Sample records for etb receptor function

  1. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    PubMed

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  2. Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors.

    PubMed

    Iglarz, Marc; Steiner, Pauline; Wanner, Daniel; Rey, Markus; Hess, Patrick; Clozel, Martine

    2015-10-01

    The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade.

  3. Crosstalk between the angiotensin and endothelin system in the cerebrovasculature after experimental induced subarachnoid hemorrhage.

    PubMed

    Wanderer, Stefan; Mrosek, Jan; Vatter, Hartmut; Seifert, Volker; Konczalla, Juergen

    2018-04-01

    Under physiologic conditions, losartan showed a dose-dependent antagonistic effect to the endothelin-1 (ET-1)-mediated vasoconstriction. This reduced vasoconstriction was abolished after preincubation with an endothelin B 1 receptor (ET(B 1 )-receptor) antagonist. Also, an increased ET(B 1 )-receptor-dependent relaxation to sarafotoxin S6c (S6c; an ET(B 1 )-receptor agonist) was detected by preincubation with losartan. Investigations after experimental induced subarachnoid hemorrhage (SAH) are still missing. Therefore, we analyzed losartan in a further pathological setup. Cerebral vasospasm was induced by a modified double hemorrhage model. Rats were sacrificed on day 3 and isometric force of basilar artery ring segments was measured. Parallel to physiological conditions, after SAH, the ET-1-induced vasoconstriction was decreased by preincubation with losartan. This reduced contraction has been abolished after preincubation with BQ-788, an ET(B 1 )-receptor antagonist. In precontracted vessels, ET-1 induced a higher vasorelaxation under losartan and the endothelin A receptor (ET(A)-receptor) antagonist BQ-123. After SAH, losartan caused a modulatory effect on the ET(B 1 )-receptor-dependent vasorelaxation. It further induced an upregulation of the NO pathway. Under losartan, the formerly known loss of the ET(B 1 )-receptor vasomotor function was abolished and a significantly increased relaxation, accompanied with an enhanced sensitivity of the ET(B 1 )-receptor, has been detected. Also, the dose-dependent antagonistic effect to the ET-1-induced contraction can be effected by angiotensin II type 1 receptor (AT 1 -receptor) antagonism due to losartan directly via the ET(B 1 )-receptor.

  4. Selective endothelin ETA and dual ET(A)/ET(B) receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Rafnsson, Arnar; Shemyakin, Alexey; Pernow, John

    2014-11-24

    Endothelin-1 contributes to endothelial dysfunction in patients with atherosclerosis and type 2 diabetes. In healthy arteries the ETA receptor mediates the main part of the vasoconstriction induced by endothelin-1 whilst the ETB receptor mediates vasodilatation. The ETB receptor expression is upregulated on vascular smooth muscle cells in atherosclerosis and may contribute to the increased vasoconstrictor tone and endothelial dysfunction observed in this condition. Due to these opposing effects of the ETB receptor it remains unclear whether ETB blockade together with ETA blockade may be detrimental or beneficial. The aim was therefore to compare the effects of selective ETA and dual ETA/ETB blockade on endothelial function in patients with type 2 diabetes and coronary artery disease. Forearm endothelium-dependent and endothelium-independent vasodilatation was assessed by venous occlusion plethysmography in 12 patients before and after selective ETA or dual ETA/ETB receptor blockade. Dual ETA/ETB receptor blockade increased baseline forearm blood flow by 30±14% (P<0.01) whereas selective ETA blockade did not (14±8%). Both selective ETA blockade and dual ETA/ETB blockade significantly improved endothelium-dependent vasodilatation. The improvement did not differ between the two treatments. There was also an increase in endothelium-independent vasodilatation with both treatments. Dual ETA/ETB blockade did not significantly increase microvascular flow but improved transcutaneous pO2. Both selective ETA and dual ETA/ETB improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. ETB blockade increases basal blood flow but does not additionally improve endothelium-dependent vasodilatation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Validation of endothelin B receptor antibodies reveals two distinct receptor-related bands on Western blot.

    PubMed

    Barr, Travis P; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R

    2015-01-01

    Antibodies are important tools for the study of protein expression but are often used without full validation. In this study, we used Western blots to characterize antibodies targeted to the N or C terminal (NT or CT, respectively) and the second or third intracellular loop (IL2 or IL3, respectively) of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50-kDa band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37-kDa band but failed to detect endogenous ETB in rat brain. Bands detected by the CT- or IL3-targeted antibody were found to be unrelated to ETB. Our findings show that functional ETB can be detected at 50 or 37kDa on Western blot, with drastic differences in antibody affinity for these bands. The 37-kDa band likely reflects ETB processing, which appears to be dependent on cell type and/or culture condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    PubMed

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  7. Differential modulation of endothelin ligand-induced contraction in isolated tracheae from endothelin B (ETB) receptor knockout mice

    PubMed Central

    Hay, Douglas W P; Douglas, Stephen A; Ao, Zhaohui; Moesker, Rodney M; Self, Glenn J; Rigby, Paul J; Luttmann, Mark A; Goldie, Roy G

    2001-01-01

    The role of endothelin B (ETB) receptors in mediating ET ligand-induced contractions in mouse trachea was examined in ETB receptor knockout animals.Autoradiographic binding studies, using [125I]-ET-1, confirmed the presence of ETA receptors in tracheal and bronchial airway smooth muscle from wild-type (+/+) and homozygous recessive (−/−) ETB receptor knockout mice. In contrast, ETB receptors were not detected in airway tissues from (−/−) mice.In tracheae from (+/+) mice, the rank order of potencies of the ET ligands was sarafotoxin (Stx) S6c>ET-1>ET-3; Stx S6c had a lower efficacy than ET-1 or ET-3. In tissues from (−/−) mice there was no response to Stx S6c (up to 0.1 μM), whereas the maximum responses and potencies of ET-1 and ET-3 were similar to those in (+/+) tracheae. ET-3 concentration-response curve was biphasic in (+/+) tissues (via ETA and ETB receptor activation), and monophasic in (−/−) preparations (via stimulation of only ETA receptors).In (+/+) preparations SB 234551 (1 nM), an ETA receptor-selective antagonist, inhibited the secondary phase, but not the first phase, of the ET-3 concentration-response curve, whereas A192621 (100 nM), an ETB receptor-selective antagonist, had the opposite effect. In (−/−) tissues SB 234551 (1 nM), but not A192621 (100 nM), produced a rightward shift in ET-3 concentration-response curves.The results confirm the significant influence of both ETA and ETB receptors in mediating ET-1-induced contractions in mouse trachea. Furthermore, the data do not support the hypothesis of atypical ETB receptors. In this preparation ET-3 is not an ETB receptor-selective ligand, producing contractions via activation of both ETA and ETB receptors. PMID:11309263

  8. Endothelin‐1 and its receptors on haemorrhoidal tissue: a potential site for therapeutic intervention

    PubMed Central

    Lohsiriwat, Varut; Scholefield, John H; Wilson, Vincent G

    2017-01-01

    Background and Purpose Haemorrhoids is a common anorectal condition affecting millions worldwide. We have studied the effect of endothelin‐1 (ET‐1) and the role of endothelin ETA and ETB receptors in haemorrhoid tissue. Experimental Approach Protein expression of ET‐1, ETA and ETB receptors were compared between haemorrhoids and normal rectal submucosa using Western blot analysis, with the localization of proteins determined by autoradiography and immunohistochemistry. Effects of ET‐1 and sarafotoxin 6a on human colonic and rectal arteries and veins was assessed by wire myography and the involvement of receptor subtypes established by selective antagonists. Key Results Dense binding of [125I]‐ET‐1 to haemorrhoidal sections was reduced by selective receptor antagonists. A higher density of ETB than ETA receptors was found in haemorrhoidal, than in control rectal tissue and confirmed by Western blot analysis. ETA and ETB receptors were localized to smooth muscle of haemorrhoidal arteries and veins, with ETB receptors on the endothelium. Human colonic and rectal arteries and veins were similarly sensitive to ET‐1 and affected by the ETA selective antagonist, but sarafotoxin S6a‐induced contractions were more pronounced in veins and antagonized by a selective ETB receptor antagonist. Conclusions and Implications ETA and ETB receptors are present in human haemorrhoids with ETB receptors predominating. ETA receptors are activated by ET‐1 to mediate a contraction in arteries and veins, but the latter are selectively activated by sarafotoxin S6a – a response that involves ETB receptors at low concentrations. Selective ETB agonists may have therapeutic potential to reduce congestion of the haemorrhoidal venous sinusoids. PMID:28095606

  9. The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease

    PubMed Central

    Koehl, Bérengère; Nivoit, Pierre; El Nemer, Wassim; Lenoir, Olivia; Hermand, Patricia; Pereira, Catia; Brousse, Valentine; Guyonnet, Léa; Ghinatti, Giulia; Benkerrou, Malika; Colin, Yves; Le Van Kim, Caroline; Tharaux, Pierre-Louis

    2017-01-01

    Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients. PMID:28385784

  10. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney

    PubMed Central

    De Miguel, Carmen; Hamrick, William C.; Hobbs, Janet L.; Pollock, David M.; Carmines, Pamela K.; Pollock, Jennifer S.

    2017-01-01

    Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ETB deficient (ETB def) or transgenic control (TG-con) rats were used in the presence or absence of ETA receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ETB def rats showed a 14–24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ETA blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ETB def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ETA receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ETB receptor has protective effects. These results highlight targeting the ETA receptor as a therapeutic approach against ER stress-induced kidney injury. PMID:28230089

  11. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET(B) receptor cascade.

    PubMed

    El-Gowelli, Hanan M; Helmy, Maged W; Ali, Rabab M; El-Mas, Mahmoud M

    2014-03-01

    Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET(B) receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β₁, TGF-β₁). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET(B) receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET(B) receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ETB receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET(B) receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression.

    PubMed

    Hyndman, Kelly Anne; Dugas, Courtney; Arguello, Alexandra M; Goodchild, Traci T; Buckley, Kathleen M; Burch, Mariah; Yanagisawa, Masashi; Pollock, Jennifer S

    2016-08-01

    The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption. Copyright © 2016 the American Physiological Society.

  13. Differential roles of endothelin-1 ETA and ETB receptors and vasoactive intestinal polypeptide in regulation of the airways and the pulmonary vasculature in isolated rat lung.

    PubMed

    Janosi, Tibor; Peták, Ferenc; Fontao, Fabienne; Morel, Denis R; Beghetti, Maurice; Habre, Walid

    2008-11-01

    The available treatment strategies against pulmonary hypertension include the administration of endothelin-1 (ET-1) receptor subtype blockers (ET(A) and ET(B) antagonists); vasoactive intestinal polypeptide (VIP) has recently been suggested as a potential new therapeutic agent. We set out to investigate the ability of these agents to protect against the vasoconstriction and impairment of lung function commonly observed in patients with pulmonary hypertension. An ET(A) blocker (BQ123), ET(B) blocker (BQ788), a combination of these selective blockers (ET(A) + ET(B) blockers) or VIP (V6130) was administered into the pulmonary circulation in four groups of perfused normal rat lungs. Pulmonary vascular resistance (PVR) and forced oscillatory lung input impedance (Z(L)) were measured in all groups under baseline conditions and at 1 min intervals following ET-1 administrations. The airway resistance, inertance, tissue damping and elastance were extracted from the Z(L) spectra. While VIP, ET(A) blocker and combined ET(A) and ET(B) blockers significantly prevented the pulmonary vasoconstriction induced by ET-1, ET(B) blockade enhanced the ET-1-induced increases in PVR. In contrast, the ET(A) and ET(B) blockers markedly elevated the ET-1-induced increases in airway resistance, while VIP blunted this constrictor response. Our results suggest that VIP potently acts against the airway and pulmonary vascular constriction mediated by endothelin-1, while the ET(A) and ET(B) blockers exert a differential effect between airway resistance and PVR.

  14. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of pulmonary resistance arteries ETB receptor may contribute to this finding. PMID:19489130

  15. Influence of parainfluenza-1 respiratory tract viral infection on endothelin receptor-effector systems in mouse and rat tracheal smooth muscle.

    PubMed Central

    Knott, P. G.; Henry, P. J.; McWilliam, A. S.; Rigby, P. J.; Fernandes, L. B.; Goldie, R. G.

    1996-01-01

    1. In this study we have compared the effects of parainfluenza-1 respiratory tract viral infection on the density and function of ETA and ETB receptors in rat and mouse tracheal airway smooth muscle. 2. The bronchoconstrictor effect of inhaled methacholine was significantly enhanced in virus-infected rats, at both 4 and 12 days post-inoculation. That is, the concentration of methacholine causing an increase in resistance of 100% (PC100 methacholine) was significantly lower in virus-infected animals at both 4 and 12 days post-inoculation (n = 6-8; P < 0.05). 3. Total specific binding of [125I]-endothelin-1 and the relative proportions of ETA and ETB binding sites for [125I]-endothelin-1 were assessed in tracheal airway smooth muscle in parainfluenza-1-infected rats and mice at days 2, 4 and 12 post-inoculation using the ligands BQ-123 (1 microM; ETA receptor-selective) and sarafotoxin S6c (100 nM; ETB receptor-selective). Total specific binding in mice was significantly reduced at day 2 post-inoculation (n = 5; P < 0.05) but not at days 4 and 12 post-inoculation (n = 5). In control mice, the proportions of ETA and ETB binding sites were 53%:47% at day 2 and 43%:57% at day 4 and these were significantly altered by parainfluenza-1 infection such that, the ratios were 81%:19% at day 2 and 89%:11% at day 4 (P < 0.05). By day 12 post-inoculation, the proportion of ETA and ETB binding sites in tracheal smooth muscle from mice infected with parainfluenza-1 was not significantly different from control. In rat tracheal airway smooth muscle, neither total specific binding nor the ETA and ETB binding site ratio (64%:36%) were significantly altered in virus-inoculated rats at days 2, 4 or 12 post-inoculation (n = 5). 4. Parainfluenza-1 infection in mice had no effect on the sensitivity or maximal contractile effect of endothelin-1 in tracheal smooth muscle at days 2, 4 or 12 post-inoculation (n = 4). In contrast, contraction in response to the ETB receptor-selective agonist sarafotoxin S6c was attenuated by 39% at day 2 and by 93% at day 4 post-inoculation (P < 0.05). However, by day 12 post-inoculation, contractions to sarafotoxin S6c were not significantly different between control and virus-infected mice. In parainfluenza-1-infected rats, there were small but significant reductions in the sensitivity to carbachol, endothelin-1 and sarafotoxin S6c whilst the maximal responses to the highest concentrations of these agonists were not significantly altered by virus infection (n = 8). 5. BQ-123 (3 microM) had no significant effect on cumulative concentration-effect curves to endothelin-1 in tracheal preparations from control mice (n = 4) or parainfluenza-1-infected rats (n = 8). In contrast, in tissues taken from virus-infected mice at day 4 post-inoculation, BQ-123 caused a marked 9.6 fold rightward shift in the concentration-effect curve to endothelin-1 (n = 4). 6. In summary, we have demonstrated that parainfluenza-1 infection in mice transiently reduced the density of tracheal airway smooth muscle ETB receptors and this was reflected in reduced responsiveness to the ETB receptor-selective agonist sarafotoxin S6c. In contrast, whilst parainfluenza-1 infection in rats was associated with the pathological features and bronchial hyperresponsiveness common to respiratory tract viral infection, there was no selective down-regulation of ETB receptor expression or functional activity. The reasons for these species differences are not clear, but may relate to differences in the airway inflammatory response to parainfluenza-1 virus. PMID:8886411

  16. Rendomab B4, a monoclonal antibody that discriminates the human endothelin B receptor of melanoma cells and inhibits their migration

    PubMed Central

    Borrull, Aurélie; Allard, Bertrand; Wijkhuisen, Anne; Herbet, Amaury; Lamourette, Patricia; Birouk, Wided; Leiber, Denis; Tanfin, Zahra; Ducancel, Frédéric; Boquet, Didier; Couraud, Jean-Yves; Robin, Philippe

    2016-01-01

    ABSTRACT Metastatic melanoma is an aggressive cancer with a poor prognostic, and the design of new targeted drugs to treat melanoma is a therapeutic challenge. A promising approach is to produce monoclonal antibodies (mAbs) against the endothelin B receptor (ETB), which is known to be overexpressed in melanoma and to contribute to proliferation, migration and vasculogenic mimicry associated with invasiveness of this cancer. We previously described rendomab-B1, a mAb produced by DNA immunization. It is endowed with remarkable characteristics in term of affinity, specificity and antagonist properties against human ETB expressed by the endothelial cells, but, surprisingly, had poor affinity for ETB expressed by melanoma cells. This characteristic strongly suggested the existence of a tumor-specific ETB form. In the study reported here, we identified a new mAb, rendomab-B4, which, in contrast to rendomab-B1, binds ETB expressed on UACC-257, WM-266-4 and SLM8 melanoma cells. Moreover, after binding to UACC-257 cells, rendomab-B4 is internalized and colocalizes with the endosomal protein EEA-1. Interestingly, rendomab-B4, despite its inability to compete with endothelin binding, is able to inhibit phospholipase C pathway and migration induced by endothelin. By contrast, rendomab-B4 fails to decrease ERK1/2 phosphorylation induced by endothelin, suggesting a biased effect on ETB. These particular properties make rendomab-B4 an interesting tool to analyze ETB-structure/function and a promising starting point for the development of new immunological tools in the field of melanoma therapeutics. PMID:27390909

  17. Interactions of endothelin-1 with dexamethasone in primary cultured human trabecular meshwork cells.

    PubMed

    Zhang, Xinyu; Clark, Abbot F; Yorio, Thomas

    2003-12-01

    Concentrations of aqueous humor endothelin (ET)-1 are increased in patients with primary open-angle glaucoma (POAG) as well as in animal models of glaucoma. Glucocorticoids have also been associated with glaucoma, in that topical administration of glucocorticoids can increase intraocular pressure by increasing outflow resistance in the trabecular meshwork (TM) in some individuals. Recent research has shown that dexamethasone (Dex), a synthetic glucocorticoid, can increase the release of ET-1 from human nonpigmented ciliary epithelial (HNPE) cells, a source of aqueous ET-1. In the present study, the downstream interaction of ET-1 with Dex in target TM cells, an action that may alter outflow resistance, was investigated. A normal primary human TM (NTM) cell line and a TM cell line derived from a glaucomatous eye (GTM) were used. The cells were treated with vehicle or Dex. The mRNA levels of prepro-ET-1, endothelin receptor A (ET(A)), and endothelin receptor B (ET(B)) were measured by quantitative RT-PCR (QPCR). The protein expression of ET(A) and ET(B) receptors were investigated by Western blot analysis using polyclonal anti-ET(A) and anti-ET(B) antibodies, respectively, on plasma membrane fractions. Intracellular Ca(2+) ([Ca(2+)](i)) mobilization mediated by ET-1 was measured using the Fura-2 AM fluorescent probe technique as an index of ET receptor function. ET-1-stimulated nitric oxide (NO) release was measured using a Griess colorimetric NO synthase assay kit. Both NTM and GTM cultured cells expressed prepro-ET-1 mRNA less abundantly than did HNPE cells, and Dex treatment had no effect on the mRNA expression of the ET-1 gene. TM cells expressed mRNA of ET(A) receptors as detected by QPCR, whereas the ET(B) message was not clearly delineated. Western blot analysis showed that both ET(A) and ET(B) receptor proteins were present. The ET(A) receptor was linked to calcium mobilization as ET-1 produced an increase in intracellular calcium release, and this increase was blocked with a selective ET(A) receptor antagonist. Dex failed to induce any change in the expression of the ET(A) receptor in both NTM and GTM cells, and this was supported by the absence of a Dex effect on the ET-1-induced calcium response. However, Dex treatment diminished ET(B) receptor protein expression and produced a decrease in ET-1-stimulated release of NO, a response mediated by ET(B) receptors in TM cells. The Dex-induced increase in ET-1 released by HNPE cells coupled to the downstream Dex-induced specific suppression of ET(B) receptor protein expression and declines in ET-1-mediated increase in NO released by TM cells could increase contraction and decrease relaxation of the TM and contribute to the declines in conventional aqueous humor outflow and increases in intraocular pressure that occur with glucocorticoids.

  18. Endothelin Induces Rapid, Dynamin-mediated Budding of Endothelial Caveolae Rich in ET-B*

    PubMed Central

    Oh, Phil; Horner, Thierry; Witkiewicz, Halina; Schnitzer, Jan E.

    2012-01-01

    Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement. PMID:22457360

  19. Endothelin

    PubMed Central

    Hyndman, Kelly A.; Dhaun, Neeraj; Southan, Christopher; Kohan, Donald E.; Pollock, Jennifer S.; Pollock, David M.; Webb, David J.; Maguire, Janet J.

    2016-01-01

    The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists. PMID:26956245

  20. GPER mediates the age-dependent upregulation of the myocardial endothelin system

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Sharma, Geetanjali; Barton, Matthias; Prossnitz, Eric R.

    2016-01-01

    Aims Cardiac aging is associated with progressive structural changes and functional impairment, such as left ventricular hypertrophy, fibrosis and diastolic dysfunction. Aging also increases myocardial activity of endothelin-1 (ET-1), a multifunctional peptide with growth-promoting and pro-fibrotic activity. Because the G protein-coupled estrogen receptor (GPER) regulates vascular responsiveness to ET-1, we investigated whether GPER also plays a role in the regulation of the cardiac endothelin system with aging. Main methods Young (4 month-old) and aged (24 month-old) wild-type and Gper-deficient (Gper-/-) mice were studied. Gene expression levels of prepro-ET-1, endothelin converting enzymes ECE-1 and ECE-2, and endothelin ETA and ETB receptors were determined by qPCR in left ventricular myocardium. Key findings Aging markedly increased steady-state mRNA expression levels of ECE-1, ECE-2, ETA and ETB receptors (each p<0.001 vs. young mice). Deletion of Gper inhibited the age-dependent increase in ECE-2 and ETB receptor mRNA levels (57% and 40% reduction, respectively, each p<0.01 vs. wild-type mice), whereas gene expression of prepro-ET-1, ECE-1, or the ETA receptor was unaffected in Gper-/- mice. Significance We identified a novel regulatory mechanism through which the endogenous Gper facilitates the age-dependent increase in myocardial expression of ECE-2 and the ETB receptor, which is compatible with an activating role of GPER for the cardiac endothelin system with aging. Targeting GPER signaling by selective antagonists may therefore be considered a new therapeutic approach to reduce age-dependent increased ET-1 activity and the associated development of left ventricular hypertrophy, fibrosis and heart failure. PMID:26880534

  1. GPER is required for the age-dependent upregulation of the myocardial endothelin system.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Sharma, Geetanjali; Barton, Matthias; Prossnitz, Eric R

    2016-08-15

    Cardiac aging is associated with progressive structural changes and functional impairment, such as left ventricular hypertrophy, fibrosis and diastolic dysfunction. Aging also increases myocardial activity of endothelin-1 (ET-1), a multifunctional peptide with growth-promoting and pro-fibrotic activity. Because the G protein-coupled estrogen receptor (GPER) regulates vascular responsiveness to ET-1, we investigated whether GPER also plays a role in the regulation of the myocardial endothelin system with aging. Young (4month-old) and aged (24month-old) wild-type and Gper-deficient (Gper(-/-)) mice were studied. Gene expression levels of prepro-ET-1, endothelin converting enzymes ECE-1 and ECE-2, and endothelin ETA and ETB receptors were determined by qPCR in left ventricular myocardium. Aging markedly increased steady-state mRNA expression levels of ECE-1, ECE-2, ETA and ETB receptors (each p<0.001 vs. young mice). Deletion of Gper inhibited the age-dependent increase in ECE-2 and ETB receptor mRNA levels (57% and 40% reduction, respectively, each p<0.01 vs. wild-type mice), whereas gene expression of prepro-ET-1, ECE-1, and the ETA receptor was unaffected in Gper(-/-) mice. We identified a novel regulatory mechanism through which the endogenous Gper facilitates the age-dependent increase in myocardial expression of ECE-2 and the ETB receptor, which is compatible with an activating role of GPER for the local endothelin system with aging. Targeting GPER signaling by selective antagonists may therefore be considered a new therapeutic approach to reduce age-dependent increased ET-1 activity and the associated development of left ventricular hypertrophy, fibrosis and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury.

    PubMed

    LeComte, Matthew D; Shimada, Issei S; Sherwin, Casey; Spees, Jeffrey L

    2015-07-14

    Defining the signaling network that controls reactive astrogliosis may provide novel treatment targets for patients with diverse CNS injuries and pathologies. We report that the radial glial cell antigen RC2 identifies the majority of proliferating glial fibrillary acidic protein-positive (GFAP(+)) reactive astrocytes after stroke. These cells highly expressed endothelin receptor type B (ETB(R)) and Jagged1, a Notch1 receptor ligand. To study signaling in adult reactive astrocytes, we developed a model based on reactive astrocyte-derived neural stem cells isolated from GFAP-CreER-Notch1 conditional knockout (cKO) mice. By loss- and gain-of-function studies and promoter activity assays, we found that Jagged1/Notch1 signaling increased ETB(R) expression indirectly by raising the level of phosphorylated signal transducer and activator of transcription 3 (STAT3), a previously unidentified EDNRB transcriptional activator. Similar to inducible transgenic GFAP-CreER-Notch1-cKO mice, GFAP-CreER-ETB(R)-cKO mice exhibited a defect in reactive astrocyte proliferation after cerebral ischemia. Our results indicate that the Notch1-STAT3-ETB(R) axis connects a signaling network that promotes reactive astrocyte proliferation after brain injury.

  3. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp; Hagiwara, Akihiro; Imai, Norio

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulationmore » of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.« less

  4. Both endothelin-A and endothelin-B receptors are present on adult rat cardiac ventricular myocytes.

    PubMed

    Allen, Bruce G; Phuong, Luu Lien; Farhat, Hala; Chevalier, Dominique

    2003-02-01

    Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.

  5. Endothelin A receptor antagonists in congestive heart failure: blocking the beast while leaving the beauty untouched?

    PubMed

    Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F

    2001-12-01

    Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.

  6. Increased endothelin-1 vasoconstriction in mesenteric resistance arteries after superior mesenteric ischaemia-reperfusion

    PubMed Central

    Martínez-Revelles, S; Caracuel, L; Márquez-Martín, A; Dantas, AP; Oliver, E; D'Ocon, P; Vila, E

    2012-01-01

    BACKGROUND AND PURPOSE Endothelin-1 (ET-1) plays an important role in the maintenance of vascular tone. We aimed to evaluate the influence of superior mesenteric artery (SMA) ischaemia-reperfusion (I/R) on mesenteric resistance artery vasomotor function and the mechanism involved in the changes in vascular responses to ET-1. EXPERIMENTAL APPROACH SMA from male Sprague-Dawley rats was occluded (90 min) and following reperfusion (24 h), mesenteric resistance arteries were dissected. Vascular reactivity was studied using wire myography. Protein and mRNA expression, superoxide anion (O2•−) production and ET-1 plasma concentration were evaluated by immunofluorescence, real-time quantitative PCR, ethidium fluorescence and elisa, respectively. KEY RESULTS I/R increased ET-1 plasma concentration, ET-1-mediated vasoconstriction and ETB mRNA expression, and down-regulated ETA mRNA expression. Immunofluorescence confirmed mRNA results and revealed an increase in ETB receptors in the mesenteric resistance artery media layer after I/R. Therefore, the ETB receptor agonist sarafotoxin-6 induced a contraction that was inhibited by the ETB receptor antagonist BQ788 only in vessels, with and without endothelium, from I/R rats. Furthermore, BQ788 potentiated ET-1 vasoconstriction only in sham rats. Endothelium removal in rings from I/R rats unmasked the inhibition of ET-1 vasoconstriction by BQ788. Endothelium removal, Nω-nitro-L-arginine methyl ester and superoxide dismutase abolished the differences in ET-1 vasoconstriction between sham and I/R rats. We also found that I/R down-regulates endothelial NOS mRNA expression and concomitantly enhanced O2•− production by increasing NADPH oxidase 1 (NOX-1) and p47phox mRNA. CONCLUSIONS AND IMPLICATIONS Mesenteric I/R potentiated the ET-1-mediated vasoconstriction by a mechanism that involves up-regulation of muscular ETB receptors and decrease in NO bioavailability. PMID:21806604

  7. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  8. Androgens influence microvascular dilation in PCOS through ET-A and ET-B receptors

    PubMed Central

    Wenner, Megan M.; Taylor, Hugh S.

    2013-01-01

    Hyperandrogenism and vascular dysfunction often coexist in women with polycystic ovary syndrome (PCOS). We hypothesized that testosterone compromises cutaneous microvascular dilation in women with PCOS via the endothelin-1 ET-B subtype receptor. To control and isolate testosterone's effects on microvascular dilation, we administered a gonadotropin-releasing hormone antagonist (GnRHant) for 11 days in obese, otherwise healthy women [controls, 22.0 (4) yr, 36.0 (3.2) kg/m2] or women with PCOS [23 (4) yr, 35.4 (1.3) kg/m2], adding testosterone (T; 2.5 mg/day) on days 8–11. Using laser Doppler flowmetry and cutaneous microdialysis, we measured changes in skin microcirculatory responsiveness (ΔCVC) to local heating while perfusing ET-A (BQ-123) and ET-B (BQ-788) receptor antagonists under three experimental conditions: baseline (BL; prehormone intervention), GnRHant (day 4 of administration), and T administration. At BL, ET-A receptor inhibition enhanced heat-induced vasodilation in both groups [ΔCVC control 2.03 (0.65), PCOS 2.10 (0.25), AU/mmHg, P < 0.05]; ET-B receptor inhibition reduced vasodilation in controls only [ΔCVC 0.98 (0.39), 1.41 (0.45) AU/mmHg for controls, PCOS] compared with saline [ΔCVC controls 1.27 (0.48), PCOS 1.31 (0.13) AU/mmHg]. GnRHant enhanced vasodilation in PCOS [saline ΔCVC 1.69 (0.23) AU/mmHg vs. BL, P < 0.05] and abolished the ET-A effect in both groups, a response reasserted with T in controls. ET-B receptor inhibition reduced heat-induced vasodilation in both groups during GnRHant and T [ΔCVC, controls: 0.95 (0.21) vs. 0.51 (13); PCOS: 1.27 (0.23) vs. 0.84 (0.27); for GnRHant vs. T, P < 0.05]. These data demonstrate that androgen suppression improves microvascular dilation in PCOS via ET-A and ET-B receptors. PMID:23921139

  9. Analysis of immunostaining and western blotting of endothelin 1 and its receptors in mitral stenosis

    PubMed Central

    Leão, Sydney Correia; Dashwood, Michael R.; de Andrade, Mateus Santana; Santos, Nicolas Nascimento; Teles, Olivia Regina Lins Leal; de Souza, Williasmin Batista; Rodrigues, Tania Maria de Andrade

    2015-01-01

    Introduction Rheumatic Fever represents a serious public health problem in developing countries, with thousands of new cases each year. It is an autoimmune disease, which occurs in response to infection by streptococcus A. Objective The aim of this study was to evaluate the immunolabeling and protein expression for endothelin-1 and 3 (ET-1, ET-3) and its receptors (ETA, ETB) in rheumatic mitral valves. Methods Immunohistochemistry was used to identify ET-1/ET-3 and ETA/ETB receptors in rheumatic and control mitral valves. Quantitative analysis of immunostaining for ET-1/ET-3 and ETA/ETB receptors was performed. In addition, western blot analysis was carried out to assess protein levels in tissue samples. Results ET-1 and ETA receptor immunostaining predominated in stenotic valves, mainly associated with fibrotic regions, inflammatory areas and neovascularization. Quantitative analysis showed that the average area with positive expression of ET-1 was 18.21±14.96%. For ETA and ETB, the mean expressed areas were respectively 15.06±13.13% and 9.20±11.09%. ET-3 did not have a significant expression. The correlation between the expression of both endothelin receptors were strongly positive (R=0.74, P=0.02), but the correlation between ET-1 and its receptor were negative for both ETA (R=-0.37, P=0.25), and ETB (R=-0.14, P=0.39). This data was supported by western blot analysis. Conclusion The strong correlation between ET-1 and its receptors suggests that both play a role in the pathophysiology of rheumatic mitral valve stenosis and may potentially act as biomarkers of this disease. PMID:26107453

  10. Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Aβ) induced oxidative stress and cognitive impairment in normal and diabetic rats.

