wide span of investigations, including vocalizing fishes, amphibians and birds, emphasizing the importance of comparative model systems in understanding principles of neurobiology. PMID:23065844

  2. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women’s Health

    PubMed Central

    Snelten, Courtney S.; Dietz, Birgit; Bolton, Judy L.

    2012-01-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women’s health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism. PMID:24223609

  3. Immunolocalization of androgen receptor, aromatase cytochrome P450, estrogen receptor alpha and estrogen receptor beta proteins during the breeding season in scent glands of muskrats (Ondatra zibethicus).

    PubMed

    Lu, Lu; Zhang, Haolin; Lv, Na; Ma, Xiaoting; Tian, Long; Hu, Xiao; Liu, Shuqiang; Xu, Meiyu; Weng, Qiang; Watanabe, Gen; Taya, Kazuyoshi

    2011-10-01

    Aromatase cytochrome P450 (P450arom) is an enzyme that catalyzes the conversion of androgen to estrogen. Expression of P450arom in extra-gonadal sites and locally-synthesized estrogen play an important role in physiological conditions. The purpose of this study was to investigate the cellular immunolocalization of androgen receptor (AR), P450arom, estrogen receptor alpha (ERa) and estrogen receptor beta (ERβ) in muskrat scent glands during the breeding season. Histological observation and immunohistochemistry of AR, P450arom, ERa and ERβ were performed in the muskrat scent glands. In addition, total proteins were extracted from scent glandular tissues in the breeding season and were used for Western blotting analysis for AR, P450arom, ERα and ERβ. Histologically, glandular cells, interstitial cells, epithelial cells of the excretory duct and the excretory tubules were identified in the muskrat scent glands during the breeding season. AR was only observed in glandular cells of scent glands; P450arom was expressed in glandular cells and epithelial cells of the excretory duct; ERα was found in glandular cells, interstitial cells and epithelial cells of the excretory duct, whereas ERβ was present in glandular cells and epithelial cells of the excretory duct. Also, the positive signals of AR, P450arom, ERα and ERβ by Western blotting were all observed in scent glandular tissues. These results suggested that the scent gland is the target organ of androgens and estrogens, and that estrogens may play an important autocrine or paracrine role in glandular function of the muskrats.

  4. Contribution of a membrane estrogen receptor to the estrogenic regulation of body temperature and energy homeostasis.

    PubMed

    Roepke, Troy A; Bosch, Martha A; Rick, Elizabeth A; Lee, Benjamin; Wagner, Edward J; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S; Rønnekleiv, Oline K; Kelly, Martin J

    2010-10-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7-8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms.

  5. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    PubMed Central

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  6. Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase

    DTIC Science & Technology

    2002-06-01

    AD Award Number: DAMDl7-01-1-0149 TITLE: Tamoxifen Dependent Interaction Between the Estrogen Receptor and a Novel P21 Activated Kinase PRINCIPAL...Tamoxifen Dependent Interaction Between the DAMD17-00-1-0114 Estrogen Receptor and a Novel P21 Activated Kinase 6. AUTHOR(S) Steven P. Balk, M.D., Ph.D. 7...Z, Karas RH, nisms of androgen receptor activation and function. J Mendelsohn ME, Shaul PW 1999 Estrogen receptor a Steroid Biochem Mol Biol 69:307

  7. Histone methylase MLL1 and MLL3 coordinate with estrogen receptors in estrogen-mediated HOXB9 expression

    PubMed Central

    Ansari, Khairul I.; Shrestha, Bishakha; Hussain, Imran; Kasiri, Sahba; Mandal, Subhrangsu S.

    2011-01-01

    Homeobox gene HOXB9 is a critical player in development of mammary gland and sternum and in regulation of Renin which is closely linked with blood pressure control. Our studies demonstrated that HOXB9 gene is transcriptionally regulated by estrogen (E2). HOXB9 promoter contains several estrogen-response elements (ERE). Reporter assay based experiments demonstrated that HOXB9 promoter EREs are estrogen-responsive. Estrogen receptors ERα and ERβ are essential for E2-mediated transcriptional activation of HOXB9. Chromatin immuno-precipitation assay demonstrated that ERs bind to HOXB9 EREs as a function of E2. Similarly, histone methylases MLL1 and MLL3 also bind to HOXB9 EREs and play critical role in E2-mediated transcriptional activation of HOXB9. Overall, our studies demonstrated that HOXB9 is an E2-responsive gene and ERs coordinate with MLL1 and MLL3 in E2-mediated transcriptional regulation of HOXB9. PMID:21428455

  8. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β

    PubMed Central

    Ma, Yulong; Guo, Hang; Zhang, Lixia; Tao, Liang; Yin, Anqi; Liu, Zhaoyu; Li, Yan; Dong, Hailong; Xiong, Lize; Hou, Wugang

    2016-01-01

    The incidence of ischemic stroke is significantly increased in postmenopausal women. However, the neuroprotective effects of estrogen replacement therapy (ERT) against stroke remain controversial, and the role of astrocytes in ERT has rarely been explored. In this study, we investigated the effects of estrogen and selective estrogen receptor (ER) agonists on astrocytes activation and neuronal apoptosis in mice under conditions of cell culture oxygen and glucose deprivation and reperfusion (OGD-R), and global cerebral ischemia (GCI). We demonstrated that hippocampal astrocytes primarily express ERβ. In astrocytes, 2.5–20 nM 17β-estradiol (E2) or 10 nM DPN (ERβ agonist) not 10 nM PPT (ERα agonist), significantly increased GFAP expression. And 10 nM E2, DPN or E2+MPP (ERα antagonist), but not PPT or E2+PHTPP (ERβ antagonist), significantly reduced neuronal apoptosis following the subjection of astrocyte and neuronal cocultures to OGD-R. We also found that either 50 μg/kg E2 or 8 mg/kg DPN replacement (3 weeks) significantly increased GFAP expression and reduced GCI-induced neuronal apoptosis in hippocampal CA1 region of ovariectomized mice. These results indicate that estrogen-induced neuroprotection against ischemia-reperfusion injury involves activation of astrocytes via ERβ. Thus, the discovery and design of astrocyte-selective ERβ modulators may offer a new strategy for ERT of ischemic stroke. PMID:26891996

  9. Linking estrogen receptor β expression with inflammatory bowel disease activity

    PubMed Central

    Pierdominici, Marina; Maselli, Angela; Varano, Barbara; Barbati, Cristiana; Cesaro, Paola; Spada, Cristiano; Zullo, Angelo; Lorenzetti, Roberto; Rosati, Marco; Rainaldi, Gabriella; Limiti, Maria Rosaria; Guidi, Luisa

    2015-01-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity. PMID:26497217

  10. Small-Molecule “BRCA1-Mimetics” Are Antagonists of Estrogen Receptor

    PubMed Central

    Ma, Yongxian; Tomita, York; Preet, Anju; Clarke, Robert; Englund, Erikah; Grindrod, Scott; Nathan, Shyam; De Oliveira, Eliseu; Brown, Milton L.

    2014-01-01

    Context: Resistance to conventional antiestrogens is a major cause of treatment failure and, ultimately, death in breast cancer. Objective: The objective of the study was to identify small-molecule estrogen receptor (ER)-α antagonists that work differently from tamoxifen and other selective estrogen receptor modulators. Design: Based on in silico screening of a pharmacophore database using a computed model of the BRCA1-ER-α complex (with ER-α liganded to 17β-estradiol), we identified a candidate group of small-molecule compounds predicted to bind to a BRCA1-binding interface separate from the ligand-binding pocket and the coactivator binding site of ER-α. Among 40 candidate compounds, six inhibited estradiol-stimulated ER-α activity by at least 50% in breast carcinoma cells, with IC50 values ranging between 3 and 50 μM. These ER-α inhibitory compounds were further studied by molecular and cell biological techniques. Results: The compounds strongly inhibited ER-α activity at concentrations that yielded little or no nonspecific toxicity, but they produced only a modest inhibition of progesterone receptor activity. Importantly, the compounds blocked proliferation and inhibited ER-α activity about equally well in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Representative compounds disrupted the interaction of BRCA1 and ER-α in the cultured cells and blocked the interaction of ER-α with the estrogen response element. However, the compounds had no effect on the total cellular ER-α levels. Conclusions: These findings suggest that we have identified a new class of ER-α antagonists that work differently from conventional antiestrogens (eg, tamoxifen and fulvestrant). PMID:25264941

  11. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice

    PubMed Central

    Clipperton-Allen, Amy E.; Lee, Anna W.; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W.; Choleris, Elena

    2012-01-01

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. PMID:22079582

  12. The Effect of Prolonged Cold Ischemia Time on Estrogen Receptor Immunohistochemistry in Breast Cancer

    PubMed Central

    Li, Xiaoxian; Deavers, Michael T.; Guo, Ming; Liu, Ping; Gong, Yun; Albarracin, Constance T.; Middleton, Lavinia P.; Huo, Lei

    2013-01-01

    To facilitate accurate detection of estrogen receptor expression in breast tumors, the American Society of Clinical Oncology/College of American Pathologists recommends that cold ischemia time be kept under 1 h. However, data to address the upper threshold of cold ischemia time are limited. While it is our routine practice to keep cold ischemia time under 1 h for breast core biopsy specimens, this is difficult for surgical specimens because of the comprehensive intraoperative assessment performed at our institution. In this retrospective study, we compared estrogen receptor immunohistochemical staining results in paired breast tumor core biopsy specimens and resection specimens with cold ischemia times ranging from 64 to 357 min in 97 patients. The staining category (≥10%, positive; 1-9%, low positive; <1%, negative) between the core biopsy and resection specimens changed for 5 patients (5%). The weighted Kappa statistic for estrogen receptor staining category between the two specimen types was 0.86 (95% confidence interval, 0.74-0.99), indicating good concordance. The difference in the percentage of estrogen receptor staining between core biopsy and resection was not significantly associated with cold ischemia time (P = 0.81, Spearman correlation). Although we did not observe significant associations between the difference in estrogen receptor staining in the two specimen types and cold ischemia time after placing the patients in three groups of ‘increase’, ‘decrease’ and ‘no change’ using a difference of 25% in estrogen receptor staining percentage as the cutoff, a trend of decreased estrogen receptor staining with cold ischemia time > 2 h was detected. No statistically significant association was found between the change of estrogen receptor staining and the history of neoadjuvant chemotherapy. Our findings indicate that prolonged cold ischemia time up to 4 h (97% of our cohort) in the practice setting of our institution has minimal clinical impact

  13. Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway

    PubMed Central

    Yaşar, Pelin; Ayaz, Gamze; Muyan, Mesut

    2016-01-01

    17β-estradiol (E2), the primary circulating estrogen hormone, mediates physiological and pathophysiological functions of breast tissue mainly through estrogen receptor α (ERα). Upon binding to E2, ERα modulates the expression of target genes involved in the regulation of cellular proliferation primarily through interactions with specific DNA sequences, estrogen response elements (EREs). Our previous microarray results suggested that E2-ERα modulates CXXC5 expression. Because of the presence of a zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of the ZF-CXXC family, which binds to non-methylated CpG dinucleotides. Although studies are limited, CXXC5 appears to participate as a transcription factor, co-regulator and/or epigenetic factor in the regulation of cellular events induced by various signaling pathways. However, how signaling pathways mediate the expression of CXXC5 is yet unclear. Due to the importance of E2-ERα signaling in breast tissue, changes in the CXXC5 transcription/synthesis could participate in E2-mediated cellular events as well. To address these issues, we initially examined the mechanism whereby E2-ERα regulates CXXC5 expression. We show here that CXXC5 is an E2-ERα responsive gene regulated by the interaction of E2-ERα with an ERE present at a region upstream of the initial translation codon of the gene. PMID:27886276

  14. Estrogens Induce Expression of Membrane-Associated Estrogen Receptor α Isoforms in Lactotropes

    PubMed Central

    Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Eijo, Guadalupe; Magri, María L.; Pisera, Daniel; Seilicovich, Adriana

    2012-01-01

    Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2

  15. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds with both receptor types.

    PubMed

    Bovee, Toine F H; Helsdingen, Richard J R; Rietjens, Ivonne M C M; Keijer, Jaap; Hoogenboom, Ron L A P

    2004-07-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hERalpha) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic compounds. Furthermore, a similar assay was developed based on the stable expression of human estrogen receptor beta (hERbeta). When exposed to 17beta-estradiol, the maximum transcriptional activity of the ERbeta cytosensor was only about 40% of the activity observed with ERalpha, but the concentration where half-maximal activation is reached (EC50), was about five times lower. The relative estrogenic potencies (REP), defined as the ratio between the EC50 of 17beta-estradiol and the EC50 of the compound, of the synthetic hormones dienestrol, hexestrol and especially mestranol were higher with ER, while DES was slightly more potent with ERbeta. The gestagens progesterone and medroxyprogesterone-acetate showed no response, whereas the androgen testosterone showed a very weak response. The anabolic agent, 19-nortestosterone showed a clear dose-related response with estrogen receptor but not beta. The phytoestrogens coumestrol, genistein, genistin, daidzein, daidzin and naringenin were relatively more potent with ERbeta. Ranking of the estrogenic potency with ER was: 17beta-estradiol > 8-prenylnaringenin > coumestrol > zearalenone > genistein > genistin > naringenin. The ranking with the ERbeta was: 17beta-estradiol > coumestrol > genistein > zearalenone > 8-prenylnaringen > daidzein > naringenin > genistin > daidzin. The hop estrogen 8-prenylnaringenin is relatively more potent with ERalpha. These data show that the newly developed bioassays are valuable tools for the rapid and high-throughput screening for estrogenic activity.

  16. Alteration of Large-Scale Chromatin Structure by Estrogen Receptor

    PubMed Central

    Nye, Anne C.; Rajendran, Ramji R.; Stenoien, David L.; Mancini, Michael A.; Katzenellenbogen, Benita S.; Belmont, Andrew S.

    2002-01-01

    The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily important in human physiology and disease, recruits coactivators which modify local chromatin structure. Here we describe effects of ER on large-scale chromatin structure as visualized in live cells. We targeted ER to gene-amplified chromosome arms containing large numbers of lac operator sites either directly, through a lac repressor-ER fusion protein (lac rep-ER), or indirectly, by fusing lac repressor with the ER interaction domain of the coactivator steroid receptor coactivator 1. Significant decondensation of large-scale chromatin structure, comparable to that produced by the ∼150-fold-stronger viral protein 16 (VP16) transcriptional activator, was produced by ER in the absence of estradiol using both approaches. Addition of estradiol induced a partial reversal of this unfolding by green fluorescent protein-lac rep-ER but not by wild-type ER recruited by a lac repressor-SRC570-780 fusion protein. The chromatin decondensation activity did not require transcriptional activation by ER nor did it require ligand-induced coactivator interactions, and unfolding did not correlate with histone hyperacetylation. Ligand-induced coactivator interactions with helix 12 of ER were necessary for the partial refolding of chromatin in response to estradiol using the lac rep-ER tethering system. This work demonstrates that when tethered or recruited to DNA, ER possesses a novel large-scale chromatin unfolding activity. PMID:11971975

  17. Serum estrogen receptor bioactivity and breast cancer risk among postmenopausal women

    PubMed Central

    Lim, Vanessa W; Li, Jun; Gong, Yinhan; Jin, Aizhen; Yuan, Jian-Min; Yong, Eu Leong; Koh, Woon-Puay

    2014-01-01

    The estrogen levels of Asian women are different from those of Western women, and this could affect estrogen receptor (ER) bioactivity and breast cancer risk. We conducted a case-control study of 169 postmenopausal breast cancer cases and 426 matched controls nested within a population-based prospective cohort, The Singapore Chinese Health Study, to evaluate serum levels of estrogens and their receptor (ERα and ERβ)-mediated estrogenic activities in relation to breast cancer risk. Breast cancer cases had higher levels of estrogens and estrogen receptor mediated bioactivities in baseline serum than controls. Compared to the lowest quartile, women in the highest quartile for estrone or ERα-mediated bioactivity had increased breast cancer risk. After additional adjustment for ERβ bioactivity, free E2 and estrone; serum ERα-mediated estrogenic activity remained associated with increased breast cancer risk. Compared to the lowest quartile, women in the highest quartile for ERα-mediated bioactivity had an odds ratio of 2.39 (95% confidence interval=1.17–4.88, p for trend=0.016). Conversely, the positive association between estrone and cancer risk became null after adjustment for ERα-mediated estrogenic activity, suggesting that the effect of estrone could be mediated through ERα. Identification of the factor(s) contributing to increased ERα-mediated estrogenic bioactivity in sera, and its role as a predictor for breast cancer risk needs to be validated in future studies. PMID:24322303

  18. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    SciTech Connect

    Robinson, Lisa J.; Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L.; Blair, Harry C.

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  19. An estrogen receptor model to describe the regulation of prolactin synthesis by antiestrogens in vitro.

    PubMed

    Lieberman, M E; Gorski, J; Jordan, V C

    1983-04-25

    A hypothetical model of the ligand interaction with the estrogen receptor binding site has been developed to describe the structural features necessary to initiate or to inhibit prolactin synthesis in vitro. The biological potency of the binding ligands is directly related to their relative binding affinity (RBA) for the estrogen receptor. The relative potencies of antiestrogens to inhibit estradiol-stimulated prolactin synthesis was trans-monohydroxytamoxifen identical to cis-monohydroxytamoxifen identical to tamoxifen, consistent with their RBAs for uterine estrogen receptor. Similarly the relative potency of estrogens to stimulate prolactin synthesis was diethylstilbestrol identical to estradiol greater than ICI 77,949 greater than ICI 47,699 identical to zuclomiphene, consistent with their RBAs. The compound LY126412 (trioxifene without the aminoethoxy side chain) did not interact with the estrogen receptor at the concentrations tested (10(-8)--10(-6) M) or exhibit estrogenic or antiestrogenic properties using the prolactin synthesis assay. Overall, the ligand-receptor model stresses the structural requirement for high affinity binding and the critical positioning of the alkylamino-ethoxy side chain in space (in relation to the ligand-binding site on the estrogen receptor) to prevent prolactin synthesis.