    PubMed

    Briyal, Seema; Shepard, Cortney; Gulati, Anil

    2014-05-01

    Alzheimer's disease (AD) is a progressive brain disorder leading to impairment of learning and memory. Amyloid β (Aβ) induced oxidative stress has been implicated in the initiation and progression of AD. Endothelin (ET) and its receptors have been considered as therapeutic targets for AD. Recent studies indicate that stimulation of ETB receptors may provide neuroprotection. The purpose of this study was to determine the preventative effect of selectively stimulating ETB receptors on cognitive impairment and oxidative stress in Aβ treated non-diabetic and diabetic (induced by streptozotocin) rats. Rats were concurrently treated with Aβ1-40 (day 1, 7 and 14) and either saline, IRL-1620 (an ETB agonist), and/or BQ788 (an ETB antagonist) daily for 14 days in the lateral cerebral ventricles using sterotaxically implanted cannula; experiments were performed on day 15. Aβ treatment produced a significant (p<0.0001) increase of 360% and 365% in malondialdehyde levels (a marker of lipid peroxidation) in non-diabetic and diabetic rats, respectively, compared to sham group. Antioxidants (superoxide dismutase and reduced glutathione) decreased following Aβ treatment compared to sham group. Treatment with IRL-1620 reversed these effects, indicating that ETB receptor stimulation reduces oxidative stress injury following Aβ treatment. In Morris swim task, Aβ treated rats showed impairment in spatial memory. Rats treated with IRL-1620 significantly reduced the cognitive impairment induced by Aβ. BQ788 treatment completely blocked IRL-1620 induced reduction in oxidative stress and cognitive impairment. Results of the present study demonstrate that IRL-1620 improved both acquisition (learning) and retention (memory) on water maze task and reduced oxidative stress parameters. It can be speculated that ETB receptor stimulation prevents cognitive impairment and may be useful in neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.

    PubMed

    Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2005-06-07

    Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ET(B) receptor in pulmonary vascular homeostasis.

  12. Activation of either the ETA or the ETB receptors is involved in the development of electrographic seizures following intrahippocampal infusion of the endothelin-1 in immature rats.

    PubMed

    Tsenov, Grygoriy; Vondrakova, Katerina; Otahal, Jakub; Burchfiel, James; Kubova, Hana

    2015-03-01

    The period around birth is a risky time for stroke in infants, which is associated with two major acute and subacute processes: anatomical damage and seizures. It is unclear as to what extent each of these processes independently contributes to poor outcome. Furthermore, it is unclear whether there is an interaction between the two processes - does seizure activity cause additional brain damage beyond that produced by ischemia and/or does brain damage foster seizures? The model of focal cerebral ischemia induced by the intrahippocampal infusion of endothelin-1 (ET-1) in 12-day-old rat was used to examine the role of the endothelin receptors in the development of focal ischemia, symptomatic acute seizures and neurodegeneration. ET-1 (40pmol/μl) was infused either alone or co-administered with selective antagonists of ETA (BQ123; 70nmol/μl) or ETB receptors (BQ788; 70nmol/1μl). Effects of activation of ETB receptors were studied using selective agonist 4-Ala-ET-1 (40pmol/1μl). Regional cerebral blood flow (rCBF) and tissue oxygenation (pO2) were measured in anesthetized animals with a Doppler-flowmeter and a pO2-sensor, respectively. Seizure development was assessed with video-EEG in freely moving rats. Controls received the corresponding volume of the appropriate vehicle (10mM PBS or 0.01% DMSO-PBS solution; pH7.4). The extent of hippocampal lesion was determined using FluoroJade B staining performed 24h after ET-1 infusion. Infusion of ET-1 or ET-1+ETB receptor antagonist reduced rCBF to ~25% and pO2 to ~10% for about 1.5h, whereas selective ETB agonist, ET-1+ETA antagonist and the PBS vehicle had only negligible effect on the rCBF and pO2 levels. Reduction of rCBF was associated with the development of lesion in the injected hippocampus. In all groups, except sham operated and PBS controls, epileptiform activity was observed after activation of the ETA or the ETB receptors. The data revealed a positive correlation between the severity of morphological damage and all the measured seizure parameters (seizure frequency, average and total seizure duration) in the ET-1 group. In addition, the severity of morphological damage positively correlated with the average seizure duration in animals after infusion of ET-1+ETA receptor antagonist or after infusion of ET-1+ETB receptor antagonist. Our results indicate that the activation of ETA receptors is crucial for ischemia development, however either ETA or ETB receptors mediate the development of seizures following the application of ET-1 in immature rats. The dissociation between the ischemic-producing and seizure-producing processes suggests that damage is not necessary to induce seizures, although it may exacerbate them. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Disparate effects of single endothelin A and B receptor blocker therapy on the progression of renal injury in advanced renovascular disease

    PubMed Central

    Chade, Alejandro R.; Stewart, Nicholas J.; Peavy, Patrick R.

    2013-01-01

    We hypothesized that chronic specific endothelin (ET)-A receptor blockade therapy would reverse renal dysfunction and injury in advanced experimental renovascular disease. To test this, unilateral renovascular disease was induced in 19 pigs and after 6 weeks, single-kidney hemodynamics and function was quantified in vivo using computed-tomography. All pigs with renovascular disease were divided such that 7 were untreated, 7 were treated with ET-A blockers, and 5 were treated with ET-B blockers. Four weeks later, all pigs were re-studied in vivo, then euthanized and ex vivo studies performed on the stenotic kidney to quantify microvascular density, remodeling, renal oxidative stress, inflammation, and fibrosis. RBF, GFR, and redox status were significantly improved in the stenotic kidney after ET-A but not ET-B blockade. Furthermore, only ET-A blockade therapy reversed renal microvascular rarefaction and diminished remodeling, which was accompanied by a marked decreased in renal inflammatory and fibrogenic activity. Thus, ET-A but not ET-B blockade ameliorated renal injury in pigs with advanced renovascular disease by stimulating microvascular proliferation and decreasing the progression of microvascular remodeling, renal inflammation and fibrosis in the stenotic kidney. These effects were functionally consequential since ET-A blockade improved single kidney microvascular endothelial function, RBF, and GFR, and decreased albuminuria. PMID:24352153

  14. Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening

    PubMed Central

    Wang, Xing; Zhang, Yuxin; Liu, Qing; Ai, Zhixin; Zhang, Yanling; Xiang, Yuhong; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA. PMID:26999111

  15. Aldosterone does not alter endothelin B receptor signaling in the inner medullary collecting duct.

    PubMed

    Ramkumar, Nirupama; Stuart, Deborah; Yang, Tianxin; Kohan, Donald E

    2017-03-01

    Recent studies suggest that aldosterone-mediated sulfenic acid modification of the endothelin B receptor (ETB) promotes renal injury in an ischemia/reperfusion model through reduced ETB-stimulated nitric oxide production. Similarly, aldosterone inactivation of ETB signaling promotes pulmonary artery hypertension. Consequently, we asked whether aldosterone inhibits collecting duct ETB signaling; this could promote fluid retention since CD ETB exerts natriuretic and diuretic effects. A mouse inner medullary collecting duct cell line (IMCD3) was treated with aldosterone for 48 h followed by sarafotoxin-6c, an ETB-selective agonist, and extracellular signal-related kinase 1/2 (ERK) phosphorylation assessed. S6c increased the phospho/total-ERK ratio similarly in control and aldosterone-treated cells (aldosterone alone increased phospho/total-ERK). Since cultured IMCD cell lines lack ETB inhibited AVP signaling, the effect of S6c on AVP-stimulated cAMP in acutely isolated IMCD was assessed. Rats (have much higher CD ETB expression than mice) were exposed to 3 days of a normal or low Na + diet, or low Na + diet + desoxycorticosterone acetate. S6c inhibited AVP-stimulated cAMP in rat IMCD by the same degree in the high mineralocorticoid groups compared to controls. Finally, S6c-stimulated cGMP accumulation in cultured IMCD, or S6c-stimulated nitric oxide or cGMP in acutely isolated IMCD, was not affected by prior aldosterone exposure. These findings provide evidence that aldosterone does not modify ETB effects on ERK phosphorylation, AVP-dependent cAMP inhibition, or NO/cGMP accumulation in the IMCD Thus, while aldosterone can inhibit endothelial cell ETB activity to promote hypertension and injury, this response does not appear to occur in the IMCD. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Dual ETA/ETB blockade with macitentan improves both vascular remodeling and angiogenesis in pulmonary arterial hypertension

    PubMed Central

    Nadeau, Valerie; Potus, Francois; Boucherat, Olivier; Paradis, Renee; Tremblay, Eve; Iglarz, Marc; Paulin, Roxane; Bonnet, Sebastien

    2017-01-01

    Dysregulated metabolism and rarefaction of the capillary network play a critical role in pulmonary arterial hypertension (PAH) etiology. They are associated with a decrease in perfusion of the lungs, skeletal muscles, and right ventricle (RV). Previous studies suggested that endothelin-1 (ET-1) modulates both metabolism and angiogenesis. We hypothesized that dual ETA/ETB receptors blockade improves PAH by improving cell metabolism and promoting angiogenesis. Five weeks after disease induction, Sugen/hypoxic rats presented severe PAH with pulmonary artery (PA) remodeling, RV hypertrophy and capillary rarefaction in the lungs, RV, and skeletal muscles (microCT angiogram, lectin perfusion, CD31 staining). Two-week treatment with dual ETA/ETB receptors antagonist macitentan (30 mg/kg/d) significantly improved pulmonary hemodynamics, PA vascular remodeling, and RV function and hypertrophy compared to vehicle-treated animals (all P = 0.05). Moreover, macitentan markedly increased lung, RV and quadriceps perfusion, and microvascular density (all P = 0.05). In vitro, these effects were associated with increases in oxidative phosphorylation (oxPhox) and markedly reduced cell proliferation of PAH-PA smooth muscle cells (PASMCs) treated with macitentan without affecting apoptosis. While macitentan did not affect oxPhox, proliferation, and apoptosis of PAH–PA endothelial cells (PAECs), it significantly improved their angiogenic capacity (tube formation assay). Exposure of control PASMC and PAEC to ET-1 fully mimicked the PAH cells phenotype, thus confirming that ET-1 is implicated in both metabolism and angiogenesis abnormalities in PAH. Dual ETA/ETB receptor blockade improved the metabolic changes involved in PAH-PASMCs’ proliferation and the angiogenic capacity of PAH-PAEC leading to an increased capillary density in lungs, RV, and skeletal muscles. PMID:29064353

  17. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension

    PubMed Central

    Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2007-01-01

    Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ETB receptor in pulmonary vascular homeostasis. PMID:15927975

  18. Endothelin-1 signalling controls early embryonic heart rate in vitro and in vivo.

    PubMed

    Karppinen, S; Rapila, R; Mäkikallio, K; Hänninen, S L; Rysä, J; Vuolteenaho, O; Tavi, P

    2014-02-01

    Spontaneous activity of embryonic cardiomyocytes originates from sarcoplasmic reticulum (SR) Ca(2+) release during early cardiogenesis. However, the regulation of heart rate during embryonic development is still not clear. The aim of this study was to determine how endothelin-1 (ET-1) affects the heart rate of embryonic mice, as well as the pathway through which it exerts its effects. The effects of ET-1 and ET-1 receptor inhibition on cardiac contraction were studied using confocal Ca(2+) imaging of isolated mouse embryonic ventricular cardiomyocytes and ultrasonographic examination of embryonic cardiac contractions in utero. In addition, the amount of ET-1 peptide and ET receptor a (ETa) and b (ETb) mRNA levels were measured during different stages of development of the cardiac muscle. High ET-1 concentration and expression of both ETa and ETb receptors was observed in early cardiac tissue. ET-1 was found to increase the frequency of spontaneous Ca(2+) oscillations in E10.5 embryonic cardiomyocytes in vitro. Non-specific inhibition of ET receptors with tezosentan caused arrhythmia and bradycardia in isolated embryonic cardiomyocytes and in whole embryonic hearts both in vitro (E10.5) and in utero (E12.5). ET-1-mediated stimulation of early heart rate was found to occur via ETb receptors and subsequent inositol trisphosphate receptor activation and increased SR Ca(2+) leak. Endothelin-1 is required to maintain a sufficient heart rate, as well as to prevent arrhythmia during early development of the mouse heart. This is achieved through ETb receptor, which stimulates Ca(2+) leak through IP3 receptors. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Gowelli, Hanan M.; Helmy, Maged W.; Ali, Rabab M.

    Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET{sub B} receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β{sub 1}, TGF-β{sub 1}). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). Wemore » also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET{sub B} receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET{sub B} receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ET{sub B} receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET{sub B} receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. - Highlights: • Celecoxib abolishes nephrotoxic manifestations of CSA in rats. • Blockade of ETB receptors by BQ788 mimicked the nephrotoxic effects of CSA. • CSA or BQ788 reduces renal protein expression of COX-2 and endothelin ETB receptors. • Enhanced TGFβ1/IL-2/COX2/ETB signaling mediates celecoxib renoprotection.« less

  20. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  1. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease

    PubMed Central

    Feng, Hong-Qiang; Weymouth, Nate D.; Rockey, Don C.

    2009-01-01

    Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses. PMID:19299580

  2. Amelioration of Cold Injury-Induced Cortical Brain Edema Formation by Selective Endothelin ETB Receptor Antagonists in Mice

    PubMed Central

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults. PMID:25000290

  3. An immunohistochemical analysis of folate receptor beta expression and distribution in giant cell arteritis - a pilot study

    PubMed Central

    Albano-Aluquin, Shirley; Malysz, Jozef; Aluquin, Vincent R; Ratnam, Manohar; Olsen, Nancy

    2017-01-01

    Background: Giant cell arteritis (GCA) is a chronic vasculitis of large and medium vessels in which no targetable biomarkers exist to allow selective treatment, predict disease activity and monitor therapeutic responses. The accessibility of the temporal artery (TA) for biopsy allows morphologic studies to characterize macrophages and T cells in the microenvironment of the arterial wall. We evaluated the expression of folate receptor beta (FRB), a candidate diagnostic/therapeutic biomarker, compared its expression with key macrophage markers and correlated it with GCA severity. Methods: Formalin-fixed paraffin-embedded tissue sections were examined from 6 patients with GCA and 2 controls. Immunohistochemistry was performed using FRB, ETB, CD68 and CD3 antibodies to evaluate for activated macrophages and T cells, assess FRB distribution along the intima, media and adventitial layers and composition of inflammatory infiltrates. We compared the expression of FRB, ETB and CD68 in GCA versus negative controls and in severe (with visual loss) versus mild (without visual loss) disease. Results: In GCA, moderate to severe inflammation was accompanied by >90% destruction of the internal elastic lamina. Macrophages comprised 36.3 ± 4.1% while CD3+ lymphocytes accounted for 61.7 ± 4.1% of total leukocytes. FRB was selectively expressed in macrophages and localized to the adventitia. GCA patients had marginally increased median FRB (9.8 cells/hpf vs. 0; p=0.095), ETB (20.5 vs. 0; p=0.095) and CD68 (38.8 vs. 5; p=0.071) expression versus controls. ETB was found in endothelial cells, smooth muscle cells and macrophages in intima/media. FRB positively correlated with ETB (r=0.90; p-0.037) and CD68 levels (r=0.90; p=0.037). ETB expression positively correlated with CD68 (r=1.0; p<0.0001). There was no difference in FRB between severe and mild GCA. Conclusion: FRB is a potential diagnostic and therapeutic biomarker with restricted expression in GCA macrophages. FRB+ macrophages localized to the adventitia and their expression correlated with ETB and CD68 macrophages, suggesting that they contribute to GCA pathogenesis. PMID:29348986

  4. Endothelin receptors and activity differ in human, dog, and rabbit lung.

    PubMed

    McKay, K O; Armour, C L; Black, J L

    1996-01-01

    In this study, we have examined dog and rabbit airways as potential models for human airways in regard to the activity of endothelin. The receptors involved in the response to endothelin-1 (ET-1) in airway tissue from human, rabbit, and dog lung were investigated, as was the mechanism responsible for the contraction to ET-1 in tissue from the three species. By using specific endothelin receptor agonists and antagonists, we have demonstrated that ETB receptors predominate in rabbit and human airways and ETA receptors in dog airways. The contraction to ET-1 is not dependent on cyclooxygenase products of arachidonic acid, as indomethacin had no effect on the response to ET-1. Extracellular calcium influx via voltage-dependent channels is necessary for contraction to ET-1 in rabbit and dog airways. These results are in contrast to our previously reported results in human airways, in which neither removal of extracellular calcium nor verapamil affected the ET-1 response. The sustained phase of the contraction to ET-1 in all three species may be mediated in part by activation of protein kinase C (PKC), as the inhibitor staurosporine significantly altered the time course of the response to endothelin. We therefore conclude that in rabbit airways ET-1 activates ETB receptors, triggers the influx of extracellular calcium through voltage-dependent channels, and induces a contractile response that is, in part, dependent upon stimulation of PKC. The same mechanism is triggered in dog bronchus; however, the receptors involved in this species are of the ETA type. Finally, in human airways, the contractile response to ET-1, while independent of extracellular calcium influx, is dependent upon PKC activation after binding of the peptide to ETB receptors.

  5. Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes.

    PubMed

    Rivera, A; Rotter, M A; Brugnara, C

    1999-10-01

    Cell dehydration mediated by Ca(2+)-activated K(+) channels plays an important role in the pathogenesis of sickle cell disease. CD-1 mouse erythrocytes possess a Ca(2+)-activated K(+) channel (Gardos channel) with maximal velocity (V(max)) of 0.154 +/- 0.02 mmol. l cells(-1). min(-1) and an affinity constant (K(0.5)) for Ca(2+) of 286 +/- 83 nM in the presence of A-23187. Cells pretreated with 500 nM endothelin-1 (ET-1) increased their V(max) by 88 +/- 9% (n = 8) and decreased their K(0.5) for Ca(2+) to 139 +/- 63 nM (P < 0.05; n = 4). Activation of the Gardos channel resulted in an EC(50) of 75 +/- 20 nM for ET-1 and 374 +/- 97 nM for ET-3. Analysis of the affinity of unlabeled ET-1 for its receptor showed two classes of binding sites with apparent dissociation constants of 167 +/- 51 and 785 +/- 143 nM and with capacity of binding sites of 298 +/- 38 and 1,568 +/- 211 sites/cell, respectively. The Gardos channel was activated by the endothelin B (ET(B)) receptor agonist IRL 1620 and inhibited by BQ-788, demonstrating the involvement of ET(B) receptors. Calphostin C inhibited 73% of ET-1-induced Gardos activation and 84% of the ET-1-induced membrane protein kinase C activity. Thus endothelins regulate erythrocyte Gardos channels via ET(B) receptors and a calphostin-sensitive mechanism.

  6. ENOS, ET-1 and ETB-R immunoreactivities in the porcine mesometrial lymphatics during the estrous cycle.

    PubMed

    Doboszyńska, Teresa; Andronowska, Aneta

    2002-01-01

    Abstract: Immunohistochemical localization and distribution of nitric oxide synthase (eNOS), endothelin (ET-1) and endothelin beta receptor (ETB-R) were investigated in precollector and collector lymph vessels in the broad ligament of the uterus during different phases of the estrous cycle in pigs. The polyclonal antibody for ET-1 and ETB-R and monoclonal antibody for eNOS isoform were used to perform observations on the light microscopic level. Immunoreactivities to ET-1, ETB-R and eNOS were observed in the endothelium of precollector and collector lymphangions but not in smooth muscle cells of the lymphatics examined. The staining for eNOS in the endothelial cells of all studied lymphatic vessels was stronger comparing to ET-1 and ETB-R. During the estrous cycle, only eNOS showed the correlation with the particular phases of the estrous cycle. The differences between ET-1 and ETB-R immunoreactivities were very slight and rather independent of the size or type of the lymphatic lymphangions and estrous cycle. The highest immunoreactivity level for eNOS was displayed by collector lymphangions with widened lumen in the follicular phase comparing to the precollector ones. During the luteal phase, a slight decrease in the reaction intensity was observed. The immunoreactivities for ET-1 in the endothelium of the studied vessels was not comparable with the presence or with the reactivity level of ETB-R. Optically stronger immunoreaction for ETB-R was observed in the cytoplasm of collector lymphangions in the follicular phase. eNOS, ET-1 and ETB-R were also present in the cytoplasm of the lymphatic valves. These results suggest that ET-1 and eNOS can play a role in the mechanisms regulating the vascular contractile activity, promoting lymph flow during the estrous cycle in the porcine broad ligament.

  7. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    PubMed

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  8. Polymorphism in endothelin-related genes limits exercise-induced decreases in arterial stiffness in older subjects.

    PubMed

    Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Tanabe, Takumi; Jesmin, Subrina; Kuno, Shinya; Ajisaka, Ryuichi; Miyauchi, Takashi; Matsuda, Mitsuo

    2006-05-01

    Increase in arterial stiffness is associated with aging, which is improved by regular exercise. Endothelin (ET) system has crucial roles in regulating vascular tone and in the progression of atherosclerosis. We hypothesized that molecular variations (ie, gene polymorphisms) in ET-related gene might affect exercise-induced improvement in arterial stiffness with age in human subjects. The present study provides a cross-sectional investigation of 191 healthy middle-aged and older (65+/-1 years) human subjects to clarify the relationship between the regular exercise-induced improvement of arterial stiffness and the gene polymorphisms of ET converting enzyme (ECE)-1, ECE-2, ET-A receptor (ET-A), and ET-B receptor (ET-B). The study subjects were divided into active and inactive groups based on the median value (186 kcal/d) of energy expenditure. Brachial-ankle arterial pulse wave velocity (baPWV) was used to evaluate arterial stiffness. All individuals were genotyped for 4 different polymorphisms of the ET system: 2013(+289)A/G in intron 17 of ECE-1, 669(+17)T/C in intron 5 of ECE-2, 958A/G in exon 6 of ET-A, and 831A/G in exon 4 of ET-B. The baseline baPWV was significantly lower in the active group without any change in blood pressure. Polymorphisms in ECE-1 influenced basal blood pressure. Polymorphisms in ECE-1 and ECE-2 had no effect on baPWV between active and inactive groups. However, polymorphisms in both ET-A and ET-B affected baPWV in the 2 groups. The present results suggest that differences in ET-A and ET-B polymorphisms may influence the response of the vascular wall to exercise whereas ECE-1 polymorphisms may affect basal blood pressure.

  9. Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation

    PubMed Central

    Murase, Daiki; Hachiya, Akira; Kikuchi-Onoe, Mamiko; Fullenkamp, Rachel; Ohuchi, Atsushi; Kitahara, Takashi; Moriwaki, Shigeru; Hase, Tadashi; Takema, Yoshinori

    2015-01-01

    ABSTRACT Skin hyperpigmentation is characterized by increased melanin synthesis and deposition that can cause significant psychosocial and psychological distress. Although several cytokine-receptor signaling cascades contribute to the formation of ultraviolet B-induced cutaneous hyperpigmentation, their possible involvement in other types of skin hyperpigmentation has never been clearly addressed. Since our continuous studies using skin specimens from more than 30 subjects with ethnic skin diversity emphasized a consistent augmentation in the expression of endothelin-1 (ET-1) and its receptor (Endothelin B receptor, ET-B) in hyperpigmented lesions, including senile lentigos (SLs), the precise function of ET-1 signaling was investigated in the present study. In line with previous studies, ET-1 significantly induced melanogenesis followed by increases in melanosome transport in melanocytes and in its transfer to keratinocytes while inhibition of ET-B function substantially depressed melanogenic ability in tissue-cultured SLs. Additionally, in agreement with a previous report that the formation of autophagosomes rather than melanosomes is stimulated according to starvation or defective melanosome production, ET-1 was found to remarkably augment the expression of components necessary for early melanosome formation, indicating its counteraction against autophagy-targeting melanosome degradation in melanocytes. Despite the lack of substantial impact of ET-1 on keratinocyte melanogenic functions, the expression of ET-1 was enhanced following melanosome uptake by keratinocytes. Taken together, our data suggest that ET-1 plays a substantial role in the development and/or maintenance of skin hyperpigmentation in reciprocal cooperation with increased melanosome incorporation. PMID:26340945

  10. Transferable tight binding model for strained group IV and III-V heterostructures

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.

  11. Angiogenesis and Vascular Architecture in Pheochromocytomas

    PubMed Central

    Favier, Judith; Plouin, Pierre-François; Corvol, Pierre; Gasc, Jean-Marie

    2002-01-01

    Angiogenesis is a critical step in tumor growth and metastatic invasion. We here report the study of the vascular status of 10 benign and 9 malignant pheochromocytomas. We examined the vascular architecture after immunostaining endothelial cells (CD34) and vascular smooth muscle cells (α-actin) and identified a vascular pattern characteristic of malignant lesions. To define a gene expression profile indicative of the invasive phenotype, we studied by in situ hybridization the expression of genes encoding several pro- and anti-angiogenic factors [hypoxia-inducible factor (HIF-1α), EPAS1, vascular endothelial growth factor (VEGF), VEGF receptors, angiopoietins and their receptor Tie2, five genes of the endothelin system, and thrombospondin 1]. A semiquantitative evaluation of the labeling revealed an induction of genes encoding EPAS1, VEGF, VEGFR-1, VEGFR-2, endothelin receptor, type B (ETB) and endothelin receptor, type A (ETA) in malignant pheochromocytomas as compared to benign tumors. These differences were observed in tumor cells, in endothelial cells, or in both. Quantification by real-time reverse-transcriptase polymerase chain reaction showed an increase of EPAS1, VEGF, and ETB transcripts of 4.5-, 3.5-, and 10-fold, respectively, in malignant versus benign tumors. Furthermore, we observed a strong correlation between the expression of EPAS1 and VEGF in tumoral tissue and between EPAS1 and ETB in endothelial cells. Altogether, our observations show that analysis of angiogenesis provides promising new criteria for the diagnosis of malignant pheochromocytomas. PMID:12368197

  12. Endothelinergic Contractile Hyperreactivity in Rat Contralateral Carotid to Balloon Injury: Integrated Role for ETB Receptors and Superoxide Anion

    PubMed Central

    Gimenes, Lilian R.; Gomes, Mayara S.; do Vale, Bruno N.; Cardoso, Cristina R. B.; de Oliveira, Ana M.; Moreira, Josimar D.

    2017-01-01

    Temporal consequences of neurocompensation to balloon injury on endothelinergic functionality in rat contralateral carotid were evaluated. Rats underwent balloon injury in left carotid and were treated with CP-96345 (NK1 antagonist). Concentration-response curves for endothelin-1 were obtained in contralateral (right) carotid at 2, 8, 16, 30, or 45 days after surgery in the absence or presence of BQ-123 (ETA antagonist), BQ-788 (ETB antagonist), or Tempol (superoxide-dismutase mimic). Endothelin-1-induced calcium mobilization was evaluated in functional assays carried out with BQ-123, BQ-788, or Tempol. Endothelin-1-induced NADPH oxidase-driven superoxide generation was measured by lucigenin chemiluminescence assays performed with BQ-123 or BQ-788. Endothelin-1-induced contraction was increased in contralateral carotid from the sixteenth day after surgery. This response was restored in CP-96345-treated rats. Endothelium removal or BQ-123 did not change endothelin-1-induced contraction in contralateral carotid. This response was restored by BQ-788 or Tempol. Contralateral carotid exhibited an increased endothelin-1-induced calcium mobilization, which was restored by BQ-788 or Tempol. Contralateral carotid exhibited an increased endothelin-1-induced lucigenin chemiluminescence, which was restored by BQ-788. We conclude that the NK1-mediated neurocompensatory response to balloon injury elicits a contractile hyperreactivity to endothelin-1 in rat contralateral carotid by enhancing the muscular ETB-mediated NADPH oxidase-driven generation of superoxide, which activates calcium channels. PMID:29062837

  13. The glucagon-like peptide-1 receptor agonist liraglutide improves hypoxia-induced pulmonary hypertension in mice partly via normalization of reduced ET(B) receptor expression.

    PubMed

    Honda, J; Kimura, T; Sakai, S; Maruyama, H; Tajiri, K; Murakoshi, N; Homma, S; Miyauchi, T; Aonuma, K

    2018-06-27

    The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is an incretin hormone mimetic used in the treatment of diabetes. However, the effects of liraglutide on pulmonary hypertension (PH) and pulmonary endothelin (ET) system are unknown. Eight-week-old C57BL6/J mice were injected liraglutide or vehicle for 5 weeks. One week after injection, the mice were exposed to either room air (normoxia) or chronic hypoxia (10 % O(2)) for 4 weeks. The right ventricular systolic pressure (RVSP) was significantly higher in hypoxia + vehicle group than in normoxia + vehicle group. ET-1 mRNA expression in the lungs was comparable among all the groups. ET(B) mRNA and protein expression in the lungs was significantly lower in hypoxia + vehicle group than in normoxia + vehicle group. The above changes were normalized by liraglutide treatment. The expression of phospho-eNOS and phospho-AMPK proteins in the lungs was significantly higher in hypoxia + liraglutide group than in normoxia + vehicle group. We demonstrated for the first time that liraglutide effectively improved RVSP and RV hypertrophy in hypoxia-induced PH mice by activating eNOS through normalization of impaired ET(B) pathway and augmentation of AMPK pathway. Therefore, GLP-1R agonists can be promising therapeutic agents for PH.

  14. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors.

    PubMed

    Joseph, Elizabeth K; Green, Paul G; Bogen, Oliver; Alvarez, Pedro; Levine, Jon D

    2013-02-13

    Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.

  15. Therapeutic potential of endothelin inhibitors in canine hemangiosarcoma.

    PubMed

    Fukumoto, Shinya; Saida, Kaname; Sakai, Hiroki; Ueno, Hiroshi; Iwano, Hidetomo; Uchide, Tsuyoshi

    2016-08-15

    Hemangiosarcoma (HSA) that originates from vascular endothelial cells is the most common splenic malignant neoplasm in dogs, as it accounts for approximately 20% of all canine soft tissue sarcomas. In this study, inhibitory effects of endothelin receptor antagonists on the growth of HSA cells were examined using cell lines established from canine HSA. The preproendothelin-1 (PPET-1), endothelin type A receptor (ETA) and endothelin type B receptor (ETB) mRNA expression levels in HSA cell lines (n=5) were analyzed quantitatively by real-time RT-PCR. These levels were compared with those in HSA tissues (n=11) and those in normal splenic tissues (n=6). ETA and ETB protein expression was examined by western blot. The production and secretion of endothelin-1 (ET-1) and big ET-1 by cell lines were analyzed by measuring the levels in the culture medium by ELISA. The inhibitory effects of endothelin receptor antagonists (ambrisentan, BQ788 and bosentan) on cell growth were evaluated by WST-8 assay. The PPET1 and ETA mRNA expression levels were elevated in HSA tissues and HSA cell lines compared with normal tissues. In cell lines, the production of ET-1 and big ET-1 peptide as well as the expression of ETA protein were detected, but the levels of ETB were not measured. Ambrisentan and bosentan inhibited growth activity in cell lines. Ambrisentan was more effective than bosentan. These findings demonstrate the importance of the ETA axis in canine HSA as well as the potential of ETA inhibitors in the treatment of canine HSA. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Inhibition of IgE-induced mast cell activation by ethyl tertiary-butyl ether, a bioethanol-derived fuel oxygenate.

    PubMed

    Yamaki, Kouya; Yoshino, Shin

    2009-09-01

    The effect of ethyl tertiary-butyl ether (ETBE), which is widely used as a fuel oxygenate commonly produced from bioethanol, on immunoglobulin (Ig)E-dependent mast cell activation was investigated. The rat mast cell line RBL2H3 sensitised with monoclonal anti-ovalbumin IgE was challenged with ovalbumin in the presence or absence of ETBE, tert-butanol (TBA), which is the main metabolite of ETBE in humans, and ethanol. Degranulation of RBL2H3 was examined by the release of beta-hexosaminidase. To understand the mechanisms responsible for regulating mast cell function, the effects of ETBE, TBA and ethanol on the levels of intracellular calcium, phosphorylation of Akt (as a marker of phosphatidylinositol 3-kinase) and global tyrosine phosphorylation were also measured as indicators of mast cell activation. In the presence of ETBE, TBA or ethanol, IgE-induced release of beta-hexosaminidase was decreased. These compounds also attenuated the IgE-mediated increase in the levels of intracellular Ca(2+), phosphorylation of Akt and global tyrosine phosphorylation in RBL2H3 cells. ETBE, TBA and ethanol inhibited mast cell degranulation by inhibiting the increase in intracellular calcium ion concentration and activation of phosphatidylinositol 3-kinase and protein tyrosine kinase activation, suggesting that exposure to ETBE might affect immune responses, particularly in allergic diseases.

  17. Selective upregulation of endothelin B receptor gene expression in severe pulmonary hypertension.

    PubMed

    Bauer, Michael; Wilkens, Heinrike; Langer, Frank; Schneider, Sven O; Lausberg, Henning; Schäfers, Hans-Joachim

    2002-03-05

    The pulmonary circulation is an important site for the production and clearance of endothelin (ET)-1, a potent vasoactive and mitogenic peptide. Increased plasma ET-1 levels are observed in pulmonary arterial hypertension (PHT) and may contribute to the regulation of pulmonary vascular resistance, as well as to proliferative changes in the pulmonary vascular bed. We prospectively assessed changes in plasma big ET-1 levels and changes in ET(A) and ET(B) receptor gene expression in 14 consecutive patients undergoing pulmonary thromboendarterectomy for thromboembolic PHT. Plasma big ET-1 levels were higher in patients with PHT (median, 2.2 pg/mL; 25th to 75th percentile, 1.5 to 3.0 pg/mL) compared with age-matched controls (median, 1.2 pg/mL; 25th to 75th percentile, 1.0 to 1.4 pg/mL; P=0.002). In addition to increased plasma big ET-1 levels, selective upregulation of ET(B) receptor mRNA transcripts and immunoreactive protein in the pulmonary artery was observed in the patients; however, ET(A) receptor gene expression was unaffected. These data suggest that changes in the ET signaling system in PHT caused by thromboembolic disease are not limited to an increased production of ET-1: they also affect ET receptor gene expression.

  18. Pharmacological characteristics of endothelin receptors on sheep rectal blood vessels.

    PubMed

    Lohsiriwat, Varut; Scholefield, John H; Dashwood, Michael R; Wilson, Vincent G

    2011-06-01

    Haemorrhoids is associated with high blood flow of the anorectal region. The question of whether pharmacological manipulation of vascular supply can relieve the symptoms of haemorrhoids has been raised. In order to undertake this type of clinical investigation, it is first essential to gain a better understanding of the properties of vascular receptors that may regulate blood flow into anal cushions and haemorrhoids. Due to the limited availability of human anorectal specimens and the good reliability of sheep tissue as an experimental model of human anorectal diseases, we studied the properties of endothelin receptors in sheep rectal artery (SRA) and vein (SRV), the vessels contributing to the blood flow of haemorrhoidal plexus, using isometric tension recordings. We found that endothelin-1 and sarafotoxin 6a were very potent constrictor agents in both SRA and SRV. The selective ET(A) receptor antagonist PD156707 (100 nM) produced a parallel rightward displacement of ET-1-induced contractions in both vessels and abolished sarafotoxin 6a-induced contractions in the SRA. PD156707 (3 μM) practically abolished contractions to ET-1 in the SRA, suggesting that the response is entirely mediated by ET(A) receptors. While, the selective ET(B) receptor antagonist BQ788 (100 nM) caused no significant change in ET-1-induced contractions in both vessels, a minor role for ET(B) receptor subtype to responses to sarafotoxin 6a in the artery was suggested. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effects of endothelin receptor antagonists on renal hemodynamics in angiotensin II-infused rats on high NaCl intake.

    PubMed

    Saeed, Aso; Dibona, Gerald F; Guron, Gregor

    2012-01-01

    The aim was to investigate effects of selective endothelin (ET) receptor antagonists on renal hemodynamics and dynamic renal blood flow autoregulation (RBFA) in angiotensin II (Ang II)-infused rats on a high NaCl intake. Sprague-Dawley rats received Ang II (250 ng/kg/min, s.c.) and an 8% NaCl diet for 14 days after which renal clearance experiments were performed. After baseline measurements animals were administered either: (a) saline vehicle; (b) ETA receptor antagonist BQ-123 (30 nmol/kg/min); (c) ETB receptor antagonist BQ-788 (30 nmol/kg/min); or (d) BQ-123 + BQ-788, for six consecutive 20-minute clearance periods. BQ-123 reduced arterial pressure (AP) and selectively increased outer medullary perfusion versus vehicle (p<0.05). These effects were attenuated or abolished by combined BQ-123 and BQ-788. BQ-788 reduced renal blood flow and increased renovascular resistance (p<0.05). Ang II-infused rats on high NaCl intake showed abnormalities in dynamic RBFA characterized by an impaired myogenic response that were not significantly affected by ET receptor antagonists. In hypertensive Ang II-infused rats on a high-NaCl intake selective ETA antagonism with BQ-123 reduced AP and specifically increased OM perfusion and these effects were dependent on intact ETB receptor stimulation. Furthermore, ET receptor antagonists did not attenuate abnormalities in dynamic RBFA. Copyright © 2012 S. Karger AG, Basel.

  20. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension.

    PubMed

    Kuc, Rhoda E; Carlebur, Myrna; Maguire, Janet J; Yang, Peiran; Long, Lu; Toshner, Mark; Morrell, Nicholas W; Davenport, Anthony P

    2014-11-24

    In pulmonary arterial hypertension (PAH), increases in endothelin-1 (ET-1) contribute to elevated pulmonary vascular resistance which ultimately causes death by right ventricular (RV) heart failure. ET antagonists are effective in treating PAH but lack efficacy in treating left ventricular (LV) heart failure, where ETA receptors are significantly increased. The aim was to quantify the density of ETA and ETB receptors in cardiopulmonary tissue from PAH patients and the monocrotaline (MCT) rat, which recapitulates some of the pathophysiological features, including increased RV pressure. Radioligand binding assays were used to quantify affinity, density and ratio of ET receptors. In RV from human PAH hearts, there was a significant increase in the ratio of ETA to ETB receptors compared with normal hearts. In the RV of the MCT rat, the ratio also changed but was reversed. In both human and rat, there was no change in LV. In human PAH lungs, ETA receptors were significantly increased in the medial layer of small pulmonary arteries with no change detectable in MCT rat vessels. Current treatments for PAH focus mainly on pulmonary vasodilatation. The increase in ETA receptors in arteries provides a mechanism for the beneficial vasodilator actions of ET antagonists. The increase in the ratio of ETA in RV also implicates changes to ET signalling although it is unclear if ET antagonism is beneficial but the results emphasise the unexploited potential for therapies that target the RV, to improve survival in patients with PAH. Copyright © 2014. Published by Elsevier Inc.

  3. Endothelin Blockade in Diabetic Kidney Disease.

    PubMed

    Anguiano, Lidia; Riera, Marta; Pascual, Julio; Soler, María José

    2015-05-25

    Diabetic kidney disease (DKD) remains the most common cause of chronic kidney disease and multiple therapeutic agents, primarily targeted at the renin-angiotensin system, have been assessed. Their only partial effectiveness in slowing down progression to end-stage renal disease, points out an evident need for additional effective therapies. In the context of diabetes, endothelin-1 (ET-1) has been implicated in vasoconstriction, renal injury, mesangial proliferation, glomerulosclerosis, fibrosis and inflammation, largely through activation of its endothelin A (ETA) receptor. Therefore, endothelin receptor antagonists have been proposed as potential drug targets. In experimental models of DKD, endothelin receptor antagonists have been described to improve renal injury and fibrosis, whereas clinical trials in DKD patients have shown an antiproteinuric effect. Currently, its renoprotective effect in a long-time clinical trial is being tested. This review focuses on the localization of endothelin receptors (ETA and ETB) within the kidney, as well as the ET-1 functions through them. In addition, we summarize the therapeutic benefit of endothelin receptor antagonists in experimental and human studies and the adverse effects that have been described.

  4. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms.

    PubMed

    Bombach, Petra; Nägele, Norbert; Rosell, Mònica; Richnow, Hans H; Fischer, Anko

    2015-04-09

    Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [(13)C6]-ETBE (BACTRAP(®)s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant (13)C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.

    PubMed

    Rivera, Alicia

    2007-09-01

    Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.

  6. Lack of micronucleus induction activity of ethyl tertiary-butyl ether in the bone marrow of F344 rats by sub-chronic drinking-water treatment, inhalation exposure, or acute intraperitoneal injection.

    PubMed

    Noguchi, Tadashi; Kamigaito, Tomoyuki; Katagiri, Taku; Kondou, Hitomi; Yamazaki, Kazunori; Aiso, Shigetoshi; Nishizawa, Tomoshi; Nagano, Kasuke; Fukushima, Shoji

    2013-01-01

    Ethyl tertiary-butyl ether (ETBE) is an oxygenated gasoline additive synthesized from ethanol and isobutene that is used to reduce CO2 emissions. To support the Kyoto Protocol, the production of ETBE has undergone a marked increase. Previous reports have indicated that exposure to ETBE or methyl tertiary-butyl ether resulted in liver and kidney tumors in rats and/or mice. These reports raise concern about the effects of human exposure being brought about by the increased use of ETBE. The present study was conducted to evaluate the genotoxicity of ETBE using micronucleus induction of polychromatic erythrocytes in the bone marrow of male and female rats treated with ETBE in the drinking-water at concentrations of 0, 1,600, 4,000 or 10,000 ppm or exposed to ETBE vapor at 0, 500, 1,500 or 5,000 ppm for 13 weeks. There were no significant increases in micronucleus induction in either the drinking water-administered or inhalation-administered groups at any concentration of ETBE; although, in both groups red blood cells and hemoglobin concentration were slightly reduced in the peripheral blood in rats administered the highest concentration of ETBE. In addition, two consecutive daily intraperitoneal injections of ETBE at doses of 0, 250, 500 or 1,000 mg/kg did not increase the frequency of micronucleated bone marrow cells in either sex; all rats receiving intraperitoneal injections of ETBE at a dose of 2,000 mg/kg died after treatment day 1. These data suggest that ETBE is not genotoxic in vivo.

  7. Expression profile of endothelin receptors (ETA and ETB) and microRNAs-155 and -199 in the corpus cavernosum of rats submitted to chronic alcoholism and diabetes mellitus.

    PubMed

    Gonçalves, F Z; Lizarte Neto, F S; Novais, P C; Gattas, D; Lourenço, L G; de Carvalho, C A M; Tirapelli, D P C; Molina, C A F; Tirapelli, L F; Tucci, S

    2018-03-01

    Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.

  8. Endothelin-like action of Pausinystalia yohimbe aqueous extract on vascular and renal regional hemodynamics in Sprague Dawley rats.

    PubMed

    Ajayi, A A; Newaz, M; Hercule, H; Saleh, M; Bode, C O; Oyekan, A O

    2003-12-01

    The bark of the African tree Pausinystalia yohimbe has been used as a food additive with aphrodisiac and penile erection enhancing properties. The effect of an aqueous extract of P. yohimbe (CCD-X) on renal circulation was assessed in order to test the hypothesis that it possesses additional effects on nitric oxide production and/or endothelin-1 (ET-1)-like actions. In vivo studies with CCD-X in Sprague Dawley rats demonstrated a dose-dependent (1-1000 ng/kg) increase in mean blood pressure (p < 0.001) and an increase in medullary blood flow (MBF) (p < 0.001). Both the pressor action and renal medullary vasodilation were blocked by endothelinA (ETA) receptor antagonist BMS182874 and endothelinB (ETB) receptor antagonist BQ788 in combination. L-Nomega-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg) also inhibited the increase in MBF induced by CCD-X. In vitro studies in isolated perfused kidney and in pressurized renal microvessels confirmed the dose-dependent vasoconstrictor action of this extract. ETA receptor antagonist BQ610 and ETB receptor antagonist BQ788 separately and significantly attenuated the renal vasoconstrictor actions of the extract (p < 0.001 ANOVA). These preliminary observations indicate that, in addition to the alpha-adrenergic antagonist actions that characterize yohimbine, CCD-X possesses endothelin-like actions and affects nitric oxide (NO) production in renal circulation. These findings suggest a strong possibility of post-receptor cross-talk between alpha2-adrenoceptors and endothelin, as well as a direct effect of alpha2-adrenoceptors on renal NO production. (c) 2003 Prous Science

  9. Comparison of pharmacological activity of macitentan and bosentan in preclinical models of systemic and pulmonary hypertension.

    PubMed

    Iglarz, Marc; Bossu, Alexandre; Wanner, Daniel; Bortolamiol, Céline; Rey, Markus; Hess, Patrick; Clozel, Martine

    2014-11-24

    The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective doses of another dual ETA/ETB receptor antagonist, bosentan, which does not display sustained receptor occupancy and shows less tissue distribution. After establishing dose-response curves of both compounds in conscious, hypertensive Dahl salt-sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the maximal effective dose of bosentan. In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n=9, p<0.01 vs. vehicle). Conversely, bosentan given on top of macitentan failed to induce an additional MAP decrease. In pulmonary hypertensive rats, macitentan 30 mg/kg further decreased mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of bosentan (n=8, p<0.01 vs. vehicle), whereas a maximal effective dose of bosentan given on top of macitentan did not cause any additional MPAP decrease. The add-on effect of macitentan on top of bosentan in two pathological models confirms that this novel compound can achieve a superior blockade of ET receptors and provides evidence for greater maximal efficacy. Copyright © 2014. Published by Elsevier Inc.

  10. Endothelin ETA receptor expression in human cerebrovascular smooth muscle cells.

    PubMed

    Yu, J C; Pickard, J D; Davenport, A P

    1995-11-01

    1. Endothelin (ET) has been implicated in cerebrovasospasm for example, following subarachnoid haemorrhage, and blocking the interaction of ET with its receptors on cerebral vessels, may be of therapeutic benefit. The aim of our study was to characterize endothelin receptor sub-types on medial smooth muscle cells of human cerebral vessels. Cultures of vascular smooth muscle cells were explanted from human cerebral resistance vessels and characterized as human brain smooth muscle cells (HBSMCs). 2. Over a 48 h incubation period, HBSMC cultures secreted comparable levels of immunoreactive (IR) big endothelin-1 (big ET-1) and IR endothelin (ET): 12.7 +/- 10.3 and 8.3 +/- 5.6 pmol/10(6) cells, respectively (mean +/- s.e. mean from three different individuals), into the culture medium. 3. Total RNA was extracted from cultures of human brain smooth muscle cells. Reverse-transcriptase polymerase chain reaction (RI-PCR) assays and subsequent product separation by agarose gel electrophoresis revealed single bands corresponding to the expected product sizes encoding cDNA for ETA (299 base pairs) and ETB (428 base pairs) (n = 3 different cultures). 4. Autoradiography demonstrated the presence of specific binding sites for [125I]-ET-1 which labels all ET receptors, and [125I]-PD151242, an ETA subtype-selective antagonist which exclusively labels ETA receptors, but no specific-binding was detected using ETB subtype-selective [125I]-BQ3020 (n = 3 different cultures, in duplicate). 5. In saturation binding assays, [123I]-ET-1 bound with high affinity: KD = 0.8 +/- 0.1 nM and Bmax = 690 +/- 108 fmol mg-1. A one-site fit was preferred and Hill slopes were close to unity over the concentration range (10(-12) to 10(-8) M). [125I]-PD151242 also bound with similar affinity: KD = 0.4 +/- 0.1 nM and Bmax = 388 +/- 68 fmol mg-1 (mean +/- s.e. mean, n = 3 different cultures). Again, a one-site fit was preferred and Hill slopes were close to unity over the concentration range. Unlabelled PD151242 competed for the binding of [125I]-ET-1 monophasically and analysis of the competition curves indicated that a one-site fit was preferred over a two-site model, implying that the cultures express mainly ETA receptors. 6. Although messenger RNA encoding both ETA and ETB receptors was detected, autoradiographical analysis, as well as binding studies indicate that human cultured brain smooth muscle cells express only ETA receptor protein. Antagonism of this sub-type may be necessary to block the actions of ET-1 in the human cerebral resistance vessels in the vasospasm observed subsequent to subarachnoid haemorrhage.

  11. Exposure assessment of ETBE in gas station workers and gasoline tanker truck drivers.

    PubMed

    Eitaki, Yoko; Kawai, Toshio; Omae, Kazuyuki

    2011-01-01

    In order to measure occupational exposure concentrations of ethyl tertiary-butyl ether (ETBE), we developed a diffusive sampling method for monitoring ETBE and performed an ETBE exposure assessment. The applicability of diffusive samplers was examined by exposing the samplers to ETBE vapor in test chambers. The personal exposure levels of workers and airborne concentrations were measured at 4 gas stations. The ETBE sampling rate for the diffusive samplers (VOC-SD, Sigma-Aldrich Japan) was 25.04 ml/min (25°C). Compared with the active sampling method, the diffusive samplers could be used for short-term measurements and in environments containing a mixture of organic solvents. The geometric mean (GM) of TWA-8h ETBE was 0.08 ppm (0.02-0.28 ppm) in 28 gas station workers and 0.04 ppm (0.01-0.21 ppm) in 2 gasoline tanker truck drivers. With regard to ETBE airborne concentrations, the GM was 4.12 ppm (0.93-8.71 ppm) at the handles of hanging pumps but dropped to less than 0.01 ppm (less than 0.01-0.01 ppm) at the side of a public road. The diffusive sampling method can be used for the measurement of occupational ETBE exposure. The threshold limit of TLV-TWA 5 ppm recommended by the ACGIH was not exceeded in any of the workers in this study.

  12. Effect of endothelin-1 on the serotonin-induced contraction of smooth muscle in the guinea pig trachea.

    PubMed

    Yoshida, M; Aizawa, H; Hara, N

    1999-01-01

    Endothelin (ET), a potent constrictor of smooth muscle including that of the airways, may contribute to the development of airway hyperresponsiveness. To investigate the role of ET-1 on the airway smooth muscle, we examined the effects of ET-1 on the serotonin-induced contraction of guinea pig tracheal smooth muscle. The changes in isometric tension evoked by serotonin were measured before and after the application of a subthreshold dose (a dose which did not induce smooth muscle contraction by itself) of ET-1. Serotonin caused smooth muscle contraction in a dose-dependent manner. The subthreshold doses of ET-1 (1 pM) and sarafotoxin 6c (1 pM), a selective ETB receptor agonist, were found to potentiate significantly the contraction induced by serotonin. A potentiating effect of ET-1 was not altered by indomethacin or calphostin C, a protein kinase C inhibitor. These results suggest that a subthreshold concentration of ET-1 can potentiate serotonin-induced contraction of smooth muscle through the activation of ETB receptor, while in contrast cyclooxygenase and protein kinase C were found not to be involved in this mechanism.

  13. Endothelin-A Receptor Antagonism after Renal Angioplasty Enhances Renal Recovery in Renovascular Disease

    PubMed Central

    Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret

    2015-01-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076

  14. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    The IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) was released for external peer review in June 2017. EPA’s Science Advisory Board’s (SAB) Chemical Assessment Advisory Committee (CAAC) will conduct a peer review of the scientific basis supporting the ETBE assessment and release a final report of their review. Information regarding the peer review can be found on the SAB website. EPA is conducting an Integrated Risk Information System (IRIS) health assessment for Ethyl Tertiary Butyl Ether (ETBE). The outcome of this project is a Toxicological Review and IRIS Summary for ETBE that will be entered into the IRIS database.

  15. Different actions of endothelin-1 on chemokine production in rat cultured astrocytes: reduction of CX3CL1/fractalkine and an increase in CCL2/MCP-1 and CXCL1/CINC-1

    PubMed Central

    2013-01-01

    Background Chemokines are involved in many pathological responses of the brain. Astrocytes produce various chemokines in brain disorders, but little is known about the factors that regulate astrocytic chemokine production. Endothelins (ETs) have been shown to regulate astrocytic functions through ETB receptors. In this study, the effects of ETs on chemokine production were examined in rat cerebral cultured astrocytes. Methods Astrocytes were prepared from the cerebra of one- to two-day-old Wistar rats and cultured in serum-containing medium. After serum-starvation for 48 hours, astrocytes were treated with ETs. Total RNA was extracted using an acid-phenol method and expression of chemokine mRNAs was determined by quantitative RT-PCR. The release of chemokines was measured by ELISA. Results Treatment of cultured astrocytes with ET-1 and Ala1,3,11,15-ET-1, an ETB agonist, increased mRNA levels of CCL2/MCP1 and CXCL1/CINC-1. In contrast, CX3CL1/fractalkine mRNA expression decreased in the presence of ET-1 and Ala1,3,11,15-ET-1. The effect of ET-1 on chemokine mRNA expression was inhibited by BQ788, an ETB antagonist. ET-1 increased CCL2 and CXCL1 release from cultured astrocytes, but decreased that of CX3CL1. The increase in CCL2 and CXCL1 expression by ET-1 was inhibited by actinomycin D, pyrrolidine dithiocarbamate, SN50, mithramycin, SB203580 and SP600125. The decrease in CX3CL1 expression by ET-1 was inhibited by cycloheximide, Ca2+ chelation and staurosporine. Conclusion These findings suggest that ETs are one of the factors regulating astrocytic chemokine production. Astrocyte-derived chemokines are involved in pathophysiological responses of neurons and microglia. Therefore, the ET-induced alterations of astrocytic chemokine production are of pathophysiological significance in damaged brains. PMID:23627909

  16. Activation of particulate guanylyl cyclase by endothelins in cultured SV-40 transformed cat iris sphincter smooth muscle cells.

    PubMed

    Ding, K H; Latimer, A J; Abdel-Latif, A A

    1999-01-01

    We investigated the effects of endothelins (ETs) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ET-3 increased cGMP formation in a concentration-dependent manner (EC50 = 98nM), which was 2.5 times higher than that of ET-1. The ET(B)receptor agonists sarafotoxin-S6c and IRL 1620 also increased cGMP production, mimicking the effects of the ETs. The ET(B) receptor antagonist BQ 788, but not the ET(A) receptor antagonist BQ610, dose-dependently blocked ET-3-stimulated cGMP formation (IC50=10nM). The phorbol ester, Phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylyl cyclase in smooth muscle, dose-dependently inhibited ET-3-stimulated cGMP accumulation (IC50=66nM). LY83583 and ODQ, inhibitors of soluble guanylyl cyclases, as well as inhibitors of the nitric oxide cascade and of intracellular Ca2+ elevation had no appreciable effect on ET-3-induced cGMP production. ET-3 markedly inhibited carbachol-induced intracellular Ca2+ mobilization. We conclude that ET-3 increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ET(B) receptor subtype and subsequent stimulation of the membrane-bound guanylyl cyclase. Elevation of cGMP by ET and the subsequent inhibition of muscarinic stimulation of intracellular Ca2+ mobilization by the cyclic nucleotide could serve to modulate the contractile effects of Ca2+-mobilizing agonists in the iris sphincter smooth muscle.

  17. Physiologically based pharmacokinetic model for ethyl tertiary‐butyl ether and tertiary‐butyl alcohol in rats: Contribution of binding to α2u–globulin in male rats and high‐exposure nonlinear kinetics to toxicity and cancer outcomes

    PubMed Central

    Ring, Caroline; Banton, Marcy I.; Leavens, Teresa L.

    2016-01-01

    Abstract In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary‐butyl ether (ETBE), caused liver tumors in male rats, while tertiary‐butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary‐butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat‐specific protein α2u–globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0–∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male‐rat‐specific mode of action for TBA‐induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0–∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd PMID:27885692

  18. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    PubMed

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC 0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC 0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  19. Ether oxygenate additives in gasoline reduce toxicity of exhausts.

    PubMed

    Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J

    2010-02-09

    Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Ethyl tertiary-butyl ether: a toxicological review.

    PubMed

    McGregor, Douglas

    2007-05-01

    A number of oxygenated compounds (oxygenates) are available for use in gasoline to reduce vehicle exhaust emissions, reduce the aromatic compound content, and avoid the use of organo-lead compounds, while maintaining high octane numbers. Ethyl tertiary-butyl ether (ETBE) is one such compound. The current use of ETBE in gasoline or petrol is modest but increasing, with consequently similar trends in the potential for human exposure. Inhalation is the most likely mode of exposure, with about 30% of inhaled ETBE being retained by the lungs and distributed around the body. Following cessation of exposure, the blood concentration of ETBE falls rapidly, largely as a result of its metabolism to tertiary-butyl alcohol (TBA) and acetaldehyde. TBA may be further metabolized, first to 2-methyl-1,2-propanediol and then to 2-hydroxyisobutyrate, the two dominant metabolites found in urine of volunteers and rats. The rapid oxidation of acetaldehyde suggests that its blood concentration is unlikely to rise above normal as a result of human exposure to sources of ETBE. Single-dose toxicity tests show that ETBE has low toxicity and is essentially nonirritant to eyes and skin; it did not cause sensitization in a maximization test in guinea pigs. Neurological effects have been observed only at very high exposure concentrations. There is evidence for an effect of ETBE on the kidney of rats. Increases in kidney weight were seen in both sexes, but protein droplet accumulation (with alpha(2u)-globulin involvement) and sustained increases in cell proliferation occurred only in males. In liver, centrilobular necrosis was induced in mice, but not rats, after exposure by inhalation, although this lesion was reported in some rats exposed to very high oral doses of ETBE. The proportion of liver cells engaged in S-phase DNA synthesis was increased in mice of both sexes exposed by inhalation. ETBE has no specific effects on reproduction, development, or genetic material. Carcinogenicity studies have been conducted with ETBE, TBA, and ethanol (included in this review as an endogenous precursor of acetaldehyde in the absence of TBA). A single experiment with ETBE in rats and several experiments with ethanol in rats and mice were not considered adequate for an evaluation of ETBE carcinogenicity. In male rats only, TBA induced alpha(2u)-globulin nephropathy-related renal tubule adenomas. These are generally considered to have no human relevance. In addition, increases in thyroid follicular cell adenoma incidence were associated with TBA treatment in female mice. This result lacks independent confirmation and is not supported by experiments in which similar or higher internal doses of TBA were delivered.

  1. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (External Review Draft)

    EPA Science Inventory

    The IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) was released for external peer review in June 2017. EPA’s Science Advisory Board’s (SAB) Chemical Assessment Advisory Committee (CAAC) will conduct a peer review of the scientific basis supporting the ETB...

  2. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein.

    PubMed

    Liu, Songling; Premont, Richard T; Rockey, Don C

    2014-06-27

    Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Hyaluronan Production by Renomedullary Interstitial Cells: Influence of Endothelin, Angiotensin II and Vasopressin

    PubMed Central

    Palm, Fredrik; Takahashi, Tomoko; Ikegami-Kawai, Mayumi; Friederich-Persson, Malou; Hansell, Peter

    2017-01-01

    The content of hyaluronan (HA) in the interstitium of the renal medulla changes in relation to body hydration status. We investigated if hormones of central importance for body fluid homeostasis affect HA production by renomedullary interstitial cells in culture (RMICs). Simultaneous treatment with vasopressin and angiotensin II (Ang II) reduced HA by 69%. No change occurred in the mRNA expressions of hyaluronan synthase 2 (HAS2) or hyaluronidases (Hyals), while Hyal activity in the supernatant increased by 67% and CD44 expression reduced by 42%. The autocoid endothelin (ET-1) at low concentrations (10−10 and 10−8 M) increased HA 3-fold. On the contrary, at a high concentration (10−6 M) ET-1 reduced HA by 47%. The ET-A receptor antagonist BQ123 not only reversed the reducing effect of high ET-1 on HA, but elevated it to the same level as low concentration ET-1, suggesting separate regulating roles for ET-A and ET-B receptors. This was corroborated by the addition of ET-B receptor antagonist BQ788 to low concentration ET-1, which abolished the HA increase. HAS2 and Hyal2 mRNA did not alter, while Hyal1 mRNA was increased at all ET-1 concentrations tested. Hyal activity was elevated the most by high ET-1 concentration, and blockade of ET-A receptors by BQ123 prevented about 30% of this response. The present study demonstrates an important regulatory influence of hormones involved in body fluid balance on HA handling by RMICs, thereby supporting the concept of a dynamic involvement of interstitial HA in renal fluid handling. PMID:29236055

  4. Endothelin@25 - new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12.

    PubMed

    Maguire, J J; Davenport, A P

    2014-12-01

    Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB . Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193-166 , has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  5. No Promoting Effect of Ethyl Tertiary-butyl Ether (ETBE) on Rat Urinary Bladder Carcinogenesis Initiated with N-Butyl-N-(4-hydroxybutyl)nitrosamine

    PubMed Central

    Hagiwara, Akihiro; Imai, Norio; Doi, Yuko; Suguro, Mayuko; Kawabe, Mayumi; Furukawa, Fumio; Nagano, Kasuke; Fukushima, Shoji

    2013-01-01

    The effects of ethyl tertiary-butyl ether (ETBE) on two-stage urinary bladder carcinogenesis in male F344 rats initiated with N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) were investigated at various dose levels with regard to possible promoting activity. Groups of 30 rats were given drinking water containing 500 ppm BBN, as an initiator, for 4 weeks and starting one week thereafter received ETBE by gavage (daily, 7 days/week) at dose levels of 0 (control), 100, 300, 500 or 1000 mg/kg/day until experimental week 36. No statistically significant differences in incidences of preneoplastic lesions, papillomas, and carcinomas of the urinary bladder were evident in rats treated with 100–1000 mg/kg/day ETBE as compared with control values. Furthermore, the average numbers of preneoplastic or neoplastic lesions per unit length of basement membrane in rats given 100–1000 mg/kg/day ETBE were also comparable to control values. However, papillomatosis of the urinary bladder was found in 4 out of 30 rats (13%) in the group given 1000 mg/kg/day ETBE, and soft stones in the urinary bladder were found in 3 out of these 4 rats. The results thus demonstrated that ETBE did not exert promotional activity on urinary bladder carcinogenesis. However, papillomatosis of the urinary bladder developed in small numbers of the rats given ETBE at 1000 mg/kg/day but not in rats given 500 mg/kg/day or lower doses. PMID:24526807

  6. Development and application of a rat PBPK model to elucidate kidney and liver effects induced by ETBE and tert-butanol.

    PubMed

    Salazar, Keith D; Brinkerhoff, Christopher J; Lee, Janice S; Chiu, Weihsueh A

    2015-11-01

    Subchronic and chronic studies in rats of the gasoline oxygenates ethyl tert-butyl ether (ETBE) and tert-butanol (TBA) report similar noncancer kidney and liver effects but differing results with respect to kidney and liver tumors. Because TBA is a major metabolite of ETBE, it is possible that TBA is the active toxic moiety in all these studies, with reported differences due simply to differences in the internal dose. To test this hypothesis, a physiologically-based pharmacokinetic (PBPK) model was developed for ETBE and TBA to calculate internal dosimetrics of TBA following either TBA or ETBE exposure. This model, based on earlier PBPK models of methyl tert-butyl ether (MTBE), was used to evaluate whether kidney and liver effects are consistent across routes of exposure, as well as between ETBE and TBA studies, on the basis of estimated internal dose. The results demonstrate that noncancer kidney effects, including kidney weight changes, urothelial hyperplasia, and chronic progressive nephropathy (CPN), yielded consistent dose-response relationships across routes of exposure and across ETBE and TBA studies using TBA blood concentration as the dose metric. Relative liver weights were also consistent across studies on the basis of TBA metabolism, which is proportional to TBA liver concentrations. However, kidney and liver tumors were not consistent using any dose metric. These results support the hypothesis that TBA mediates the noncancer kidney and liver effects following ETBE administration; however, additional factors besides internal dose are necessary to explain the induction of liver and kidney tumors. Published by Elsevier Inc.