  20. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    NASA Astrophysics Data System (ADS)

    Garcia, Marcel; Derocq, Danielle; Freiss, Gilles; Rochefort, Henri

    1992-12-01

    Breast cancers containing estrogen receptors are responsive to antiestrogen treatment and have a better prognosis than estrogen receptor-negative tumors. The loss of estrogen and progesterone receptors appears to be associated with a progression to less-differentiated tumors. We transfected the human estrogen receptor into the estrogen receptor-negative metastatic breast cancer cell line MDA-MB-231 in an attempt to restore their sensitivity to antiestrogens. Two stable sublines of MDA-MB-231 cells (HC1 and HE5) expressing functional estrogen receptors were studied for their ability to grow and invade in vitro and to metastasize in athymic nude mice. The number and size of lung metastases developed by these two sublines in ovariectomized nude mice was not markedly altered by tamoxifen but was inhibited 3-fold by estradiol. Estradiol also significantly inhibited in vitro cell proliferation of these sublines and their invasiveness in Matrigel, a reconstituted basement membrane, whereas the antiestrogens 4-hydroxytamoxifen and ICI 164,384 reversed these effects. These results show that estradiol inhibits the metastatic ability of estrogen receptornegative breast cancer cells following transfection with the estrogen receptor, whereas estrogen receptor-positive breast cancers are stimulated by estrogen, indicating that factors other than the estrogen receptor are involved in progression toward hormone independence. Reactivation or transfer of the estrogen receptor gene can therefore be considered as therapeutic approaches to hormone-independent cancers

  1. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  2. Estrogenic activity and estrogen receptor beta binding of the UV filter 3-benzylidene camphor. Comparison with 4-methylbenzylidene camphor.

    PubMed

    Schlumpf, Margret; Jarry, Hubert; Wuttke, Wolfgang; Ma, Risheng; Lichtensteiger, Walter

    2004-07-01

    UV filters represent new classes of estrogenic [Environ. Health Perspect. 109 (2001) 239] or antiandrogenic [Toxicol. Sci. 74 (2003) 43] chemicals. We tested 3-benzylidene camphor (3-BC), reported as estrogenic in fish [Pharmacol. Toxicol. 91 (2002) 204], and mammalian systems in comparison to 4-methylbenzylidene camphor (4-MBC), shown to be active in rats, and analyzed binding to estrogen receptor subtypes. 3-BC and 4-MBC stimulated MCF-7 cell proliferation (EC(50): 0.68 and 3.9 microM). The uterotrophic assay of 3-BC (oral gavage) in immature rats showed unexpected potency with ED50 45.3mg/kg per day; lowest effective dose 2mg/kg per day, and maximum effect with 70% of ethinylestradiol. After comparing with literature data, we found that the oral 3-BC was considerably more potent than oral bisphenol A and almost as active as subcutaneous genistein. 3-BC and 4-MBC displaced 16alpha 125I-estradiol from porcine uterine cytosolic receptors (IC(50): 14.5 and 112 microM), and from recombinant human estrogen receptor beta (hERbeta) (IC(50): 3-BC, 11.8 microM; 4-MBC, 35.3 microM), whereas no displacement was detected at human estrogen receptor alpha (hERalpha) up to 3mM. This subtype selectivity makes the two camphor derivatives interesting model compounds. Their activity on immature rat uterus is not easily explained by ERbeta activation. It cannot be excluded that active metabolites with possibly different receptor binding characteristics are formed in vivo.

  3. Bioassays for estrogenic activity: development and validation of estrogen receptor (ERalpha/ERbeta) and breast cancer proliferation bioassays to measure serum estrogenic activity in clinical studies.

    PubMed

    Li, J; Lee, L; Gong, Y; Shen, P; Wong, S P; Wise, Stephen D; Yong, E L

    2009-02-01

    Standard estrogenic prodrugs such as estradiol valerate (E2V) and increasingly popular phytoestrogen formulations are commonly prescribed to improve menopausal health. These drugs are metabolized to numerous bioactive compounds, known or unknown, which may exert combinatorial estrogenic effects in vivo. The aim of this study is to develop and validate estrogen receptor (ER) alpha/ERbeta reporter gene and MCF-7 breast cancer cell proliferation bioassays to quantify serum estrogenic activities in a clinical trial setting. We measured changes in serum estrogenicity following ingestion of E2V and compared this to mass spectrometric measurements of its bioactive metabolites, estrone and 17beta-stradiol. ERalpha bioactivity of the 192 serum samples correlated well (R = 79%) with 17beta-estradiol levels, and adding estrone improved R to 0.83 (likelihood ratio test, P < 0.0001), suggesting that the ERalpha assay reflects summated activity of compounds in serum. ERbeta correlated moderately (R = 0.52) with estrone and 17beta-estradiol, with an estrone/17beta-estradiol coefficient ratio that was twice that of ERalpha, indicating estrone was more active on a molar basis in the ERbeta assay. Unlike the ERalpha and ERbeta bioassays, MCF-7 cell proliferation was driven by 17beta-estradiol, and addition of estrone did not increase the predictive value of the model, suggesting that the driver or drivers for breast cancer cell proliferation were not the same as for ERalpha and ERbeta transactivation. In contrast, a decoction of the traditional Chinese medicinal herb Epimedium pubescens did not induce significant changes in estrogenic bioactivity over baseline. These data indicate that ERalpha/ERbeta reporter gene and MCF-7 breast cancer cell proliferation bioassays reflect different aspects of estrogenic activity and that these assays suggest that the Epimedium formulation tested is unlikely to exert significant estrogenic effects in humans.

  4. KRÜPPEL-LIKE FACTOR 9 AND REGULATION OF ENDOMETRIAL ESTROGEN RECEPTOR-ALPHA SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endometrial cancer risk is linked to aberrant estrogen receptor-alpha (ER alpha) signaling caused by increased ER alpha activation due to hyper-estrogenic environments or mutations in growth-regulatory factors. We had shown that ER alpha signaling is attenuated by the Sp1-related transcription facto...

  5. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    SciTech Connect

    Cathey, T.M.; Chung, Kyung W. )

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  6. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    ERIC Educational Resources Information Center

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  7. Identification and Biological Evaluation of Coactivator Binding Inhibitors for the Estrogen Receptor

    ERIC Educational Resources Information Center

    Gunther, Jillian Rebecca

    2009-01-01

    The physiologic effects of estrogen action through the estrogen receptor (ER) are widespread, as this hormone exerts actions in both reproductive (e.g., uterus) and non-reproductive (e.g., bone, brain) tissues in both men and women. As such, the regulation of the activity of this ligand-activated transcription factor is highly relevant to the…

  8. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms

    PubMed Central

    Laredo, Sarah A.; Landeros, Rosalina Villalon; Trainor, Brian C.

    2014-01-01

    Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions. PMID:24685383

  9. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms.

    PubMed

    Laredo, Sarah A; Villalon Landeros, Rosalina; Trainor, Brian C

    2014-10-01

    Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions.

  10. Effect of nonpersistent pesticides on estrogen receptor, androgen receptor, and aryl hydrocarbon receptor.

    PubMed

    Medjakovic, Svjetlana; Zoechling, Alfred; Gerster, Petra; Ivanova, Margarita M; Teng, Yun; Klinge, Carolyn M; Schildberger, Barbara; Gartner, Michael; Jungbauer, Alois

    2014-10-01

    Nonpersistent pesticides are considered less harmful for the environment, but their impact as endocrine disruptors has not been fully explored. The pesticide Switch was applied to grape vines, and the maximum residue concentration of its active ingredients was quantified. The transactivation potential of the pesticides Acorit, Frupica, Steward, Reldan, Switch, Cantus, Teldor, and Scala and their active compounds (hexythiazox, mepanipyrim, indoxacarb, chlorpyrifos-methyl, cyprodinil, fludioxonil, boscalid, fenhexamid, and pyrimethanil) were tested on human estrogen receptor α (ERα), androgen receptor (AR) and arylhydrocarbon receptor (AhR) in vitro. Relative binding affinities of the pure pesticide constituents for AR and their effect on human breast cancer and prostate cancer cell lines were evaluated. Residue concentrations of Switch's ingredients were below maximum residue limits. Fludioxonil and fenhexamid were ERα agonists (EC50 -values of 3.7 and 9.0 μM, respectively) and had time-dependent effects on endogenous ERα-target gene expression (cyclin D1, progesterone receptor, and nuclear respiratory factor 1) in MCF-7 human breast cancer cells. Fludioxonil, mepanipyrim, cyprodinil, pyrimethanil, and chlorpyrifos-methyl were AhR-agonists (EC50 s of 0.42, 0.77, 1.4, 4.6, and 5.1 μM, respectively). Weak AR binding was shown for chlorpyrifos-methyl, cyprodinil, fenhexamid, and fludioxonil. Assuming a total uptake which does not take metabolism and clearance rates into account, our in vitro evidence suggests that pesticides could activate pathways affecting hormonal balance, even within permitted limits, thus potentially acting as endocrine disruptors.

  11. Repression of estrogen receptor {beta} function by putative tumor suppressor DBC1

    SciTech Connect

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-02-12

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) {alpha} appears to promote the proliferation of cancer tissues, while ER{beta} can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ER{alpha} and ER{beta} may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ER{alpha} expression and promotes breast cancer cell survival by binding to ER{alpha}. Here we report an ER{beta}-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ER{beta} and DBC1 interact in a ligand-independent manner similar to ER{alpha}. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ER{beta}. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ER{alpha}, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ER{beta}in vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ER{beta}. These results implicate the principal role of DBC1 in regulating ER{beta}-dependent gene expressions.

  12. Estrogen receptors regulate the estrous behavior induced by progestins, peptides, and prostaglandin E2.

    PubMed

    Lima-Hernández, F J; Gómora-Arrati, P; García-Juárez, M; Blaustein, J D; Etgen, A M; Beyer, C; González-Flores, O

    2014-07-01

    The role of classical estrogen receptors (ERs) in priming female reproductive behavior has been studied previously; however, the participation of this receptor during activation of estrous behavior has not been extensively studied. The purpose of this work was to test the possibility that the facilitation of lordosis behavior in estrogen-primed rats by progesterone (P) and its 5α- and 5β-reduced metabolites, gonadotropin-releasing hormone (GnRH), leptin, prostaglandin E2 (PGE2) and vagino-cervical stimulation (VCS) involves interactions with classical ERs by using the selective ER modulator, tamoxifen. To further assess the role of ERs, we also explored the effects of the pure ER antagonist, ICI182780 (ICI), on estrous behavior induced by P and GnRH. Ovariectomized, estrogen-primed rats (5μg estradiol benzoate 40h earlier) were injected intraventricularly with the above-mentioned compounds, or they received VCS. All compounds and VCS effectively facilitated estrous behavior when tested at 60, 120 or 240min after infusion or application of VCS. Intraventricular infusion of tamoxifen (5μg), 30min before, significantly attenuated estrous behaviors induced in estradiol-primed rats by P, most of its 5α- and 5β-reduced metabolites, GnRH, and PGE2, but not by VCS. Although there was a trend for reduction, tamoxifen did not significantly decrease lordosis in females treated with 5β-pregnan-3,20-dione. ICI also inhibited lordosis behavior induced by P and GnRH at some testing intervals. These results suggest that activation of classical ERs participates in the triggering effects on estrous behavior induced by agents with different chemical structures that do not bind directly to ERs.

  13. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  14. Estrogen-related Receptor alpha (ERR (alpha))-Coactivator Interactions as Targets for Discovery of New Anti-breast Cancer Therapeutics

    DTIC Science & Technology

    2008-03-01

    will respond to hormonal therapies, such as aromatase inhibitors and the selective estrogen receptor modulator (SERM) tamoxifen. However, drug...transcription (alpha-amanitin), translation (cycloheximide), and of proteosome activity (MG-132). We also tested a non-specific compound ( resveratrol ...and the compound XCT-790, which potentiates the degradation of ERRα. Increasing concentrations of all the compounds, except resveratrol

  15. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  16. Bromine-80m-labeled estrogens: Auger-electron emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor positive cancers

    SciTech Connect

    DeSombre, E.R.; Mease, R.C.; Hughes, A.; Harper, P.V.; DeJesus, O.T.; Friedman, A.M.

    1988-01-01

    A triphenylbromoethylene, 1,1-bis(p-hydroxyphenyl)-2-bromo-2-phenylethylene, Br-BHPE, and a bromosteroidal estrogen, 17..cap alpha..- bromovinylestradiol, BrVE/sub 2/, were labeled with the Auger electron emitting nuclide bromine-80m, prepared by the (p,n) reaction with /sup 80/Se. To assess their potential as estrogen receptor (ER) directed therapeutic substrates the bromine-80m labeled estrogens were injected into immature female rats and the tissue distribution studied at 0.5 and 2 hours. Both radiobromoestrogens showed substantial diethylstilbesterol (DES)-inhibitable localization in the ER rich tissues, uterus, pituitary, ovary and vagina at both time points. While the percent dose per gram tissue was higher for the Br-BHPE, the BrVE/sub 2/ showed higher tissue to blood ratios, especially at 2 hr, reflecting the lower blood concentrations of radiobromine following administration of the steroidal bromoestrogen. Comparing intraperitoneal, intravenous and subcutaneous routes of administration for the radiobromine labeled Br-BHPE, the intraperitoneal route was particularly advantageous to provide maximum, DES-inhibitable concentrations in the peritoneal, ER-rich target organs, the uterus, ovary and vagina. While uterine concentrations after BrBHPE were from 10--48% dose/g and after BrVE/sub 2/ were 15--25% dose/g, similar treatment with /sup 80m/Br as sodium bromide showed uniform low concentrations in all tissues at about the levels seen in blood. The effective specific activity of (/sup 80m/Br)BrBHPE, assayed by specific binding to ER in rat uterine cytosol, was 8700 Ci/mmole. 23 refs., 9 figs., 2 tabs.

  17. Autocrine role of estrogens in the augmentation of luteinizing hormone receptor formation in cultured rat granulosa cells.

    PubMed

    Kessel, B; Liu, Y X; Jia, X C; Hsueh, A J

    1985-06-01

    The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate

  18. Estrogen receptor alpha polymorphisms and the risk of malignancies.

    PubMed

    Anghel, Andrei; Narita, Diana; Seclaman, Edward; Popovici, Emilian; Anghel, Mariana; Tamas, Liviu

    2010-12-01

    Estrogens represent risk factors for endocrine-related cancers and play also an important role in the development and progression of other malignancies. In order to analyze the associations between estrogen receptor gene alpha polymorphisms and cancers susceptibility, we genotyped six single nucleotide polymorphisms (SNPs) in 163 Caucasian cancer patients--103 breast cancers and 60 other malignancies (colorectal, bladder, hepatocellular carcinoma and acute myeloid leukemia)--and 114 healthy controls using hybridization probes. We performed Armitage`s association trend-test to evaluate the risk. Linkage disequilibrium (LD) was assessed for each pair of markers. The genotypes CC and CT of rs3798577 were significantly associated with the cancers risk (p-trend breast = 4 × 10(-5); p-trend cancers = 1 × 10(-5)); in discrepancy with breast cancer where the C-allele represented the risk allele, for bladder, hepatocellular carcinomas and leukemia, the T allele seems to confer susceptibility. The minor G allele of rs1801132 was protective in our cases (p = 1 × 10(-4)); for rs2228480, the heterozygous frequency was higher for cancer groups (p = 0.03); the SNP pairs rs2228480&rs3798577 and rs2234693&rs9340799 were in low LD; the haplotypes T-A of rs2234693&rs9340799 and G-C of rs2228480&rs3798577 showed a trend to be higher represented in breast cancers; T allele of rs2234693 was higher expressed in breast, colon cancers and leukemia; rs2077647 was associated with colon (p = 0.008, C-risk allele) and bladder (p = 0.01, T-risk allele) cancers. We concluded that ESR1 polymorphisms may have distinct impact in carcinogenesis and further genotyping will establish whether these findings remain significant in larger cohorts.

  19. Modulation of estrogenic effects by environmental temperature and food availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endocrine-disrupting chemicals (EDCs), in combination with environmental influences, interfere with endocrine function in humans and wildlife. Estrogens are a type of EDC that may alter the hypothalamic-pituitary-gonadal axis in male fathead minnows, Pimephales promelas. The impact of estrogens on P...

  20. Thioredoxin and thioredoxin reductase influence estrogen receptor α-mediated gene expression in human breast cancer cells

    PubMed Central

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2010-01-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor α (ERα). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERα, Trx, and TrxR interact and ERα and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17β-estradiol, Trx, and TrxR alter hydrogen peroxide (H2O2) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H2O2 levels and transcription factor activity, aid ERα in regulating the expression of estrogen-responsive genes in target cells. PMID:19620238

  1. Thioredoxin and thioredoxin reductase influence estrogen receptor alpha-mediated gene expression in human breast cancer cells.

    PubMed

    Rao, Abhi K; Ziegler, Yvonne S; McLeod, Ian X; Yates, John R; Nardulli, Ann M

    2009-12-01

    Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERalpha, Trx, and TrxR interact and ERalpha and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17beta-estradiol, Trx, and TrxR alter hydrogen peroxide (H(2)O(2)) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H(2)O(2) levels and transcription factor activity, aid ERalpha in regulating the expression of estrogen-responsive genes in target cells.