  7. Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1†

    PubMed Central

    Gonçalves, Edmilson R.; Hara, Hirofumi; Miyazawa, Daisuke; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.

    2006-01-01

    Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes. PMID:16957245

  8. Aldh2 knockout mice were more sensitive to DNA damage in leukocytes due to ethyl tertiary butyl ether exposure.

    PubMed

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2011-01-01

    To clarify the genotoxicity of ethyl tertiary butyl ether (ETBE), a gasoline additive, male and female C57BL/6 mice of Aldh2+/+ and Aldh2-/- genotypes, aged 8 wk, were exposed to 0, 500, 1,750, or 5,000 ppm ETBE for 6 h/day, 5 d per week for 13 wk. DNA damage in leukocytes was measured by the alkaline comet assay and expressed quantitatively as Tail Intensity (TI). For male mice, TI was significantly higher in all three groups exposed to ETBE than in those without exposure within Aldh2-/- mice, whereas within Aldh2+/+ mice, TI increased only in those exposed to 5,000 ppm of ETBE as compared with mice without exposure. For female mice, a significant increase in TI values was observed in the group exposed to 5,000 ppm of ETBE as compared with those without exposure within Aldh2-/- mice; TI in Aldh2-/- mice exposed to 1,750 and 5,000 ppm was significantly higher than in Aldh2+/+ mice without exposure. TI did not significantly increase in any of the groups exposed to ETBE within female Aldh2+/+ mice. Based on the results we suggest that Aldh2-/- mice are more sensitive to DNA damage caused by ETBE than Aldh2+/+ mice and that males seem more susceptible to this effect than females.

  9. Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept

    NASA Astrophysics Data System (ADS)

    Pakdeewanich, J.; Onjun, T.; Chatthong, B.

    2017-09-01

    This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.

  10. Development and application of a rat PBPK model to elucidate kidney and liver effects induced by ETBE and tert-butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, Keith D., E-mail: Salazar.keith@epa.gov; Brinkerhoff, Christopher J., E-mail: Brinkerhoff.Chris@epa.gov; Lee, Janice S., E-mail: Lee.JaniceS@epa.gov

    Subchronic and chronic studies in rats of the gasoline oxygenates ethyl tert-butyl ether (ETBE) and tert-butanol (TBA) report similar noncancer kidney and liver effects but differing results with respect to kidney and liver tumors. Because TBA is a major metabolite of ETBE, it is possible that TBA is the active toxic moiety in all these studies, with reported differences due simply to differences in the internal dose. To test this hypothesis, a physiologically-based pharmacokinetic (PBPK) model was developed for ETBE and TBA to calculate internal dosimetrics of TBA following either TBA or ETBE exposure. This model, based on earlier PBPKmore » models of methyl tert-butyl ether (MTBE), was used to evaluate whether kidney and liver effects are consistent across routes of exposure, as well as between ETBE and TBA studies, on the basis of estimated internal dose. The results demonstrate that noncancer kidney effects, including kidney weight changes, urothelial hyperplasia, and chronic progressive nephropathy (CPN), yielded consistent dose–response relationships across routes of exposure and across ETBE and TBA studies using TBA blood concentration as the dose metric. Relative liver weights were also consistent across studies on the basis of TBA metabolism, which is proportional to TBA liver concentrations. However, kidney and liver tumors were not consistent using any dose metric. These results support the hypothesis that TBA mediates the noncancer kidney and liver effects following ETBE administration; however, additional factors besides internal dose are necessary to explain the induction of liver and kidney tumors. - Highlights: • We model two metabolically-related fuel oxygenates to address toxicity data gaps. • Kidney and liver effects are compared on an internal dose basis. • Noncancer kidney effects are consistent using TBA blood concentration. • Liver weight changes are consistent using TBA metabolic rate. • Kidney and liver tumors are not consistent using any internal dose metric.« less

  11. Effects of a thirteen-week inhalation exposure to ethyl tertiary butyl ether on fischer-344 rats and CD-1 mice.

    PubMed

    Medinsky, M A; Wolf, D C; Cattley, R C; Wong, B; Janszen, D B; Farris, G M; Wright, G A; Bond, J A

    1999-09-01

    The 1990 Clean Air Act Amendments require that oxygenates be added to automotive fuels to reduce emissions of carbon monoxide and hydrocarbons. One potential oxygenate is the aliphatic ether ethyl tertiary butyl ether (ETBE). Our objective was to provide data on the potential toxic effects of ETBE. Male and female Fisher 344 rats and CD-1 mice were exposed to 0 (control), 500, 1750, or 5000 ppm of ETBE for 6 h/day and 5 days/wk over a 13-week period. ETBE exposure had no effect on mortality and body weight with the exception of an increase in body weights of the female rats in the 5000-ppm group. No major changes in clinical pathology parameters were noted for either rats or mice exposed to ETBE for 6 (rats only) or 13 weeks. Liver weights increased with increasing ETBE-exposure concentration for both sexes of rats and mice. Increases in kidney, adrenal, and heart (females only) weights were noted in rats. Degenerative changes in testicular seminiferous tubules were observed in male rats exposed to 1750 and 5000 ppm but were not seen in mice. This testicular lesion has not been reported previously for aliphatic ethers. Increases in the incidence of regenerative foci, rates of renal cell proliferation, and alpha2u-globulin containing protein droplets were noted in the kidneys of all treated male rats. These lesions are associated with the male rat-specific syndrome of alpha2u-globulin nephropathy. Increases in the incidence of centrilobular hepatocyte hypertrophy and rates of hepatocyte cell proliferation were seen in the livers of male and female mice in the 5000-ppm group, consistent with a mitogenic response to ETBE. These two target organs for ETBE toxicity, mouse liver and male rat kidney, have also been reported for methyl tertiary butyl ether and unleaded gasoline.

  12. Pharmacological endothelin receptor interaction does not occur in veins from ET(B) receptor deficient rats.

    PubMed

    Thakali, Keshari; Galligan, James J; Fink, Gregory D; Gariepy, Cheryl E; Watts, Stephanie W

    2008-07-01

    Heterodimerization of G-protein coupled receptors can alter receptor pharmacology. ET A and ET B receptors heterodimerize when co-expressed in heterologous expression lines. We hypothesized that ET A and ET B receptors heterodimerize and pharmacologically interact in vena cava from wild-type (WT) but not ET B receptor deficient (sl/sl) rats. Pharmacological endothelin receptor interaction was assessed by comparing ET-1-induced contraction in rings of rat thoracic aorta and thoracic vena cava from male Sprague Dawley rats under control conditions, ET A receptor blockade (atrasentan, 10 nM), ET B receptor blockade (BQ-788, 100 nM) or ET B receptor desensitization (Sarafotoxin 6c, 100 nM) and ET A plus ET B receptor blockade or ET A receptor blockade plus ET B receptor desensitization. In addition, similar pharmacological ET receptor antagonism experiments were performed in rat thoracic aorta and vena cava from WT and sl/sl rats. ET A but not ET B receptor blockade or ET B receptor desensitization inhibited aortic and venous ET-1-induced contraction. In vena cava but not aorta, when ET B receptors were blocked (BQ-788, 100 nM) or desensitized (S6c, 100 nM), atrasentan caused a greater inhibition of ET-1-induced contraction. Vena cava from WT but not sl/sl rats exhibited similar pharmacological ET receptor interaction. Immunocytochemistry was performed on freshly dissociated aortic and venous vascular smooth muscle cells to determine localization of ET A and ET B receptors. ET A and ET B receptors qualitatively co-localized more strongly to the plasma membrane of aortic compared to venous vascular smooth muscle cells. Our data suggest that pharmacological ET A and ET B receptor interaction may be dependent on the presence of functional ET B receptors and independent of receptor location.

  13. Endothelin type B (ETB) receptors: friend or foe in the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk?

    PubMed

    Mirabito Colafella, Katrina M

    2018-01-16

    In a recent issue of Clinical Science, Stanhewicz et al. investigated persistent microvascular dysfunction in women up to 16 months postpartum. The authors found sensitivity to the pressor effects of endothelin-1 (ET-1) was enhanced when compared with women who had a normotensive pregnancy. Importantly, the authors demonstrated that this effect was mediated via the endothelin type B (ET B ) receptors. Therefore, the present study highlights the possibility that alterations in the localization of the ET B receptor contributes to the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk. Currently, there is great interest in the role of the endothelin system in pre-eclampsia. Targetting the endothelin system, potentially by modulating upstream pathways to prevent ET B receptor dysfunction, may improve health outcomes for women and their offspring during pre-eclampsia and later life. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Homology modeling, active site prediction, and targeting the anti hypertension activity through molecular docking on endothelin – B receptor domain

    PubMed Central

    Rayalu, Daddam Jayasimha; Selvaraj, Chandrabose; Singh, Sanjeev Kumar; Ganeshan, Ramakrishan; Kumar, Nagapatla Udaya; Seshapani, Panthangi

    2012-01-01

    In cardiovascular system, activation of Endothelin receptors causes vasoconstriction which leads to Pulmonary Arterial Hypertension (PAH). Endothelin receptor antagonism has emerged as an important therapeutic strategy in pulmonary arterial hypertension. Bosentan is intended to affect vasoconstriction, hypertrophic and fibrotic effects by blocking the actions of receptors ETA and ETB. In this study we identified the action of Bosentan on endothelin B receptor using docking studies with homology modeled endothelin B receptor. Through the modeled protein, the flexible Docking study was performed with Bosentan and its derivatives with theoretically predicted active sites. The results indicated that amino acid ARG82, ARG84 and HIS197 present in endothelin B receptor are core important for binding activities and these residues are having strong hydrogen bond interactions with Bosentan. We have investigated the Bosentan and its derivatives interactions and scoring parameters using gold docking package. Among the docked compounds, one of the Bosentan derivatives BD6 shows better interaction than Bosentan with endothelin B receptor. Our results may be helpful for further investigations in both in vivo and in vitro conditions. PMID:22359440

  15. Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.

    PubMed

    Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C

    2012-09-01

    What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.

  16. Fundus findings in a series of patients with extrapulmonary tuberculosis in Thailand.

    PubMed

    Jirawison, Choeng; Liu, Yingna; Surasit, Karjbundid; Maningding, Ernest; Kamphaengkham, Siripim; Ausayakhun, Somsanguan; Heiden, David; Margolis, Todd P; Gonzales, John A; Acharya, Nisha R; Keenan, Jeremy David

    2017-06-01

    The aim of this study was to determine the frequency of fundus abnormalities among patients who are undergoing or have recently completed treatment for extrapulmonary tuberculosis (eTB). This is a prospective cross-sectional study conducted in a TB clinic of a tertiary hospital in northern Thailand. All patients who had eTB between January 2014 and August 2015 were invited by telephone to return to the clinic for fundus photography. Three uveitis specialists reviewed all photographs to identify posterior segment lesions that were consistent with ocular TB. A total of 265 patients were diagnosed with eTB during the specified period, of which 118 (44.5%) were reached by telephone and 60 (50.8%) participated in the study. A total of 7 eyes from six patients (10.0% of participants, 95% CI 2.2% to 17.8%) had lesions consistent with ocular TB. The group with possible ocular TB lesions was on average 16.8 years older than those without ocular lesions (p=0.01), but the two groups were otherwise not significantly different. Ocular lesions consistent with TB were not rare in a group of patients who were undergoing or had recently completed treatment for eTB. Fundus examination may provide diagnostic information that could influence a clinician's beliefs when diagnosing eTB. Given the low costs and immediate results of eye examination, this diagnostic test should be considered in patients suspected for eTB, especially when other tests are negative. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in Rhodococcus jostii RHA1▿ †

    PubMed Central

    Patrauchan, Marianna A.; Florizone, Christine; Eapen, Shawn; Gómez-Gil, Leticia; Sethuraman, Bhanu; Fukuda, Masao; Davies, Julian; Mohn, William W.; Eltis, Lindsay D.

    2008-01-01

    Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the ΔbphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling. PMID:17965160

  18. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (Public Comment Draft)

    EPA Science Inventory

    In September 2016, the U.S. Environmental Protection Agency's (USEPA) released the draft Integrated Risk Information System (IRIS) Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE). Consistent with the 2013 IRIS Enhancements, draft IRIS assessments are released prior to e...

  19. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (Preliminary Assessment Materials)

    EPA Science Inventory

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for ETBE to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in ...

  20. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (Interagency Science Consultation Draft)

    EPA Science Inventory

    In September 2016, EPA released the draft IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) for public comment and discussion. The draft assessment was reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent ...

  1. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (External Review Draft, 2009)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethyl tertiary butyl ether (ETBE) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  2. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue.

    PubMed

    Virdis, Agostino; Duranti, Emiliano; Rossi, Chiara; Dell'Agnello, Umberto; Santini, Eleonora; Anselmino, Marco; Chiarugi, Massimo; Taddei, Stefano; Solini, Anna

    2015-04-01

    We assessed the impact of vascular and perivascular tumour necrosis factor-alpha (TNF-α) on the endothelin (ET)-1/nitric oxide (NO) system and the molecular pathways involved in small arteries from visceral fat of obese patients (Obese) and Controls. Isolated small arteries from 16 Obese and 14 Controls were evaluated on a pressurized micromyograph. Endogenous ET-1 activity was assessed by the ETA blocker BQ-123. TNF-α and NO were tested by anti-TNF-α infliximab (IFX) and N(ω)-nitro-l-arginine methylester (L-NAME). Gene and protein expression of TNF-α, ET-1, ETA, and ETB receptors were determined by RT-PCR and IHC on arterial wall and in isolated adipocytes. Obese showed a blunted L-NAME-induced vasoconstriction, which was potentiated by IFX, and an increased relaxation to BQ-123, unaffected by L-NAME but attenuated by IFX. Perivascular adipose tissue (PVAT) removal reversed these effects. Obese showed intravascular superoxide excess, which was decreased by apocynin (NAD(P)H oxidase inhibitor), L-NAME, and BQ-123 incubations, and abolished by IFX. An increased vascular expression of ET-1, ETA, and ETB receptors, and higher vascular/perivascular TNF-α and TNF-α receptor expression were also detected. The arterial expression and phosphorylation of c-Jun N-terminal kinase (JNK) were higher in Obese vs. Controls, and downregulated by IFX. In small arteries of Obese, PVAT-derived TNF-α excess, and an increased vascular expression of ET-1 and ETA receptor, contribute to the ET-1/NO system imbalance, by impairing tonic NO release. Reactive oxygen species excess, via NAD(P)H oxidase activation, induces the endothelial nitric oxide synthase uncoupling, which in turn generates superoxide and impairs NO production. The up-regulated JNK pathway represents a crucial molecular signalling involved in this process. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  3. Victims of Educator-Targeted Bullying: A Qualitative Study

    ERIC Educational Resources Information Center

    de Wet, Corene

    2010-01-01

    I report on findings emanating from in-depth personal interviews with victims of educator-targeted bullying (ETB). Qualitative content analysis was used to analyse the narratives. The findings indicate that the victims of ETB were exposed repeatedly over time to verbal, non-verbal, psychological, and physical abuse during and after school hours.…

  4. Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions.

    PubMed

    van der Waals, Marcelle J; Pijls, Charles; Sinke, Anja J C; Langenhoff, Alette A M; Smidt, Hauke; Gerritse, Jan

    2018-04-01

    The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.

  5. Design of ET(B) receptor agonists: NMR spectroscopic and conformational studies of ET7-21[Leu7, Aib11, Cys(Acm)15].

    PubMed

    Hewage, Chandralal M; Jiang, Lu; Parkinson, John A; Ramage, Robert; Sadler, Ian H

    2002-03-01

    In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.

  6. Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis.

    PubMed

    Sharifat, Narges; Mohammad Zadeh, Ghorban; Ghaffari, Mohammad-Ali; Dayati, Parisa; Kamato, Danielle; Little, Peter J; Babaahmadi-Rezaei, Hossein

    2017-01-01

    G protein-coupled receptor (GPCR) agonists through their receptors can transactivate protein tyrosine kinase receptors such as epidermal growth factor receptor and serine/threonine kinase receptors most notably transforming growth factor (TGF)-β receptor (TβRI). This signalling mechanism represents a major expansion in the cellular outcomes attributable to GPCR signalling. This study addressed the role and mechanisms involved in GPCR agonist, endothelin-1 (ET-1)-mediated transactivation of the TβRI in bovine aortic endothelial cells (BAECs). The in-vitro model used BAECs. Signalling intermediate phospho-Smad2 in the carboxy terminal was detected and quantified by Western blotting. ET-1 treatment of BAECs resulted in a time and concentration-dependent increase in pSmad2C. Peak phosphorylation was evident with 100 nm treatment of ET-1 at 4-6 h. TβRI antagonist, SB431542 inhibited ET-1-mediated pSmad2C. In the presence of bosentan, a mixed ET A and ET B receptor antagonist ET-1-mediated pSmad2C levels were inhibited. The ET-mediated pSmad2C was blocked by the protein synthesis inhibitor, cycloheximide. In BAECs, ET-1 via the ETB receptor is involved in transactivation of the TβRI. The transactivation-dependent response is dependent upon de novo protein synthesis. © 2016 Royal Pharmaceutical Society.

  7. Human cytochrome P450 isozymes in metabolism and health effects of gasoline ethers.

    PubMed

    Hong, J Y; Wang, Y Y; Mohr, S N; Bondoc, F Y; Deng, C

    2001-05-01

    To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE*), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Among them, MTBE is the most widely used. The possible adverse effect of MTBE in humans is a public concern, but the human enzymes responsible for metabolism of these gasoline ethers and the causes or factors for increased sensitivity to MTBE in certain individuals are totally unknown. This information is important to understanding the health effects of MTBE in humans and to assessing the human relevance of pharmacokinetics and toxicity data obtained from animals. In the present study, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and an exposure marker of MTBE. The activity is localized in the microsomal fraction but not in the cytosol. Formation of TBA in human liver microsomes is NADPH-dependent and is significantly inhibited by carbon monoxide, which inhibits cytochrome P450 (CYP) enzymes. These results provide strong evidence that CYP enzymes play a critical role in the metabolism of MTBE in human livers. Human liver is also active in the oxidative metabolism of 2 other gasoline ethers, ETBE and TAME. We observed a large interindividual variation in metabolizing these gasoline ethers in 15 microsomal samples prepared from normal human livers. The activity level (pmol metabolite/min/mg) ranged from 204 to 2,890 for MTBE; 179 to 3,134 for ETBE; and 271 to 8,532 for TAME. The microsomal activities in metabolizing MTBE, ETBE, and TAME correlated highly with each other (r = 0.91 to 0.96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the human liver microsomes showed that the highest degree of correlation was with CYP isoform 2A6 (CYP2A6)+ (r = 0.94 for MTBE, 0.95 for ETBE, and 0.90 for TAME), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. CYP2A6 coexpressed with human CYP reductase by a baculovirus expression system was also more active than CYP isoform 2E1 (CYP2E1) in the metabolism of MTBE, ETBE, and TAME. Kinetic studies on MTBE metabolism with human liver microsomes (n = 3) exhibited an apparent Michaelis constant (Km) of 28 to 89 microM and a maximum rate of metabolism (Vmax) of 215 to 783 pmol/min/mg. Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75% to 95%) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that, in human liver, CYP2A6 is a major enzyme responsible for metabolism of MTBE, ETBE, and TAME. Although CYP2E1 metabolizes diethyl ether and was previously suggested to be involved

  8. Stochastic bio-economic modeling of mastitis in Ethiopian dairy farms.

    PubMed

    Getaneh, Abraham Mekibeb; Mekonnen, Sefinew Alemu; Hogeveen, Henk

    2017-03-01

    Mastitis is an inflammation of the mammary gland that is considered to be one of the most frequent and costly diseases in the dairy industry. Also in Ethiopia, bovine mastitis is one of the most frequently encountered diseases of dairy cows. However, there was no study, so far, regarding the costs of clinical mastitis and only two studies were reported on costs of subclinical mastitis. Presenting an appropriate and complete study of the costs of mastitis will help farmers in making management decisions for mastitis control. The objective of this study was to estimate the economic effects of mastitis on Ethiopian market-oriented dairy farms. Market-oriented dairy farming is driven by making profits through selling milk in the market on a regular basis. A dynamic stochastic Monte-Carlo simulation model (bio-economic model) was developed taking into account both clinical and subclinical mastitis. Production losses, culling, veterinarian costs, treatment, discarded milk, and labour were the main cost factors which were modeled in this study. The annual incidence of clinical mastitis varied from 0 to 50% with a mean annual incidence of 21.6%, whereas the mean annual incidence of subclinical mastitis was 36.2% which varied between 0 and 75%. The total costs due to mastitis for a default farm size of 8 lactating cows were 6,709 ETB per year (838 ETB per cow per year). The costs varied considerably, with 5th and 95th percentiles of 109 ETB and 22,009 ETB, respectively. The factor most contributing to the total annual cost of mastitis was culling. On average a clinical case costs 3,631 ETB, varying from 0 to 12,401, whereas a sub clinical case costs 147 ETB, varying from 0 to 412. The sensitivity analysis showed that the total costs at the farm level were most sensitive for variation in the probability of occurrence of clinical mastitis and the probability of culling. This study helps farmers to raise awareness about the actual costs of mastitis and motivate them to timely treat and/or take preventive measures. As a results, the dairy industry will improve. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  10. Selective improvement of pulmonary arterial hypertension with a dual ETA/ETB receptors antagonist in the apolipoprotein E-/- model of PAH and atherosclerosis.

    PubMed

    Renshall, Lewis; Arnold, Nadine; West, Laura; Braithwaite, Adam; Pickworth, Josephine; Walker, Rachel; Alfaidi, Mabruka; Chamberlain, Janet; Casbolt, Helen; Thompson, A A Roger; Holt, Cathy; Iglarz, Marc; Francis, Sheila; Lawrie, Allan

    2018-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) is increasingly diagnosed in elderly patients who also have an increased risk of co-morbid atherosclerosis. Apolipoprotein E-deficient (ApoE -/- ) mice develop atherosclerosis with severe PAH when fed a high-fat diet (HFD) and have increased levels of endothelin (ET)-1. ET-1 receptor antagonists (ERAs) are used for the treatment of PAH but less is known about whether ERAs are beneficial in atherosclerosis. We therefore examined whether treatment of HFD-ApoE -/- mice with macitentan, a dual ET A /ET B receptor antagonist, would have any effect on both atherosclerosis and PAH. ApoE -/- mice were fed chow or HFD for eight weeks. After four weeks of HFD, mice were randomized to a four-week treatment of macitentan by food (30 mg/kg/day dual ET A /ET B antagonist), or placebo groups. Echocardiography and closed-chest right heart catheterization were used to determine PAH phenotype and serum samples were collected for cytokine analysis. Thoracic aortas were harvested to assess vascular reactivity using wire myography, and histological analyses were performed on the brachiocephalic artery and aortic root to assess atherosclerotic burden. Macitentan treatment of HFD-fed ApoE -/- mice was associated with a beneficial effect on the PAH phenotype and led to an increase in endothelial-dependent relaxation in thoracic aortae. Macitentan treatment was also associated with a significant reduction in interleukin 6 (IL-6) concentration but there was no significant effect on atherosclerotic burden. Dual blockade of ET A /ET B receptors improves endothelial function and improves experimental PAH but had no significant effect on atherosclerosis.

  11. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    In September 2016, EPA released the draft IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) for public comment and discussion. The draft assessment was reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science consultation materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ethyl Tertiary Butyl Ether are posted on this site. EPA is undertaking an new health assessment for ethyl tertiary butyl ether (ETBE) for the Integrated Risk Information System (IRIS). The outcome of this project will be a Toxicological Review and IRIS Summary of ETBE that will be entered on the IRIS database. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment process, i.e., hazard identification and dose-response evaluation. IRIS assessments are used nationally and internationally in combination with specific situational exposure assessment infor

  12. Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions.

    PubMed

    Bansal, Shyam Sunder; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2010-11-01

    The purpose of the current study was to evaluate the enthalpy relaxation behavior of valdecoxib (VLB) and etoricoxib (ETB) and their binary dispersions to derive relaxation constants and to understand their molecular mobilities. Solid dispersions of VLB and ETB were prepared with 1%, 2%, 5%, 10%, 15%, and 20% (w/w) concentrations of polyvinylpyrrolidone (PVP) in situ using differential scanning calorimetry (DSC). Enthalpy relaxation studies were carried out with isothermal storage periods of 1, 2, 4, 6, 16, and 24 hours at 40°C and 0% relative humidity (RH). PVP increased the glass transition temperature (T(g)) and decreased the enthalpy relaxation. Significant differences between two drugs were observed with respect to their relaxation behavior which may be due to differences in intermolecular interactions as predicted by Couchman-Karasz equation and molecular mobility. Kohlrausch-Williams-Watts equation was found to be inadequate in describing complex molecular relaxations in binary dispersions. The enthalpy relaxation behavior of VLB and ETB was found to be significantly different. PVP stabilized VLB significantly; however, its effect on ETB was negligible. The extent of enthalpy relaxation was found to correlate with hydrogen bonding tendency of the drug molecules. The outcome can help in rational designing of amorphous systems with optimal performance.

  13. Flux-driven simulations of turbulence collapse

    DOE PAGES

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...

    2015-03-12

    In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less

  14. Ideal MHD stability of double transport barrier plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.

    2008-01-01

    The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.

  15. The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection.

    PubMed

    Correa, Andre F; Bailão, Alexandre M; Bastos, Izabela M D; Orme, Ian M; Soares, Célia M A; Kipnis, Andre; Santana, Jaime M; Junqueira-Kipnis, Ana Paula

    2014-12-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Toxicokinetics of ethers used as fuel oxygenates.

    PubMed

    Dekant, W; Bernauer, U; Rosner, E; Amberg, A

    2001-10-15

    The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.

  17. Role of endothelin-1 and its receptors, ETA and ETB, in the survival of human vascular endothelial cells.

    PubMed

    Mikhail, Marianne; Vachon, Pierre H; D'Orléans-Juste, Pedro; Jacques, Danielle; Bkaily, Ghassan

    2017-10-01

    Our previous work showed the presence of endothelin-1 (ET-1) receptors, ET A and ET B , in human vascular endothelial cells (hVECs). In this study, we wanted to verify whether ET-1 plays a role in the survival of hVECs via the activation of its receptors ET A and (or) ET B (ET A R and ET B R, respectively). Our results showed that treatment of hVECs with ET-1 prevented apoptosis induced by genistein, an effect that was mimicked by treatment with ET B R-specific agonist IRL1620. Furthermore, blockade of ET B R with the selective ET B R antagonist A-192621 prevented the anti-apoptotic effect of ET-1 in hVECs. However, activation of ET A receptor alone did not seem to contribute to the anti-apoptotic effect of ET-1. In addition, the anti-apoptotic effect of ET B R was found to be associated with caspase 3 inhibition and does not depend on the density of this type of receptor. In conclusion, our results showed that ET-1 possesses an anti-apoptotic effect in hVECs and that this effect is mediated, to a great extent, via the activation of ET B R. This study revealed a new role for ET B R in the survival of hVECs.

  18. TRPC3- and ETB receptor-mediated PI3K/AKT activation induces vasogenic edema formation following status epilepticus.

    PubMed

    Kim, Ji-Eun; Kang, Tae-Cheon

    2017-10-01

    Status epilepticus (SE, a prolonged seizure activity) is a high risk factor of developing vasogenic edema, which leads to secondary complications following SE. In the present study, we investigated whether transient receptor potential canonical channel-3 (TRPC3) may link vascular endothelial growth factor (VEGF) pathway to NFκB/ET B receptor axis in the rat piriform cortex during vasogenic edema formation. Following SE, TRPC3 and ET B receptor independently activated phosphatidylinositol 3 kinase (PI3K)/AKT/eNOS signaling pathway. SN50 (a NFκB inhibitor) attenuated the up-regulations of eNOS, TRPC3 and ET B receptor expressions following SE, accompanied by reductions in PI3K/AKT phosphorylations. Inhibition of SE-induced VEGF over-expression by leptomycin B also abrogated PI3K and AKT phosphorylations, but not TRPC3 expression. Wortmannin (a PI3K inhibitor) and 3CAI (an AKT inhibitor) effectively inhibited up-regulation of eNOS expressions and vasogenic edema lesion following SE. These findings indicate that PI3K/AKT may be common down-stream molecules for TRPC3- and ET B receptor signaling pathways during vasogenic edema formation. In addition, the present data demonstrate for the first time that TRPC3 may integrate VEGF- and NFκB-mediated vasogenic edema formation following SE. Thus, we suggest that PI3K/AKT signaling pathway may be one of considerable therapeutic targets for vasogenic edema. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Does Deep Bradycardia Increase the Risk of Arrhythmias and Syncope in Endurance Athletes?

    PubMed

    Matelot, D; Schnell, F; Khodor, N; Endjah, N; Kervio, G; Carrault, G; Thillaye du Boullay, N; Carre, F

    2016-09-01

    The aim of this study was to evaluate whether endurance athletes who exhibit deep bradycardia are more prone to arrhythmias and reflex syncope than their non-bradycardic peers. 46 healthy men (ages 19-35) were divided into 3 groups based on whether they were sedentary (SED,<2 h/week) or endurance trained (ET,>6 h/week), and non-bradycardic (NB, resting heart rate (HR)≥60 bpm) or bradycardic (B, resting HR<50 bpm). Resting HR was lower in ETB vs. ETNB and SED (43.8±3.1, 61.3±3.3, 66.1±5.9 bpm, respectively; p<0.001). Thus, 16 SED, 13 ETNB and 17 ETB underwent resting echocardiography, maximal exercise test, tilt test (TT) and 24 h-Holter ECG. Subjects were followed-up during 4.7±1.1 years for training, syncope and cardiac events. Our results showed that incidence of arrhythmias and hypotensive susceptibility did not differ between groups. During follow-up, no episode of syncope or near-syncope was reported. However, cardio-inhibitory syncope occurrence tended to be higher in ETB. Left ventricular end-diastolic diameter index was increased in ETB vs. ETNB and was correlated with resting HR (r=- 0.64; p<0.001). As a result, athletes with deep bradycardia do not present more arrhythmias and more hypotensive susceptibility than their non-bradycardic peers. Cardiac enlargement and autonomic alteration both seem to be involved in an athlete's bradycardia. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Involvement of endothelin and ET(A) endothelin receptor in mechanical allodynia in mice given orthotopic melanoma inoculation.

    PubMed

    Fujita, Masahide; Andoh, Tsugunobu; Saiki, Ikuo; Kuraishi, Yasushi

    2008-02-01

    We investigated whether endothelin (ET) would be involved in skin cancer pain in mice. Orthotopic inoculation of B16-BL6 melanoma cells into the plantar region of the hind paw produced marked mechanical allodynia in C57BL/6 mice. Intraplantar injections of the ET(A)-receptor antagonist BQ-123 (0.3 - 3 nmol/site), but not the ET(B)-receptor antagonist BQ-788 (1 and 3 nmol/site), inhibited mechanical allodynia in mice with grown melanoma. In naive mice, an intraplantar injection of tumor extract (1 and 3 mg/site), which was prepared from the grown melanoma in the paw, produced mechanical allodynia, which was inhibited by BQ-123 and BQ-788 at doses of 3 and 10 nmol/site. An intraplantar injection of ET-1 (1 and 10 pmol/site) elicited licking behavior, which was increased in the melanoma-bearing hind paw. BQ-123 (3 and 10 nmol/site) inhibited licking induced by ET-1 (10 pmol/site). The level of mRNA of ET(A), but not ET(B), receptor, was significantly increased in the dorsal root ganglia on the inoculated side. Cultured B16-BL6 cells contained ET, and the melanoma mass increased the concentration of ET as it grew bigger. These results suggest that ET-1 and ET(A) receptor are at least partly involved in the induction of pain induced by melanoma cell inoculation.

  1. Understanding roles of E  ×  B flow and magnetic shear on the formation of internal and edge transport barriers using two-field bifurcation concept

    NASA Astrophysics Data System (ADS)

    Chatthong, B.; Onjun, T.