  2. Estrogen replacement modulates voltage-gated potassium channels in rat presympathetic paraventricular nucleus neurons

    PubMed Central

    2013-01-01

    Background The hypothalamic paraventricular nucleus (PVN) is an important site in the regulation of the autonomic nervous system. Specifically, PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) play a regulatory role in the determination of the sympathetic outflow in the cardiovascular system. In the PVN-RVLM neurons, the estrogen receptor β is expressed. However, to date, the effects of estrogen on PVN-RVLM neurons have not been reported. The present study investigated estrogen-mediated modulation of two voltage-gated potassium channel (Kv) subunits, Kv4.2 and Kv4.3, that are expressed predominantly in PVN neurons and the functional current of Kv4.2 and Kv4.3, the transient outward potassium current (IA). Results Single-cell real-time RT-PCR analysis showed that 17β-estradiol (E2) replacement (once daily for 4 days) selectively down-regulated Kv4.2 mRNA levels in the PVN-RVLM neurons of ovariectomized female rats. There was no change in Kv4.3 levels. Whole-cell patch-clamp recordings demonstrated that E2 also diminished IA densities. Interestingly, these effects were most apparent in the dorsal cap parvocellular subdivision of the PVN. E2 also shortened a delay in the excitation of the PVN-RVLM neurons. Conclusions These findings demonstrate that E2 exerts an inhibitory effect on the functions of IA, potentially by selectively down-regulating Kv4.2 but not Kv4.3 in PVN-RVLM neurons distributed in a specific parvocellular subdivision. PMID:24180323

  3. Role of the Neddylation Enzyme Uba3, A New Estrogen Receptor Corepressor, in Breast Cancer

    DTIC Science & Technology

    2005-05-01

    expression of ERa in tumors with acquired resistance, such as disruptions in the NEDD8, CHIP or other ubiquitin or ubiquitin- associated / protein receptor...estrogen. Faseb J 18 :81-93 13. Fan M, Park A, Nephew KP. Interactions between estrogen receptor and the COOH terminus of the Hsp70- interacting protein ...responses. An attenuated transcrip- target proteins is primarily conferred by E3, regulation tional response has been associated with down-regula- of

  4. Distribution of estrogen and progesterone receptors isoforms in endometrial cancer

    PubMed Central

    2014-01-01

    Background 70–80% of sporadic endometrial carcinomas are defined as endometrioid carcinoma (EC). Early-stage, well differentiated endometrial carcinomas usually retain expression of estrogen and progesterone receptors (ER and PR, respectively), as advanced stage, poorly differentiated tumors often lack one or both of these receptors. Well-described EC prognosis includes tumor characteristics, such as depth of myometrial invasion. Therefore, in the current study, we evaluated the expression profile of ER and PR isoforms, including ER-α, PR-A and PR–B, in correlation to EC tumor histological depth. Methods Using immunohistochemistry and image analysis software, the expression of ER-α, PR-A, PR–B and Ki67 was assessed in endometrial stroma and epithelial glands of superficial, deep and extra-tumoral sections of 15 paraffin embedded EC specimens, and compared to 5 biopsies of non-malignant endometrium. Results Expression of PR-A and ER-α was found to be lower in EC compared to nonmalignant tissue, as the stromal expression was dramatically reduced compared to epithelial cells. Expression ratios of both receptors were significantly high in superficial and deep portions of EC; in non-tumoral portion of EC were close to the ratios of nonmalignant endometrium. PR-B expression was low in epithelial glands of EC superficial and deep portions, and high in the extra-tumoral region. Elevated PR-B expression was found in stroma of EC, as well. Conclusions The ratio of ER-α and PR-A expression in the epithelial glands and the stroma of EC biopsies may serve as an additional parameter in the histological evaluation of EC tumor. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1155060506119016 PMID:24684970

  5. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER

    PubMed Central

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153

  6. Ontogeny of cells containing estrogen receptor-like immunoreactivity in the Brazilian opossum brain.

    PubMed

    Fox, C A; Ross, L R; Jacobson, C D

    1991-11-19

    In this study, we have used the Brazilian short-tailed opossum (Monodelphis domestica) as a model to study the ontogeny of estrogen receptors in the mammalian brain. Monodelphis is a small, pouchless marsupial which breeds well under laboratory conditions and whose young are born in an immature sexually undifferentiated state. The Abbott H222 monoclonal rat estrogen receptor antibody (gift of Abbott Laboratories) was utilized in an indirect immunohistochemical procedure to detect estrogen receptors in developing opossum brains. Estrogen receptors were first expressed in the dorsomedial and ventromedial hypothalamus of the opossum 10 days after birth (10PN). Most regions that contained estrogen receptor-like immunoreactivity (ER LI) in the adult opossum contained ER LI at 15 PN. These areas include the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, periventricular preoptic area and hypothalamus, amygdala, dorsomedial and ventromedial hypothalamic nuclei, arcuate nucleus, ventral premammillary nucleus, and the midbrain central grey. The number of cells that contain ER LI increased through 60PN in all regions that will contain ER LI in the adult opossum. These results indicate that estrogen receptors are present in early development of the Monodelphis brain and may mark the beginning of a critical period for sexual differentiation of the opossum brain.

  7. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP

    PubMed Central

    Bennesch, Marcela A.; Segala, Gregory; Wider, Diana; Picard, Didier

    2016-01-01

    The estrogen receptor α (ERα) is a transcription factor that can be directly activated by estrogen or indirectly by other signaling pathways. We previously reported that activation of the unliganded ERα by cAMP is mediated by phosphorylation of the transcriptional coactivator CARM1 by protein kinase A (PKA), allowing CARM1 to bind ERα directly. This being insufficient by itself to activate ERα, we looked for additional factors and identified the histone H3 demethylase LSD1 as a substrate of PKA and an important mediator of this signaling crosstalk as well as of the response to estrogen. Surprisingly, ERα engages not only LSD1, but its partners of the CoREST corepressor complex and the molecular chaperone Hsp90. The recruitment of Hsp90 to promote ERα transcriptional activity runs against the steroid receptor paradigm and suggests that it might be involved as an assembly factor or scaffold. In a breast cancer cell line, which is resistant to the anti-estrogen tamoxifen because of constitutively activated PKA, some interactions are constitutive and drug combinations partially rescue tamoxifen sensitivity. In ERα-positive breast cancer patients, high expression of the genes encoding some of these factors correlates with poor prognosis. Thus, these mechanisms might contribute to ERα-driven breast cancer. PMID:27325688

  8. Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish.

    PubMed

    Torres-Duarte, Cristina; Viana, María Teresa; Vazquez-Duhalt, Rafael

    2012-10-01

    Endocrine disrupting chemicals (EDCs) are known to mainly affect aquatic organisms, producing negative effects in aquaculture. Transformation of the estrogenic compounds 17β-estradiol (E2), bisphenol-A (BPA), nonylphenol (NP), and triclosan (TCS) by laccase of Coriolopsis gallica was studied. Laccase is able to efficiently transform them into polymers. The estrogenic activity of the EDCs and their laccase transformation products was evaluated in vitro as their affinity for the human estrogen receptor alpha (hERα) and for the ligand binding domain of zebrafish (Danio rerio) estrogen receptor alpha (zfERαLBD). E2, BPA, NP, and TCS showed higher affinity for the zfERαLBD than for hERα. After laccase treatment, no affinity was found, except a marginal affinity of E2 products for the zfERαLBD. Endocrine disruption studies in vivo on zebrafish were performed using the induction of vitellogenin 1 as a biomarker (VTG1 mRNA levels). The use of enzymatic bioreactors, containing immobilized laccase, efficiently eliminates the endocrine activity of BPA and TCS, and significantly reduces the effects of E2. The potential use of enzymatic reactors to eliminate the endocrine activity of EDCs in supply water for aquaculture is discussed.

  9. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    SciTech Connect

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi . E-mail: mizukami@yamaguchi-u.ac.jp

    2006-08-04

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17{beta}-estradiol or E2) causes an elevation in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.

  10. Estrogen Receptor Alpha G525L Knock-In Mice

    DTIC Science & Technology

    2007-03-01

    response to endogenous estrogens. These female estrogen non-responsive ERα knock-in (ENERKI) mice had immature and hypoplastic uterine and vaginal ...developing mice as well as in adult animals with genetically induced mammary cancers through PPT administration or withdrawal. 15. SUBJECT TERMS estrogen...is a crucial therapeutic target for hormone dependent breast cancers . More effective treatment and prevention strategies are likely to emerge from

  11. Transformation of the rat uterine estrogen receptor after partial purification.

    PubMed

    Nielsen, S; Notides, A C

    1975-02-13

    Warming crude ratuterine cytosol after the addition of [3H] estradiol accelerates the association of the 4-S estrogen-binding protein with a second macromolecule, resulting in the formation of the 5-S estrogen-binding protein. To determine whether the 5-S estrogen-binding protein consists of two similar or dissimilar subunits, uterine cytosol was subjected to a number of fractionation procedures that separate macromolecules by solubility, molecular gel sieving, sedimentation rate, ionic charge, and heat lability. Following each of these methods, the fraction containing the 4-S estrogen-binding protein was incubated at 28 degrees C; each of the these 4-S estrogen-binding protein-containing fractions retained its capacity to completely transform to the 5-S estrogen-binding protein. In samples subjected to partial purification procedures, it was necessary that the buffer contain 40 mM Tris, 60 mM Tris, 60 mM KC1, 1-10 MM dithiothreitol, and 1 M urea at pH 7.4, in order to accomplish the 4-S to 5-S estrogen-binding protein transformation at 25 degrees C. Formation of the 5-S estrogen-binding protein requires association of the 4-Estrogen-binding protein with a molecule identical to or very similar to itself.

  12. The effect of low-dose experimental zearalenone intoxication on the immunoexpression of estrogen receptors in the ovaries of pre-pubertal bitches.

    PubMed

    Gajecka, M

    2012-01-01

    Zearalenone is an estrogenic mycotoxin that often contaminates plant material used in the production of feeds for companion animals. Small daily doses of ingested zearalenone--a competitive substrate modulating the activity of enzymes participating in estrogen biosynthesis at the pre-receptor level--can induce subclinical symptoms of hyperestrogenism in bitches. The objective of this study was to determine the effects of low zearalenone doses on the presence of estrogen receptors in the ovaries of pre-pubertal Beagle bitches. The bitches were divided into three groups of 10 animals each: experimental group I--50 microg zearalenone/kg body weight administered once daily per os; experimental group II--75 microg zearalenone/kg body weight administered once daily per os; control group--placebo containing no ZEN administered per os. The animals were ovariorectomized at the end of the experiment, at 112 days of age. Estrogen receptors were detected in ovarian specimens by immunohistochemical methods. The results revealed an absence of estrogen receptors alpha in all groups. In both experimental groups a decrease in the positive response of estrogen receptors beta in specified structures of ovaries was observed. Very low alpha-zearalenol levels probably attested to the slowing down (hypostimulation) of the biotransformation process. Overall, zearalenone intoxication led to hyperestrogenism during a specific developmental stage of pre-pubertal bitches. As regards hormesis, the threshold dose of zearalenone (adaptive capability) was exceeded in the ovaries of experimental group II animals. The results obtained in both experimental groups suggest that long-term exposure to low-dose zearalenone intoxication decreased the degree of estrogen receptors beta staining in particular structures of ovaries in the experimental bitches, which initiated epigenetic modification mechanisms that inhibited ovarian development.

  13. Estrogen receptor and progesterone receptor synthesis and degradation in target cells

    SciTech Connect

    Nardulli, A.M.

    1987-01-01

    It was the intent of this study to determine the turnover of the estrogen receptor (ER) and progesterone receptors (PR) in rat uterine and human breast cancer cells, respectively, and to examine the effect of estrogen and progestin on PR levels. The rates of synthesis and degradation of ER were determined in rat uterine cells in vitro and in vivo. The affinity labeling antiestrogen, (/sup 3/H)tamoxifen aziridine, was used in pulse chase experiments to show that the 65,000 molecular weight ER has a half-life of 3-4h in primary cultures of rat uterine cells in vitro and in the intact rat uterus in vivo. Density shift analyses using dense (/sup 15/N, /sup 13/C, /sup 2/H) amino acid incorporation corroborate the rapid turnover of ER in rat uterine cell cultures. The regulation of PR by progestins in T47D human breast cancer cells was examined using density shift-dense amino acid incorporation. When T47D cells, which normally maintain high PR levels, are exposed to progestin (R5020), PR levels decline. Receptor half-life, which is 21h in control cells, is reduced to 6h when cells are exposed to 20 nM (/sup 3/H)R5020. In addition, PR synthesis rate declines exponentially following R5020 exposure. The reduction in receptor level is thus due to dramatic increases in PR degradation as well as marked decreases in PR synthesis.

  14. Vitamin D modulation of the activity of estrogenic compounds in bone cells in vitro and in vivo.

    PubMed

    Somjen, Dalia

    2007-01-01

    Vitamin D analogs modulate different organs, including modulation of energy metabolism, through the induction of creatine kinase (CK) activity. Skeletal organs from vitamin D-depleted rats showed lower constituent CK than those from vitamin D-replete rats. Moreover, estradiol-17beta (E2) or dihydrotestosterone (DHT), which increased CK in organs from intact female or male rats, respectively, stimulated much less CK in vitamin D-depleted rats. Treatment of intact female rats with noncalcemic vitamin D analogs significantly upregulated E2- and DHT-induced CKresponse. These analogs upregulated the CK response to selective estrogen receptor modulators (SERMs) in organs from intact or ovariectomized (Ovx) female rats but abolished SERMs' inhibitory effect on E2-induced CK. These analogs significantly increased estradiol receptor alpha (ERalpha) protein in skeletal organs as well as histomorphological and biochemical changes due to this treatment followed by E2 or DHT. The analogs alone markedly altered the growth plate and the trabeculae and increased trabecular bone volume (%TB V) and trabecular width. The addition of E2 or DHT to this treatment restored all parameters as well as increased %TBV and cell proliferation. Treatment of Ovx female rats with JK 1624 F2-2 (JKF) decreased growth-plate width and increased %TB V, whereas QW1624 F2-2 (QW) restored growth-plate width and %TB V. Treatment of E2 with JKF restored %TBV and growth-plate width, whereas E2 with QW restored all parameters, including cortical width. There was also upregulation of the response of CK to E2 in both combined treatments. Our human-derived osteoblast (hObs)-like cell cultures respond to estrogenic compounds, and pretreating them with JKF upregulated the CK response to E2, raloxifene (Ral), and some phytoestrogens. ERalpha and ERbeta proteins, as well as mRNA, were modulated by CB 1093 (CB) and JKF. JKF increased specific nuclear E2 binding in female hObs but inhibited specific membranal E2

  15. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer

    PubMed Central

    Lau, Kin-Mang; To, Ka-Fai

    2016-01-01

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients. PMID:27589731

  16. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    PubMed

    Chen, Yung-Hsiang; Chen, Chao-Jung; Yeh, Shuyuan; Lin, Yu-Ning; Wu, Yang-Chang; Hsieh, Wen-Tsong; Wu, Bor-Tsang; Ma, Wen-Lung; Chen, Wen-Chi; Chang, Chawnshang; Chen, Huey-Yi

    2014-01-01

    Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ(+/+)) and knockout (ERβ(-/-)) female mice were generated (aged 6-8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+) group, the LPP and MUCP values of the ERβ(-/-) group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/-) female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/-) mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/-) female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  17. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  18. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells

    SciTech Connect

    Park, Eunsook; Gong, Eun-Yeung; Romanelli, Maria Grazia; Lee, Keesook

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer TTF-2 was expressed in mammary glands and breast cancer cells. Black-Right-Pointing-Pointer TTF-2 repressed ER{alpha} transactivation. Black-Right-Pointing-Pointer TTF-2 inhibited the proliferation of breast cancer cells. -- Abstract: Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ER{alpha} co-repressor. TTF-2 inhibited ER{alpha} transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ER{alpha}, colocalizing with ER{alpha} in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ER{alpha} target genes such as pS2 and cyclin D1 by interrupting ER{alpha} binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ER{alpha} as a corepressor and play a role in ER-dependent proliferation of mammary cells.

  19. Definition of the molecular basis for estrogen receptor-related receptor-alpha-cofactor interactions.

    PubMed

    Gaillard, Stéphanie; Dwyer, Mary A; McDonnell, Donald P

    2007-01-01

    Estrogen receptor-related receptor-alpha (ERRalpha) is an orphan nuclear receptor that does not appear to require a classical small molecule ligand to facilitate its interaction with coactivators and/or hormone response elements within target genes. Instead, the apo-receptor is capable of interacting in a constitutive manner with coactivators that stimulate transcription by acting as protein ligands. We have screened combinatorial phage libraries for peptides that selectively interact with ERRalpha to probe the architecture of the ERRalpha-coactivator pocket. In this manner, we have uncovered a fundamental difference in the mechanism by which this receptor interacts with peroxisome proliferator-activated receptor-gamma coactivator-1alpha, as compared with members of the steroid receptor coactivator subfamily of coactivators. Our findings suggest that it may be possible to develop ERRalpha ligands that exhibit different pharmacological activities as a consequence of their ability to differentially regulate coactivator recruitment. In addition, these findings have implications beyond ERRalpha because they suggest that subtle alterations in the structure of the activation function-2 pocket within any nuclear receptor may enable differential recruitment of coactivators, an observation of notable pharmaceutical importance.

  20. G-protein Coupled Estrogen Receptor, Estrogen Receptor α, and Progesterone Receptor Immunohistochemistry in the Hypothalamus of Aging Female Rhesus Macaques Given Long-Term Estradiol Treatment

    PubMed Central

    NAUGLE, MICHELLE M.; NGUYEN, LONG T.; MERCERON, TYLER K.; FILARDO, EDWARD; JANSSEN, WILLIAM G.M.; MORRISON, JOHN H.; RAPP, PETER R.; GORE, ANDREA C.

    2014-01-01

    Steroid hormone receptors are widely and heterogeneously expressed in the brain, and are regulated by age and gonadal hormones. Our goal was to quantify effects of aging, long-term estradiol (E2) treatment, and their interactions, on expression of G protein-coupled estrogen receptor (GPER), estrogen receptor α (ERα) and progesterone receptor (PR) immunoreactivity in two hypothalamic regions, the arcuate (ARC) and the periventricular area (PERI) of rhesus monkeys as a model of menopause and hormone replacement. Ovariectomized (OVX) rhesus macaques were young (~11 years) or aged (~25 years), given oil (vehicle) or E2 every 3 weeks for 2 years. Immunohistochemistry and stereologic analysis of ERα, PR, and GPER was performed. More effects were detected for GPER than the other two receptors. Specifically, GPER cell density in the ARC and PERI, and the percent of GPER-immunoreactive cells in the PERI, were greater in aged than in young monkeys. In addition, we mapped the qualitative distribution of GPER in the monkey hypothalamus and nearby regions. For ERα, E2 treated monkeys tended to have higher cell density than vehicle monkeys in the ARC. The percent of PR density in the PERI tended to be higher in E2 than vehicle monkeys of both ages. This study shows that the aged hypothalamus maintains expression of hormone receptors with age, and that long-term cyclic E2 treatment has few effects on their expression, although GPER was affected more than ERα or PR. This result is surprising in light of evidence for E2 regulation of the receptors studied here, and differences may be due to the selected regions, long-term nature of E2 treatment, among other possibilities. PMID:24862737

  1. Mechanisms of G protein-coupled estrogen receptor-mediated spinal nociception

    PubMed Central

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.; Oprea, Tudor I.; Benamar, Khalid; Dun, Nae J.; Brailoiu, Eugen

    2012-01-01

    Human and animal studies suggest estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pro-nociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER) activation. Membrane depolarization, increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological and fluorescent imaging studies, we evaluated GPER involvement in spinal nociceptive processing. Intrathecal challenging of mice with the GPER agonist G-1 results in pain-related behaviors. GPER antagonism with G15 reduces the G-1 induced response. Electrophysiological recordings from superficial dorsal horn neurons indicate neuronal membrane depolarization upon G-1 application, which is G15 sensitive. In cultured spinal sensory neurons G-1 increases intracellular calcium concentration and induces mitochondrial and cytosolic ROS accumulation. In the presence of G15, G-1 does not elicit the calcium and ROS responses, confirming specific GPER involvement in this process. Following G-1 intracellular microinjections, cytosolic calcium concentration elevates faster and with higher amplitude compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium increase, ROS accumulation and neuronal membrane depolarization. Perspective Our results suggest that GPER modulates pain processing in spinal sensory neurons via cytosolic calcium increase and ROS accumulation. These findings extend the current knowledge on GPER involvement in physiology and disease, providing the first evidence of its pro-nociceptive effects at central levels and characterizing some of the underlying mechanisms. PMID:22858342

  2. Research into Specific Modulators of Vascular Sex Hormone Receptors in the Management of Postmenopausal Cardiovascular Disease

    PubMed Central

    do Nascimento, Graciliano R. A.; Barros, Yaskara V. R.; Wells, Amanda K.; Khalil, Raouf A.

    2010-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Studies on the vasculature have identified estrogen receptors ERα, ERβ and a novel estrogen binding membrane protein GPR30, that mediate genomic and/or non-genomic effects. Estrogen promotes endothelium-dependent relaxation by inducing the production/activity of nitric oxide, prostacyclin, and hyperpolarizing factor, and inhibits the mechanisms of vascular smooth muscle contraction including [Ca2+]i, protein kinase C, Rho kinase and mitogen-activated protein kinase. Additional effects of estrogen on the cytoskeleton, matrix metalloproteinases and inflammatory factors contribute to vascular remodeling. However, the experimental evidence did not translate into vascular benefits of menopausal hormone therapy (MHT), and the HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events. The discrepancy has been partly related to delayed MHT and potential changes in the vascular ER amount, integrity, affinity, and downstream signaling pathways due to the subjects' age and preexisting CVD. The adverse vascular effects of MHT also highlighted the need of specific modulators of vascular sex hormone receptors. The effectiveness of MHT can be improved by delineating the differences in phramcokinetics and pharmacodynamics of natural, synthetic, and conjugated equine estrogens. Estriol, “hormone bioidenticals” and phytoestrogens are potential estradiol substitutes. The benefits of low dose MHT, and transdermal or vaginal estrogens over oral preparations are being evaluated. Specific ER modulators (SERMs) and ER agonists are being developed to maximize the effects on vascular ERs. Also, the effects of estrogen are being examined in the context of the whole body hormonal environment and the levels of progesterone and androgens. Thus, the experimental vascular benefits of estrogen can be translated to

  3. Metabolic Effect of Estrogen Receptor Agonists on Breast Cancer Cells in the Presence or Absence of Carbonic Anhydrase Inhibitors

    PubMed Central

    Belkaid, Anissa; Čuperlović-Culf, Miroslava; Touaibia, Mohamed; Ouellette, Rodney J.; Surette, Marc E.

    2016-01-01

    Metabolic shift is one of the major hallmarks of cancer development. Estrogen receptor (ER) activity has a profound effect on breast cancer cell growth through a number of metabolic changes driven by its effect on transcription of several enzymes, including carbonic anhydrases, Stearoyl-CoA desaturase-1, and oncogenes including HER2. Thus, estrogen receptor activators can be expected to lead to the modulation of cell metabolism in estrogen receptor positive cells. In this work we have investigated the effect of 17β-estradiol, an ER activator, and ferulic acid, a carbonic anhydrase inhibitor, as well as ER activator, in the absence and in the presence of the carbonic anhydrase inhibitor acetazolamide on the metabolism of MCF7 cells and MCF7 cells, stably transfected to express HER2 (MCF7HER2). Metabolic profiles were studied using 1D and 2D metabolomic Nuclear Magnetic Resonance (NMR) experiments, combined with the identification and quantification of metabolites, and the annotation of the results in the context of biochemical pathways. Overall changes in hydrophilic metabolites were largest following treatment of MCF7 and MC7HER2 cells with 17β-estradiol. However, the carbonic anhydrase inhibitor acetazolamide had the largest effect on the profile of lipophilic metabolites. PMID:27240414

  4. Bisphenol A regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor.

    PubMed

    Xu, Xiao-Bin; He, Ye; Song, Chen; Ke, Xin; Fan, Shi-Jun; Peng, Wei-Jie; Tan, Ruei; Kawata, Mitsuhiro; Matsuda, Ken-Ichi; Pan, Bing-Xing; Kato, Nobumasa

    2014-12-01

    Bisphenol A (BPA), one of the most common environmental endocrine disruptors, has been recognized to have wide adverse effects on the brain development and behavior. These adversities are related to its ability to bind estrogen receptor (ER) with subsequent alteration of its expression in the target areas. However, very little is known about whether BPA exposure also affects ER phosphorylation and its translocation to nucleus during postnatal development, two critical steps for its function. Here, we found that during development from postnatal day 7 (P7) to P21, the alpha subtype of ER (ERα) in the hippocampus of male rats experienced remarkable alterations in terms of its expression, phosphorylation and translocation to nucleus. Exposure to low level of BPA had bidirectional, development-dependent effects on the expression of ERα mRNA and protein, but decreased ERα phosphorylation and impaired its translocation to nucleus throughout the period investigated. Treatment with low dose of ICI 182,780 (ICI), an ER antagonist to block the binding of ER with BPA, reversed the altered ERα following BPA exposure, highlighting critical involvement of ER. Moreover, ICI treatment rescued the hippocampus-dependent behavioral deficits in the adult rats experiencing early-life BPA exposure. Overall, our results indicate that BPA interferes with the ERα signaling in the developing hippocampus in an ER-dependent manner, which may underlie its adverse behavioral and cognitive outcomes in adult animals.

  5. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene.

    PubMed

    Shipley, Jonathan M; Waxman, David J

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC(50)) was >100-fold higher for an ER reporter (27-57 muM) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17beta-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ERalpha-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  6. Molecular cloning and characterization of ligand- and species-specificity of amphibian estrogen receptors.

    PubMed

    Katsu, Yoshinao; Taniguchi, Ena; Urushitani, Hiroshi; Miyagawa, Shinichi; Takase, Minoru; Kubokawa, Kaoru; Tooi, Osamu; Oka, Tomohiro; Santo, Noriaki; Myburgh, Jan; Matsuno, Akira; Iguchi, Taisen

    2010-09-01

    Estrogens are essential for normal reproductive activity in both males and females as well as for ovarian differentiation during a critical developmental stage in most vertebrates. To understand the molecular mechanisms of estrogen action and to evaluate estrogen receptor ligand interactions in amphibians, we isolated cDNAs encoding the estrogen receptors (ERalpha and ERbeta) from the Japanese firebelly newt (Cynops pyrrhogaster), Tokyo salamander (Hynobius tokyoensis), axolotl (Ambystoma mexicanum), and Raucous toad (Bufo rangeri). Full-length amphibian ER cDNAs were obtained using 5' and 3' rapid amplification of cDNA ends. The predicted amino acid sequences of these amphibian ERs showed a high degree of amino acid sequence identity (over 70%) to each other. We analyzed the relationships of these amphibian ER sequences to other vertebrate ER sequences by constructing a phylogenetic tree. We verified that these were bona fide estrogen receptors using receptor dependent reporter gene assays. We analyzed the effects of natural estrogens, ethinylestradiol, and DDT and its metabolites on the transactivation of the four amphibian species listed above, and Xenopus tropicalis ERs and found that there were species-specific differences in the sensitivity of these ERs to hormones and environmental chemicals. These findings will expand our knowledge of endocrine-disrupting events in amphibians.

  7. Metabolism Regulation by Estrogens and Their Receptors in the Central Nervous System Before and After Menopause.

    PubMed

    Coyoy, A; Guerra-Araiza, C; Camacho-Arroyo, I

    2016-08-01

    Estrogens through their intracellular receptors regulate various aspects of glucose and lipid metabolism. The effects of estrogens in metabolism can be mediated by their receptors located in different areas of the brain such as the hypothalamus, which is involved in the control of food intake, energy expenditure, and body weight homeostasis. Alterations in the metabolic regulation by estrogens participate in the pathogenesis of the metabolic syndrome and cardiovascular diseases in women. The metabolic syndrome is an important disease around the world, consisting in a combination of characteristics including abdominal obesity, dyslipidemia, hypertension, and insulin resistance. It increases the risk of cardiovascular disease and type 2 diabetes. It has been suggested that there is an increase in the incidence of metabolic syndrome during menopause due to estrogens deficiency. Estrogens replacement improves insulin sensitivity and reduces the risk of diabetes in rats. In the brain, estrogens through the interaction with their receptors regulate the activity of neurons involved in energy homeostasis, including appetite and satiety. Thus, estradiol and their receptors in the hypothalamus play a key role in metabolic syndrome development during menopause.

  8. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils.

    PubMed

    Tamaki, Mami; Konno, Yasunori; Kobayashi, Yoshiki; Takeda, Masahide; Itoga, Masamichi; Moritoki, Yuki; Oyamada, Hajime; Kayaba, Hiroyuki; Chihara, Junichi; Ueki, Shigeharu

    2014-07-01

    Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation.

  9. Calycosin Promotes Angiogenesis Involving Estrogen Receptor and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Zebrafish and HUVEC

    PubMed Central

    Li, Zhen Hua; Zhang, Zai Jun; Hu, Guang; Cheang, Lorita Chi Veng; Alex, Deepa; Hoi, Maggie Pui Man; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen

    2010-01-01

    Background Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major isoflavonoid isolated from Radix Astragali, in vitro and in vivo. Methodology Tg(fli1:EGFP) and Tg(fli1:nEGFP) transgenic zebrafish embryos were treated with different concentrations of calycosin (10, 30, 100 µM) from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes assessment. Zebrafish embryos were exposed to calycosin (10, 100 µM) from 72 hpf to 78 hpf before gene-expression analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf Tg(fli1:EGFP) and Tg(fli1:nEGFP) zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene and tamoxifen in 72 hpf Tg(fli1:EGFP) zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs) were evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures (HUVEC) were pretreated with different concentrations of calycosin (3, 10, 30, 100 µM) for 48 h then tested for cell viability and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting. Conclusion Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC) in vitro and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 mRNA expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs), such as raloxifene and

  10. Freshwater mudsnail (Potamopyrgus antipodarum) estrogen receptor: identification and expression analysis under exposure to (xeno-)hormones.

    PubMed

    Stange, Daniela; Sieratowicz, Agnes; Horres, Ralf; Oehlmann, Jörg

    2012-01-01

    Molluscs are raising attention as ecotoxicological test organisms due to their high diversity and ecological importance. The ovoviviparous prosobranch gastropod Potamopyrgus antipodarum (freshwater mudsnail) responds very sensitively to xenobiotics and has therefore been proposed as OECD standard test organism. Endocrine disrupting chemicals influence the reproduction of P. antipodarum, which can be assessed by embryo numbers in the brood pouch. However, the knowledge about the endocrine system of P. antipodarum is rather limited. The aim of this study was to identify an estrogen receptor in the endocrine system of P. antipodarum and to investigate if this receptor is differentially expressed under exposure to (xeno-)hormones (17α-ethinylestradiol, bisphenol A and 17α-methyltestosterone). The DNA-binding domain of the identified ER-like transcript has an amino acid identity of 92 percent compared to the ER of the gastropod Nucella lapillus (84 percent to human ERα) and 83 percent in the ligand binding domain (38 percent to human ERα). Furthermore, the P. antipodarum ER is transcriptionally regulated as shown by quantitative real-time PCRs of (xeno-)hormone exposed snails. 17α-ethinylestradiol and bisphenol A exposure resulted in a transitory ER-mRNA increase while17α-methyltestosterone caused a transitory reduction of ER-mRNA. In addition the solvent dimethyl sulfoxide had also a modulating effect on the receptor.

  11. Cyclic AMP Modulation of Estrogen-Induced Effects: A Novel Mechanism for Hormonal Resistance in Breast Cancer

    DTIC Science & Technology

    1997-10-01

    Marden E, Martin G, MacKay H, Abbon- danza C, Brown M 1994 Estrogen receptor-associated proteins: possible mediators of hormone-induced tran...cells. Nucleic Ac- ids Res 19:6595-6602 42. Halachmi S, Marden E, Martin G, MacKay H, Abbon- danza C, Brown M 1994 Estrogen receptor-associated...the estrogen re- ceptor. EMBO J 14:3741-3751 26. Halachmi S, Marden E, Martin G, MacKay H, Abbon- danza C, Brown M 1994 Estrogen receptor-associated

  12. Solubilization of the chromatin-bound estrogen receptor from chicken liver and fractionation on hydroxylapatite.

    PubMed

    Gschwendt, M

    1976-08-16

    1. High-affinity estrogen-binding sites can be solubilized from the liver chromatin of estrogenized chickens by treatment of the chromatin with 2 M KCL/5 M urea and fractionation on hydroxylapatite. Two estrogen-binding proteins are eluted from hydroxylapatite columns by 20mM phosphate (binding protein I) and 200mMphosphate (binding protein II), respectively. 2. The binding protein I is part of a non-histone protein fraction containing acid-soluble and insoluble proteins, whereas the binding protein II elutes together with high molecular weight nonhistone proteins containing acid insoluble proteins only. Both binding proteins exhibit the smae affinity for estradiol (Kd approximately 10(-9) M). 3. From chromatin of untreated chickens very small amounts of binding protein I (0.1 pmol/mg protein compared to 1.9 pmol/mg protein from estrogenized chickens) with the smae affinity for estradiol as that from estrogenized animals can be solubilized. Binding protein II is not detectable. 4. The "soluble nuclear estrogen receptor" extracted from crude liver nucleir of estrogenized chickens by 0.5 M KCL behaves on hydroxylapatite very similarly to salt/urea-dissociated chromatin with respect to the binding protein I. No binding protein II, however, can be demonstrated. 5. Chromatography of various preparations on Bio-Gel A-1.5 m indicates that the binding protein II is a residual chromatin fragment containing an unseparated binding protein-DNA complex, whereas the binding protein I represents the solubilized nucleic-acid-free chromosomal estrogen receptor. The "soluble nuclear receptor" and the binding protein I, however, are not identical with respect to their chromatographic behaviour on Bio-Gel A-1.5m, even though their estrogen binding entity remaining after trypsin treatment seems to be very similar.

  13. The emerging role of estrogen receptor-β in human reproduction.

    PubMed

    Su, Emily J; Xin, Hong; Monsivais, Diana

    2012-01-01

    Knowledge surrounding estrogen and estrogen receptor biology continues to evolve, and the diversity of their actions and complexity of their mechanisms are becoming increasingly evident. Estrogen receptor (ER) regulation of reproduction is no exception. Although it is well established that estrogen and ERα play key roles in mediating several reproductive biological processes, such as myometrial and endometrial growth, increasing evidence suggests that ERβ is also an important factor. ERβ is a key mediator in folliculogenesis and may also play a role in stimulating ovulation and regulating aspects of luteinization. ERβ is also expressed in higher quantities than ERα in the human myometrium and cervix during pregnancy, and thus it may play a part in the initiation of labor and parturition. Finally, ERβ is the sole ER expressed within the endothelium of the endometrium and the fetoplacental vasculature, and studies suggest that its role may contribute to angiogenic and vasomotor changes that play a role in both implantation and regulation of fetoplacental blood flow.

  14. Identification of G protein-coupled estrogen receptor in human and pig spermatozoa.

    PubMed

    Rago, V; Giordano, F; Brunelli, E; Zito, D; Aquila, S; Carpino, A

    2014-06-01

    Estrogens are known to influence functional properties of mammalian spermatozoa inducing rapid responses through the classical estrogen receptors (ERα and ERβ). Recently, the G protein-coupled estrogen receptor (GPER) has been identified as mediator of fast non-genomic estrogen effects in different cells. This work investigated the expression of GPER in human and pig spermatozoa using immunofluorescence, Western blot analysis and RT-PCR. GPER was found to be confined to the mid-piece of human sperm cells, whereas it was detected in the acrosomal region, the equatorial segment and the mid-piece of pig spermatozoa. Furthermore, in the male gametes of both species, the immunoblots of sperm extracts revealed a band at ~42 kDa, consistent with the GPER molecular weight, and RT-PCR detected the GPER transcripts. This is the first report demonstrating the expression of GPER in human and pig mature sperm cells and evidencing its species-specific cellular localization.

  15. Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood.