    2016-01-01

    A set of heat and particle transport equations with the inclusion of E  ×  B flow and magnetic shear is used to understand the formation and behaviors of edge transport barriers (ETBs) and internal transport barriers (ITBs) in tokamak plasmas based on two-field bifurcation concept. A simple model that can describe the E  ×  B flow shear and magnetic shear effect in tokamak plasma is used for anomalous transport suppression with the effect of bootstrap current included. Consequently, conditions and formations of ETB and ITB can be visualized and studied. It can be seen that the ETB formation depends sensitively on the E  ×  B flow shear suppression with small dependence on the magnetic shear suppression. However, the ITB formation depends sensitively on the magnetic shear suppression with a small dependence on the E  ×  B flow shear suppression. Once the H-mode is achieved, the s-curve bifurcation diagram is modified due to an increase of bootstrap current at the plasma edge, resulting in reductions of both L-H and H-L transition thresholds with stronger hysteresis effects. It is also found that both ITB and ETB widths appear to be governed by heat or particle sources and the location of the current peaking. In addition, at a marginal flux just below the L-H threshold, a small perturbation in terms of heat or density fluctuation can result in a transition, which can remain after the perturbation is removed due to the hysteresis effect.

  2. Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum.

    PubMed

    Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal

    2015-06-01

    Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.

  3. Model based design of electronic throttle control

    NASA Astrophysics Data System (ADS)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more precise and accurate.

  4. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease even in the absence of signs of fluid retention. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Nuclear Membranes ETB Receptors Mediate ET-1-induced Increase of Nuclear Calcium in Human Left Ventricular Endocardial Endothelial Cells.

    PubMed

    Jules, Farah; Avedanian, Levon; Al-Khoury, Johny; Keita, Ramatoulaye; Normand, Alexandre; Bkaily, Ghassan; Jacques, Danielle

    2015-07-01

    In fetal human left ventricular endocardial endothelial cells (EECLs), both plasma membrane (PM) ET(A)R and ET(B)R were reported to mediate ET-1-induced increase of intracellular calcium [Ca](i); however, this effect was mediated by ET(A)R in right EECs (EECRs). In this study, we verified whether, as for the PM, nuclear membranes (NMs) ET-1 receptors activation in EECLs and EECRs induce an increase of nuclear calcium ([Ca](n)) and if this effect is mediated through the same receptor type as in PM. Using a plasmalemma-perforated technique and 3D confocal microscopy, our results showed that, as in PM intact cells, superfusion of nuclei of both cell types with cytosolic ET-1 induced a concentration-dependent sustained increase of [Ca](n). In EECRs, the ET(A)R antagonist prevented the effect of ET-1 on [Ca](n) without affecting EECLs. However, in both cell types, the effect of cytosolic ET-1 on [Ca](n) was prevented by the ETBR antagonist. In conclusion, both NMs' ET(A)R and ET(B)R mediated the effect of cytosolic ET-1 on [Ca](n) in EECRs. In contrast, only NMs' ET(B)R activation mediated the effect of cytosolic ET-1 in EECLs. Hence, the type of NMs' receptors mediating the effect of ET-1 on [Ca](n) are different from those of PM mediating the increase in [Ca](i).

  6. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    PubMed

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Experimental validation of non-uniformity effect of the radial electric field on the edge transport barrier formation in JT-60U H-mode plasmas

    PubMed Central

    Kamiya, K.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    The turbulent structure formation, where strongly-inhomogeneous turbulence and global electromagnetic fields are self-organized, is a fundamental mechanism that governs the evolution of high-temperature plasmas in the universe and laboratory (e.g., the generation of edge transport barrier (ETB) of the H-mode in the toroidal plasmas). The roles of inhomogeneities of radial electric field (Er) are known inevitable. In this mechanism, whether the first derivative of Er (shear) or the second derivative of Er (curvature) works most is decisive in determining the class of nontrivial solutions (which describe the barrier structure). Here we report the experimental identification of the essential role of the Er-curvature on the ETB formation, for the first time, based on the high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature on ETB formation during ELM-free phase, but there is only a low correlation with the Er-shear value at the peak of normalized ion temperature gradient. Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas. PMID:27480931

  8. The Effects of Tooth Brushing on Whole Salivary Flow Rate in Older Adults

    PubMed Central

    Trottier, K.; Garrick, R.; Mascarenhas, T.; Jang, Y.

    2018-01-01

    Objectives (1) To determine whether manual (MTB), or electric, tooth brushing (ETB) modulates whole salivary flow rate in older adults who are free of systemic disease. (2) To determine the duration of the brushing-related modulation of salivary flow rate. (3) To compare salivary flow rate modulation associated with MTB and ETB. Method Twenty-one adults aged 60 years and older participated in two experimental sessions during which they used a manual, or electric, toothbrush to brush their teeth, tongue, and palate. Whole salivary flow rates were determined using the draining method before, during, and after brushing. Differences in salivary flow rates across time periods, and between conditions, were examined using paired samples t-tests applying a Holm-Bonferroni sequential procedure (pcorr < 0.0045). The relationship between tooth brushing and age with respect to maximum salivary flow rate increase was examined using Pearson's correlation coefficient (p < 0.05). Results/Conclusion Whole salivary flow rates increased during, and for up to 5 minutes following, tooth brushing in adults aged 60 years and older who were free of systemic disease. The salivary effects of MTB and ETB were not significantly different. A moderate, positive correlation was observed between tooth-brushing-related maximum salivary flow rate increase and age. PMID:29682540

  9. Subthreshold concentration of endothelin-1-enhanced, capsaicin-induced bronchoconstriction in anaesthetized guinea-pigs.

    PubMed

    Kanazawa, H; Fujiwara, H; Hirata, K; Yoshikawa, J

    1998-12-01

    An increasing number of studies have been performed to address a possible role for endothelin-1 (ET-1) as a significant mediator in asthma. However, the effects of subthreshold concentrations of ET-1, which cannot elicit bronchial smooth muscle contraction itself, in asthma has yet to be determined. This study determined these effects of ET-1 on capsaicin-induced bronchoconstriction in anaesthetized guinea-pigs. Aerosolized ET-1 administered at doses of 10(-9) M and higher induced a dose-dependent increase in pulmonary resistance, but ET-1 at 10(-10) M did not have any bronchoconstrictive effect. However, this subthreshold concentration of ET-1 potentiated capsaicin-induced bronchoconstriction. In addition, the potentiation of capsaicin-induced bronchoconstriction by this subthreshold concentration of ET-1 was completely abolished by BQ788 (ET(B) receptor antagonist), but not BQ123 (ET(A) receptor antagonists). Immunoreactive substance P (SP) levels in bronchoalveolar lavage fluid after capsaicin administration were significantly higher than those after solvent administration. However, ET-1 alone did not significantly stimulate immunoreactive SP release and ET-1 (10(-10) M) did not potentiate capsaicin-induced immunoreactive SP release. In contrast, ET-1 (10(-10) M) potentiated exogenous neurokinin A- and SP-induced bronchoconstriction. These findings suggest that a subthreshold concentration of endothelin-1 does not potentiate the tachykinin release induced by capsaicin but the airway smooth muscle contraction through endothelin-B receptors.

  10. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  11. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    In September 2016, the U.S. Environmental Protection Agency's (USEPA) released the draft Integrated Risk Information System (IRIS) Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE). Consistent with the 2013 IRIS Enhancements, draft IRIS assessments are released prior to external peer review for a 60-day public comment period and discussed at an upcoming public science meeting. Accordingly, the toxicological review, supplementary information, and other materials pertaining to this draft assessment are posted on this site. This material is being released for public viewing and comment prior to a public meeting, providing an opportunity for the IRIS Program to engage in early discussions with stakeholders and the public on data that may be used to identify adverse health effects and characterize exposure-response relationships.

  12. Catestatin (chromogranin A344-364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart

    PubMed Central

    Mazza, Rosa; Gattuso, Alfonsina; Mannarino, Cinzia; Brar, Bhawanjit K.; Barbieri, Sandra Francesca; Tota, Bruno; Mahata, Sushil K.

    2008-01-01

    The catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A352-372, bovine CgA344-364] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with β-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide. Cts reduced contractility by inhibiting phosphorylation of phospholamban (PLN). Furthermore, the Cts effect was abolished by pretreatment with either nitric oxide synthase (NG-monomethyl-l-arginine) or guanylate cyclase (ODQ) inhibitors, or an ETB receptor (ETBR) antagonist (BQ-788). Cts also noncompetitively inhibited the positive inotropic action of ISO. In addition, Cts inhibited the positive inotropic effect of ET-1, mediated by ETA receptors, and did not alter the negative inotropic ET-1 influence mediated by ETBR. Cts action through ETBR was further suggested when, in the presence of BQ-788, Cts failed to inhibit the positive inotropism of both ISO and ET-1 stimulation and PLN phosphorylation. We concluded that the cardiotropic actions of Cts, including the β-adrenergic and ET-1 antagonistic effects, support a novel role of this peptide as an autocrine-paracrine modulator of cardiac function, particularly when the stressed heart becomes a preferential target of both adrenergic and ET-1 stimuli. PMID:18469147

  13. Endothelin-1–Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups

    PubMed Central

    Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H.

    2016-01-01

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1–ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ETA (BQ123/BQ610) and ETB (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1–ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. PMID:27760762

  14. Epidemiological investigation of nosocomial outbreak of staphylococcal skin diseases in neonatal ward.

    PubMed

    Kurlenda, J; Grinholc, M; Krzysztoń-Russjan, J; Wiśniewska, K

    2009-05-01

    During a 1-month period, eight neonates developed staphylococcal skin disease diagnosed as a bullous impetigo in the maternity unit of the Provincial Hospital in Gdansk. An epidemiological investigation based on phenotyping and genotyping methods was performed. All neonates involved in the outbreak, their mothers and 15 staff members were screened for carriage of Staphylococcus aureus by nasal swabs. Isolated strains were compared with strains cultured from affected skin and purulent conjunctiva of infected newborns. Isolates were analyzed for the presence of the etA and etB genes using polymerase chain reaction and genotyped by pulsed-field gel electrophoresis (PFGE) and coa gene polymorphism. The analyzed S. aureus strains were methicillin-sensitive and could be divided into two groups according to antibiotyping, phage typing, coa polymorphism and PFGE pattern. The first group consisted of etA and etB negative strains, and the second one involved only the etB positive ones. Our results have shown that there were two different clusters of infection caused by two populations of S. aureus strains. Among the 15 medical staff members screened we have found seven carriers. However, phage typing revealed that distinct strains unrelated to the outbreak isolates were carried. Although we have not been able to establish the source of bacteria involved in the outbreak, our results suggest that for both groups, mothers could be the source of the infecting strains.

  15. Effect of endothelin-1 and endothelin receptor blockade on the release of microparticles.

    PubMed

    Jung, Christian; Lichtenauer, Michael; Wernly, Bernhard; Franz, Marcus; Goebel, Bjoern; Rafnsson, Arnar; Figulla, Hans-Reiner; Pernow, John

    2016-08-01

    Increased levels of endothelial cell microparticles (EMP) are known to reflect endothelial dysfunction (ED). In diabetes mellitus type 2 (T2DM), the expression of endothelin (ET)-1 is increased. As treatment with an ET-1 antagonist significantly inhibited atherosclerosis in animal models, we sought to investigate whether treatment with ET-1 antagonists affects EMP levels in vitro and in vivo in patients with T2DM. In vitro study: Human umbilical vein endothelial cells (HUVEC) were stimulated with ET-1 alone and ET-1 in combination with a dual ET-A and ET-B endothelin receptor blocker. In vivo study: Patients with T2DM were randomized to treatment with the ET receptor antagonist bosentan or placebo. After 4 weeks, the patients were re-examined and blood samples were obtained. EMP counts in supernatants and plasma samples were determined using flow cytometry. In vitro study: In supernatants of ET-1-stimulated HUVECs, the increased release of EMP was reduced significantly by co-incubation with an ET-1 receptor antagonist (e.g. CD31+/CD42b-EMP decreased from 37·1% ± 2·8 to 31·5% ± 2·8 SEM, P = 0·0078). In vivo study: No changes in EMP levels in blood samples of patients with T2DM were found after 4 weeks of bosentan treatment (n = 36, P = ns). Our in vitro results suggest that ET-1 stimulates the release of EMP from HUVECs via a receptor-dependent mechanism. Co-incubation with an endothelin receptor blocker abolished ET-1-dependent EMP release. However, treatment with bosentan for 4 weeks failed to alter EMP levels in patients with T2DM. Other factors seem to have influenced EMP release in patients with T2DM independent of ET-1 receptor-mediated mechanisms. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  16. First-in-Man Demonstration of Direct Endothelin-Mediated Natriuresis and Diuresis

    PubMed Central

    Hunter, Robert W.; Moorhouse, Rebecca; Farrah, Tariq E.; MacIntyre, Iain M.; Asai, Takae; Gallacher, Peter J.; Kerr, Debbie; Melville, Vanessa; Czopek, Alicja; Morrison, Emma E.; Ivy, Jess R.; Dear, James W.; Bailey, Matthew A.; Goddard, Jane; Webb, David J.

    2017-01-01

    Endothelin (ET) receptor antagonists are potentially novel therapeutic agents in chronic kidney disease and resistant hypertension, but their use is complicated by sodium and water retention. In animal studies, this side effect arises from ETB receptor blockade in the renal tubule. Previous attempts to determine whether this mechanism operates in humans have been confounded by the hemodynamic consequences of ET receptor stimulation/blockade. We aimed to determine the effects of ET signaling on salt transport in the human nephron by administering subpressor doses of the ET-1 precursor, big ET-1. We conducted a 2-phase randomized, double-blind, placebo-controlled crossover study in 10 healthy volunteers. After sodium restriction, subjects received either intravenous placebo or big ET-1, in escalating dose (≤300 pmol/min). This increased plasma concentration and urinary excretion of ET-1. Big ET-1 reduced heart rate (≈8 beats/min) but did not otherwise affect systemic hemodynamics or glomerular filtration rate. Big ET-1 increased the fractional excretion of sodium (from 0.5 to 1.0%). It also increased free water clearance and tended to increase the abundance of the sodium–potassium–chloride cotransporter (NKCC2) in urinary extracellular vesicles. Our protocol induced modest increases in circulating and urinary ET-1. Sodium and water excretion increased in the absence of significant hemodynamic perturbation, supporting a direct action of ET-1 on the renal tubule. Our data also suggest that sodium reabsorption is stimulated by ET-1 in the thick ascending limb and suppressed in the distal renal tubule. Fluid retention associated with ET receptor antagonist therapy may be circumvented by coprescribing potassium-sparing diuretics. PMID:28507171

  17. Endothelin-1 (ET-1) induces resistance to bortezomib in human multiple myeloma cells via a pathway involving the ETB receptor and upregulation of proteasomal activity.

    PubMed

    Vaiou, Maria; Pangou, Evanthia; Liakos, Panagiotis; Sakellaridis, Nikos; Vassilopoulos, George; Dimas, Konstantinos; Papandreou, Christos

    2016-10-01

    Bortezomib (BTZ) is used for the treatment of multiple myeloma (MM). However, a significant proportion of patients may be refractory to the drug. This study aimed to investigate whether the endothelin (ET-1) axis may act as an escape mechanism to treatment with bortezomib in MM cells. NCI-H929 and RPMI-8226 (human MM cell lines) were cultured with or without ET-1, BTZ, and inhibitors of the endothelin receptors. ET-1 levels were determined by ELISA, while the protein levels of its receptors and of the PI3K and MAPK pathways' components by western blot. Effects of ET-1 on cell proliferation were studied by MTT and on the ubiquitin proteasome pathway by assessing the chymotryptic activity of the 20S proteasome in cell lysates. Endothelin receptors A and B (ETAR and ETBR, respectively) were found to be expressed in both cell lines, with the RPMI-8226 cells that are considered resistant to BTZ, expressing higher levels of ETBR and in addition secreting ET-1. Treatment of the NCI-H929 cells with ET-1 increased proliferation, while co-incubation of these cells with ET-1 and BTZ decreased BTZ efficacy with concomitant upregulation of 20S proteasomal activity. Si-RNA silencing or chemical blockade of ETBR abrogated the protective effects of ET-1. Finally, data suggest that the predominant signaling pathway involved in ET-1/ETBR-induced BTZ resistance in MM cells may be the MAPK pathway. Our data suggest a possible role of the ET-1/ETBR axis in regulating the sensitivity of MM cells to BTZ. Thus, combining bortezomib with strategies to target the ET-1 axis could prove to be a novel promising therapeutic approach in MM.

  18. Software architecture for a distributed real-time system in Ada, with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Olsen, Douglas R.; Messiora, Steve; Leake, Stephen

    1992-01-01

    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.

  19. Prevalence of genes encoding extracellular virulence factors among meticillin-resistant Staphylococcus aureus isolates from the University Hospital, Olomouc, Czech Republic.

    PubMed

    Sauer, P; Síla, J; Stosová, T; Vecerová, R; Hejnar, P; Vágnerová, I; Kolár, M; Raclavsky, V; Petrzelová, J; Lovecková, Y; Koukalová, D

    2008-04-01

    A rather fast and complicated progression of an infection caused by some strains of Staphylococcus aureus could be associated with the expression and co-action of virulence factor complexes in these strains. This study screened the antibiotic susceptibility and prevalence of virulence markers in isolates of meticillin-resistant S. aureus (MRSA) obtained from patients hospitalized at the University Hospital in Olomouc, Czech Republic. A total of 100 isolates was screened for 13 genes encoding extracellular virulence determinants (tst, pvl, eta, etb, sea, seb, sec, sed, see, seg, seh, sei and sej) and for their distribution in sample types. Eighty-nine isolates were positive for at least one of the genes. Genes for etb, pvl, see and seh were not detected in any of the MRSA isolates. No statistically significant differences in the occurrence of the determinants studied among sample types were found.

  20. Virulence Factors of Staphylococcus aureus Isolates in an Iranian Referral Children's Hospital.

    PubMed

    Sabouni, Farah; Mahmoudi, Shima; Bahador, Abbas; Pourakbari, Babak; Sadeghi, Reihaneh Hosseinpour; Ashtiani, Mohammad Taghi Haghi; Nikmanesh, Bahram; Mamishi, Setareh

    2014-04-01

    The clinical importance of Staphylococcus aureus (S. aureus) is attributed to notable virulence factors, surface proteins, toxins, and enzymes as well as the rapid development of drug resistance. The aim of this study was to compare the occurrence of virulence factors produced by S. aureus strains isolated from children in an Iranian referral children's hospital. The presence of genes encoding for the enterotoxins A (sea), B (seb), C (sec), D (sed), TSST-1 (tsst), exfoliative toxin A (eta), and exfoliative toxin B (etb) were detected by Multiplex polymerase chain reaction (PCR) using specific primers. In addition, the standardized Kirby-Bauer disc-diffusion method was performed on Mueller-Hinton agar. In total, 133 S. aureus isolates were obtained from different patients. Of these S. aureus isolates, 64 (48%) were methicillin-resistant S. aureus (MRSA), and all of these tested positive for the mecA gene. Regarding the classical enterotoxin genes, sea gene (40.6%) was the most prevalent followed by seb (19.6%), tsst (12.8%), eta (11.3%), etb (9%), sed (4.5%), and sec (3%). Among methicillin-susceptible S. aureus (MSSA) isolates, seb and tsst were the more prevalent toxins in comparison with MRSA isolates (p < 0.05), while the frequency of sea, sed, eta, and etb genes were higher among MRSA isolates (p > 0.05). In our study enterotoxin A was produced by 40.6% of the isolates (48% from MRSA and 33% from MSSA isolates) which was higher than in previous reports. According to our results, strict hygiene and preventative measures during food processing are highly recommended.

  1. The Development of Differential Use of Inner and Outer Face Features in Familiar Face Identification.

    ERIC Educational Resources Information Center

    Campbell, Ruth; And Others

    1995-01-01

    Studied 4- to 10-year-olds' familiarity judgments of peers. Found that, contrary to adults, external facial features were key. Also found that the switch to adult recognition pattern takes place after the ninth year. (ETB)

  2. U.S. EPA, Pesticides, Label, DITHIOPYR 0.172 PLUS, 7/10/2009

    EPA Pesticide Factsheets

    2011-04-13

    ... MS. NC, se, TX Crowfootgrass. ... V::~:;esi:o~~:~~t~~:~~t~s::~w~oison ;::::lyrfc~~~;~et~:b= ~~ ~s:::,,ds:: :: :gO~~f6~~ (~; ...

  3. Contamination of Ethiopian paper currency notes from various food handlers with E. coli.

    PubMed

    Hiko, Adem; Abdata, Kasahun; Muktar, Yimer; Woyesa, Mezene; Mohammed, Abdela

    2016-01-01

    Contamination rate of Ethiopian paper currency notes handled by various food handlers with Escherichia coli and antimicrobial susceptibility of the isolates was assessed. A total of 384 Ethiopian Birr (ETB) notes were randomly sampled from meat handlers at butchers, bread and the related food handlers at cafeteria, fruit and vegetables handlers at supermarket, and milk sellers both at open market and dairy station. Fifty control new currencies were also sampled from Commercial Bank of Ethiopia. Both surfaces of the currency were swabbed using wet sterile cotton. The swab was overnight incubated in buffered peptone water. A loop full was streaked on eosin methylene blue agar and followed by biochemical test on presumptive E. coli colonies. Randomly selected isolates were exposed to chloramphenicol (C-30 µg), neomycin (N-30 µg), oxytetracycline (OT-30 µg), polymyxin-B (PB-300 IU) and trimethoprim-sulfamethoxazole (SXT-1.25/23.75/µg) susceptibility using disc diffusion techniques. E. coli was not isolated from currency used as control. A total of 288 (75 %) currency notes were found carrying E. coli. E. coli prevalence was ranges from 67.2 % at open market milk sellers to 87.2 % at dairy station milk sellers; from 64.8 % on ETB 100 to 82.9 % on ETB 1. Differences were not observed in E. coli prevalence on currency notes from among almost all food handlers (P > 0.05). Susceptibility of tested isolates to each chloramphenicol, oxytetracycline and trimethoprim-sulfamethoxazole was 100 %, and to polymyxin-B was 97.3 %. High resistance (83.7 %) was observed to neomycin. The finding indicates, contaminated food can be a source of E. coli for further contamination of currency which again transfer through various foods ready for consumption.

  4. Thermodynamic aspects of reformulation of automotive fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zudkevitch, D.; Murthy, A.K.S.; Gmehling, J.

    1995-09-01

    A study of procedures for measuring and predicting the RVP and the initial vapor emissions of reformulated gasoline blends which contain one or more oxygenated compounds, viz., Ethanol, MTBE, ETBE, and TAME is discussed. Two computer simulation methods were programmed and tested. In one method, Method A, the D-86 distillation data on the blend are used for predicting the blend`s RVP from a simulation of the Mini RVPE (RVP Equivalent) experiment. The other method, Method B, relies on analytical information (PIANO analyzes) on the nature of the base gasoline and utilizes classical thermodynamics for simulating the same RVPE, Mini experiment.more » Method B, also, predicts the composition and other properties of the initial vapor emission from the fuel. The results indicate that predictions made with both methods agree very well with experimental values. The predictions with Method B illustrate that the admixture of an oxygenate to a gasoline blend changes the volatility of the blend and, also, the composition of the vapor emission. From the example simulations, a blend with 10 vol % ethanol increases the RVP by about 0.8 psi. The accompanying vapor emission will contain about 15% ethanol. Similarly, the vapor emission of a fuel blend with 11 vol % MTBE was calculated to contain about 11 vol % MTBE. Predictions of the behavior of blends with ETBE and ETBE+Ethanol are also presented and discussed. Recognizing that quite some efforts have been invested in developing empirical correlations for predicting RVP, the writers consider the purpose of this paper to be pointing out that the methods of classical thermodynamics are adequate and that there is a need for additional work in developing certain fundamental data that are still lacking.« less

  5. Electron transport in nano-scaled piezoelectronic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  6. Directing Energy Transfer in Panchromatic Platinum Complexes for Dual Vis-Near-IR or Dual Visible Emission from σ-Bonded BODIPY Dyes.

    PubMed

    Geist, Fabian; Jackel, Andrej; Irmler, Peter; Linseis, Michael; Malzkuhn, Sabine; Kuss-Petermann, Martin; Wenger, Oliver S; Winter, Rainer F

    2017-01-17

    We report on the platinum complexes trans-Pt(BODIPY)(8-ethynyl-BODIPY)(PEt 3 ) 2 (EtBPtB) and trans-Pt(BODIPY)(4-ethynyl-1,8-naphthalimide)(PR 3 ) 2 (R = Et, EtNIPtB-1; R = Ph, EtNIPtB-2), which all contain two different dye ligands that are connected to the platinum atom by a direct σ bond. The molecular structures of all complexes were established by X-ray crystallography and show that the different dye ligands are in either a coplanar or an orthogonal arrangement. π-stacking and several CH···F and short CH···π interactions involving protons at the phosphine substituents lead to interesting packing motifs in the crystal. The complexes feature several strong absorptions (ε = 3.2 × 10 5 -5.5 × 10 5 M -1 cm -1 ) that cover the regime from 350 to 480 nm (EtNIPtB-1 and EtNIPtB-2) or from 350 to 580 nm (EtBPtB). Besides the typical absorption bands of both kinds of attached dyes, they also feature an intense band near 400-420 nm, which is assigned by time-dependent density functional theory calculations to a higher-energy transition within the ethynyl-BODIPY (EtB) ligand or to charge transfer between the BODIPY (B) and naphthalimide (NI) chromophores. All complexes show dual fluorescence and phosphorescence emission from either the B (EtNIPtB-1 and EtNIPtB-2) or EtB (EtBPtB) ligand with a maximum phosphorescence quantum yield of 41% for EtNIPtB-1. The latter seems to be the highest reported value for room temperature phosphorescence from a BODIPY dye. The complete quenching of the emission from the chromophore absorbing at the higher energy and the appearance of the corresponding absorption bands in the fluorescence and phosphorescence excitation spectra indicate complete and rapid energy transfer to the chromophore with the lower-energy excited state, i.e., EtNI → B in EtNIPtB-1 and EtNIPtB-2 and B → EtB in EtBPtB. The latter process was further investigated by transient absorption spectroscopy, indicating that energy transfer is complete within 0.6 ns. EtNIPtB-1 catalyzes the photooxidation of 1,5-dihydroxynaphthalene with photogenerated 1 O 2 to Juglone at a much faster rate than methylene blue but with only modest quantum yields of 37% and with the onset of photodegradation after 60 min.

  7. Proof Construction: Adolescent Development from Inductive to Deductive Problem-Solving Strategies.

    ERIC Educational Resources Information Center

    Foltz, Carol; And Others

    1995-01-01

    Studied 100 adolescents' approaches to problem-solving proofs and reasoning competence tasks. Found that a formal level of reasoning competence is associated with a deductive approach. Results support the notion of a cognitive development progression from an inductive approach to a deductive approach. (ETB)

  8. Bosentan, an endothelin receptor antagonist, ameliorates collagen-induced arthritis: the role of TNF-α in the induction of endothelin system genes.

    PubMed

    Donate, Paula B; Cunha, Thiago M; Verri, Waldiceu A; Junta, Cristina M; Lima, Flavia O; Vieira, Silvio M; Peres, Rafael S; Bombonato-Prado, Karina F; Louzada, Paulo; Ferreira, Sergio H; Donadi, Eduardo A; Passos, Geraldo A S; Cunha, Fernando Q

    2012-04-01

    Endothelins (ETs) are involved in several inflammatory events. The present study investigated the efficacy of bosentan, a dual ETA/ETB receptor antagonist, in collagen-induced arthritis (CIA) in mice. CIA was induced in DBA/1J mice. Arthritic mice were treated with bosentan (100 mg/kg) once a day, starting from the day when arthritis was clinically detectable. CIA progression was assessed by measurements of visual clinical score, paw swelling and hypernociception. Histological changes, neutrophil infiltration and pro-inflammatory cytokines were evaluated in the joints. Gene expression in the lymph nodes of arthritic mice was evaluated by microarray technology. PreproET-1 mRNA expression in the lymph nodes of mice and in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time PCR. The differences were evaluated by one-way ANOVA or Student's t test. Oral treatment with bosentan markedly ameliorated the clinical aspects of CIA (visual clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage, leukocyte infiltration and pro-inflammatory cytokine levels (IL-1β, TNFα and IL-17) in the joint tissues. Changes in gene expression in the lymph nodes of arthritic mice returned to the levels of the control mice after bosentan treatment. PreproET mRNA expression increased in PBMCs from rheumatoid arthritis (RA) patients but returned to basal level in PBMCs from patients under anti-TNF therapy. In-vitro treatment of PBMCs with TNFα upregulated ET system genes. These findings indicate that ET receptor antagonists, such as bosentan, might be useful in controlling RA. Moreover, it seems that ET mediation of arthritis is triggered by TNFα.

  9. Endothelin receptor antagonist macitentan or deletion of mouse mast cell protease 4 delays lesion development in atherosclerotic mice.

    PubMed

    Houde, Martin; Desbiens, Louisane; Schwertani, Adel; Pejler, Gunnar; Iglarz, Marc; D'Orléans-Juste, Pedro

    2016-08-15

    To determine the impact of mixed endothelin receptor antagonist and mouse mast cell protease-4 (mMCP-4) in the development of atherosclerosis in the mouse model. Apolipoprotein E (ApoE) KO mice were crossed with mMCP-4 KO mice to generate ApoE/mMCP-4 double KO mice. Atherosclerosis was induced with a normal- or high-fat diet for 12, 27 or 52weeks. Macitentan (30mg/kg/day), a dual ETA/ETB receptor antagonist, was given orally for 6weeks (27week protocol). At sacrifice, aortas and brachiocephalic arteries (BCAs) were collected. En face Sudan IV staining was performed on aortas and BCA sections were subjected to Masson's trichrome stain and α-smooth muscle actin labeling. Under normal diet, both macitentan treatment and the absence of mMCP-4 reduced the development of aortic atherosclerotic lesions in 27-week old ApoE KO mice, but mMCP-4 deletion failed to maintain this effect on 52-week old mice. Under high-fat diet (WD), macitentan, but not the absence of mMCP-4, reduced aortic lesion development in ApoE KO mice. On BCA lesions of 27-week old WD mice, macitentan treatment had a small impact while mMCP-4 deletion showed improved features of plaque stability. These results suggest that the inhibition of mMCP-4 reduces lesion spreading in the earlier phases of atherosclerosis development and can help stabilise the more advanced plaque. Macitentan treatment was more effective to prevent lesion spreading but did not improve plaque features to the same extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A case for biofuels in aviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown atmore » major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.« less

  11. Virulence Factor Genes in Staphylococcus aureus Isolated From Diabetic Foot Soft Tissue and Bone Infections.

    PubMed

    Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A

    2018-03-01

    The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).

  12. The lung in liver disease: old problem, new concepts.

    PubMed

    Fallon, Michael B; Zhang, Junlan

    2013-01-01

    Liver dysfunction has been recognized to influence the lung in many different clinical situations, although the mechanisms for these effects are not well understood. One increasingly recognized interaction, the hepatopulmonary syndrome (HPS) occurs in the context of cirrhosis and results when alveolar microvascular dilation causes arterial gas exchange abnormalities and hypoxemia. HPS occurs in up to 30% of patients with cirrhosis and significantly increases mortality in affected patients. Currently, liver transplantation is the only curative therapy. Experimental biliary cirrhosis induced by common bile duct ligation (CBDL) in the rat reproduces the pulmonary vascular and gas exchange abnormalities of human HPS and has been contrasted with other experimental models of cirrhosis in which HPS does not develop. Microvascular dilation, intravascular monocyte infiltration, and angiogenesis in the lung have been identified as pathologic features that drive gas exchange abnormalities in experimental HPS. Our recent studies have identified biliary epithelium and activation and interaction between the endothelin-1 (ET-1)/endothelial endothelin B (ETB) receptor and CX3CL1/CX3CR1 pathways as important mechanisms for the observed pathologic events. These studies define novel interactions between the lung and liver in cirrhosis and may lead to effective medical therapies.

  13. ABT-627, an endothelin ET(A) receptor-selective antagonist, attenuates tactile allodynia in a diabetic rat model of neuropathic pain.