    PubMed

    Wilson, Melinda E; Westberry, Jenne M; Trout, Amanda L

    2011-03-01

    17β-estradiol is a hormone with far-reaching organizational, activational and protective actions in both male and female brains. The organizational effects of early estrogen exposure are essential for long-lasting behavioral and cognitive functions. Estradiol mediates many of its effects through the intracellular receptors, estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ). In the rodent cerebral cortex, estrogen receptor expression is high early in postnatal life and declines dramatically as the animal approaches puberty. This decline is accompanied by decreased expression of ERα mRNA. This change in expression is the same in both males and females in the developing isocortex and hippocampus. An understanding of the molecular mechanisms involved in the regulation of estrogen receptor alpha (ERα) gene expression is critical for understanding the developmental, as well as changes in postpubertal expression of the estrogen receptor. One mechanism of suppressing gene expression is by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. The decrease in ERα mRNA expression during development is accompanied by an increase in promoter methylation. Another example of regulation of ERα gene expression in the adult cortex is the changes that occur following neuronal injury. Many animal studies have demonstrated that the endogenous estrogen, 17β-estradiol, is neuroprotective. Specifically, low levels of estradiol protect the cortex from neuronal death following middle cerebral artery occlusion (MCAO). In females, this protection is mediated through an ERα-dependent mechanism. ERα expression is rapidly increased following MCAO in females, but not in males. This increase is accompanied by a decrease in methylation of the promoter suggesting a return to the developmental program of gene expression within neurons. Taken together, during development and in adulthood, regulation of ERα gene expression in the

  16. Urethral Dysfunction in Female Mice with Estrogen Receptor β Deficiency

    PubMed Central

    Chen, Yung-Hsiang; Chen, Chao-Jung; Yeh, Shuyuan; Lin, Yu-Ning; Wu, Yang-Chang; Hsieh, Wen-Tsong; Wu, Bor-Tsang; Ma, Wen-Lung; Chen, Wen-Chi; Chang, Chawnshang; Chen, Huey-Yi

    2014-01-01

    Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI. PMID:25275480

  17. Pharmacodynamic imaging guides dosing of a selective estrogen receptor degrader

    PubMed Central

    Heidari, Pedram; Deng, Francis; Esfahani, Shadi A.; Leece, Alicia K.; Shoup, Timothy M.; Vasdev, Neil; Mahmood, Umar

    2015-01-01

    Purpose Estrogen receptor (ER) targeting is key in management of receptor-positive breast cancer (BrCa). Currently, there are no methods to optimize anti-ER therapy dosing. This study assesses the utility of 16α-18F-fluoroestradiol (18F-FES) PET for fulvestrant dose optimization in a preclinical ER+ BrCa model. Experimental Design In vitro, 18F-FES retention was compared to ERα protein expression (ELISA) and ESR1 mRNA transcription (qPCR) in MCF7 cells (ER+) after treatment with different fulvestrant doses. MCF7 xenografts were grown in ovariectomized nude mice and assigned to vehicle, low- (0.05mg), medium- (0.5mg) or high-dose (5mg) fulvestrant treatment groups (5–7 per group). Two and three days after fulvestrant treatment, PET/CT was performed using 18F-FES and 18F-FDG, respectively. ER expression was assessed by immunohistochemistry, ELISA, and qPCR on xenografts. Tumor proliferation was assessed using Ki-67 immunohistochemistry. Results In vitro, we observed a parallel graded reduction in 18F-FES uptake and ER expression with increased fulvestrant doses, despite enhancement of ER mRNA transcription. In xenografts, ER expression significantly decreased with increased fulvestrant dose, despite similar mRNA expression and Ki-67 staining among the treatment groups. We observed a significant dose-dependent reduction of 18F-FES PET mean standardized uptake value (SUVmean) with fulvestrant treatment, but no significant difference among the treatment groups in 18F-FDG PET SUVmean.. Conclusion We demonstrated that 18F-FES uptake mirrors the dose-dependent changes in functional ER expression with fulvestrant resulting in ER degradation and/or blockade; these precede changes in tumor metabolism and proliferation. Quantitative 18F-FES PET may be useful for tracking early efficacy of ER blockade/degradation and guiding ER-targeted therapy dosing in BrCa patients. PMID:25609068

  18. Uterine glutathione reductase activity: modulation by estrogens and progesterone.

    PubMed

    Díaz-Flores, M; Baiza-Gutman, L A; Pedrón, N N; Hicks, J J

    1999-10-29

    The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.

  19. 17β-Estradiol Regulation of the mRNA Expression of T-type Calcium Channel subunits: Role of Estrogen Receptor α and Estrogen Receptor β

    PubMed Central

    Bosch, Martha A.; Hou, Jingwen; Fang, Yuan; Kelly, Martin J.; Rønnekleiv., Oline K.

    2009-01-01

    Low voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an α1 subunit, of which there are three subtypes, Cav3.1, 3.2 and 3.3, and each subtype has distinct kinetic characteristics. Although 17β-estradiol modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. Presently, we used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, 3.2 and 3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and 3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2-treatment and Cav3.2 and 3.3 were decreased. In order to examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERα- and ERβ-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERα, whereas the E2 effect on Cav3.2 was dependent on both ERα and ERβ. However, the E2-induced effects in the pituitary were dependent on only the expression of ERα. The robust E2-regulation of the T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion. PMID:19003958

  20. Progesterone receptors in normal mammary gland: receptor modulations in relation to differentiation

    PubMed Central

    1980-01-01

    The biological basis for the observed modulation in cytoplasmic progesterone receptors (PgR) of normal mammary gland occurring during mammary development was investigated. Specifically, the relative roles of hormones vs. differentiation on (a) the decrease in PgR concentration during pregnancy and lactation and (b) the loss of mammary responsiveness to estrogen during lactation were examined. PgR were measured using the synthetic progestin, R5020, as the ligand. The hormones estrogen and progesterone were tested in vivo for their effect of PgR concentration. Mammary gland differentiation was assessed morphologically and by measuring enzymatically active alpha- lactalbumin. These studies show that there is a stepwise decrease in PgR that occurs in two stages. The first decrease is completed by day 12 of pregnancy and the second decrease occurs only after parturition. There appears to be a hormonal basis for the first decrease and it appears to be caused by the negative effect of progesterone on estrogen- mediated increase in PgR. In direct contrast, the absence of PgR during lactation and the mammary tissue insensitivity to estrogenic stimulation of PgR were not related to the hormonal milieu of lactation but were directly related to the secretory state of the mammary gland and lactation per se. PMID:7410476

  1. Gene expression profiles of estrogen receptor positive and estrogen receptor negative breast cancers are detectable in histologically normal breast epithelium

    PubMed Central

    Graham, Kelly; Ge, Xijin; de las Morenas, Antonio; Tripathi, Anusri; Rosenberg, Carol L.

    2010-01-01

    Purpose Previously, we found that gene expression in histologically normal breast epithelium (NlEpi) from women at high breast cancer risk can resemble gene expression in NlEpi from cancer-containing breasts. Therefore, we hypothesized that gene expression characteristic of a cancer subtype might be seen in NlEpi of breasts containing that subtype. Experimental Design We examined gene expression in 46 cases of microdissected NlEpi from untreated women undergoing breast cancer surgery. From 30 age-matched cases (15 estrogen receptor (ER)+, 15 ER-) we used Affymetryix U133A arrays. From 16 independent cases (9 ER+, 7 ER-), we validated selected genes using qPCR. We then compared gene expression between NlEpi and invasive breast cancer using 4 publicly available datasets. Results We identified 198 genes that are differentially expressed between NlEpi from breasts with ER+ (NlEpiER+) compared to ER- cancers (NlEpiER-). These include genes characteristic of ER+ and ER- cancers (e.g., ESR1, GATA3, and CX3CL1, FABP7). QPCR validated the microarray results in both the 30 original cases and the 16 independent cases. Gene expression in NlEpiER+ and NlEpiER- resembled gene expression in ER+ and ER- cancers, respectively: 25-53% of the genes or probes examined in 4 external datasets overlapped between NlEpi and the corresponding cancer subtype. Conclusions Gene expression differs in NlEpi of breasts containing ER+ compared to ER- breast cancers. These differences echo differences in ER+ and ER- invasive cancers. NlEpi gene expression may help elucidate subtype-specific risk signatures, identify early genomic events in cancer development and locate targets for prevention and therapy. PMID:21059815

  2. Role of the Neddylation Enzyme Uba3, a New Estrogen Receptor Corepressor, in Breast Cancer

    DTIC Science & Technology

    2005-09-01

    Taylor CW, Akinaga S, Whitesell L 2001 Destabilization of steroid receptors by heat shock protein 90- binding drugs: a ligand- 510 independent approach...or ubiquitin- associated / protein receptor degradation pathways, may thus present an important therapeutic target for future drug intervention. For the... 18 :81-93 13. Fan M, Park A, Nephew KP. Interactions between estrogen receptor and the COOH terminus of the Hsp70-interacting protein (CHIP) (Mol

  3. The interaction site for tamoxifen aziridine with the bovine estrogen receptor

    SciTech Connect

    Ratajczak, T.; Wilkinson, S.P.; Brockway, M.J.; Haehnel, R.M.; Moritz, R.L.; Begg, G.S.; Simpson, R.J.

    1989-08-15

    Calf uterine estrogen receptor was covalently labeled with ({sup 3}H)tamoxifen aziridine during affinity chromatography purification. After carboxymethylation, affinity labeled receptor was digested with trypsin under limit conditions and the labeled peptides were fractionated by reversed-phase high performance liquid chromatography into one major and two minor components. Sequence analysis of the dominant labeled fragment indicated the facile cleavage of label during Edman degradation but identified two peptides, both derived from the extreme carboxyl terminus of the steroid-binding domain. The 17 residues of one peptide were fully conserved in all estrogen receptors. This fragment contained five nucleophilic amino acids and was considered as the more favored interaction site for tamoxifen aziridine. A corresponding region of the glucocorticoid receptor has recently been identified as one of three major contact sites for glucocorticoids. A comparison of amino acid physical characteristics in the hormone-binding domains of human estrogen and glucocorticoid receptors demonstrated an excellent structural correlation between the two regions and delineated elements in the estrogen receptor which may be directly involved in estradiol binding.

  4. Integrated Summary Report: Validation of Two Binding Assays Using Human Recombinant Estrogen Receptor Alpha (hrERa)

    EPA Science Inventory

    This Integrated Summary Report (ISR) summarizes, in a single document, the results from an international multi-laboratory validation study conducted for two in vitro estrogen receptor (ER) binding assays. These assays both use human recombinant estrogen receptor, alpha subtype (h...

  5. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis, and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in r...

  6. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  7. Progestin, estrogen and androgen G-protein coupled receptors in fish gonads.

    PubMed

    Thomas, Peter; Dressing, Gwen; Pang, Yefei; Berg, Hakan; Tubbs, Christopher; Benninghoff, Abby; Doughty, Kelly

    2006-04-01

    The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.

  8. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells.

    PubMed

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G; Li, Xiaoyan; Moran, Meena S

    2013-02-08

    The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F+RT). This study was conducted to assess the effects of fulvestrant alone vs. F+RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F+RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F+RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F+RT was 0.885±0.013 vs. 0.622±0.029 @2 Gy, 0.599±0.045 vs. 0.475±0.054 @4 Gy, and 0.472±0.021 vs. 0.380±0.018 @6 Gy RT (p=0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F+RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p<0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F+RT compared with irradiation alone. F+RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F+RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  9. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  10. The role of estrogen receptor α in the regulation of bone and growth plate cartilage.

    PubMed

    Börjesson, A E; Lagerquist, M K; Windahl, S H; Ohlsson, C

    2013-11-01

    Estrogens are important endocrine regulators of skeletal growth and maintenance in both females and males. Studies have demonstrated that the estrogen receptor (ER)-α is the main mediator of these estrogenic effects in bone. Therefore, estrogen signaling via ERα is a target both for affecting longitudinal bone growth and bone remodeling. However, treatment with estradiol (E2) leads to an increased risk of side effects such as venous thromboembolism and breast cancer. Thus, an improved understanding of the signaling pathways of ERα will be essential in order to find better bone specific treatments with minimal adverse effects for different estrogen-related bone disorders. This review summarizes the recent data regarding the intracellular signaling mechanisms, in vivo, mediated by the ERα activation functions (AFs), AF-1 and AF-2, and the effect on bone, growth plate and other estrogen responsive tissues. In addition, we review the recent cell-specific ERα-deleted mouse models lacking ERα specifically in neuronal cells or growth plate cartilage. The newly characterized signaling pathways of estrogen, described in this review, provide a better understanding of the ERα signaling pathways, which may facilitate the design of new, bone-specific treatment strategies with minimal adverse effects.

  11. Tumor suppressor ING4 inhibits estrogen receptor activity in breast cancer cells

    PubMed Central

    Keenen, Madeline M; Kim, Suwon

    2016-01-01

    Resistance to antiestrogen therapy remains a significant problem in breast cancer. Low expression of inhibitor of growth 4 (ING4) in primary tumors has been correlated with increased rates of recurrence in estrogen receptor-positive (ER+) breast cancer patients, suggesting a role for ING4 in ER signaling. This study provides evidence that ING4 inhibits ER activity. ING4 overexpression increased the sensitivity of T47D and MCF7 ER+ breast cancer cells to hormone deprivation. ING4 attenuated maximal estrogen-dependent cell growth without affecting the dose–response of estrogen. These results indicated that ING4 functions as a noncompetitive inhibitor of estrogen signaling and may inhibit estrogen-independent ER activity. Supportive of this, treatment with fulvestrant but not tamoxifen rendered T47D cells sensitive to hormone deprivation as did ING4 overexpression. ING4 did not affect nuclear ERα protein expression, but repressed selective ER-target gene transcription. Taken together, these results demonstrated that ING4 inhibited estrogen-independent ER activity, suggesting that ING4-low breast tumors recur faster due to estrogen-independent ER activity that renders tamoxifen less effective. This study puts forth fulvestrant as a proposed therapy choice for patients with ING4-low ER+ breast tumors. PMID:27895513

  12. 17β-Estradiol Inhibits Wound Healing in Male Mice via Estrogen Receptor

    PubMed Central

    Gilliver, Stephen C.; Emmerson, Elaine; Campbell, Laura; Chambon, Pierre; Hardman, Matthew J.; Ashcroft, Gillian S.

    2010-01-01

    Although estrogens have long been known to accelerate healing in females, their roles in males remain to be established. To address this, we have investigated the influence of 17β-estradiol on acute wound repair in castrated male mice. We report that sustained exposure to estrogen markedly delays wound re-epithelialization. Our use of hairless mice revealed this response to be largely independent of hair follicle cycling, whereas other studies demonstrated that estrogen minimally influences wound inflammation in males. Additionally, we report reduced collagen accumulation and increased gelatinase activities in the wounds of estrogen-treated mice. Increased wound matrix metalloproteinase (MMP)-2 activity in these animals may i) contribute to their inability to heal skin wounds optimally and ii) stem, at least in part, from effects on the overall levels and spatial distribution of membrane-type 1-MMP and tissue inhibitor of MMP (TIMP)-3, which respectively facilitate and prevent MMP-2 activation. Using mice rendered null for either the α or β isoform of the estrogen receptor, we identified estrogen receptor-α as the likely effector of estrogen’s inhibitory effects on healing. PMID:20448060

  13. Serum estrogen receptor bioactivity and breast cancer risk among postmenopausal women.

    PubMed

    Lim, Vanessa W; Li, Jun; Gong, Yinhan; Jin, Aizhen; Yuan, Jian-Min; Yong, Eu Leong; Koh, Woon-Puay

    2014-04-01

    The estrogen levels of Asian women are different from those of Western women, and this could affect estrogen receptor (ER) bioactivity and breast cancer risk. We conducted a case-control study in 169 postmenopausal breast cancer cases and 426 matched controls nested within a population-based prospective cohort study, the Singapore Chinese Health Study, to evaluate the serum levels of estrogens and their receptor (ERα and ERβ)-mediated estrogenic activities in relation to breast cancer risk. Breast cancer cases had higher levels of estrogens and ER-mediated bioactivities in baseline serum than the controls. Compared with those in the lowest quartile, women in the highest quartile for estrone (E1) or ERα-mediated bioactivity had increased breast cancer risk. After additional adjustment for ERβ bioactivity, free estradiol, and E1 levels, serum ERα-mediated bioactivity remained associated with increased breast cancer risk. Compared with those in the lowest quartile, women in the highest quartile for ERα-mediated bioactivity had an odds ratio of 2.39 (95% CI=1.17-4.88; P for trend=0.016). Conversely, the positive association between E1 and cancer risk became null after adjustment for ERα-mediated bioactivity, suggesting that the effect of E1 could be mediated through ERα. Factor(s) contributing to increased ERα-mediated estrogenic bioactivity in serum and its role as a predictor for breast cancer risk need to be validated in future studies.

  14. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass.

    PubMed

    Bartell, Shoshana M; Han, Li; Kim, Ha-neui; Kim, Sung Hoon; Katzenellenbogen, John A; Katzenellenbogen, Benita S; Chambliss, Ken L; Shaul, Philip W; Roberson, Paula K; Weinstein, Robert S; Jilka, Robert L; Almeida, Maria; Manolagas, Stavros C

    2013-04-01

    Extensive evidence has suggested that at least some of the effects of estrogens on bone are mediated via extranuclear estrogen receptor α signaling. However, definitive proof for this contention and the extent to which such effects may contribute to the overall protective effects of estrogens on bone maintenance have remained elusive. Here, we investigated the ability of a 17β-estradiol (E2) dendrimer conjugate (EDC), incapable of stimulating nuclear-initiated actions of estrogen receptor α, to prevent the effects of ovariectomy (OVX) on the murine skeleton. We report that EDC was as potent as an equimolar dose of E2 in preventing bone loss in the cortical compartment that represents 80% of the entire skeleton, but was ineffective on cancellous bone. In contrast, E2 was effective in both compartments. Consistent with its effect on cortical bone mass, EDC partially prevented the loss of both vertebral and femoral strength. In addition, EDC, as did E2, prevented the OVX-induced increase in osteoclastogenesis, osteoblastogenesis, and oxidative stress. Nonetheless, the OVX-induced decrease in uterine weight was unaltered by EDC but was restored by E2. These results demonstrate that the protection of cortical bone mass by estrogens is mediated, at least in part, via a mechanism that is distinct from the classic mechanism of estrogen action on reproductive organs.

  15. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity.

    PubMed

    Martinez, E; Wahli, W

    1989-12-01

    The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.

  16. Regulation of Mitochondrial Respiratory Chain Biogenesis by Estrogens/Estrogen Receptors and Physiological, Pathological and Pharmacological Implications

    PubMed Central

    Chen, Jin-Qiang; Cammarata, Patrick R.; Baines, Christopher P.; Yager, James D.

    2009-01-01

    There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17β-estradiol(E2) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E2-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERα and ERβ and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anticancer drug resistance in human breast cancer cells, neuro-protection for Alzheimer’s disease and Parkinson’s disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimines for the prevention or treatment of a wide variety of medical complications based on E2/ER-mediated MRC biogenesis pathway. PMID:19559056

  17. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors

    PubMed Central

    Méndez-López, Luis Fernando; Zavala-Pompa, Angel; Cortés-Gutiérrez, Elva I.; Cerda-Flores, Ricardo M.

    2016-01-01

    Introduction The hormone leptin, which is produced in the adipose tissue, may influence tumorigenesis directly via its receptor (Ob-R). Thus, a role for Ob-R in endometrial carcinogenesis has been proposed. However, most studies neither included samples of the entire histological progression of endometrial carcinoma nor examined Ob-R jointly with the estrogen and progesterone receptors (ER and PR, respectively). Material and methods To determine the fluctuations of Ob-R, ER, and PR during the histological progression of endometrial carcinoma, we assessed their expression via immunohistochemistry (IHC) in six histological types of endometrium (proliferative, secretory, nonatypical and atypical hyperplasia, and endometrioid and nonendometrioid endometrial carcinoma), in which we performed histopathological and digital scoring for the quantification of receptors. Results We found that Ob-R expression was positively correlated with that of ER and PR (r = 1, p < 0.001; r = 0.943, p < 0.005, respectively), and there was a significant difference in Ob-R expression among proliferative normal endometrium, hyperplasias, and carcinomas, according to their relative digitally scored Ob-R expression (p < 0.001). In addition, we observed that Ob-R expression in the secretory endometrium was more similar to that of carcinomas than to its proliferative counterpart. Conclusions These results indicate that Ob-R expression fluctuates during endometrial carcinogenesis in correlation with ER and PR, suggesting that Ob-R expression in vivo is highly dependent on estrogen and progesterone activities in the endometrium and on its ER and PR status, as suggested previously by in vitro studies. PMID:28144276

  18. ESTROGENIC STATUS MODULATES DMBA-MEDIATED HEPATIC GENE EXPRESSION: MICROARRAY-BASED ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status in women influences the metabolism and toxicity of polycyclic aromatic hydrocarbons (PAH). The objective of this study was to examine the influence of estradiol (E2) on 7,12 dimethylbenz(a)anthracene (DMBA), a ligand for aryl hydrocarbon receptor, mediated changes on gene expressio...

  19. Glucocorticoids and estrogens modulate the NF-κB pathway differently in the micro- and macrovasculature.

    PubMed

    Edgar, Abarca-Rojano; Judith, Pacheco-Yépez; Elisa, Drago-Serrano Maria; Rafael, Campos-Rodríguez

    2013-12-01

    Estrogens and glucocorticoids have synergistic effects in the micro and macrovasculature of endothelial cells (ECs), having pro-inflammatory effects in the former and inhibiting the expression of adhesion molecules in the latter. The molecular basis of these effects in the endothelium has not yet been clarified. We postulate that the ECs of the micro- and macrovasculature have different non-genomic mechanisms that regulate levels of preexisting complexes of glucocorticoids and estrogens with their respective receptors. Since these receptors are regulated by NF-κB, their expression could be critical to the activation of a pro- or anti-inflammatory response. In the macrovasculature the synergistic effects of estrogens and glucocorticoids on ECs may be through the inhibition of NF-κB, leading to the inhibition of the expression of inflammatory molecules. It seems likely that glucocorticoid-receptor and estrogen-receptor complexes directly bind to NF-κB proteins in the macrovasculature, resulting in the inhibition of an excessive proinflammatory response. Further insights into these processes may help clarify the role of the endothelial cells of different vascular beds during the inflammatory response and chronic inflammation, and thus contribute to the design of more effective therapeutic strategies for the prevention of diseases related to inflammation, including atherosclerosis, systemic lupus erythematosus and rheumatoid arthritis.

  20. Prenylation inhibitors stimulate both estrogen receptor α transcriptional activity through AF-1 and AF-2 and estrogen receptor β transcriptional activity

    PubMed Central

    Cestac, Philippe; Sarrabayrouse, Guillaume; Médale-Giamarchi, Claire; Rochaix, Philippe; Balaguer, Patrick; Favre, Gilles; Faye, Jean-Charles; Doisneau-Sixou, Sophie

    2005-01-01

    Introduction We showed in a previous study that prenylated proteins play a role in estradiol stimulation of proliferation. However, these proteins antagonize the ability of estrogen receptor (ER) α to stimulate estrogen response element (ERE)-dependent transcriptional activity, potentially through the formation of a co-regulator complex. The present study investigates, in further detail, how prenylated proteins modulate the transcriptional activities mediated by ERα and by ERβ. Methods The ERE-β-globin-Luc-SV-Neo plasmid was either stably transfected into MCF-7 cells or HeLa cells (MELN cells and HELN cells, respectively) or transiently transfected into MCF-7 cells using polyethylenimine. Cells deprived of estradiol were analyzed for ERE-dependent luciferase activity 16 hours after estradiol stimulation and treatment with FTI-277 (a farnesyltransferase inhibitor) or with GGTI-298 (a geranylgeranyltransferase I inhibitor). In HELN cells, the effect of prenyltransferase inhibitors on luciferase activity was compared after transient transfection of plasmids coding either the full-length ERα, the full-length ERβ, the AF-1-deleted ERα or the AF-2-deleted ERα. The presence of ERα was then detected by immunocytochemistry in either the nuclei or the cytoplasms of MCF-7 cells. Finally, Clostridium botulinum C3 exoenzyme treatment was used to determine the involvement of Rho proteins in ERE-dependent luciferase activity. Results FTI-277 and GGTI-298 only stimulate ERE-dependent luciferase activity in stably transfected MCF-7 cells. They stimulate both ERα-mediated and ERβ-mediated ERE-dependent luciferase activity in HELN cells, in the presence of and in the absence of estradiol. The roles of both AF-1 and AF-2 are significant in this effect. Nuclear ERα is decreased in the presence of prenyltransferase inhibitors in MCF-7 cells, again in the presence of and in the absence of estradiol. By contrast, cytoplasmic ERα is mainly decreased after treatment with FTI

  1. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    PubMed

    Ter Veld, Marcel G R; Zawadzka, E; van den Berg, J H J; van der Saag, Paul T; Rietjens, Ivonne M C M; Murk, Albertinka J

    2008-07-30

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues 8h after dosing the ER-luc male mice intraperitoneally (IP) or 14h after oral dosing. Estradiol-propionate (EP) was used as a positive control at 0.3 and 1mg/kg bodyweight (bw), DMSO as solvent control. The food-associated estrogenic compounds tested at non-toxic doses were bisphenol A (BPA) and nonylphenol (NP) (both at 10 and 50mg/kgbw), dichlorodiphenyldichloroethylene (p,p'-DDE; at 5 and 25mg/kgbw), quercetin (at 1.66 and 16.6mg/kgbw), di-isoheptyl phthalate (DIHP), di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) all at 30 and 100mg/kgbw. In general IP dosing resulted in higher luc inductions than oral dosing. EP induced luc activity in the liver in a statistically significant dose-related way with the highest induction of all compounds tested which was 20,000 times higher than the induction by the DMSO-control. NP, DDE, DEHA and DIHP did not induce luc activity in any of the tissues tested. BPA induced luc in the liver up to 420 times via both exposure routes. BPA, DEHP and quercetin induced luc activity in the liver after oral exposure. BPA (50mg/kgbw IP) also induced luc activity in the testis, kidneys and tibia. The current study reveals that biomarker-responses in ER-luc male mice occur after a single oral exposure to food-associated estrogenic model compounds at exposure levels 10 to 10(4) times higher than the established TDI's for some of these compounds. Given the facts that (i) the present study did not include chronic exposure and that (ii) simultaneous exposure to multiple estrogenic compounds may be a realistic exposure scenario, it remains to be seen whether this margin is sufficiently high.

  2. Interplay between estrogen response element sequence and ligands controls in vivo binding of estrogen receptor to regulated genes.

    PubMed

    Krieg, Adam J; Krieg, Sacha A; Ahn, Bonnie S; Shapiro, David J

    2004-02-06

    To examine the role of the estrogen response element (ERE) sequence in binding of liganded estrogen receptor (ER) to promoters, we analyzed in vivo interaction of liganded ER with the imperfect ERE in the pS2 gene and the composite estrogen-responsive unit (ERU) in the proteinase inhibitor 9 (PI-9) gene. In transient transfections of ER-positive HepG2-ER7 cells, PI-9 was strongly induced by estrogen, moxestrol (MOX), and 4-hydroxytamoxifen (OHT). PI-9 was not induced by raloxifene or ICI 182,780. Quantitative reverse transcriptase-PCR showed that moxestrol strongly induced cellular PI-9 and pS2 mRNAs, whereas OHT moderately induced PI-9 mRNA and weakly induced pS2 mRNA. Chromatin immunoprecipitation experiments demonstrated strong and similar association of 17beta-estradiol-hERalpha and MOX-hERalpha with the PI-9 ERU and with the pS2 ERE. Binding of MOX-hERalpha to the PI-9 ERU and the pS2 ERE was rapid and continuous. Although MOX-hERalpha bound strongly to the PI-9 ERU and less well to the pS2 ERE in chromatin immunoprecipitation, gel shift assays showed that estrogen-hERalpha binds with higher affinity to the deproteinized pS2 ERE than to the PI-9 ERU. Across a broad range of OHT concentrations, OHT-hERalpha associated strongly with the pS2 ERE and weakly with the PI-9 ERU. ICI-hERalpha bound poorly to the PI-9 ERU and effectively to the pS2 ERE. Raloxifene-hERalpha and MOX-hERalpha exhibited similar binding to the PI-9 ERU and the pS2 ERE. These studies demonstrate that ER ligand and ERE sequence work together to regulate in vivo binding of ER to estrogen-responsive promoters.

  3. Mediator of ERBB2-driven cell motility (MEMO) promotes extranuclear estrogen receptor signaling involving the growth factor receptors IGF1R and ERBB2.

    PubMed

    Jiang, Kai; Yang, Zhihong; Cheng, Long; Wang, Shibin; Ning, Kang; Zhou, Lei; Lin, Jing; Zhong, Hui; Wang, Lisheng; Li, Yang; Huang, Junjian; Zhang, Hao; Ye, Qinong

    2013-08-23

    In addition to nuclear estrogen receptor (ER) acting as a transcription factor, extranuclear ER also plays an important role in cancer cell growth regulation through activation of kinase cascades. However, the molecular mechanisms by which extranuclear ER exerts its function are still poorly understood. Here, we report that mediator of ERBB2-driven cell motility (MEMO) regulates extranuclear functions of ER. MEMO physically and functionally interacted with ER. Through its interaction with the growth factor receptors IGF1R and ERBB2, MEMO mediated extranuclear functions of ER, including activation of mitogen-activated protein kinase (MAPK) and protein kinase B/AKT, two important growth regulatory protein kinases, and integration of function with nuclear ER. Activation of MAPK and AKT was responsible for MEMO modulation of ER phosphorylation and estrogen-responsive gene expression. Moreover, MEMO increased anchorage-dependent and -independent growth of ER-positive breast cancer cells in vitro and was required for estrogen-induced breast tumor growth in nude mice. Together, our studies identified MEMO as a new component of extranuclear ER signalosome and suggest an essential role for MEMO in the regulation of ER-positive breast cancer cell growth.

  4. Memo interacts with c-Src to control Estrogen Receptor alpha sub-cellular localization.

    PubMed

    Frei, Anna; MacDonald, Gwen; Lund, Ingrid; Gustafsson, Jan-Åke; Hynes, Nancy E; Nalvarte, Ivan

    2016-08-30

    Understanding the complex interaction between growth factor and steroid hormone signaling pathways in breast cancer is key to identifying suitable therapeutic strategies to avoid progression and therapy resistance. The interaction between these two pathways is of paramount importance for the development of endocrine resistance. Nevertheless, the molecular mechanisms behind their crosstalk are still largely obscure. We previously reported that Memo is a small redox-active protein that controls heregulin-mediated migration of breast cancer cells. Here we report that Memo sits at the intersection between heregulin and estrogen signaling, and that Memo controls Estrogen Receptor alpha (ERα) sub-cellular localization, phosphorylation, and function downstream of heregulin and estrogen in breast cancer cells. Memo facilitates ERα and c-Src interaction, ERα Y537 phosphorylation, and has the ability to control ERα extra-nuclear localization. Thus, we identify Memo as an important key mediator between the heregulin and estrogen signaling pathways, which affects both breast cancer cell migration and proliferation.

  5. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis.

  6. Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer’s disease

    PubMed Central

    Wang, Chunyu; Zhang, Fan; Jiang, Sirui; Siedlak, Sandra L.; Shen, Lu; Perry, George; Wang, Xinglong; Tang, Beisha; Zhu, Xiongwei

    2016-01-01

    The female predominance for developing Alzheimer disease (AD) suggests the involvement of gender specific factor(s) such as a reduced estrogen-estrogen receptor signaling in the pathogenesis of AD. The potential role of ERα in AD pathogenesis has been explored by several groups with mixed results. We revisited this issue of expression and distribution of ERα in AD brain using a specific ERα antibody. Interestingly, we found that ERα co-localized with neurofibrillary pathology in AD brain and further demonstrated that ERα interacts with tau protein in vivo. Immunoprecipitaion experiments found increased ERα-tau interaction in the AD cases, which may account for ERα being sequestered in neuronal tau pathology. Indeed, tau overexpression in M17 cells leads to interruption of estrogen signaling. Our data support the idea that sequestration of ERα by tau pathology underlies the loss of estrogen neuroprotection during the course of AD. PMID:26837465

  7. Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor α protein in MCF-7 cells require the CSK c-Src tyrosine kinase.

    PubMed

    Yeh, Wei-Lan; Shioda, Keiko; Coser, Kathryn R; Rivizzigno, Danielle; McSweeney, Kristen R; Shioda, Toshi

    2013-01-01

    Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.

  8. [Chronic administration of estrogen receptors antagonist reduces degree of hypoxia-induced pulmonary hypertension caused by chronic injections of estrogen in ovariectomised female Wistar rats].

    PubMed

    Kovaleva, Iu O; Artem'eva, M M; Medvedev, O S; Medvedeva, N A

    2013-01-01

    As we showed previously, administration of estradiol in different doses (5 and 15 mcg per day for 21 day) initiates the development of pulmonary arterial hypertension (PAH) in ovariectomised female Wistar rats. The aim of current study was to analyze the involvement of antagonist of estrogen receptors type a- and beta- ICI 182,780 (fulvestrant) in development of hypoxia-induced pulmonary arterial hypertension. Ovariectomised female rats were separated into 5 groups received subcutaneously for 1 month : 1. Estrogen 15 mcg per day. 2. Estrogen 60 mcg per day 3. Antagonist of estrogen receptors type alpha- and beta- fulvestrant 150 mcg per day. 4. Estrogen 15 mcg/d + fulvestrant 150 mcg/d. 5. Propylenglycol as a control group. PAH was induced by exposure to hypobaric hypoxia. Rats were housed in a hypobaric chamber at simulated altitude of 5000 m, 10 h a day, 2 wk (O2 concentration reduced to 10%). We suppose that the development of pulmonary hypertension in ovariectomised female Wistar rats caused by administration of estrogen (15 mcg and 60 mcg per day for 1 month) is mediated by estrogen receptors type alpha- and beta-.

  9. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B Cell Autoreactivity

    DTIC Science & Technology

    2011-07-01

    Medical Research Manhasset, NY 11030 Systemic lupus erythematosus is an autoimmune disease that occurs preferentially in women. We have developed a...Introduction: There is abundant clinical data that estrogen can increase risk of developing systemic lupus erythematosus (SLE) and disease...crux of systemic lupus erythematosus (SLE). SLE is characterized by an array of antibodies against self-antigens (3,4). Anti–double-stranded (ds) DNA

  10. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B Cell Autoreactivity

    DTIC Science & Technology

    2010-07-01

    14. ABSTRACT Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs preferentially in women. In murine models of SLE, it is... Systemic Lupus , Estrogen, BCR Signaling, B Cell Maturation, B Cell Selection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...therefore, be important to test ERα antagonists in murine studies of B cell development and in murine models of lupus . This approach to therapy might

  11. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B cell Autoreactivity. Addendum

    DTIC Science & Technology

    2012-07-01

    14. ABSTRACT Systemic lupus erythematosus is an autoimmune disease that occurs preferentially in women. We have developed a murine model...4 Introduction: There is abundant clinical data that estrogen can increase risk of developing systemic lupus erythematosus (SLE) and disease...Kawabata, D., Pinto-Rodriguez, D., Grimaldi, C. and Diamond B. Hormonal regulator of B cell function and systemic lupus erythematosus . Lupus 17:528

  12. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro.

    PubMed

    Benninghoff, Abby D; Bisson, William H; Koch, Daniel C; Ehresman, David J; Kolluri, Siva K; Williams, David E

    2011-03-01

    The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC(50)) values of 15.2-289 μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10-1000 nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern.

  13. Estrogen-Like Activity of Perfluoroalkyl Acids In Vivo and Interaction with Human and Rainbow Trout Estrogen Receptors In Vitro

    PubMed Central

    Benninghoff, Abby D.; Bisson, William H.; Koch, Daniel C.; Ehresman, David J.; Kolluri, Siva K.; Williams, David E.

    2011-01-01

    The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC50) values of 15.2–289μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10–1000nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern. PMID:21163906

  14. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  15. GABAB receptor modulation of synaptic function

    PubMed Central

    Chalifoux, Jason R.; Carter, Adam G.

    2011-01-01

    Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain. PMID:21376567

  16. Genotypes of vitamin D and estrogen receptors in pre and perimenopausal women from Córdoba, Argentina.

    PubMed

    Ulla, María; Pérez, Adriana; Elías, Vanina; Binci, Miriam; Pretel, Esteban; Castro, María; Talamoni, Juan; Costero, Beatriz; Mammana, Mónica; Babini, Silvana; Díaz de Barboza, Gabriela; Tolosa de Talamoni, Nori

    2007-01-01

    The aim of this study was to determine the frequency of vitamin D receptor and estrogen receptor genotypes and their relationship with the lumbar spine or femoral neck bone mineral density in healthy pre and perimenopausal women from Córdoba (Argentina) and adjacent areas. Genotypes were assessed by restriction fragment length polymorphism-polymerase chain reaction technique. Bsm I and Fok I for vitamin D receptor gene and Xbal and Pvull for estrogen receptor gene were used as restrictases. Two hundred and ten healthy pre and perimenopausal women were recruited and analyzed by age. Calcemia and serum parathyroid hormone did not change, but serum P and beta-CrossLaps decreased with age. Femoral neck bone mineral density decreased significantly after 30 years old. Vitamin D receptor and estrogen receptor genotype frequencies were similar to those from other Caucasian women. No association between vitamin D receptor and estrogen receptor genotypes with the lumbar spine or femoral neck bone mineral density has been detected. Analysis of interaction between vitamin D receptor and estrogen receptor genes using covariates such as age, height and body mass index did not show any influence of the combination of those genotypes on bone mineral density. Lifestyle, smoking and alcohol intake had no effect on lumbar spine and femoral neck bone mineral density. To conclude, these data do not support the hypothesis that vitamin D receptor and estrogen receptor genotypes influence on lumbar spine and femoral neck bone mineral density in healthy pre and perimenopausal women from this area of Argentina.