    PubMed

    Jarvis, M F; Wessale, J L; Zhu, C Z; Lynch, J J; Dayton, B D; Calzadilla, S V; Padley, R J; Opgenorth, T J; Kowaluk, E A

    2000-01-24

    Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (

  14. Effects of endothelin on phospholipases and generation of second messengers in cat iris sphincter and SV-CISM-2 cells.

    PubMed

    Abdel-Latif, A A; Ding, K H; Akhtar, R A; Yousufzai, S Y

    1996-09-01

    In both immortalized cat iris sphincter smooth muscle cells (SV-CISM-2 cells) and cat iris sphincter, endothelin-1 (ET-1) markedly increased the activities of phospholipase A2 (PLA2), as measured by the release of arachidonic acid (AA), phospholipase C (PLC), as measured by the production of inositol trisphosphate (IP3), and phospholipase D (PLD), as measured by the formation of phosphatidylethanol (PEt). In SV-CISM-2 cells, ET-1 induced AA release, IP3 production and PEt formation in a dose- and time-dependent manner. The dose-response studies showed that the peptide is more potent in activating PLD (EC50 = 1.2 nM) than in activating PLC (EC50 = 1.5 nM) or PLA2 (EC50 = 1.7 nM). The time course studies revealed that ET-1 activated the phospholipases in a temporal sequence in which PLA2 was stimulated first (t1/2 = 12 s), followed by PLC (t1/2 = 48 s) and lastly PLD (t1/2 = 106 s). In SV-CISM-2 cells, in contrast to the intact iris sphincter, sarafotoxin-c, an ETB receptor agonist, had no effect on the phospholipases, and indomethacin, a cyclooxygenase inhibitor, had no effect on the stimulatory effect of ET-1 on the phospholipases. These results suggest that in this smooth muscle cell line, ET-1 interacts with the ETA receptor subtype to activate, via G proteins, phospholipases A2, C and D in a temporal sequence.

  15. 75 FR 63827 - Integrated Risk Information System (IRIS); Request for Chemical Substance Nominations for 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ........... 156-60-5 1,4-dioxane (oral) 123-91-1 ethylene glycol monobutyl ether 111-76-2 (EGBE...-dichlorobenzene 106-46-7 1,2-dichloroethane (ethylene 107-06-2 dichloride). dichloromethane (methylene 75-09-2... 131-18-0 ethanol 64-17-5 ethyl tertiary butyl ether (ETBE). 637-92-3 ethylbenzene 100-41-4 ethylene...

  16. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for ETBE to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in comments on the following: Draft literature search strategies The approach for identifying studies The screening process for selecting pertinent studies The resulting list of pertinent studies Preliminary evidence tables The process for selecting studies to include in evidence tables The quality of the studies in the evidence tables The literature search strategy, which describes the processes for identifying scientific literature, contains the studies that EPA considered and selected to include in the evidence tables. The preliminary evidence tables and exposure-response arrays present the key study data in a standardized format. The evidence tables summarize the available critical scientific literature. The exposure-response figures provide a graphical representation of the responses at different levels of exposure for each study in the evidence table. The draft Toxicological Review of Ethyl Tertiary Butyl Ether provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to ethyl tertiary butyl ether.

  17. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1.

    PubMed

    Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B

    2014-07-01

    Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [(3)H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy. Copyright © 2014 the American Physiological Society.

  18. The revenue generated from clinical chemistry and hematology laboratory services as determined using activity-based costing (ABC) model.

    PubMed

    Adane, Kasaw; Abiy, Zenegnaw; Desta, Kassu

    2015-01-01

    The rapid and continuous growth of health care cost aggravates the frequently low priority and less attention given in financing laboratory services. The poorest countries have the highest out-of-pocket spending as a percentage of income. Higher charges might provide a greater potential for revenue. If fees raise quality sufficiently, it can enhance usage. Therefore, estimating the revenue generated from laboratory services could help in capacity building and improved quality service provision. Panel study design was used to determine revenue generated from clinical chemistry and hematology services at Tikur Anbessa Specialized Teaching Hospital, Addis Ababa, Ethiopia. Activity-Based Costing (ABC) model was used to determine the true cost of tests performed from October 2011 to December 2011 in the hospital. The principle of Activity-based Costing is that activities consume resources and activities consumed by services which incur the costs and hence service takes the cost of resources. All resources with costs are aggregated with the established casual relationships. The process maps designed was restructured in consultation with the senior staffs working and/or supervising the laboratory and pretested checklists were used for observation. Moreover, office documents, receipts and service bills were used while collecting data. The amount of revenue collected from services was compared with the cost of each subsequent test and the profitability or return on investment (ROI) of services was calculated. Data were collected, entered, cleaned, and analyzed using Microsoft Excel 2007 software program and Statistical Software Package for Social Sciences version 19 (SPSS). Paired sample t test was used to compare the price and cost of each test. P-value less than 0.05 were considered as statistically significant. A total of 25,654 specimens were analyzed during 3 months of regular working hours. The total numbers of clinical chemistry and hematology tests performed during the study period were 45,959 (66.1 %) and 23,570 (33.9 %), respectively. Only 274, 386 (25.3 %) Ethiopian Birr (ETB) was recovered from the total cost of 1,086,008.09 ETB incurred on clinical chemistry and hematology laboratory tests. The result showed that, about 133,821 (12.32 %) ETB was revenue not collected from out-of-pocket payments that was paid for the services as a result of under pricing. The result showed that 18 out of 20 laboratory tests were under priced. The cost burden related to free Anti Retro-viral Therapy (ART) services was 285,979.82 (26.3 %) ETB. The cost per test estimated was significantly different to the existing price. About 90 % of the tests were under priced. This information could warn the hospital to reconsider resetting prices of these tests profitability ration less than 1. The revenue collected could help to build capacity, upscale quality, and sustainable service delivery.

  19. Survey of Genes Encoding Staphylococcal Enterotoxins, Toxic Shock Syndrome Toxin 1, and Exfoliative Toxins in Members of the Staphylococcus sciuri Group

    PubMed Central

    Dakić, Ivana; Vuković, Dragana; Stepanović, Srdjan; Hauschild, Tomasz; Ježek, Petr; Petráš, Petr; Morrison, Donald

    2005-01-01

    Genes encoding staphylococcal enterotoxins (sea to see, seg, and seh), toxic shock syndrome toxin 1 (tst), and exfoliative toxins (eta and etb) were not detected in a large panel of 48 Staphylococcus sciuri group isolates tested. This strongly suggests that production of the staphylococcal exotoxins by these bacteria is highly unlikely. PMID:16145164

  20. 26 CFR 1.40-1 - Questions and answers relating to the meaning of the term “qualified mixture” in section 40(b)(1).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) if such product is produced in a chemical reaction between alcohol and either gasoline or a special... ether (ETBE), a compound derived from ethanol (a qualified alcohol), in a chemical reaction in which... the alcohol is no longer present as a separate chemical in the final product, provided that there is...

  1. 26 CFR 1.40-1 - Questions and answers relating to the meaning of the term “qualified mixture” in section 40(b)(1).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) if such product is produced in a chemical reaction between alcohol and either gasoline or a special... ether (ETBE), a compound derived from ethanol (a qualified alcohol), in a chemical reaction in which... the alcohol is no longer present as a separate chemical in the final product, provided that there is...

  2. 26 CFR 1.40-1 - Questions and answers relating to the meaning of the term “qualified mixture” in section 40(b)(1).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) if such product is produced in a chemical reaction between alcohol and either gasoline or a special... ether (ETBE), a compound derived from ethanol (a qualified alcohol), in a chemical reaction in which... the alcohol is no longer present as a separate chemical in the final product, provided that there is...

  3. 26 CFR 1.40-1 - Questions and answers relating to the meaning of the term “qualified mixture” in section 40(b)(1).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) if such product is produced in a chemical reaction between alcohol and either gasoline or a special... ether (ETBE), a compound derived from ethanol (a qualified alcohol), in a chemical reaction in which... the alcohol is no longer present as a separate chemical in the final product, provided that there is...

  4. 26 CFR 1.40-1 - Questions and answers relating to the meaning of the term “qualified mixture” in section 40(b)(1).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) if such product is produced in a chemical reaction between alcohol and either gasoline or a special... ether (ETBE), a compound derived from ethanol (a qualified alcohol), in a chemical reaction in which... the alcohol is no longer present as a separate chemical in the final product, provided that there is...

  5. Development and Validation of Extract the Base: An English Derivational Morphology Test for Third through Fifth Grade Monolingual Students and Spanish-Speaking English Language Learners

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.; Huggins, A. Corinne; Carlo, Maria; Malabonga, Valerie; Kenyon, Dorry; Louguit, Mohammed; August, Diane

    2012-01-01

    This study describes the development and validation of the Extract the Base test (ETB), which assesses derivational morphological awareness. Scores on this test were validated for 580 monolingual students and 373 Spanish-speaking English language learners (ELLs) in third through fifth grade. As part of the validation of the internal structure,…

  6. A field trial of production and financial consequences of helminthosis control in sheep production in Ethiopia.

    PubMed

    Tibbo, M; Aragaw, K; Philipsson, J; Malmfors, B; Näsholm, A; Ayalew, W; Rege, J E O

    2008-04-17

    We used a partial-budget analysis to evaluate profitability of different management strategies of three genotypes of sheep in a 2 x 2 x 3 factorial experiment conducted at Debre Berhan research station in the central highlands of Ethiopia. This involved two anthelmintic-treatment levels (treated vs. non-treated), two supplementary nutrition levels (protein-energy supplementation yes/no) and three genotypes: indigenous Menz (n=40), 50% Awassi x 50% Menz crosses (n=38) and 75% Awassi x 25% Menz crosses (n=31). All sheep were exposed to natural sub-clinical helminthosis challenge. Supplemented sheep were offered a concentrate mix daily on an individual basis. Anthelmintic-treated sheep were drenched with fenbendazole against nematodes and with triclabendazole against trematodes. Data were collected during the experimental period (for 10 months from approximately 1 year of age) on feed intake, live weight, eggs per gram (EPG) of faeces, packed-cell volume (PCV), wool weight, and adult-worm burden. Actual market input and output prices were recorded. Supplemented sheep had significantly higher marginal profit (MP) per sheep than non-supplemented sheep (ETB 33 vs. 4). Likewise, anthelmintic treated sheep performed significantly better than their non-treated contemporaries (MP=ETB 28 vs. 8). The 75% Awassi crosses were least profitable.

  7. Global two-fluid turbulence simulations of L-H transitions and edge localized mode dynamics in the COMPASS-D tokamak

    NASA Astrophysics Data System (ADS)

    Thyagaraja, A.; Valovič, M.; Knight, P. J.

    2010-04-01

    It is shown that the transition from L-mode to H-mode regimes in tokamaks can be reproduced using a two-fluid, fully electromagnetic, plasma model when a suitable particle sink is added at the edge. Such a model is implemented in the CUTIE code [A. Thyagaraja et al., Eur. J. Mech. B/Fluids 23, 475 (2004)] and is illustrated on plasma parameters that mimic those in the COMPASS-D tokamak with electron cyclotron resonance heating [Fielding et al., Plasma Phys. Contr. Fusion 42, A191 (2000)]. In particular, it is shown that holding the heating power, current, and magnetic field constant and increasing the fuelling rate to raise the plasma density leads spontaneously to the formation of an edge transport barrier (ETB) which occurs going from low to higher density experimentally. In the following quiescent period in which the stored energy of the plasma rises linearly with time, a dynamical transition occurs in the simulation with the appearance of features resembling strong edge localized modes. The simulation qualitatively reproduces many features observed in the experiment. Its relative robustness suggests that some, at least of the observed characteristics of ETBs and L-H transitions, can be captured in the global electromagnetic turbulence model.

  8. User experience analysis of e-TB Manager, a nationwide electronic tuberculosis recording and reporting system in Ukraine.

    PubMed

    Konduri, Niranjan; Sawyer, Kelly; Nizova, Nataliya

    2017-04-01

    Ukraine has successfully implemented e-TB Manager nationwide as its mandatory national tuberculosis registry after first introducing it in 2009. Our objective was to perform an end-of-programme evaluation after formal handover of the registry administration to Ukraine's Centre for Disease Control in 2015. We conducted a nationwide, cross-sectional, anonymous, 18-point user experience survey, and stratified the registry's transaction statistics to demonstrate usability. Contrary to initial implementation experience, older users (aged >50 years), often with limited or no computer proficiency prior to using the registry, had significantly better user experience scores for at least six of the 12 measures compared to younger users (aged 18-29 years). Using the registry for >3 years was associated with significantly higher scores for having capacity, adequacy of training received and satisfaction with the registry. Of the 5.9 million transactions over a 4-year period, nine out of 24 oblasts (regions) and Kiev city accounted for 62.5% of all transactions, and corresponded to 59% of Ukraine's tuberculosis burden. There were 437 unique active users in 486 rayons (districts) of Ukraine, demonstrating extensive reach. Our key findings complement the World Health Organization and European Respiratory Society's agenda for action on digital health to help implement the End TB Strategy.

  9. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    PubMed

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were contrasted by ETA/BRA treatment in both cultured cell types. ET-1 seems to induce the M2 phenotype in cultured human macrophages, a process apparently contrasted by the action of the ETA/BRA, suggesting possible clinical implications in those fibrotic diseases characterized by increased ET-1 concentrations, such as systemic sclerosis but also type 2 diabetes.

  10. HIV-positive pregnant women attending the prevention of mother-to-child transmission of HIV/AIDS (PMTCT) services in Ethiopia: economic productivity losses across urban-rural settings.

    PubMed

    Zegeye, Elias Asfaw; Mbonigaba, Josue; Kaye, Sylvia Blanche

    2018-06-01

    HIV/AIDS impacts significantly on pregnant women and on children in Ethiopia. This impact has a multiplier effect on household economies and on productivity losses, and is expected to vary across rural and urban settings. Applying the human capital approach to data collected from 131 respondents, this study estimated productivity losses per HIV-positive pregnant woman-infant pair across urban and rural health facilities in Ethiopia, which in turn were used to estimate the national productivity loss. The study found that the annual productivity loss per woman-infant pair was Ethiopian birr (ETB) 7,433 or United States dollar (US$) 378 and ETB 625 (US$ 32) in urban and rural settings, respectively. The mean patient days lost per year due to inpatient admission at hospitals/health centres was 11 in urban and 22 in rural health facilities. On average, urban home care-givers spent 20 (SD = 21) days annually providing home care services, while their rural counterparts spent 23 days (SD = 26). The productivity loss accounted for 16% and 7% of household income in urban and rural settings, respectively. These high and varying productivity losses require preventive interventions that are appropriate to each setting to ensure the welfare of women and children in Ethiopia.

  11. User experience analysis of e-TB Manager, a nationwide electronic tuberculosis recording and reporting system in Ukraine

    PubMed Central

    Sawyer, Kelly; Nizova, Nataliya

    2017-01-01

    Ukraine has successfully implemented e-TB Manager nationwide as its mandatory national tuberculosis registry after first introducing it in 2009. Our objective was to perform an end-of-programme evaluation after formal handover of the registry administration to Ukraine's Centre for Disease Control in 2015. We conducted a nationwide, cross-sectional, anonymous, 18-point user experience survey, and stratified the registry's transaction statistics to demonstrate usability. Contrary to initial implementation experience, older users (aged >50 years), often with limited or no computer proficiency prior to using the registry, had significantly better user experience scores for at least six of the 12 measures compared to younger users (aged 18–29 years). Using the registry for >3 years was associated with significantly higher scores for having capacity, adequacy of training received and satisfaction with the registry. Of the 5.9 million transactions over a 4-year period, nine out of 24 oblasts (regions) and Kiev city accounted for 62.5% of all transactions, and corresponded to 59% of Ukraine's tuberculosis burden. There were 437 unique active users in 486 rayons (districts) of Ukraine, demonstrating extensive reach. Our key findings complement the World Health Organization and European Respiratory Society's agenda for action on digital health to help implement the End TB Strategy. PMID:28512634

  12. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model.

    PubMed

    Zhaorigetu, Siqin; Bair, Henry; Lu, Jonathan; Jin, Di; Olson, Scott D; Harting, Matthew T

    2018-01-01

    Although it is well known that nitrofen induces congenital diaphragmatic hernia (CDH), including CDH-associated lung hypoplasia and pulmonary hypertension (PH) in rodents, the mechanism of pathogenesis remains largely unclear. It has been reported that pulmonary artery (PA) endothelial cell (EC) dysfunction contributes to the development of PH in CDH. Thus, we hypothesized that there is significant alteration of endothelial dysfunction-associated proteins in nitrofen-induced CDH PAs. Pregnant SD rats received either nitrofen or olive oil on gestational day 9.5. The newborn rats were sacrificed and divided into a CDH (n = 81) and a control (n = 23) group. After PA isolation, the expression of PA endothelial dysfunction-associated proteins was assessed on Western blot and immunostaining. We demonstrate that the expression of C-reactive protein and endothelin-1 and its receptors, ETA and ETB, were significantly increased in the CDH PAs. Levels of phosphorylated myosin light chain were significantly elevated, but those of phosphorylated endothelial nitric oxide synthase, caveolin-1, and mechanistic target of rapamycin were significantly decreased in the CDH PAs. In this work, we elucidate alterations in the expression of endothelial dysfunction-associated proteins specific to nitrofen-induced CDH rodent PAs, thereby advancing our understanding of the critical role of endothelial dysfunction-associated pathways in the pathogenesis of nitrofen-induced CDH. © 2017 S. Karger AG, Basel.

  13. Knock detection system to improve petrol engine performance, using microphone sensor

    NASA Astrophysics Data System (ADS)

    Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra

    2017-01-01

    An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.

  14. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    PubMed

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p-cym)Ru(phen)Cl][PF(6)] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes.

  15. Patients'/Clients' Expectation Toward and Satisfaction from Pharmacy Services

    PubMed Central

    Ayalew, Mohammed Biset; Taye, Kaleab; Asfaw, Daniel; Lemma, Bethlehem; Dadi, Filagot; Solomon, Habtamu; Tazeze, Haile; Tsega, Bayew

    2017-01-01

    Objective: Satisfaction is becoming a popular health-care quality indicator as it reflects the reality of service or care provided. The aim of this study was to assess the level of patients' expectation toward and satisfaction from pharmacy service provided and to identify associated factor that might affect their expectation and satisfaction. Methods: A cross-sectional study was conducted on 287 patients, who were served in five pharmacies of Gondar University Hospital in May 2015. Data regarding socio-demographic characteristics and parameters that measure patients' expectation and satisfaction were collected through interview using the Amharic version of the questionnaire. Data were entered into SPSS version 21, and descriptive statistics, cross-tabs, and binary logistic regressions were utilized. P < 0.05 was used to declare association. Findings: Among 287 respondents involved in the study, 149 (51.9%) claimed to be satisfied with the pharmacy service and setting. Two hundred and twenty-nine (79.4%) respondents have high expectation toward gaining good services. Even though significant association was observed between the pharmacy type and patients level of satisfaction, sociodemographic characteristics of a patient were not found to predict the level of satisfaction. There is a higher level of expectation among study participants who earn higher income per month (>(2000 Ethiopian birr [ETB]) than those who get less income (<1000 ETB). Conclusion: Although patients have a higher level of expectation toward pharmacy services, their satisfaction from the service was found to be low. PMID:28331862

  16. Health assessment of gasoline and fuel oxygenate vapors: immunotoxicity evaluation.

    PubMed

    White, Kimber L; Peachee, Vanessa L; Armstrong, Sarah R; Twerdok, Lorraine E; Clark, Charles R; Schreiner, Ceinwen A

    2014-11-01

    Female Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential immunotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) administered for 6h/day, 5days/week for 4weeks. The antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocyte (sRBC), was used to determine the effects of the gasoline vapor condensates on the humoral components of the immune system. Exposure to BGVC, G/MTBE, G/TAME, and G/TBA did not result in significant changes in the IgM AFC response to sRBC, when evaluated as either specific activity (AFC/10(6) spleen cells) or as total spleen activity (AFC/spleen). Exposure to G/EtOH and G/DIPE resulted in a dose-dependent decrease in the AFC response, reaching the level of statistical significance only at the high 20,000mg/m(3) level. Exposure to G/ETBE resulted in a statistically significant decrease in the AFC response at the middle (10,000mg/m(3)) and high (20,000mg/m(3)) exposure concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Numerical simulations of quantum devices

    NASA Astrophysics Data System (ADS)

    Sandu, Titus

    This work has been motivated by the tremendous effort toward the next generation of electron devices that will replace the present CMOS (Complementary Metal Oxide Semiconductor). Non-equilibrium Green's function formalism (NEGF) and empirical tight-binding (ETB) methods have been utilized in this dissertation. We studied the transport properties of Si/SiO2 resonant tunneling diodes (RTDs) by employing NEGF. We analyzed the physics of electron transport in Si/SiO2 RTDs and provided some guidelines for the fabrication of such devices by considering the effect of interface roughness scattering. Atomic scale roughness is shown to be acceptable. As the island size of the roughness increases, the peak-to-valley ratio degrades to less than 5 for 1 nm roughness and less than 2 for 2 nm roughness. By the ETB method we calculated electronic and optical properties of the relatively new Si/BeSe0.41Te0.59 system, more precisely Si/BeSe0.41Te0.59 [001] superlattices (SLs). Two interface bands were found in the band gap of bulk silicon. They were related to the polar Si/BeSe0.41Te0.59 interface. In addition, numerical calculations showed that the optical gap is close to the fundamental gap of bulk Si and the transitions are optically allowed. Two more aspects have been studied with NEGF: intrinsic bistability and off-zone center current flow of electrons in the RTD. We showed that broadening of the quasi-bound state in the emitter by scattering reduces intrinsic bistability. So far in different theoretical papers dealing with intrinsic bistability, only the scattering in the well has been considered. Finally, we demonstrated that scattering induces off-zone center current flow of electrons in RTDs. In RTDs electrons usually have a zone-center current flow. This is due to the coherent transport for which Tsu-Esaki formula is valid. On the contrary, holes have off-zone-center current flow. We show that, generally, carrier current flow is off-center, which means that the hole behavior is extended to electrons and is related to the breakdown of the Tsu-Esaki formula. Oblique flow is due to incoherent scattering represented by interface roughness and acoustic phonons. This is a quite new result and has been recently seen experimentally for hole transport.

  18. Kupffer cell complement receptor clearance function and host defense.

    PubMed

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  19. Synchrotron Photoionization Investigation of the Oxidation of Ethyl tert-Butyl Ether.

    PubMed

    Winfough, Matthew; Yao, Rong; Ng, Martin; Catani, Katherine; Meloni, Giovanni

    2017-02-23

    The oxidation of ethyl tert-butyl ether (ETBE), a widely used fuel oxygenated additive, is investigated using Cl atoms as initiators in the presence of oxygen. The reaction is carried out at 293, 550, and 700 K. Reaction products are probed by a multiplexed chemical kinetics photoionization mass spectrometer coupled with the synchrotron radiation produced at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. Products are identified on the basis of mass-to-charge ratio, ionization energies, and shape of photoionization spectra. Reaction pathways are proposed together with detected primary products.

  20. Occurrence and financial loss assessment of cystic echinococcosis (hydatidosis) in cattle slaughtered at Wolayita Sodo municipal abattoir, Southern Ethiopia.

    PubMed

    Bekele, Jemere; Butako, Berhanu

    2011-01-01

    A cross-sectional study aimed at determining the prevalence and cyst characteristics and estimating the financial loss due to cystic echinococcosis (hydatidosis) in cattle slaughtered at Wolayita Sodo municipal abattoir was conducted from November 2009 to April 2010. Out of 546 cattle examined, 92 (16.85%) were found to harbor visible hydatid cysts. Significantly higher infection was detected in local (P < 0.05) than crossbred cattle. No significant variation was observed with regard to origin, sex, and body condition status of animals. Regarding organ distribution, infections of the lung, liver, spleen, and kidney were 57.78%, 35.46%, 8.75%, and 4.01%, respectively. Of the total 1,097 hydatid cysts counted, 952 (86.78%), 136 (12.4%), and eight (0.82%) were found to be small-sized, medium-sized, and large-sized, respectively. Likewise, out of 450 cysts assessed, 138 (30.67%) were fertile, 241 (53.56%) sterile, and 71 (15.78%) calcified. Of the 138 fertile cysts subjected for viability test, 13 (9.42%) were viable while 125 (90.57%) were nonviable. Moreover, assessment of annual economic loss due to bovine hydatidosis at Wolayita Sodo municipal abattoir from offal condemnation and carcass weight loss was estimated at 410,755.90 Ethiopian Birr (ETB; 30,202.64 US$; 1 US$ = 13.60 ETB). Despite the moderate magnitude of infection detected currently, there seems to be an existing socioeconomic situation favorable for hydatidosis, and hence, it remains one of the most important diseases warranting serious attention for prevention and control actions in Wolayita zone. Hence, establishment of well-equipped standardized abattoirs, creation of public awareness, and control of stray dogs are of paramount importance.

  1. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).

    PubMed

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces shaping their repertoire.

  2. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus)

    PubMed Central

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces shaping their repertoire. PMID:26488302

  3. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  4. Recent advances in understanding neurotrophin signaling

    PubMed Central

    Bothwell, Mark

    2016-01-01

    The nerve growth factor family of growth factors, collectively known as neurotrophins, are evolutionarily ancient regulators with an enormous range of biological functions. Reflecting this long history and functional diversity, mechanisms for cellular responses to neurotrophins are exceptionally complex. Neurotrophins signal through p75 NTR, a member of the TNF receptor superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC), often with opposite functional outcomes. The two classes of receptors are activated preferentially by proneurotrophins and mature processed neurotrophins, respectively. However, both receptor classes also possess neurotrophin-independent signaling functions. Signaling functions of p75 NTR and Trk receptors are each influenced by the other class of receptors. This review focuses on the mechanisms responsible for the functional interplay between the two neurotrophin receptor signaling systems. PMID:27540475

  5. Recent advances in understanding neurotrophin signaling.

    PubMed

    Bothwell, Mark

    2016-01-01

    The nerve growth factor family of growth factors, collectively known as neurotrophins, are evolutionarily ancient regulators with an enormous range of biological functions. Reflecting this long history and functional diversity, mechanisms for cellular responses to neurotrophins are exceptionally complex. Neurotrophins signal through p75 (NTR), a member of the TNF receptor superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC), often with opposite functional outcomes. The two classes of receptors are activated preferentially by proneurotrophins and mature processed neurotrophins, respectively. However, both receptor classes also possess neurotrophin-independent signaling functions. Signaling functions of p75 (NTR) and Trk receptors are each influenced by the other class of receptors. This review focuses on the mechanisms responsible for the functional interplay between the two neurotrophin receptor signaling systems.

  6. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    PubMed

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  7. EXPRESSION, PURIFICATION AND IN VITRO FUNCTIONAL RECONSTITUTION OF THE CHEMOKINE RECEPTOR CCR1

    PubMed Central

    Allen, Samantha J.; Ribeiro, Sofia; Horuk, Richard; Handel, Tracy M.

    2009-01-01

    Chemokine receptors are a specific class of G protein-coupled receptors (GPCRs) that control cell migration associated with routine immune surveillance, inflammation and development. In addition to their roles in normal physiology, these receptors and their ligands are involved in a large number of inflammatory diseases, cancer and AIDS, making them prime therapeutic targets in the pharmaceutical industry. Like other GPCRs, a significant obstacle in determining structures and characterizing mechanisms of activation has been the difficulty in obtaining high levels of pure, functional receptor. Here we describe a systematic effort to express the chemokine receptor CCR1 in mammalian cells, and to purify and reconstitute it in functional form. The highest expression levels were obtained using an inducible HEK293 system. The receptor was purified using a combination of N- (StrepII or Hemagglutinin) and C-terminal (His8) affinity tags. Function was assessed by ligand binding using a novel fluorescence polarization assay with fluorescein-labeled chemokine. A strict dependence of function on the detergent composition was observed, as solubilization of CCR1 in n-dodecyl-β-D-maltopyranoside/cholesteryl hemisuccinate yielded functional receptor with a Kd of 21 nM for the chemokine CCL14, whereas it was non-functional in phosphocholine detergents. Differences in function were observed despite the fact that both these detergent types maintained the receptor in a state characterized by monomers and small oligomers, but not large aggregates. While optimization is still warranted, yields of ~ 0.1–0.2mgs of pure functional receptor per 109 cells will permit biophysical studies of this medically important receptor. PMID:19275940

  8. The influences of metabotropic receptor activation on cellular signaling and synaptic function in amacrine cells.

    PubMed

    Gleason, Evanna

    2012-01-01

    Amacrine cells receive glutamatergic input from bipolar cells and GABAergic, glycinergic, cholinergic, and dopaminergic input from other amacrine cells. Glutamate, GABA, glycine, and acetylcholine (ACh) interact with ionotropic receptors and it is these interactions that form much of the functional circuitry in the inner retina. However, glutamate, GABA, ACh, and dopamine also activate metabotropic receptors linked to second messenger pathways that have the potential to modify the function of individual cells as well as retinal circuitry. Here, the physiological effects of activating dopamine receptors, metabotropic glutamate receptors, GABAB receptors, and muscarinic ACh receptors on amacrine cells will be discussed. The retina also expresses metabotropic receptors and the biochemical machinery associated with the synthesis and degradation of endocannabinoids and sphingosine-1-phosphate (S1P). The effects of activating cannabinoid receptors and S1P receptors on amacrine cell function will also be addressed. Copyright © Cambridge University Press, 2012

  9. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    PubMed Central

    Welcome, Menizibeya O.; Mastorakis, Nikos E.; Pereverzev, Vladimir A.

    2015-01-01

    Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose) regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning. PMID:25653876

  10. Hepatic macrophage complement receptor clearance function following injury.

    PubMed

    Cuddy, B G; Loegering, D J; Blumenstock, F A; Shah, D M

    1986-03-01

    Previous work has demonstrated that in vivo hepatic macrophage complement receptor clearance function is depressed following thermal injury. The present study was carried out to determine if complement receptor function depression is associated with other states of depressed host defense. Hepatic complement receptor clearance function was determined from the hepatic uptake of rat erythrocytes coated with antierythrocyte IgM (EIgM) in rats. Receptor function was determined following cannulation of a carotid artery, laparotomy plus enterotomy, hemorrhagic shock, trauma, thermal injury, acute bacteremia, acute endotoxemia, and injection of erythrocyte stroma, gelatinized lipid emulsion, or colloidal carbon. Hepatic uptake of EIgM was depressed following each of these experimental interventions except arterial cannulation. This effect was shown not to be due to a decrease in hepatic blood flow or depletion of complement and was therefore due to a depression in hepatic macrophage complement receptor clearance function. Thus, impairment of hepatic macrophage complement receptor function is associated with several states of depressed host defense.

  11. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  12. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  13. Axons guided by insulin receptor in Drosophila visual system.

    PubMed

    Song, Jianbo; Wu, Lingling; Chen, Zun; Kohanski, Ronald A; Pick, Leslie

    2003-04-18

    Insulin receptors are abundant in the central nervous system, but their roles remain elusive. Here we show that the insulin receptor functions in axon guidance. The Drosophila insulin receptor (DInR) is required for photoreceptor-cell (R-cell) axons to find their way from the retina to the brain during development of the visual system. DInR functions as a guidance receptor for the adapter protein Dock/Nck. This function is independent of Chico, the Drosophila insulin receptor substrate (IRS) homolog.

  14. The CCK(-like) receptor in the animal kingdom: functions, evolution and structures.

    PubMed

    Staljanssens, Dorien; Azari, Elnaz Karimian; Christiaens, Olivier; Beaufays, Jérôme; Lins, Laurence; Van Camp, John; Smagghe, Guy

    2011-03-01

    In this review, the cholecystokinin (CCK)(-like) receptors throughout the animal kingdom are compared on the level of physiological functions, evolutionary basis and molecular structure. In vertebrates, the CCK receptor is an important member of the G-protein coupled receptors as it is involved in the regulation of many physiological functions like satiety, gastrointestinal motility, gastric acid secretion, gall bladder contraction, pancreatic secretion, panic, anxiety and memory and learning processes. A homolog for this receptor is also found in nematodes and arthropods, called CK receptor and sulfakinin (SK) receptor, respectively. These receptors seem to have evolved from a common ancestor which is probably still closely related to the nematode CK receptor. The SK receptor is more closely related to the CCK receptor and seems to have similar functions. A molecular 3D-model for the CCK receptor type 1 has been built together with the docking of the natural ligands for the CCK and SK receptors in the CCK receptor type 1. These molecular models can help to study ligand-receptor interactions, that can in turn be useful in the development of new CCK(-like) receptor agonists and antagonists with beneficial health effects in humans or potential for pest control. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    PubMed

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  16. Recent developments in the study of opioid receptors.