  17. Sex and estrogen receptor expression influence opioid peptide levels in the mouse hippocampal mossy fiber pathway.

    PubMed

    Van Kempen, Tracey A; Kahlid, Sana; Gonzalez, Andreina D; Spencer-Segal, Joanna L; Tsuda, Mumeko C; Ogawa, Sonoko; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2013-09-27

    The opioid peptides, dynorphin (DYN) and enkephalin (L-ENK) are contained in the hippocampal mossy fiber pathway where they modulate synaptic plasticity. In rats, the levels of DYN and L-ENK immunoreactivity (-ir) are increased when estrogen levels are elevated (Torres-Reveron et al., 2008, 2009). Here, we used quantitative immunocytochemistry to examine whether opioid levels are similarly regulated in wildtype (WT) mice over the estrous cycle, and how these compared to males. Moreover, using estrogen receptor (ER) alpha and beta knock-out mice (AERKO and BERKO, respectively), the present study examined the role of ERs in rapid, membrane-initiated (6 h), or slower, nucleus-initiated (48 h) estradiol effects on mossy fiber opioid levels. Unlike rats, the levels of DYN and L-ENK-ir did not change over the estrous cycle. However, compared to males, females had higher levels of DYN-ir in CA3a and L-ENK-ir in CA3b. In WT and BERKO ovariectomized (OVX) mice, neither DYN- nor L-ENK-ir changed following 6 or 48 h estradiol benzoate (EB) administration. However, DYN-ir significantly increased 48 h after EB in the dentate gyrus (DG) and CA3b of AERKO mice only. These findings suggest that cyclic hormone levels regulate neither DYN nor L-ENK levels in the mouse mossy fiber pathway as they do in the rat. This may be due to species-specific differences in the mossy fiber pathway. However, in the mouse, DYN levels are regulated by exogenous EB in the absence of ERα possibly via an ERβ-mediated pathway requiring new gene transcription.

  18. Association of estrogen receptor {alpha} genotypes/ haplotypes with carotid intima-media thickness in Taiwanese women.

    PubMed

    Wu, Meei-Maan; Hsieh, Yi-Chen; Lien, Li-Ming; Chen, Wei-Hung; Bai, Chyi-Huey; Chiu, Hou-Chang; Chen, Hsin-Hon; Chung, Wen-Tin; Lee, Yuan-Chii; Hsu, Chung Y; Lin, Hui-Wen; Chiou, Hung-Yi

    2010-04-01

    The estrogen receptor alpha gene (ESR1) is an important mediator of the atheroprotective effect of estrogen on the vasculature system. We examined the potential associations between common single nucleotide polymorphism (SNP) variants of ESR1 and intima-media thickness (IMT) in carotid arteries, a strong predictor of cardiovascular disease (CVD). A total of 760 study participants (343 men and 407 women), who had undergone a Duplex ultrasonographic examination of carotid artery, were investigated. Measurement of IMT was performed on a 10-mm segment of the common carotid artery (CCA). Fourteen sequence-validated SNPs of high frequency of Oriental origin were selected and genotyped by the method of Light-Cycler-480-assisted real-time polymerase chain reaction (PCR) followed by melting curve analysis. Results from multiple linear regression analyses showed significant associations of SNPs rs2228480 (Ex8+229G>A) and rs3798758 (Ex8+1988C>A) with the carotid IMT values in women but not in men. Women with SNP rs2228480 (Ex8+229G>A) A/A genotype had a 0.048 mm (7.1%) increase in IMT values versus the other genotypes combined (P = .030). In women who carried the rs3798758 (Ex8+1988C>A) CA+AA combined genotypes, their carotid IMT measures were 0.020 mm (2.9%) decreased as compared with those in women who carried C/ C genotype (P = .042). In haplotype analysis, women with the T-A haplotype versus C-C haplotype of combined rs3798577 (Ex8+1264T>C) and rs3798758 (Ex8+1988C>A) were also found to be associated with a decreased IMT value at a borderline significance (P = .057). Some common SNPs in the ESR1 could be important in modulating carotid atherosclerosis and thereby CVD susceptibility in Taiwanese women.

  19. A demonstration of the uncertainty in predicting the estrogenic activity of individual chemicals and mixtures from an in vitro estrogen receptor transcriptional activation assay (T47D-KBluc) to the in vivo uterotrophic assay using oral exposure

    EPA Science Inventory

    In vitro estrogen receptor assays are valuable screening tools for identifying environmental samples and chemicals that display estrogenic activity. However, in vitro potency cannot necessarily be extrapolated to estimates of in vivo potency because in vitro assays are currently...

  20. Estrogen Stimulation of Kiss1 Expression in the Medial Amygdala Involves Estrogen Receptor-α But Not Estrogen Receptor-β.

    PubMed

    Stephens, Shannon B Z; Chahal, Navdeep; Munaganuru, Nagambika; Parra, Ruby A; Kauffman, Alexander S

    2016-10-01

    The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Neurons synthesizing kisspeptin are predominantly located in the hypothalamic anteroventral periventricular (AVPV) and arcuate nuclei, but smaller kisspeptin neuronal populations also reside in extrahypothalamic brain regions, such as the medial amygdala (MeA). In adult rodents, estradiol (E2) increases Kiss1 expression in the MeA, as in the AVPV. However, unlike AVPV and arcuate nuclei kisspeptin neurons, little else is currently known about the development, regulation, and function of MeA Kiss1 neurons. We first assessed the developmental onset of MeA Kiss1 expression in males and found that MeA Kiss1 expression is absent at juvenile ages but significantly increases during the late pubertal period, around postnatal day 35, coincident with increases in circulating sex steroids. We next tested whether developmental MeA Kiss1 expression could be induced early by E2 exposure prior to puberty. We found that juvenile mice given short-term E2 had greatly increased MeA Kiss1 expression at postnatal day 18. Although MeA Kiss1 neurons are known to be E2 up-regulated, the specific estrogen receptor (ER) pathway(s) mediating this stimulation are unknown. Using adult ERα knockout and ERβ knockout mice, we next determined that ERα, but not ERβ, is required for maximal E2-induced MeA Kiss1 expression in both sexes. These results delineate both the developmental time course of MeA Kiss1 expression and the specific ER signaling pathway required for E2-induced up-regulation of Kiss1 in this extrahypothalamic brain region. These findings will help drive future studies ascertaining the potential functions of this understudied kisspeptin population.

  1. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    PubMed

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation.

  2. Estradiol reduces nonclassical transcription at cyclic adenosine 3',5'-monophosphate response elements in glioma cells expressing estrogen receptor alpha.

    PubMed

    Mhyre, Andrew J; Shapiro, Robert A; Dorsa, Daniel M

    2006-04-01

    Estradiol can protect the brain from a variety of insults by activating membrane-initiated signaling pathways, and thereby modulate gene expression and lead to functional changes in neurons. These direct neuronal effects of the hormone have been well documented; however, it is less understood what effects estradiol may have on nonneuronal cells of the central nervous system. There is evidence that estradiol levels can induce the release of glial-derived growth factors and other cytokines, suggesting that estradiol may both directly and indirectly protect neurons. To determine whether 17beta-estradiol (E2) can activate rapid signaling and modulate nonclassical transcription in astrocytes, we stably transfected the C6 rat glioblastoma cell line with human estrogen receptor (ER) alpha (C6ERalpha) or rat ERbeta (C6ERbeta). Introduction of a cAMP response element-luciferase reporter gene into C6, C6ERalpha, and C6ERbeta cells leads to the observation that E2 treatment reduced isoproterenol-stimulated luciferase activity by 35% in C6ERalpha but had no effect on reporter gene expression in C6ERbeta or untransfected C6 cells. A similar effect was seen with a membrane-impermeable estrogen (E2-BSA), suggesting the modulation of nonclassical transcription by estradiol treatment is mediated by the activation of a membrane-initiated signaling pathway. Furthermore, pretreatment with wortmannin (phosphatidylinsositol 3-kinase) or U73122 (phospholipase C) attenuated the E2-induced reduction in nonclassical transcription. We conclude that E2 treatment reduces cAMP response element-mediated transcription in glioma cells expressing ERalpha and that this reduction is dependent on the activation of membrane-initiated signaling. These findings suggest a novel model of estrogen rapid signaling in astrocytes that leads to modulation of nonclassical transcription.

  3. Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity.

    PubMed

    Lee, Hong Jin; Paul, Shiby; Atalla, Nadi; Thomas, Paul E; Lin, Xinjie; Yang, Ill; Buckley, Brian; Lu, Gang; Zheng, Xi; Lou, You-Rong; Conney, Allan H; Maehr, Hubert; Adorini, Luciano; Uskokovic, Milan; Suh, Nanjoo

    2008-11-01

    Numerous preclinical, epidemiologic, and clinical studies have suggested the benefits of vitamin D and its analogues for the prevention and treatment of cancer. However, the hypercalcemic effects have limited the use of 1alpha,25(OH)(2)D(3), the hormonally active form of vitamin D. To identify vitamin D analogues with better efficacy and low toxicity, we have tested >60 novel Gemini vitamin D analogues with a unique structure of two side chains for growth inhibition of breast cancer cells. Our initial studies found that some Gemini analogues are 5-15 times more active than 1alpha,25(OH)(2)D(3) in growth inhibition assay. In vivo experiments were designed to study the inhibitory effect of selected Gemini vitamin D analogues against mammary carcinogenesis by using (a) an N-methyl-N-nitrosourea-induced estrogen receptor (ER)-positive mammary tumor model and (b) an MCF10DCIS.com xenograft model of ER-negative mammary tumors. Among vitamin D analogues we tested, Gemini 0072 [1alpha,25-dihydroxy-20S-21(3-trideuteromethyl-3-hydroxy-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-19-nor-cholecalciferol] and Gemini 0097 [1alpha,25-dihydroxy-20R-21(3-trideuteromethyl-3-hydroxy-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-19-nor-cholecalciferol] administration inhibited by 60% the NMU-induced mammary tumor burden compared with the NMU-treated control group, but these compounds were devoid of hypercalcemia toxicity. In an ER-negative xenograft model, Gemini 0097 significantly suppressed tumor growth without hypercalcemia toxicity. We found that the inhibitory effect of Gemini 0097 was associated with an increased level of cyclin-dependent kinase inhibitor p21 and the insulin-like growth factor binding protein 3 in both ER-positive and ER-negative mammary tumors. Our results suggest that Gemini vitamin D analogues may be potent agents for the prevention and treatment of both ER-positive and ER-negative breast cancer without hypercalcemia toxicity.

  4. The deletion of the estrogen receptor α gene reduces susceptibility to estrogen-induced cholesterol cholelithiasis in female mice

    PubMed Central

    de Bari, Ornella; Wang, Helen H.; Portincasa, Piero; Liu, Min; Wang, David Q.-H.

    2015-01-01

    Compelling evidence has demonstrated that estrogen is a critical risk factor for gallstone formation and enhances cholesterol cholelithogenesis through the hepatic estrogen receptor α (ERα), but not ERβ. To study the lithogenic mechanisms of estrogen through ERα, we investigated whether the deletion of Erα protects against gallstone formation in ovariectomized (OVX) female mice fed a lithogenic diet and treated with 17β-estradiol (E2) at 0 or 6 μg/day for 56 days. Our results showed that the prevalence of gallstones was reduced from 100% in OVX ERα (+/+) mice to 30% in OVX ERα (−/−) mice in response to high doses of E2 and the lithogenic diet for 56 days. Hepatic cholesterol secretion was significantly diminished in OVX ERα (−/−) mice compared to OVX ERα (+/+) mice even fed the lithogenic diet and treated with E2 for 56 days. These alterations decreased bile lithogenicity by reducing cholesterol saturation index of gallbladder bile. Immunohistochemical studies revealed that ERα was expressed mainly in the gallbladder smooth muscle cells. High levels of E2 impaired gallbladder emptying function mostly through the ERα and cholecystokinin-1 receptor pathway, leading to gallbladder stasis in OVX ERα (+/+) mice. By contrast, gallbladder emptying function was greatly improved in OVX ERα (−/−) mice. This markedly retarded cholesterol crystallization and the growth and agglomeration of solid cholesterol crystals into microlithiasis and stones. In conclusion, the deletion of Erα reduces susceptibility to the formation of E2-induced gallstones by diminishing hepatic cholesterol secretion, desaturating gallbladder bile, and improving gallbladder contraction function in female mice. PMID:26232687

  5. Neuroprotective effect of estrogen: role of nonsynaptic NR2B-containing NMDA receptors.

    PubMed

    Liu, Shui-bing; Zhao, Ming-gao

    2013-04-01

    Excessive activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in the pathophysiology of chronic neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Some studies reported that NR2A and NR2B play different roles in the central nervous system (CNS). The NR2A subunit is primarily found in the synapses and is required for glutamate-mediated neuronal survival. On the other hand, the NR2B subunit is primarily found in the extrasynaptic sites and is required for glutamate-mediated neuronal death in both in vitro and in vivo experiments. Estrogen is a steroid hormone well known for its widespread effects such as neuroprotection in the brain. Classically, estrogen can bind to two kinds of nuclear receptors, namely, estrogen receptor α (ERα) and estrogen receptor β (ERβ), and produce physiological and neuroprotective effects. Aside from nuclear receptors, estrogen has one membrane receptor, which can either be G-protein-coupled receptor 30 (GPR30), Gq-mER, or ER-X. NMDA exposure clearly promotes NR2B subunit phosphorylation at Ser-1303 and causes neuronal cell death. GPR30 mediates rapid non-genomic effects to protect neurons against injury by inhibiting p-DAPK1 dephosphorylation, which inhibits NR2B subunit phosphorylation at Ser-1303. In addition, NMDA exposure and global ischemia activate the autophagy pathway and induce cell death, which are markedly blocked by the NR2B antagonist Ro 25-6981. Thus, NR2B signaling, autophagy induction and cell death may be closely related. Ro 25-6981 inhibits the dissociation of the NR2B-Beclin-1 signaling complex and delays autophagy in vivo, thus confirming the link between NR2B signaling and autophagy. In short, ERα, ERβ, and GPR30 are involved in the neuroprotection of estrogen in the CNS. Additional research must be conducted to reveal the mechanism of estrogen action fully and to identify better targets for the development of more effective drugs. This

  6. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  7. Androgen and estrogen receptors are present in primary cultures of human synovial macrophages.

    PubMed

    Cutolo, M; Accardo, S; Villaggio, B; Barone, A; Sulli, A; Coviello, D A; Carabbio, C; Felli, L; Miceli, D; Farruggio, R; Carruba, G; Castagnetta, L

    1996-02-01

    Macrophages, as antigen-processing and -presenting cells to T lymphocytes, play a key role in the immune system and are suspected to be target cells of the sex hormone-related dimorphism in the immune response peculiar to rheumatoid arthritis (RA) pathology. In the present study, the use of specific monoclonal antibodies revealed immunostaining for androgen and estrogen receptors in primary cultures of macrophages obtained from synovial tissues of patients affected by RA and controls without RA disease. Soluble and nuclear type I (high affinity, low capacity) and type II (lower affinity, greater capacity) sites of androgen or estrogen binding were detected in primary cultures of RA macrophages using radioligand binding assay. Higher levels of type I and type II estrogen receptor compared to those of androgen receptor were found, particularly in the soluble fraction; however, contrary to what was observed in whole synovial tissues, higher steroid receptor concentrations were found in the soluble than in the nuclear fraction of RA synovial macrophages. Binding affinities and receptor contents of cultured synovial macrophages were comparable to those previously reported in other well established sex hormone-responsive cells and tissues. Further, specific messenger ribonucleic acids for sex hormone receptors, encoding for a sequence of the DNA-binding domain of the receptor proteins were revealed by RT-PCR.

  8. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women.

    PubMed

    Olivo-Marston, Susan E; Mechanic, Leah E; Mollerup, Steen; Bowman, Elise D; Remaley, Alan T; Forman, Michele R; Skaug, Vidar; Zheng, Yun-Ling; Haugen, Aage; Harris, Curtis C

    2010-10-01

    The role of tumor estrogen receptors (ERs) and serum estrogen in lung cancer is inconclusive. We investigated the hypothesis that ERs and functional single-nucleotide polymorphisms in the estrogen biosynthesis pathway are associated with poorer lung cancer survival. Lung cancer patients (n = 305) from a National Cancer Institute-Maryland (NCI-MD) case-case cohort in the Baltimore metropolitan area were used as a test cohort. To validate, 227 cases from the NCI-MD case-control cohort and 293 cases from a Norwegian lung cancer cohort were studied. Information on demographics, tobacco and reproductive histories was collected in an interviewer-administered questionnaire. Serum estrogen, progesterone, tumor messenger RNA expression of hormone receptors and germ line DNA polymorphisms were analyzed for associations with lung cancer survival. Patients in the highest tertile of serum estrogen had worse survival in all three cohorts (P combined < 0.001). Furthermore, the variant allele of estrogen receptor alpha (ER-α) polymorphism (rs2228480) was significantly associated with increased tumor ER-α levels and worse survival in all three cohorts [hazard ratio (HR) = 2.59, 95% confidence interval (CI): 1.20- 4.01; HR = 1.76, 95% CI: 1.08-2.87 and HR = 2.85, 95% CI: 1.31-4.36). Other polymorphisms associated with lower serum estrogen correlated with improved survival. Results were independent of gender and hormone replacement therapy. We report a significant association of increased serum estrogen with poorer survival among lung cancer male and female patients. Understanding the genetic control of estrogen biosynthesis and response in lung cancer could lead to improved prognosis and therapy.

  9. Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis.

    PubMed

    Garidou, Lucile; Laffont, Sophie; Douin-Echinard, Victorine; Coureau, Christiane; Krust, Andrée; Chambon, Pierre; Guéry, Jean-Charles

    2004-08-15

    Estrogen treatment has been shown to exert a protective effect on experimental autoimmune encephalomyelitis (EAE), and is under clinical trial for multiple sclerosis. Although it is commonly assumed that estrogens exert their effect by modulating immune functions, we show in this study that 17beta-estradiol (E2) treatment can inhibit mouse EAE without affecting autoantigen-specific T cell responsiveness and type 1 cytokine production. Using mutant mice in which estrogen receptor alpha (ERalpha) has been unambiguously inactivated, we found that ERalpha was responsible for the E2-mediated inhibition of EAE. We next generated irradiation bone marrow chimeras in which ERalpha expression was selectively impaired in inflammatory T lymphocytes or was limited to the radiosensitive hemopoietic compartment. Our data show that the protective effect of E2 on clinical EAE and CNS inflammation was not dependent on ERalpha signaling in inflammatory T cells. Likewise, EAE development was not prevented by E2 treatment in chimeric mice that selectively expressed ERalpha in the systemic immune compartment. In conclusion, our data demonstrate that the beneficial effect of E2 on this autoimmune disease does not involve ERalpha signaling in blood-derived inflammatory cells, and indicate that ERalpha expressed in other tissues, such as CNS-resident microglia or endothelial cells, mediates this effect.

  10. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  11. A High-Cholesterol Diet Increases 27-Hydroxycholesterol and Modifies Estrogen Receptor Expression and Neurodegeneration in Rabbit Hippocampus

    PubMed Central

    Brooks, Sylwia W.; Dykes, Ava C.; Schreurs, Bernard G.

    2017-01-01

    Hypercholesterolemia has been implicated in numerous health problems from cardiovascular disease to neurodegeneration. High serum cholesterol levels in midlife have been associated with an increased risk of developing Alzheimer’s disease (AD) later in life which suggests that the pathways leading to AD pathology might be activated decades before the symptoms of the disease are detected. Cholesterol-fed animals, particularly cholesterol-fed rabbits, exhibit brain pathology similar to the changes found in brains of AD patients. Dietary cholesterol, which cannot pass the blood-brain barrier, is thought to influence central nervous system homeostasis by increased transport of its circulatory breakdown product, 27-hydroxycholesterol (27-OHC), into the brain. 27-OHC is an endogenous selective estrogen receptor modulator. Estrogen-mediated non-reproductive functions require estrogen receptors (ERs) and include modulation of mitochondrial function and structure, as well as regulation of synaptogenesis in the brain. ERs are located in brain areas affected early in AD pathogenesis, including the hippocampus. Here we report that increase in serum cholesterol, induced by feeding rabbits a high-cholesterol diet, is associated with higher levels of 27-OHC in the brain as well as increased levels of neurodegeneration in the hippocampus. Furthermore, these results are accompanied by changes in expression of ERs in the hippocampus as well as a decrease in hippocampal mitochondria. These findings provide an important insight into one of the possible mechanisms involved in the development of AD, and shed light on the processes that may antedate amyloid-β and tau phosphorylation changes currently hypothesized to cause AD symptomology and pathology. PMID:27911307

  12. Involvement of estrogen receptor alpha, beta and oxytocin in social discrimination: A detailed behavioral analysis with knockout female mice.

    PubMed

    Choleris, E; Ogawa, S; Kavaliers, M; Gustafsson, J-A; Korach, K S; Muglia, L J; Pfaff, D W

    2006-10-01

    Social recognition, processing, and retaining information about conspecific individuals is crucial for the development of normal social relationships. The neuropeptide oxytocin (OT) is necessary for social recognition in male and female mice, with its effects being modulated by estrogens in females. In previous studies, mice whose genes for the estrogen receptor-alpha (alpha-ERKO) and estrogen receptor-beta (beta-ERKO) as well as OTKO were knocked out failed to habituate to a repeatedly presented conspecific and to dishabituate when the familiar mouse is replaced by a novel animal (Choleris et al. 2003, Proc Natl Acad Sci USA 100, 6192-6197). However, a binary social discrimination assay, where animals are given a simultaneous choice between a familiar and a previously unknown individual, offers a more direct test of social recognition. Here, we used alpha-ERKO, beta-ERKO, and OTKO female mice in the binary social discrimination paradigm. Differently from their wild-type controls, when given a choice, the KO mice showed either reduced (beta-ERKO) or completely impaired (OTKO and alpha-ERKO) social discrimination. Detailed behavioral analyses indicate that all of the KO mice have reduced anxiety-related stretched approaches to the social stimulus with no overall impairment in horizontal and vertical activity, non-social investigation, and various other behaviors such as, self-grooming, digging, and inactivity. Therefore, the OT, ER-alpha, and ER-beta genes are necessary, to different degrees, for social discrimination and, thus, for the modulation of social behavior (e.g. aggression, affiliation).

  13. CLONING, EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR ALPHA FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    In vitro screening assays designed to identify hormone mimics or antagonists, including those recommended for use in the EPA's Tier 1 screening battery, typically use mammalian estrogen (ER) and androgen receptors (AR) such as rat or human. Although we know that the amino acid s...

  14. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    PubMed

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-05

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity.

  15. Species comparisons in molecular and functional attributes of the androgen and estrogen receptor

    EPA Science Inventory

    While endocrine disrupting compounds (EDCs) have the potential to act via several mechanisms of action, one of the most widely studied is the ability of environmental chemicals to interact directly with either the estrogen (ER) or androgen receptor (AR). In vitro screening assay...

  16. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  17. COMPARATIVE DOCKING STUDIES OF THE BINDING OF POLYCYCLIC AROMATIC HYDROCARBONS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    The interactions of several PAHs, and some of their possible metabolites, with the ligand binding domain of the estrogen receptor have been examined using molecular docking and quantum mechanical methods. The geometries of the PAHs were optimized at the Hartree-Fock level and the...

  18. Tetrahydroisoquinoline Phenols: Selective Estrogen Receptor Downregulator Antagonists with Oral Bioavailability in Rat

    PubMed Central

    2015-01-01

    A series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat. PMID:26819673

  19. NATURE OF BINDING INTERACTION OF SELECTED CHEMICALS WITH RAT ESTROGEN RECEPTORS

    EPA Science Inventory

    The US EPA is currently validating a rat uterine estrogen receptor (ER) binding assay as part of the Tier 1 Screening Battery for the Endocrine Disruptor Program. An eventual goal is to use interactive data to create computerized structure-activity models. However, more informati...

  20. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii.

  1. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain.

    PubMed Central

    Toran-Allerand, C D; Miranda, R C; Bentham, W D; Sohrabji, F; Brown, T J; Hochberg, R B; MacLusky, N J

    1992-01-01

    The rodent and primate basal forebrain is a target of a family of endogenous peptide signaling molecules, the neurotrophins--nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3--and of the gonadal steroid hormone estrogen, both of which have been implicated in cholinergic function. To investigate whether or not these ligands may act on the same neurons in the developing and adult rodent basal forebrain, we combined autoradiography with 125I-labeled estrogen and either nonisotopic in situ hybridization histochemistry or immunohistochemistry. We now report colocalization of intranuclear estrogen binding sites with the mRNA and immunoreactive protein for the low-affinity nerve growth factor receptor, which binds all three neurotrophins, and for the cholinergic marker enzyme choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6). Colocalization of estrogen and low-affinity nerve growth factor receptors implies that their ligands may act on the same neuron, perhaps synergistically, to regulate the expression of specific genes or gene networks that may influence neuronal survival, differentiation, regeneration, and plasticity. That cholinergic neurons in brain regions subserving cognitive functions may be regulated not only by the neurotrophins but also by estrogen may have considerable relevance for the development and maintenance of neural substrates of cognition. If estrogen-neurotrophin interactions are important for survival of target neurons, then clinical conditions associated with estrogen deficiency could contribute to the atrophy or death of these neurons. These findings have implications for the subsequent decline in those differentiated neural functions associated with aging and Alzheimer disease. Images PMID:1316615

  2. HOXC6 is transcriptionally regulated via coordination of MLL histone methylase and estrogen receptor under estrogen environment

    PubMed Central

    Ansari, Khairul I.; Hussain, Imran; Shrestha, Bishakha; Kasiri, Sahba; Mandal, Subhrangsu S.

    2011-01-01

    Homeobox containing gene HOXC6 is a critical player in mammary gland development, milk production and is overexpressed in breast and prostate cancer. We demonstrated that HOXC6 is transcriptionally regulated by estrogen (E2). HOXC6 promoter contains two putative estrogen-response elements (EREs), termed as ERE11/2 and ERE21/2. Promoter analysis using luciferase based reporter assay demonstrated that both EREs are responsive to E2, ERE11/2 being more responsive than ERE21/2. Estrogen receptors, ERα and ERβ, bind to these EREs in an E2-dependent manner and antisense-mediated knockdown of ERs suppressed the E2-dependent activation of HOXC6 expression. Similarly, knockdown of histone methylases, MLL2 and MLL3, decreased E2-mediated activation of HOXC6. However, depletion of MLL1 or MLL4 showed no significant effect. MLL2 and MLL3 were bound to the HOXC6 EREs in an E2-dependent manner. In contrast, MLL1 and MLL4 that were bound to the HOXC6 promoter in the absence of E2, decreased upon exposure to E2. MLL2 and MLL3 play key roles in histone H3K4-trimethylation and recruitment of general transcription factors and RNAP II in the HOXC6 promoter during E2-dependent transactivation. Nuclear receptor corepressors N-CoR and SAFB1 were bound in the HOXC6 promoter in absence of E2 and that binding were decreased upon E2-treatment indicating their critical roles in suppressing HOXC6 gene expression under non-activated condition. Knockdown of either ERα or ERβ abolished E2-dependent recruitment of MLL2 and MLL3 into the HOXC6 promoter demonstrating key roles of ERs in recruitment of these MLLs into HOXC6 promoter. Overall, our studies demonstrated that HOXC6 is an estrogen-responsive gene and histone methylases MLL2 and MLL3, in coordination with ERα and ERβ, transcriptionally regulate HOXC6 in an E2-dependent manner. PMID:21683083

  3. Androgen and estrogen receptor mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia

    PubMed Central

    Purves-Tyson, T.D.; Arshi, M.S.; Handelsman, D. J.; Cheng, Y.; Keast, J. R.

    2007-01-01

    Although male reproductive function is primarily androgen dependent, many studies suggest that estrogens have direct actions on the male reproductive organs. Pelvic autonomic neurons provide the motor control of the internal reproductive organs and the penis and various properties of these neurons are affected by endogenous androgens. However, the possible role of estrogens at this site has not been examined. Here we have investigated the significance of estrogens produced by aromatisation of testosterone in the physiological actions of androgens on adult male rat pelvic ganglion neurons. RT-PCR studies showed that aromatase and both estrogen receptors (ERα and ERβ) are expressed in these ganglia. Western blotting also showed that aromatase is expressed in male pelvic ganglia. Using immunohistochemical visualisation, ERα was predominantly expressed by nitric oxide synthase (NOS)-positive parasympathetic pelvic ganglion neurons. In vivo studies showed that the decrease in pelvic ganglion soma size caused by gonadectomy could be prevented by administration of testosterone (T) or dihydrotestosterone (DHT), but not 17β-estradiol (E2), showing that this maintenance action of testosterone is mediated entirely by androgenic mechanisms. However, in vitro studies of cultured pelvic ganglion neurons revealed that T, DHT and E each stimulated the growth of longer and more complex neurites in both noradrenergic and cholinergic NOS-expressing neurons. The effects of T were attenuated by either androgen or estrogen receptor antagonists, or by inhibition of aromatase. Together these studies demonstrate that estrogens are likely to be synthesised in the male pelvic ganglia, produced from testosterone by local aromatase. The effects of androgens on axonal growth are likely to be at least partly mediated by estrogenic mechanisms, which may be important for understanding disease-, aging- and injury-induced plasticity in this part of the nervous system. PMID:17629410

  4. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth.

    PubMed

    Johnson, Kailee A; Vemuri, Sravan; Alsahafi, Sameerh; Castillo, Rudy; Cheriyath, Venugopalan

    2016-01-01

    Due to the association of hormone replacement therapy (HRT) with breast cancer risk, estrogenically active soy isoflavones are considered as an HRT alternative to alleviate menopausal symptoms. However, several recent reports challenged the health benefits of soy isoflavones and associated them with breast cancer promotion. While glyconic isoflavones are the major constituents of soybean seeds, due to their low cell permeability, they are considered to be biologically inactive. The glyconic isoflavones may exert their effects on membrane-bound estrogen receptors or could be converted to aglycones by extracellular β-glucosidases. Therefore, we hypothesized that despite their low cell permeability, soybean cultivars with high glyconic isoflavones may promote breast cancer cell growth. To test this, composition and estrogenic activity of isoflavones from 54 commercial soybean cultivars were determined. Soybean seeds produced in identical climate and growth conditions were used to minimize the effects of extraneous factors on isoflavone profile and concentrations. The glyconic daidzin concentration negatively correlated with genistin and with other aglycones. Relative to control, isoflavone extracts from 51 cultivars were estrogenic and promoted the growth of estrogen receptor positive (ER+) breast cancer cell line MCF-7 from 1.14 to 4.59 folds and other three cultivars slightly reduced the growth. Among these, extracts from three cultivars were highly estrogenic and promoted MCF-7 cell growth by 2.59-4.64 folds (P<0.005). Among six isoflavones, daidzin was positively associated with MCF-7 cell growth (P<0.005, r = 0.13966), whereas the negative correlation between genistin and MCF-7 cell growth was nearly significant (P≤0.0562, r = -0.026141). Furthermore, in drug interaction studies daidzin-rich isoflavone extracts antagonized tamoxifen, an ER inhibitor. Taken together, our results suggest that the glyconic daidzin-rich soy isoflavone extracts may exert estrogenic

  5. Estrogen modulates alpha(1)/beta-adrenoceptor- induced signaling and melatonin production in female rat pinealocytes.

    PubMed

    Hernández-Díaz, F J; Sánchez, J J; Abreu, P; López-Coviella, I; Tabares, L; Prieto, L; Alonso, R

    2001-02-01

    Nocturnal rise in pineal melatonin output is due to the night-induced acceleration of noradrenergic transmission and alpha(1)- and beta-adrenoceptor activation. In addition, in female animals, cyclic oscillations in circulating levels of sex steroid hormones are accompanied by changes in the rate of pineal melatonin secretion. To investigate whether estrogen directly affects pineal adrenoceptor responsiveness, pinealocytes from 21-day-old ovariectomized rats were exposed to physiological concentrations of 17beta-estradiol (17beta-E(2)) and treated with noradrenergic agonists. Direct exposure to 17beta-E(2) reduced alpha(1)/beta-adrenoceptor-induced stimulation of melatonin synthesis and release. This effect was mediated by an estrogen-dependent inhibition of both beta-adrenoceptor-induced accumulation of cAMP and alpha(1)-adrenoceptor-induced phosphoinositide hydrolysis. Furthermore, estrogen reduced transient Ca(2+) signals elicited in single pinealocytes by alpha(1)-adrenoceptor activation or by potassium-induced depolarization. In the case of beta-adrenoceptor responsiveness, neither forskolin- nor cholera toxin-induced accumulation of cAMP were affected by previous exposure to 17beta-E(2). This indicates that estrogen effects must be exerted upstream from adenylylcyclase activation, and independent of modifications in G protein expression, therefore suggesting changes in either adrenoceptor expression or receptor-effector coupling mechanisms. Since estrogen effects upon adrenoceptor responsiveness in pineal cells was not mimicked by 17beta-E(2) coupled to bovine serum albumin and showed a latency of 48 h, this effect could be compatible with a genomic action mechanism. This is also consistent with the presence of two estrogen receptor proteins, alpha- and beta-subtypes, in female rat pinealocytes under the present experimental conditions.

  6. Estrogen receptor alpha prevents bladder cancer via INPP4B inhibited akt pathway in vitro and in vivo.

    PubMed

    Hsu, Iawen; Yeh, Chiuan-Ren; Slavin, Spencer; Miyamoto, Hiroshi; Netto, George J; Tsai, Yu-Chieh; Muyan, Mesut; Wu, Xue-Ru; Messing, Edward M; Guancial, Elizabeth A; Yeh, Shuyuan

    2014-09-15

    Clinical reports show males have a higher bladder cancer (BCa) incidence than females. The sexual difference of BCa occurrence suggests that estrogen and its receptors may affect BCa development. Estrogen receptor alpha (ERα) is the classic receptor to convey estrogen signaling, however, the function of ERα in BCa development remains largely unknown. To understand the in vivo role of ERα in BCa development, we generated total and urothelial specific ERα knockout mice (ERαKO) and used the pre- carcinogen BBN to induce BCa. Earlier reports showed that ERα promotes breast and ovarian cancers in females. Surprisingly and of clinical importance, our results showed that ERα inhibits BCa development and loss of the ERα gene results in an earlier onset and higher incidence of BBN-induced in vivo mouse BCa. Supportively, carcinogen induced malignant transformation ability was reduced in ERα expressing urothelial cells as compared to ERα negative cells. Mechanism studies suggest that ERα could control the expression of INPP4B to reduce AKT activity and consequently reduce BCa cell growth. In addition, IHC staining of clinical sample analyses show that INPP4B expression, in correlation with reduced ERα, is significantly reduced in human BCa specimens. Together, this is the first report using the in vivo cre-loxP gene knockout mouse model to characterize ERα roles in BCa development. Our studies provide multiple in vitro cell studies and in vivo animal model data as well as human BCa tissue analyses to prove ERα plays a protective role in BCa initiation and growth at least partly via modulating the INPP4B/Akt pathway.

  7. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study.

    PubMed

    Compton, J; Travis, M J; Norbury, R; Erlandsson, K; van Amelsvoort, T; Daly, E; Waddington, W; Matthiasson, P; Eersels, J L H; Whitehead, M; Kerwin, R W; Ell, P J; Murphy, D G M

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.

  8. Phosphorylation of estrogen receptor beta at serine 105 is associated with good prognosis in breast cancer.

    PubMed

    Hamilton-Burke, Werbena; Coleman, Louise; Cummings, Michele; Green, Caroline A; Holliday, Deborah L; Horgan, Kieran; Maraqa, Loaie; Peter, Mark B; Pollock, Steven; Shaaban, Abeer M; Smith, Laura; Speirs, Valerie

    2010-09-01

    Estrogen receptor (ER) action is modulated by posttranslational modifications. Although ERalpha phosphorylation correlates with patient outcome, ERbeta is similarly phosphorylated but its significance in breast cancer has not been addressed. We investigated whether ERbeta that is phosphorylated at serine 105 (S105-ERbeta) is expressed in breast cancer and assessed potential clinical implications of this phosphorylation. Following antibody validation, S105-ERbeta expression was studied in tissue microarrays comprising 108 tamoxifen-resistant and 351 tamoxifen-sensitive cases and analyzed against clinical data. S105-ERbeta regulation in vitro was assessed by Western blo