    PubMed

    Cox, Brian M

    2013-04-01

    It is now about 40 years since Avram Goldstein proposed the use of the stereoselectivity of opioid receptors to identify these receptors in neural membranes. In 2012, the crystal structures of the four members of the opioid receptor family were reported, providing a structural basis for understanding of critical features affecting the actions of opiate drugs. This minireview summarizes these recent developments in our understanding of opiate receptors. Receptor function is also influenced by amino acid substitutions in the protein sequence. Among opioid receptor genes, one polymorphism is much more frequent in human populations than the many others that have been found, but the functional significance of this single nucleotide polymorphism (SNP) has been unclear. Recent studies have shed new light on how this SNP might influence opioid receptor function. In this minireview, the functional significance of the most prevalent genetic polymorphism among the opioid receptor genes is also considered.

  17. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor expression and function.

    PubMed

    Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  18. High Throughput Mutagenesis for Identification of Residues Regulating Human Prostacyclin (hIP) Receptor Expression and Function

    PubMed Central

    Kent, Toby C.; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T.; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P.; Renaud, Nicole A.; Charlton, Steven J.; Gosling, Martin; Gaither, L. Alex; Groot-Kormelink, Paul J.

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs. PMID:24886841

  19. Functional relevance of neurotransmitter receptor heteromers in the central nervous system.

    PubMed

    Ferré, Sergi; Ciruela, Francisco; Woods, Amina S; Lluis, Carme; Franco, Rafael

    2007-09-01

    The existence of neurotransmitter receptor heteromers is becoming broadly accepted and their functional significance is being revealed. Heteromerization of neurotransmitter receptors produces functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Neurotransmitter receptor heteromers can function as processors of computations that modulate cell signaling. Thus, the quantitative or qualitative aspects of the signaling generated by stimulation of any of the individual receptor units in the heteromer are different from those obtained during coactivation. Furthermore, recent studies demonstrate that some neurotransmitter receptor heteromers can exert an effect as processors of computations that directly modulate both pre- and postsynaptic neurotransmission. This is illustrated by the analysis of striatal receptor heteromers that control striatal glutamatergic neurotransmission.

  20. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    PubMed

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  1. Designer Lipid-Like Peptides: A Class of Detergents for Studying Functional Olfactory Receptors Using Commercial Cell-Free Systems

    PubMed Central

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B.; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J.; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins. PMID:22132066

  2. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    PubMed

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  3. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.

    The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less

  4. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors

    DOE PAGES

    Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.; ...

    2015-04-27

    The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less

  5. Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes.

    PubMed

    Bettler, Bernhard; Fakler, Bernd

    2017-08-01

    Ionotropic AMPA-type glutamate receptors and G-protein-coupled metabotropic GABA B receptors are key elements of neurotransmission whose cellular functions are determined by their protein constituents. Over the past couple of years unbiased proteomic approaches identified comprehensive sets of protein building blocks of these two types of neurotransmitter receptors in the brain (termed receptor proteomes). This provided the opportunity to match receptor proteomes with receptor physiology and to study the structural organization, regulation and function of native receptor complexes in an unprecedented manner. In this review we discuss the principles of receptor architecture and regulation emerging from the functional characterization of the proteomes of AMPA and GABA B receptors. We also highlight progress in unraveling the role of unexpected protein components for receptor physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Endothelin-2, the forgotten isoform: emerging role in the cardiovascular system, ovarian development, immunology and cancer

    PubMed Central

    Ling, Lowell; Maguire, Janet J; Davenport, Anthony P

    2013-01-01

    Endothelin-2 [ET-2; also known as vasoactive intestinal contractor (VIC), in rodents] differs from endothelin-1 (ET-1) by only two amino acids, and unlike the third isoform, endothelin-3 (ET-3), it has the same affinity as ET-1 for both ETA and ETB receptors. It is often assumed that ET-2 would mimic the actions of the more abundant ET-1 and current pharmacological interventions used to inhibit the ET system would also block the actions of ET-2. These assumptions have focused research on ET-1 with ET-2 studied in much less detail. Recent research suggests that our understanding of the ET family requires re-evaluation. Although ET-2 is very similar in structure as well as pharmacology to ET-1, and may co-exist in the same tissue compartments, there is converging evidence for an important and distinct ET-2 pathway. Specifically is has been demonstrated that ET-2 has a key role in ovarian physiology, with ET-2-mediated contraction proposed as a final signal facilitating ovulation. Furthermore, ET-2 may also have a pathophysiological role in heart failure, immunology and cancer. Comparison of ET-2 versus ET-1 mRNA expression suggests this may be accomplished at the level of gene expression but differences may also exist in peptide synthesis by enzymes such as endothelin converting enzymes (ECEs) and chymase, which may allow the two pathways to be distinguished pharmacologically and become separate drug targets. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1 PMID:22118774

  7. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    PubMed

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These knock-in mice have NOP receptors that function both in vitro and in vivo and have provided a detailed characterization of NOP receptors in brain, spinal cord, and DRG neurons. They appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. Copyright © 2015 the authors 0270-6474/15/3511683-12$15.00/0.

  8. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways

    PubMed Central

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A.; Santafé, Manel M.; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia

    2018-01-01

    In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function. PMID:29740322

  9. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways.

    PubMed

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia

    2018-01-01

    In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.

  10. Multilocus Sequence Typing and Virulence-Associated Gene Profile Analysis of Staphylococcus aureus Isolates From Retail Ready-to-Eat Food in China.

    PubMed

    Yang, Xiaojuan; Yu, Shubo; Wu, Qingping; Zhang, Jumei; Wu, Shi; Rong, Dongli

    2018-01-01

    The aim of this study was to characterize the subtypes and virulence profiles of 69 Staphylococcus aureus isolates obtained from retail ready-to-eat food in China. The isolates were analyzed using multilocus sequence typing (MLST) and polymerase chain reaction (PCR) analysis of important virulence factor genes, including the staphylococcal enterotoxin (SE) genes ( sea , seb , sec , sed , see , seg , seh , sei , sej ), the exfoliative toxin genes ( eta and etb ), the toxic shock syndrome toxin-1 gene ( tst ), and the Panton-Valentine leucocidin-encoding gene ( pvl ). The isolates encompassed 26 different sequence types (STs), including four new STs (ST3482, ST3484, ST3485, ST3504), clustered in three clonal complexes and 17 singletons. The most prevalent STs were ST1, ST6, and ST15, constituting 34.8% of all isolates. Most STs (15/26, 57.7%) detected have previously been associated with human infections. All 13 toxin genes examined were detected in the S. aureus isolates, with 84.1% of isolates containing toxin genes. The three most prevalent toxin genes were seb (36.2%), sea (33.3%), and seg (33.3%). The classical SE genes ( sea - see ), which contribute significantly to staphylococcal food poisoning (SFP), were detected in 72.5% of the S. aureus isolates. In addition, pvl , eta , etb , and tst were found in 11.6, 10.1, 10.1, and 7.2% of the S. aureus isolates, respectively. Strains ST6 carrying sea and ST1 harboring sec-seh enterotoxin profile, which are the two most common clones associated with SFP, were also frequently detected in the food samples in this study. This study indicates that these S. aureus isolates present in Chinese ready-to-eat food represents a potential public health risk. These data are valuable for epidemiological studies, risk management, and public health strategies.

  11. Multilocus Sequence Typing and Virulence-Associated Gene Profile Analysis of Staphylococcus aureus Isolates From Retail Ready-to-Eat Food in China

    PubMed Central

    Yang, Xiaojuan; Yu, Shubo; Wu, Qingping; Zhang, Jumei; Wu, Shi; Rong, Dongli

    2018-01-01

    The aim of this study was to characterize the subtypes and virulence profiles of 69 Staphylococcus aureus isolates obtained from retail ready-to-eat food in China. The isolates were analyzed using multilocus sequence typing (MLST) and polymerase chain reaction (PCR) analysis of important virulence factor genes, including the staphylococcal enterotoxin (SE) genes (sea, seb, sec, sed, see, seg, seh, sei, sej), the exfoliative toxin genes (eta and etb), the toxic shock syndrome toxin-1 gene (tst), and the Panton-Valentine leucocidin-encoding gene (pvl). The isolates encompassed 26 different sequence types (STs), including four new STs (ST3482, ST3484, ST3485, ST3504), clustered in three clonal complexes and 17 singletons. The most prevalent STs were ST1, ST6, and ST15, constituting 34.8% of all isolates. Most STs (15/26, 57.7%) detected have previously been associated with human infections. All 13 toxin genes examined were detected in the S. aureus isolates, with 84.1% of isolates containing toxin genes. The three most prevalent toxin genes were seb (36.2%), sea (33.3%), and seg (33.3%). The classical SE genes (sea–see), which contribute significantly to staphylococcal food poisoning (SFP), were detected in 72.5% of the S. aureus isolates. In addition, pvl, eta, etb, and tst were found in 11.6, 10.1, 10.1, and 7.2% of the S. aureus isolates, respectively. Strains ST6 carrying sea and ST1 harboring sec-seh enterotoxin profile, which are the two most common clones associated with SFP, were also frequently detected in the food samples in this study. This study indicates that these S. aureus isolates present in Chinese ready-to-eat food represents a potential public health risk. These data are valuable for epidemiological studies, risk management, and public health strategies. PMID:29662467

  12. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts

    PubMed Central

    Barreto, Gabriele de Abreu; Costa, Samantha Serra; Andrade, Luciana Nalone; Amaral, Ricardo Guimarães; Carvalho, Adriana Andrade; Padilha, Francine Ferreira; Barbosa, Josiane Dantas Viana

    2017-01-01

    Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations. PMID:28358806

  13. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts.

    PubMed

    Dantas Silva, Rejane Pina; Machado, Bruna Aparecida Souza; Barreto, Gabriele de Abreu; Costa, Samantha Serra; Andrade, Luciana Nalone; Amaral, Ricardo Guimarães; Carvalho, Adriana Andrade; Padilha, Francine Ferreira; Barbosa, Josiane Dantas Viana; Umsza-Guez, Marcelo Andres

    2017-01-01

    Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations.

  14. Emerging structural insights into the function of ionotropic glutamate receptors

    PubMed Central

    Karakas, Erkan; Regan, Michael C.; Furukawa, Hiro

    2015-01-01

    Summary Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function including learning and memory formation. Recently a wealth of structural studies on iGluRs, including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available.. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, which illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. Here we review mechanistic insights into iGluR functions gained through structural studies of multiple groups. PMID:25941168

  15. Current Research on Opioid Receptor Function

    PubMed Central

    Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying

    2012-01-01

    The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article is to review the recent work done on opioids and their receptor functions. It shall provide an informative reference for better understanding the opioid system and further elucidation of the opioid receptor function from a physiological and pharmacological point of view. PMID:22204322

  16. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    PubMed

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  17. Amplification of anion sensing by disulfide functionalized ferrocene and ferrocene-calixarene receptors adsorbed onto gold surfaces.

    PubMed

    Cormode, David P; Evans, Andrew J; Davis, Jason J; Beer, Paul D

    2010-07-28

    A disulfide functionalized bis-ferrocene urea acyclic receptor and disulfide functionalized mono- and bis-ferrocene amide and urea appended upper rim calix[4]arene receptors were prepared for the fabrication of SAM redox-active anion sensors. 1H NMR and diffusive voltammetric anion recognition investigations revealed each receptor to be capable of complexing and electrochemically sensing anions via cathodic perturbations of the respective receptor's ferrocene/ferrocenium redox couple. SAMs of a ferrocene urea receptor 3 and ferrocene urea calixarene receptor 17 exhibited significant enhanced magnitudes of cathodic response upon anion addition as compared to observed diffusive perturbations. SAMs of 17 were demonstrated to sense the perrhenate anion in aqueous solutions.

  18. Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.

    PubMed

    Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P

    2013-03-01

    Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.

  19. Emerging structural insights into the function of ionotropic glutamate receptors.

    PubMed

    Karakas, Erkan; Regan, Michael C; Furukawa, Hiro

    2015-06-01

    Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function, including learning and memory formation. Recently a wealth of structural studies on iGluRs including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, and this illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. We review mechanistic insights into iGluR functions gained through structural studies of multiple groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Identification of a µ opiate receptor signaling mechanism in human placenta.

    PubMed

    Mantione, Kirk J; Angert, Robert M; Cadet, Patrick; Kream, Richard M; Stefano, George B

    2010-11-01

    Previous studies report that genes in the morphine biosynthetic pathway have been found in placental tissue. Prior researchers have shown that kappa opioid receptors are present in human placenta. We determined if a µ opiate receptor was present and which subtype was expressed in human placenta. We also sought to demonstrate a functional µ opiate receptor in human placenta. Polymerase chain reactions as well as DNA sequencing were performed to identify the µ opiate receptor subtypes present in human placenta. The functionality of the receptor was demonstrated by real time amperometric measurements of morphine induced NO release. The µ4 opiate receptor sequence was present as well as the µ1 opioid receptor transcript. The addition of morphine to placental tissue resulted in immediate nitric oxide release and this effect was blocked by naloxone. In the present study, an intact morphine signaling system has been demonstrated in human placenta. Morphine signaling in human placenta probably functions to regulate the immune, vascular, and endocrine functions of this organ via NO.

  1. EphA2 is a functional receptor for the growth factor progranulin.

    PubMed

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  2. EphA2 is a functional receptor for the growth factor progranulin

    PubMed Central

    Neill, Thomas; Goyal, Atul; Sharpe, Catherine

    2016-01-01

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. PMID:27903606

  3. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors

    PubMed Central

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback–Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors. PMID:22855685

  4. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors.

    PubMed

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  5. Functional kainate-selective glutamate receptors in cultured hippocampal neurons.

    PubMed

    Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B

    1993-12-15

    Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors.

  6. Functional kainate-selective glutamate receptors in cultured hippocampal neurons.

    PubMed Central

    Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B

    1993-01-01

    Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors. PMID:7505445

  7. The LDL receptor gene family: signaling functions during development.

    PubMed

    Howell, B W; Herz, J

    2001-02-01

    The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.

  8. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  9. A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors

    NASA Astrophysics Data System (ADS)

    Andersson, Patrik; McGuire, Jacqueline; Rubio, Carlos; Gradin, Katarina; Whitelaw, Murray L.; Pettersson, Sven; Hanberg, Annika; Poellinger, Lorenz

    2002-07-01

    The dioxin/aryl hydrocarbon receptor (AhR) functions as a ligand-activated transcription factor regulating transcription of a battery of genes encoding xenobiotic metabolizing enzymes. Known receptor ligands are environmental pollutants including polycyclic aromatic hydrocarbons and polychlorinated dioxins. Loss-of-function (gene-disruption) studies in mice have demonstrated that the AhR is involved in toxic effects of dioxins but have not yielded unequivocal results concerning the physiological function of the receptor. Gain-of-function studies therefore were performed to unravel the biological functions of the AhR. A constitutively active AhR expressed in transgenic mice reduced the life span of the mice and induced tumors in the glandular part of the stomach, demonstrating the oncogenic potential of the AhR and implicating the receptor in regulation of cell proliferation.

  10. Cortical M1 Receptor Concentration Increases Without a Concomitant Change in Function in Alzheimer's Disease

    PubMed Central

    Overk, Cassia R.; Felder, Christian C.; Tu, Yuan; Schober, Doug A.; Bales, Kelly R.; Wuu, Joanne; Mufson, Elliott J.

    2010-01-01

    Although the M1 muscarinic receptor is a potential therapeutic target for Alzheimer's disease (AD) based on its wide spread distribution in brain and its association with learning and memory processes, whether its receptor response is altered during the onset of AD remains unclear. A novel [35S]GTPγS binding/immunocapture assay was employed to evaluated changes in M1 receptor function in cortical tissue samples harvested from people who had no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD. M1- function was stable across clinical groups. However, [3H]-oxotremorine-M radioligand binding studies revealed that the concentration of M1 cortical receptors increased significantly between the NCI and AD groups. Although M1 receptor function did not correlate with cognitive function based upon mini-mental status examination (MMSE) or global cognitive score (GCS), functional activity was negatively correlated with the severity of neuropathology determined by Braak staging and NIA-Reagan criteria for AD. Since M1 agonists have the potential to modify the pathologic hallmarks of AD, as well as deficits in cognitive function in animal models of this disease, the present findings provide additional support for targeting the M1 receptor as a potential therapeutic for AD. PMID:20347961

  11. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    PubMed

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Central alpha/sub 2/ adrenergic receptors in the rat cerebral cortex: repopulation kinetics and receptor reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, C.H.

    1986-01-01

    The alpha/sub 2/ adrenergic receptor subtype is thought to play a role in the mechanism of action of antidepressant and antihypertensive drugs. This thesis has attempted to shed light on the regulation of central alpha/sub 2/ adrenergic receptors in the rat cerebral cortex. Repopulation kinetics analysis allows for the determination of the rate of receptor production, rate constant of degradation, and half-life of the receptor. This analysis was carried out using both radioligand binding and functional receptor assays at various times following the irreversible inactivation of central alpha/sub 2/ adrenergic receptors by in vivo administration of N-ethoxycarbonyl-2-ethyoxy-1,2-dihydroquinoline (EEDQ). Both alpha/submore » 2/ agonist and antagonist ligand binding sites recovered with a t/sub 1/2/ equal to approximately 4 days. The function of alpha/sub 2/ adrenergic autoreceptors, which inhibit stimulation-evoked release of /sup 3/H-norepinephrine (/sup 3/H-NE) and alpha/sub 2/ adrenergic heteroreceptors which inhibit stimulation-evoked release of /sup 3/H-serotonin (/sup 3/H-5-HT) were assayed. The t/sub 1/2/ for recovery of maximal autoreceptor and heteroreceptor function was 2.4 days and 4.6 days, respectively. The demonstration of a receptor reserve is critical to the interpretation of past and future studies of the alpha/sub 2/ adrenergic receptor since it demonstrates that: (1) alterations in the number of alpha/sub 2/ adrenergic receptor binding sites cannot be extrapolated to the actual function of the alpha/sub 2/ adrenergic receptor; and (2) alterations in the number of alpha/sub 2/ receptors is not necessarily accompanied by a change in the maximum function being studied, but may only result in shifting of the dose-response curve.« less

  13. Alteration in 5-HT₂C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Anju, T R; Abraham, Pretty Mary; Paulose, C S

    2015-01-01

    Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex.

  14. Selective Androgen Receptor Downregulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2006-10-01

    of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol, 12: 1558...cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol...used to down-regulate the AR include antisense oligonucleotides (9, 10), ribozyme treatments (11, 12), AR dominant negatives (13) and small

  15. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mediator-dependent Nuclear Receptor Functions

    PubMed Central

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  17. GABA-benzodiazepine receptor function in alcohol dependence: a combined 11C-flumazenil PET and pharmacodynamic study.

    PubMed

    Lingford-Hughes, A R; Wilson, S J; Cunningham, V J; Feeney, A; Stevenson, B; Brooks, D J; Nutt, D J

    2005-08-01

    Gamma-aminobutyric acid (GABA)-benzodiazepine receptor function is hypothesised to be reduced in alcohol dependence. We used positron emission tomography (PET) with [11C]flumazenil, a non-selective tracer for brain GABA-benzodiazepine (GABA-BDZ) receptor binding, to determine in vivo the relationship between BDZ receptor occupancy by an agonist, midazolam, and its functional effects. Abstinent male alcohol dependent subjects underwent [11C]flumazenil PET to measure occupancy of BDZ receptors by midazolam whilst recording its pharmacodynamic effects on behavioural and physiological measures. Rate constants describing the exchange of [11C]flumazenil between the plasma and brain compartments were derived from time activity curves. A 50% reduction in electroencephalography (EEG)-measured sleep time was seen in the alcohol dependent group despite the same degree of occupancy by midazolam as seen in the control group. The effects of midazolam on other measures of benzodiazepine receptor function, increasing EEG beta1 power and slowing of saccadic eye movements, were similar in the two groups. No differences in midazolam or flumazenil metabolism were found between the groups. In summary, our study suggests that alcohol dependence in man is associated with a reduced EEG sleep response to the benzodiazepine agonist, midazolam, which is not explained by reduced BDZ receptor occupancy, and is consistent with reduced sensitivity in this measure of GABA-BDZ receptor function in alcohol dependence. The lack of change in other functional measures may reflect a differential involvement of particular subtypes of the GABA-BDZ receptor.

  18. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  19. Agonist-dependent consequences of proline to alanine substitution in the transmembrane helices of the calcitonin receptor

    PubMed Central

    Bailey, R J; Hay, D L

    2007-01-01

    Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptors (GPCRs) form functionally important kinks in their helices. These residues are little studied in family B GPCRs but experiments with the VPAC1 receptor and calcitonin receptor-like receptor (CL) show parallels with family A receptors. We sought to determine the function of these residues in the insert negative form of the human calcitonin receptor, a close relative of CL. Experimental approach: Proline residues within the transmembrane domains of the calcitonin receptor (P246, P249, P280, P326, P336) were individually mutated to alanine (A) using site-directed mutagenesis. Receptors were transiently transfected into Cos-7 cells using polyethylenimine and salmon and human calcitonin-induced cAMP responses measured. Salmon and human calcitonin competition binding experiments were also performed and receptor cell-surface expression assessed by whole cell ELISA. Key results: P246A, P249A and P280A were wild-type in terms of human calcitonin-induced cAMP activation. P326A and P336A had reduced function (165 and 12-fold, respectively). In membranes, human calcitonin binding was not detectable for any mutant receptor but in whole cells, binding was detected for all mutants apart from P326A. Salmon calcitonin activated mutant and wild-type receptors equally, although Bmax values were reduced for all mutants apart from P326A. Conclusions and Implications: P326 and P336 are important for the function of human calcitonin receptors and are likely to be involved in generating receptor conformations appropriate for agonist binding and receptor activation. However, agonist-specific effects were observed , implying distinct conformations of the human calcitonin receptor. PMID:17486143

  20. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  1. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  2. Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immune regulation

    PubMed Central

    Anderson, Ana C.; Joller, Nicole; Kuchroo, Vijay K.

    2016-01-01

    Summary Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulating T cell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors while belonging to the same class of receptors as PD-1 and CTLA-4 exhibit unique functions especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic. PMID:27192565

  3. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling.

    PubMed

    Bar, Maya; Sharfman, Miya; Avni, Adi

    2011-03-01

    The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.

  4. The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc

    PubMed Central

    Warnhoff, Kurt; Roh, Hyun C.; Kocsisova, Zuzana; Tan, Chieh-Hsiang; Morrison, Andrew; Croswell, Damari; Schneider, Daniel L.; Kornfeld, Kerry

    2017-01-01

    Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors. PMID:28095401

  5. Functional Characterization of Odorant Receptors

    DTIC Science & Technology

    1994-02-07

    94 IFINAL REPORT 9/1/92-11/30/93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Functional Characterization of Odorant Receptors DAAL03-92-G-0390 6. AUTHOR(S...characterization of odorant receptors have developed in two directions. One direction is concerned with the characterization of the ligand specificity of... receptor have been replaced by the equivalent regions of odorant receptor 1-15 (Buck and Axel, 1991), thus forming a chimaeric seven transmembrane domain

  6. Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251

  7. Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field.

    PubMed

    Zhao, Yan-Dong; Cheng, Sai-Yu; Ou, Shan; Xiao, Zhi; He, Wen-Juan; Jian-Cui; Ruan, Huai-Zhen

    2012-01-01

    This study was designed to evaluate the effect of hypobaric hypoxia (HH) on the function and expression of P2X receptors in rat hippocampus CA1 pyramidal cells. The functional changes of P2X receptors were investigated through the cell HH model and the expressional alterations of P2X receptors were observed through the animal HH model. P2X receptors mediated currents were recorded from the freshly dissociated CA1 pyramidal cells of 7-day-old SD rats by whole cell patch clamp recording. The expression and distribution of P2X receptors were observed through immunohistochemistry and western blot at HH 3-day and 7-day. In acute HH conditions, the amplitudes of ATP evoked peak currents were decreased compared to control. The immunohistochemistry and western blot results reflected there was no change in P2X receptors expression after 3 days HH injury, while P2X receptors expression was up-regulated in response to 7 days HH injury. These findings supported the possibility that the function of P2X receptors was sensitive to HH damage and long-term function decrease should result in the expression increase of P2X receptors.

  8. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    PubMed

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    PubMed

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  10. Differentiated Human Midbrain-Derived Neural Progenitor Cells Express Excitatory Strychnine-Sensitive Glycine Receptors Containing α2β Subunits

    PubMed Central

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Background Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson’s disease. While glutamate and GABAA receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Methodology/Principal Findings Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na+-K+-Cl− co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. Conclusions/Significance These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro. PMID:22606311

  11. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry.

    PubMed

    Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W

    2008-05-22

    Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.

  12. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.

    PubMed

    Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos

    2005-12-01

    In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.

  13. Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex.

    PubMed

    Trantham-Davidson, Heather; Burnett, Elizabeth J; Gass, Justin T; Lopez, Marcelo F; Mulholland, Patrick J; Centanni, Samuel W; Floresco, Stan B; Chandler, L Judson

    2014-03-05

    Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.

  14. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors

    PubMed Central

    Naumenko, Vladimir S.

    2018-01-01

    The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior. PMID:29849559

  15. Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation.

    PubMed

    Wetter, Justin A; Revankar, Chetana; Hanson, Bonnie J

    2009-10-01

    Cellular assay development for the endothelial differentiation gene (EDG) family of G-protein-coupled receptors (GPCRs) and related lysophospholipid (LP) receptors is complicated by endogenous receptor expression and divergent receptor signaling. Endogenously expressed LP receptors exist in most tissue culture cell lines. These LP receptors, along with other endogenously expressed GPCRs, contribute to off-target signaling that can complicate interpretation of second-messenger-based cellular assay results. These receptors also activate a diverse and divergent set of cellular signaling pathways, necessitating the use of a variety of assay formats with mismatched procedures and functional readouts. This complicates examination and comparison of these receptors across the entire family. The Tango technology uses the conserved beta-arrestin-dependent receptor deactivation process to allow interrogation of the EDG and related receptors with a single functional assay. This method also isolates the target receptor signal, allowing the use of tissue culture cell lines regardless of their endogenous receptor expression. The authors describe the use of this technique to build cell-based receptor-specific assays for all 8 members of the EDG receptor family as well as the related LPA receptors GPR23, GPR92, and GPR87. In addition, they demonstrate the value of this technology for identification and investigation of functionally selective receptor compounds as demonstrated by the immunosuppressive compound FtY720-P and its action at the EDG(1) and EDG(3) receptors.

  16. Identification of functionally important residues in the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate Neuromedin U Receptor

    USDA-ARS?s Scientific Manuscript database

    The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by interactions between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class-A G-protein-coupled receptor (GPCR). To identify functionally important amino acid residues in t...

  17. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  18. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain

    PubMed Central

    González, Sergio; Rangel-Barajas, Claudia; Peper, Marcela; Lorenzo, Ramiro; Moreno, Estefanía; Ciruela, Francisco; Borycz, Janusz; Ortiz, Jordi; Lluís, Carme; Franco, Rafael; McCormick, Peter J.; Volkow, Nora D.; Rubinstein, Marcelo; Floran, Benjamin; Ferré, Sergi

    2011-01-01

    Polymorphic variants of the dopamine D4 receptor have been consistently associated with attention-deficit hyperactivity disorder (ADHD). However the functional significance of the risk polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here we show that whereas the most frequent 4-repeat (D4.4) and the 2-repeat (D4.2) variants form functional heteromers with the short isoform of the dopamine D2 receptor (D2S), the 7-repeat risk allele (D4.7) does not. D2 receptor activation in the D2S-D4 receptor heteromer potentiates D4 receptor-mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells expressing D4.7 or in the striatum of knock-in mutant mice carrying the 7 repeats of the human D4.7 in the third intracellular loop of the D4 receptor. In the striatum D4 receptors are localized in cortico-striatal glutamatergic terminals, where they selectively modulate glutamatergic neurotransmission by interacting with D2S receptors. This interaction shows the same qualitative characteristics than the D2S-D4 receptor heteromer-mediated MAPK signaling and D2S receptor activation potentiates D4 receptor-mediated inibition of striatal glutamate release. It is therefore postulated that dysfunctional D2S-D4.7 heteromers may impair presynaptic dopaminergic control of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with ADHD. PMID:21844870

  19. Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor.

    PubMed

    Ecke, Denise; Hanck, Theodor; Tulapurkar, Mohan E; Schäfer, Rainer; Kassack, Matthias; Stricker, Rolf; Reiser, Georg

    2008-01-01

    Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.

  20. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets

    PubMed Central

    Peinhaupt, Miriam; Sturm, Eva M.; Heinemann, Akos

    2017-01-01

    Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention. PMID:28770200

  1. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    PubMed

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  2. A New Family of Nuclear Receptor Coregulators That Integrate Nuclear Receptor Signaling through CREB-Binding Protein

    PubMed Central

    Mahajan, Muktar A.; Samuels, Herbert H.

    2000-01-01

    We describe the cloning and characterization of a new family of nuclear receptor coregulators (NRCs) which modulate the function of nuclear hormone receptors in a ligand-dependent manner. NRCs are expressed as alternatively spliced isoforms which may exhibit different intrinsic activities and receptor specificities. The NRCs are organized into several modular structures and contain a single functional LXXLL motif which associates with members of the steroid hormone and thyroid hormone/retinoid receptor subfamilies with high affinity. Human NRC (hNRC) harbors a potent N-terminal activation domain (AD1), which is as active as the herpesvirus VP16 activation domain, and a second activation domain (AD2) which overlaps with the receptor-interacting LXXLL region. The C-terminal region of hNRC appears to function as an inhibitory domain which influences the overall transcriptional activity of the protein. Our results suggest that NRC binds to liganded receptors as a dimer and this association leads to a structural change in NRC resulting in activation. hNRC binds CREB-binding protein (CBP) with high affinity in vivo, suggesting that hNRC may be an important functional component of a CBP complex involved in mediating the transcriptional effects of nuclear hormone receptors. PMID:10866662

  3. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  4. Functional identification and reconstitution of an odorant receptor in single olfactory neurons

    PubMed Central

    Touhara, Kazushige; Sengoku, Shintaro; Inaki, Koichiro; Tsuboi, Akio; Hirono, Junzo; Sato, Takaaki; Sakano, Hitoshi; Haga, Tatsuya

    1999-01-01

    The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest. PMID:10097159

  5. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  6. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    PubMed

    Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef

    2014-01-01

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  7. Determination of the functional size of oxytocin receptors in plasma membranes from mammary gland and uterine myometrium of the rat by radiation inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloff, M.S.; Beauregard, G.; Potier, M.

    1988-05-01

    Gel filtration of detergent-solubilized oxytocin (OT) receptors in plasma membrane fractions from both regressed mammary gland and labor myometrium of the rat, showed that specific (/sup 3/H)OT binding was associated with a heterogeneously sized population of macromolecules. As radiation inactivation is the only method available to measure the apparent molecular weights of membrane proteins in situ, we used this approach to define the functional sizes of OT receptors. The results indicate that both mammary and myometrial receptors are uniform in size and of similar molecular mass. Mammary and myometrial receptors were estimated to be 57.5 +/- 3.8 (SD) and 58.8more » +/- 1.6 kilodaltons, respectively. Knowledge of the functional size of OT receptors will be useful in studies involving the purification and characterization of the receptor and associated membrane components.« less

  8. Chemical labelling for visualizing native AMPA receptors in live neurons

    NASA Astrophysics Data System (ADS)

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-04-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.

  9. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?].

    PubMed

    Levoye, Angélique; Jockers, Ralf

    2007-01-01

    G protein-coupled receptors (GPCRs), also called seven transmembrane domain (7TM) proteins, represent the largest family of cell surface receptors. GPCRs control a variety of physiological processes, are involved in multiple diseases and are major drug targets. Despite a vast effort of academic and industrial research, more than one hundred receptors remain orphans. These orphan GPCRs offer a great potential for drug discovery, as almost 60% of currently prescribed drugs target GPCRs. Deorphenization strategies have concentrated mainly on the identification of the natural ligands of these proteins. Recent advances have shown that orphan GPCRs, similar to orphan nuclear receptors, can regulate the function of non-orphan receptors by heterodimerization. These findings not only help to better understand the extraordinary diversity of GPCRs, but also open new perspectives for the identification of the function of these orphan receptors that hold great therapeutic potential.

  10. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis.

    PubMed

    Cancel, Jesse D; Larsen, Paul B

    2002-08-01

    Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.

  11. Loss-of-Function Mutations in the Ethylene Receptor ETR1 Cause Enhanced Sensitivity and Exaggerated Response to Ethylene in Arabidopsis

    PubMed Central

    Cancel, Jesse D.; Larsen, Paul B.

    2002-01-01

    Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response. PMID:12177468

  12. Dynamics of mononuclear phagocyte system Fc receptor function in systemic lupus erythematosus. Relation to disease activity and circulating immune complexes.

    PubMed Central

    Kimberly, R P; Parris, T M; Inman, R D; McDougal, J S

    1983-01-01

    Seventeen pairs of longitudinal studies of mononuclear phagocyte system (MPS) Fc receptor function in 15 patients with systemic lupus were performed to explore the dynamic range of Fc receptor dysfunction in lupus and to establish the relationships between MPS function, clinical disease activity and circulating immune complexes (CIC). Fc receptor function was measured by the clearance of IgG sensitized autologous erythrocytes. At the time of first study the degree of MPS dysfunction was correlated with both clinical activity (P less than 0.05) and CIC (P less than 0.05). At follow-up patients with a change in clinical status show significantly larger changes in clearance function compared to clinically stable patients (206 min vs 7 min; P less than 0.001). MPS function changed concordantly with a change in clinical status in all cases (P = 0.002). Longitudinal assessments did not demonstrate concordance of changes in MPS function and CIC, measured by three different assays. The MPS Fc receptor defect in systemic lupus is dynamic and closely associated with disease activity. The lack of concordance of the defect with changes in CIC suggests that either CIC does not adequately reflect receptor site saturation or that other factors may also contribute to the magnitude of MPS dysfunction. PMID:6839542

  13. Molecular structure of P2X receptors.

    PubMed

    Egan, Terrance M; Cox, Jane A; Voigt, Mark M

    2004-01-01

    P2X receptors are ligand-gated ion channels that transduce many of the physiological effects of extracellular ATP. There has been a dramatic increase in awareness of these receptors over the past 5 or so years, in great part due to their molecular cloning and characterization. The availability of cDNA clones for the various subunits has led to rapid progress in identifying their tissue-specific expression, resulting in new ideas concerning the functional roles these receptors might play in physiological and pathophysiological processes. In addition, molecular approaches have yielded much information regarding the structure and function of the receptor proteins themselves. In this review we seek to review recent findings concerning the molecular determinants of receptor-channel function, with particular focus on ligand binding and gating, ion selectivity, and subunit assembly.

  14. Schizophrenia, dissociative anaesthesia and near-death experience; three events meeting at the NMDA receptor.

    PubMed

    Bonta, Iván L

    2004-01-01

    The three events, viz. schizophrenia, dissociative anaesthesia and Near-Death Experience, despite their seemingly unrelated manifestation to each other, have nevertheless similar functional basis. All three events are linked to the glutamate sensitive N-methyl-D-aspartate (NMDA) receptor complex, which serves as their common functional denominator. Arguments and speculations are presented in favor of the view that, the three events might be considered as functional models of each other. Antagonism to the recognition NMDA-site of the receptor induces dissociative anaesthesia and precipitates Near-Death Experience. Agonist reinforcement at the modulatory glycine-site of the receptor counteracts negative symptoms of schizophrenia. Both types of challenges towards the receptor are compatible with a glutamate deficiency concept which underlies the meeting of the three events at the NMDA receptor.

  15. Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior

    PubMed Central

    Molenda, Heather A.; Kilts, Caitlin P.; Allen, Rachel L.; Tetel, Marc J.

    2009-01-01

    Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior. PMID:12855594

  16. Expression and purification of functional PDGF receptor beta.

    PubMed

    Shang, Qingbin; Zhao, Liang; Wang, Xiaojing; Wang, Meimei; Sui, Sen-Fang; Mi, Li-Zhi

    2017-07-29

    Platelet Derived Growth Factor receptors (PDGFRs), members of receptor tyrosine kinase superfamily, play essential roles in early hematopoiesis, angiogenesis and organ development. Dysregulation of PDGF receptor signaling under pathological conditions associates with cancers, vascular diseases, and fibrotic diseases. Therefore, they are attractive targets in drug development. Like any other membrane proteins with a single-pass transmembrane domain, the high-resolution structural information of the full-length PDGF receptors is still not resolved. It is caused, at least in part, by the technical challenges in the expression and purification of the functional, full-length PDGF receptors. Herein, we reported our experimental details in expression and purification of the full-length PDGFRβ from mammalian cells. We found that purified PDGFRβ remained in two different oligomeric states, presumably the monomer and the dimer, with basal kinase activity in detergent micelles. Addition of PDGF-B promoted dimerization and elevated kinase activity of the receptor, suggesting that purified receptors were functional. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Complete Disruption of the Kainate Receptor Gene Family Results in Corticostriatal Dysfunction in Mice.

    PubMed

    Xu, Jian; Marshall, John J; Fernandes, Herman B; Nomura, Toshihiro; Copits, Bryan A; Procissi, Daniele; Mori, Susumu; Wang, Lei; Zhu, Yongling; Swanson, Geoffrey T; Contractor, Anis

    2017-02-21

    Kainate receptors are members of the glutamate receptor family that regulate synaptic function in the brain. They modulate synaptic transmission and the excitability of neurons; however, their contributions to neural circuits that underlie behavior are unclear. To understand the net impact of kainate receptor signaling, we generated knockout mice in which all five kainate receptor subunits were ablated (5ko). These mice displayed compulsive and perseverative behaviors, including over-grooming, as well as motor problems, indicative of alterations in striatal circuits. There were deficits in corticostriatal input to spiny projection neurons (SPNs) in the dorsal striatum and correlated reductions in spine density. The behavioral alterations were not present in mice only lacking the primary receptor subunit expressed in adult striatum (GluK2 KO), suggesting that signaling through multiple receptor types is required for proper striatal function. This demonstrates that alterations in striatal function dominate the behavioral phenotype in mice without kainate receptors. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  19. Insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the procedure in insulin receptors. Part B: Clinical assessment, biological responses, and comparison to the IGF-1 receptor. Topics covered include: Insulin and IGF-1 receptors, Clinical assessment of receptor functions, and Biological responses.

  20. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  1. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology

    PubMed Central

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. PMID:26216637

  2. Probing receptor structure/function with chimeric G-protein-coupled receptors.

    PubMed

    Yin, Dezhong; Gavi, Shai; Wang, Hsien-yu; Malbon, Craig C

    2004-06-01

    Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.

  3. Predicting receptor functionality of signaling lymphocyte activation molecule for measles virus hemagglutinin by docking simulation.

    PubMed

    Suzuki, Yoshiyuki

    2017-05-01

    Predicting susceptibility of various species to a virus assists assessment of risk of interspecies transmission. Evaluation of receptor functionality may be useful in screening for susceptibility. In this study, docking simulation was conducted for measles virus hemagglutinin (MV-H) and immunoglobulin-like variable domain of signaling lymphocyte activation molecule (SLAM-V). It was observed that the docking scores for MV-H and SLAM-V correlated with the activity of SLAM as an MV receptor. These results suggest that the receptor functionality may be predicted from the docking scores of virion surface proteins and cellular receptor molecules. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  4. Tris(2-aminoethyl)amine based tripodal urea receptors for oxalate: encapsulation of staggered vs. planar conformers.

    PubMed

    Bose, Purnandhu; Dutta, Ranjan; Ghosh, Pradyut

    2013-07-28

    Simple tris(2-aminoethyl)amine (TREN) based tripodal urea receptors are investigated for the encapsulation of divalent oxalate (C2O4(2-)) in a semi-aqueous medium. A single crystal X-ray diffraction study shows that the receptor with 3-cyanophenyl functionality captures a staggered conformer whereas the 3-fluorophenyl functionalized receptor encapsulates a less stable planar conformer.

  5. Stabilization of Functional Recombinant Cannabinoid Receptor CB2 in Detergent Micelles and Lipid Bilayers

    PubMed Central

    Vukoti, Krishna; Kimura, Tomohiro; Macke, Laura; Gawrisch, Klaus; Yeliseev, Alexei

    2012-01-01

    Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs) is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of 2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS) and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB2 in dodecyl maltoside (DDM)/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS) exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at physiologically relevant conditions. PMID:23056277

  6. GABA(C) receptors: a molecular view.

    PubMed

    Enz, R

    2001-08-01

    In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.

  7. LY404187: a novel positive allosteric modulator of AMPA receptors.

    PubMed

    Quirk, Jennifer C; Nisenbaum, Eric S

    2002-01-01

    LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.

  8. Direct interaction enables cross-talk between ionotropic and group I metabotropic glutamate receptors.

    PubMed

    Perroy, Julie; Raynaud, Fabrice; Homburger, Vincent; Rousset, Marie-Claude; Telley, Ludovic; Bockaert, Joël; Fagni, Laurent

    2008-03-14

    Functional interplay between ionotropic and metabotropic receptors frequently involves complex intracellular signaling cascades. The group I metabotropic glutamate receptor mGlu5a co-clusters with the ionotropic N-methyl-d-aspartate (NMDA) receptor in hippocampal neurons. In this study, we report that a more direct cross-talk can exist between these types of receptors. Using bioluminescence resonance energy transfer in living HEK293 cells, we demonstrate that mGlu5a and NMDA receptor clustering reflects the existence of direct physical interactions. Consequently, the mGlu5a receptor decreased NMDA receptor current, and reciprocally, the NMDA receptor strongly reduced the ability of the mGlu5a receptor to release intracellular calcium. We show that deletion of the C terminus of the mGlu5a receptor abolished both its interaction with the NMDA receptor and reciprocal inhibition of the receptors. This direct functional interaction implies a higher degree of target-effector specificity, timing, and subcellular localization of signaling than could ever be predicted with complex signaling pathways.

  9. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  10. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    PubMed

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  11. Diversity in GABAergic signaling.

    PubMed

    Vogt, Kaspar

    2015-01-01

    GABA(A) receptor-mediated synaptic transmission is responsible for inhibitory control of neural function in the brain. Recent progress has shown that GABA(A) receptors also provide a wide range of additional functions beyond simple inhibition. This diversity of functions is mediated by a large variety of different interneuron classes acting on a diverse population of receptor subtypes. Here, I will focus on an additional source of GABAergic signaling diversity, caused by the highly variable ion signaling mechanism of GABA(A) receptors. In concert with the other two sources of GABAergic heterogeneity, this variability in signaling allows for a wide array of GABAergic effects that are crucial for the development of the brain and its function. © 2015 Elsevier Inc. All rights reserved.

  12. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  13. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  14. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  15. History of retinoic acid receptors.

    PubMed

    Benbrook, Doris M; Chambon, Pierre; Rochette-Egly, Cécile; Asson-Batres, Mary Ann

    2014-01-01

    The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.

  16. Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation

    PubMed Central

    Joseph, Prem Raj B.; Sawant, Kirti V.; Isley, Angela; Pedroza, Mesias; Garofalo, Roberto P.; Richardson, Ricardo M.; Rajarathnam, Krishna

    2014-01-01

    Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. Mutations in the GP motif caused various differences from native-like function to complete loss of activity that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity. PMID:24032673

  17. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    PubMed

    White, Jim F; Grisshammer, Reinhard

    2010-09-07

    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  18. Health assessment of gasoline and fuel oxygenate vapors: neurotoxicity evaluation.

    PubMed

    O'Callaghan, James P; Daughtrey, Wayne C; Clark, Charles R; Schreiner, Ceinwen A; White, Russell

    2014-11-01

    Sprague-Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) and exposures were for 6h/day, 5days/week for 13weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiplebrain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils.

    PubMed

    Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J

    2007-09-19

    Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. First order mineralization rate constants of TBA at 5 degrees C, 15 degrees C and 25 degrees C were 7.84 +/- 0.14 x 10-3, 9.07 +/- 0.09 x 10-3, and 15.3 +/- 0.3 x 10-3 days-1, respectively (or 2.86 +/- 0.05, 3.31 +/- 0.03, 5.60 +/- 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.

  20. Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation

    PubMed Central

    O’Callaghan, James P.; Daughtrey, Wayne C.; Clark, Charles R.; Schreiner, Ceinwen A.; White, Russell

    2016-01-01

    Sprague–Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from “baseline gasoline” (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000 mg/mg3 and exposures were for 6 h/day, 5 days/week for 13 weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiple brain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. PMID:24879970

  1. Renal dopamine containing nerves. What is their functional significance?

    PubMed

    DiBona, G F

    1990-06-01

    Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.

  2. Functional expression of Squalus acanthias melanocortin-5 receptor in CHO cells: ligand selectivity and interaction with MRAP.

    PubMed

    Reinick, Christina L; Liang, Liang; Angleson, Josepha K; Dores, Robert M

    2012-04-05

    The melanocortin-5 receptor (MC(5)) of the dogfish Squalus acanthias (SacMC(5) receptor) can be functionally expressed in CHO cells in the absence of the co-expression of an exogenous MRAP cDNA. Both human ACTH(1-24) and dogfish ACTH(1-25) were much better stimulators of the SacMC(5) receptor than any of the mammalian or dogfish MSH ligands that were tested. The order of ligand selectivity for the dogfish melanocortins was ACTH(1-25)>αMSH>γ-MSH=δ-MSH>β-MSH. Unlike mammalian MC(5) receptors, the functional expression of the SacMC(5) receptor was not negatively impacted when the receptor was co-expressed with a cartilaginous fish (Callorhinchus milii) MRAP2 cDNA. However, co-expression with either mouse mMRAP1 or zebrafish zfMRAP1 increased the sensitivity of SacMC(5) receptor for hACTH(1-24) by at least one order of magnitude. Hence, SacMC(5) receptor has the potential to interact with MRAP1 orthologs and in this regard behaved more like a melanocortin MC(2) receptor ortholog than a melanocortin MC(5) receptor ortholog. These observations are discussed in light of the evolution of the melanocortin receptor gene family in cartilaginous fish, and the physiological implications of these observations are considered. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation

    PubMed Central

    Douglas, Steven D.; Leeman, Susan E.

    2010-01-01

    The G-protein coupled receptor (GPCR), Neurokinin-1 Receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and substance P are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa-b (NF-κb) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by substance P are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major Class 1, rhodopsin-like GPCR ligand-receptor interaction. PMID:21091716

  4. The thymoprotective function of leptin is indirectly mediated via suppression of obesity.

    PubMed

    Sreenivasan, Jayasree; Schlenner, Susan; Franckaert, Dean; Dooley, James; Liston, Adrian

    2015-09-01

    Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus. © 2015 John Wiley & Sons Ltd.

  5. Emergence of a Staphylococcus aureus Clone Resistant to Mupirocin and Fusidic Acid Carrying Exotoxin Genes and Causing Mainly Skin Infections

    PubMed Central

    Spiliopoulou, Iris; Spyridis, Nikolaos; Giormezis, Nikolaos; Kopsidas, John; Militsopoulou, Maria; Lebessi, Evangelia; Tsolia, Maria

    2017-01-01

    ABSTRACT Skin and soft tissue infections (SSTIs) caused by mupirocin-resistant Staphylococcus aureus strains have recently increased in number in our settings. We sought to evaluate the characteristics of these cases over a 43-month period. Data for all community-acquired staphylococcal infections caused by mupirocin-resistant strains were retrospectively reviewed. Genes encoding products producing high-level resistance (HLR) to mupirocin (mupA), fusidic acid resistance (fusB), resistance to macrolides and lincosamides (ermC and ermA), Panton-Valentine leukocidin (PVL) (lukS/lukF-PV), exfoliative toxins (eta and etb), and fibronectin binding protein A (fnbA) were investigated by PCRs in 102 selected preserved strains. Genotyping was performed by SCCmec and agr typing, whereas clonality was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). A total of 437 cases among 2,137 staphylococcal infections were recorded in 2013 to 2016; they were all SSTIs with the exception of 1 case of primary bacteremia. Impetigo was the predominant clinical entity (371 cases [84.9%]), followed by staphylococcal scalded skin syndrome (21 cases [4.8%]), and there were no abscesses. The number of infections detected annually increased during the study years. All except 3 isolates were methicillin susceptible. The rates of HLR to mupirocin and constitutive resistance to clindamycin were 99% and 20.1%, respectively. Among the 102 tested strains, 100 (98%) were mupA positive and 97 (95%) were fusB positive, 26/27 clindamycin-resistant strains (96.3%) were ermA positive, 83 strains (81.4%) were lukS/lukF positive, 95 (93%) carried both eta and etb genes, and 99 (97%) were fnbA positive. Genotyping of methicillin-sensitive S. aureus (MSSA) strains revealed that 96/99 (96.7%) belonged to one main pulsotype, pulsotype 1, classified as sequence type 121 (ST121). The emergence of a single MSSA clone (ST121) causing impetigo was documented. Resistance to topical antimicrobials and a rich toxinogenic profile confer to this clone adaptability for spread in the community. PMID:28592549

  6. Willingness to pay for insecticide-treated nets in Berehet District, Amhara Region, Northern Ethiopia: implication of social marketing.

    PubMed

    Aleme, Adisu; Girma, Eshetu; Fentahun, Netsanet

    2014-01-01

    Understanding the feasibility of achieving widespread coverage with Insecticide-Treated Nets has to be preceded by learning how people value the Insecticide-Treated Nets and estimating the potential demand and willingness to pay so that sustainability of the intervention can be assured. The objective of this study was to determine willingness to pay for Insecticide-Treated Nets among households in Berehet District, Northern Ethiopia. A community-based cross-sectional study was conducted using both quantitative and qualitative methods in five randomly selected Kebeles from January-February 2012. Open ended contingent valuation technique with follow-up method was used. Qualitative data were collected through focus group discussions and observation methods. Binary logistic regression was used to determine the association between dependent and independent variables. The average number of individuals per Insecticide-Treated Nets was 3.83. Nearly 68.5% persons had willingness to buy Insecticide-Treated Nets if they have access to these Nets. The median maximum price a person is willingness to pay for blue rectangular Insecticide-Treated Net was 20 ETB. People had willingness to pay 30 ETB for blue and white conical insecticide-treated nets. Working on knowledge of malaria (OR=0.68, CI (0.47, 0.98; p<0.05), perceived benefit of Insecticide-Treated Nets (OR=0.28, CI (0.2-0.4; p<0.05), perceived susceptibility (OR=0.64(0.44-0.93; p<0.05) and perceived severity of malaria (OR=0.65(0.47-0.91, p<0.05) had significant association with a willingness to pay Insecticide-Treated Nets. Respondents who prefer Kebele/place/ to buy Insecticide-Treated Net for rectangular shape had a significant association with a willingness to pay for Insecticide-Treated Nets (OR=1.92, CI= 1.07-3.92). Promotions, products, price and place had significant association with willingness to pay for Insecticide-Treated Nets. Designing a social marketing strategy helps ensure sustainable supply of Insecticide-Treated Nets and proper use of Insecticide-Treated Nets.

  7. Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function

    PubMed Central

    Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journé, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sébastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca

    2013-01-01

    The formation of G protein-coupled receptor (GPCR) heteromers elicits signaling diversification and holds great promise for improved drug selectivity. Most studies have been conducted in heterologous expression systems; however, in vivo validation is missing from most cases thus questioning the physiological significance of GPCR heteromerization. Melatonin MT1 and MT2 receptors have been shown to exist as homo- and heteromers in vitro. We show here that the effect of melatonin on rod photoreceptor light sensitivity is mediated by melatonin MT1/MT2 receptor heteromers. This effect involves activation of the heteromer-specific PLC/PKC pathway and is abolished in MT1−/− and MT2−/− mice as well as in mice overexpressing a non-functional MT2 receptor mutant that competes with the formation of functional MT1/MT2 heteromers in photoreceptor cells. This study establishes the essential role of melatonin receptor heteromers in retinal function and supports the physiological importance of GPCR heteromerization. Finally, our work may have important therapeutic implications, as the heteromer complex may provide a unique pharmacological target to improve photoreceptor functioning and to extend the viability of photoreceptors during aging. PMID:24106342

  8. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels

    PubMed Central

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.

    2011-01-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640

  9. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.

    PubMed

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B

    2011-02-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.

  10. The Dopamine D5 Receptor Is Involved in Working Memory

    PubMed Central

    Carr, Gregory V.; Maltese, Federica; Sibley, David R.; Weinberger, Daniel R.; Papaleo, Francesco

    2017-01-01

    Pharmacological studies indicate that dopamine D1-like receptors (D1 and D5) are critically involved in cognitive function. However, the lack of pharmacological ligands selective for either the D1 or D5 receptors has made it difficult to determine the unique contributions of the D1-like family members. To circumvent these pharmacological limitations, we used D5 receptor homozygous (-/-) and heterozygous (+/-) knockout mice, to identify the specific role of this receptor in higher order cognitive functions. We identified a novel role for D5 receptors in the regulation of spatial working memory and temporal order memory function. The D5 mutant mice acquired a discrete paired-trial variable-delay T-maze task at normal rates. However, both D5+/- and D5-/- mice exhibited impaired performance compared to D5+/+ littermates when a higher burden on working memory faculties was imposed. In a temporal order object recognition task, D5+/- exhibited significant memory deficits. No D5-dependent differences in locomotor functions and interest in exploring objects were evident. Molecular biomarkers of dopaminergic functions within the prefrontal cortex (PFC) revealed a selective gene-dose effect on Akt phosphorylation at Ser473 with increased levels in D5-/- knockout mice. A trend toward reduced levels in CaMKKbeta brain-specific band (64 kDa) in D5-/- compared to D5+/+ was also evident. These findings highlight a previously unidentified role for D5 receptors in working memory function and associated molecular signatures within the PFC. PMID:29056909

  11. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30.

    PubMed

    Revankar, Chetana M; Mitchell, Hugh D; Field, Angela S; Burai, Ritwik; Corona, Cesear; Ramesh, Chinnasamy; Sklar, Larry A; Arterburn, Jeffrey B; Prossnitz, Eric R

    2007-08-17

    Estrogen mediates its effects through multiple cellular receptors. In addition to the classical nuclear estrogen receptors (ERalpha and ERbeta), estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPCR) GPR30. Although estrogen is a cell-permeable ligand, it is often assumed that all GPCRs function solely as cell surface receptors. Our previous results showed that GPR30 appeared to be expressed predominantly in the endoplasmic reticulum. A critical question that arises is whether this localization represents the site of functional receptor. To address this question, we synthesized a collection of cell-permeable and cell-impermeable estrogen derivatives. We hypothesized that if functional GPR30 were expressed at the cell surface, both permeable and impermeable derivatives would show activity. However, if functional GPR30 were predominantly intracellular, like ERalpha, only the permeable ligands should show activity. Cell permeability was assessed using cells expressing ERalpha as a model intracellular estrogen-binding receptor. Our results reveal that despite exhibiting similar binding affinities for GPR30, only the cell-permeable ligands are capable of stimulating rapid calcium mobilization and phosphoinositide 3-kinase (PI3K) activation. We conclude that GPR30 expressed intracellularly is capable of initiating cellular signaling and that there is insufficient GPR30 expressed on the cell surface to initiate signaling in response to impermeable ligands in the cell lines examined. To our knowledge, this is the first definitive demonstration of a functional intracellular transmembrane estrogen receptor.

  12. Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans

    PubMed Central

    Pandey, Pratima; Bhardwaj, Ashwani; Babu, Kavita

    2017-01-01

    Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this study, we elucidate the molecular and functional mechanism of RIG-3. We demonstrate by genetic and BiFC (Bi-molecular Fluorescence Complementation) assays that presynaptic RIG-3 functions by directly interacting with the immunoglobulin domain of the nonconventional Wnt receptor, ROR receptor tyrosine kinase (RTK), CAM-1, which functions in postsynaptic body-wall muscles. This interaction in turn inhibits Wnt/LIN-44 signaling through the ROR/CAM-1 receptor, and allows for maintenance of normal acetylcholine receptor, AChR/ACR-16, levels at the neuromuscular synapse. Further, this work reveals that RIG-3 and ROR/CAM-1 function through the β-catenin/HMP-2 at the NMJ. Taken together, our results demonstrate that RIG-3 functions as an inhibitory molecule of the Wnt/LIN-44 signaling pathway through the RTK, CAM-1. PMID:28515212

  13. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  14. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  15. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2009-09-01

    GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7-transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications.

  16. An energetic orphan in an endocrine tissue: a revised perspective of the function of estrogen receptor-related receptor alpha in bone and cartilage.

    PubMed

    Bonnelye, Edith; Aubin, Jane E

    2013-02-01

    Estrogen receptor-related receptor alpha (ERRα) is an orphan nuclear receptor with sequence homology to the estrogen receptors, ERα/β, but it does not bind estrogen. ERRα not only plays a functional role in osteoblasts but also in osteoclasts and chondrocytes. In addition, the ERRs, including ERRα, can be activated by coactivators such as peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1α and β) and are implicated in adipogenesis, fatty acid oxidation, and oxidative stress defense, suggesting that ERRα-through its activity in bone resorption and adipogenesis--may regulate the insulin and leptin pathways and contribute to aging-related changes in bone and cartilage. In this review, we discuss data on ERRα and its cellular and molecular modes of action, which have broad implications for considering the potential role of this orphan receptor in cartilage and bone endocrine function, on whole-organism physiology, and in the bone aging process. Copyright © 2013 American Society for Bone and Mineral Research.

  17. Chemical labelling for visualizing native AMPA receptors in live neurons

    PubMed Central

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-01-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders. PMID:28387242

  18. Regulation of Steroid Hormone Receptor Function By the 52-kDa FK506-Binding Protein (FKBP52)

    PubMed Central

    Sivils, Jeffrey C.; Storer, Cheryl L.; Galigniana, Mario D.; Cox, Marc B.

    2011-01-01

    The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies has been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors. PMID:21511531

  19. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  20. Functional dynamics of cell surface membrane proteins.

    PubMed

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Functional roles of the sweet taste receptor in oral and extraoral tissues

    PubMed Central

    Laffitte, Anni; Neiers, Fabrice; Briand, Loïc

    2014-01-01

    Purpose of review This review summarizes and discusses the current knowledge about the physiological roles of the sweet taste receptor in oral and extraoral tissues. Recent findings The expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, including the gut, pancreas, bladder, brain and, more recently, bone and adipose tissues. In the gut, this receptor has been suggested to be involved in luminal glucose sensing, the release of some satiety hormones, the expression of glucose transporters, and the maintenance of glucose homeostasis. More recently, the sweet taste receptor was proposed to regulate adipogenesis and bone biology. Summary The perception of sweet taste is mediated by the T1R2/T1R3 receptor, which is expressed in the oral cavity, wherein it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the chemically diverse compounds perceived as sweet by human beings, including natural sugars and sweeteners. Importantly, the expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, wherein it has been proposed to regulate metabolic processes. This newly recognized role of the sweet taste receptor makes this receptor a potential novel therapeutic target for the treatment of obesity and related metabolic dysfunctions, such as diabetes and hyperlipidemia. PMID:24763065

  2. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila.

    PubMed

    García-Alonso, L; Romani, S; Jiménez, F

    2000-12-01

    Cell adhesion molecules (CAMs) implement the process of axon guidance by promoting specific selection and attachment to substrates. We show that, in Drosophila, loss-of-function conditions of either the Neuroglian CAM, the FGF receptor coded by the gene heartless, or the EGF receptor coded by DER display a similar phenotype of abnormal substrate selection and axon guidance by peripheral sensory neurons. Moreover, neuroglian loss-of-function phenotype can be suppressed by the expression of gain-of-function conditions of heartless or DER. The results are consistent with a scenario where the activity of these receptor tyrosine kinases is controlled by Neuroglian at choice points where sensory axons select between alternative substrates for extension.

  3. Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities.

    PubMed

    Cock, J Mark; Vanoosthuyse, Vincent; Gaude, Thierry

    2002-04-01

    Plant genomes encode large numbers of receptor kinases that are structurally related to the tyrosine and serine/threonine families of receptor kinase found in animals. Here, we describe recent advances in the characterisation of several of these plant receptor kinases at the molecular level, including the identification of receptor complexes, small polypeptide ligands and cytosolic proteins involved in signal transduction and receptor downregulation. Phylogenetic analysis indicates that plant receptor kinases have evolved independently of the receptor kinase families found in animals. This hypothesis is supported by functional studies that have revealed differences between receptor kinase signalling in plants and animals, particularly concerning their interactions with cytosolic proteins. Despite these dissimilarities, however, plant and animal receptor kinases share many common features, such as their single membrane-pass structure, their inclusion in membrane-associated complexes, the involvement of dimerisation and trans autophosphorylation in receptor activation, and the existence of inhibitors and phosphatases that downregulate receptor activity. These points of convergence may represent features that are essential for a functional receptor-kinase signalling system.

  4. Identifying Environmental Chemicals as Agonists of the Androgen Receptor by Applying a Quantitative High-throughput Screening Platform

    EPA Science Inventory

    Background: The androgen receptor (AR, NR3C4) is a nuclear receptor whose main function is acting as a transcription factor regulating gene expression for male sexual development and maintaining accessory sexual organ function. It is also a necessary component of female fertility...

  5. Opiate antagonist prevents μ- and δ-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth.

    PubMed

    Sarkar, Dipak K; Sengupta, Amitabha; Zhang, Changqing; Boyadjieva, Nadka; Murugan, Sengottuvelan

    2012-05-11

    In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.

  6. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimericmore » interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.« less

  7. General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels

    PubMed Central

    Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I

    2008-01-01

    Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027

  8. Effects of chronic sumatriptan and zolmitriptan treatment on 5-HT receptor expression and function in rats.

    PubMed

    Reuter, U; Salomone, S; Ickenstein, G W; Waeber, C

    2004-05-01

    Triptans are commonly used anti-migraine drugs and show agonist action mainly at serotonin 5-HT(1B/1D/1F) receptors. It is not known whether frequent or long-term treatment with these drugs would alter 5-HT receptor function. We investigated the effects of protracted (14-18 days) sumatriptan and zolmitriptan treatment in rats on 5-HT(1) receptor mRNA expression and function in tissues related to migraine pathophysiology. RT-PCR analysis revealed that 5-HT(1B/1D/1F) receptor mRNA was reduced in the trigeminal ganglion after treatment with either triptan (reduction by: sumatriptan 39% and zolmitriptan 61% for 5-HT(1B); 60%vs 41% for 5-HT(1D); 32%vs 68% for 5-HT(1F)). Sumatriptan attenuated 5-HT(1D) receptor mRNA by 49% in the basilar artery, whereas zolmitriptan reduced 5-HT(1B) mRNA in this tissue by 70%. No change in 5-HT(1) receptor mRNA expression was observed in coronary artery and dura mater. Chronic triptan treatment had no effect in two functional assays [sumatriptan mediated inhibition (50 mg/kg, i.p.) of electrically induced plasma protein extravasation in dura mater and 5-nonyloxytryptamine-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate binding in substantia nigra]. Furthermore, vasoconstriction to 5-HT in isolated basilar artery was not affected by chronic triptan treatment, while it was slightly reduced in coronary artery. We conclude that, although our treatment protocol altered mRNA receptor expression in several tissues relevant to migraine pathophysiology, it did not attenuate 5-HT(1) receptor-dependent functions in rats.

  9. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  10. Yeast as a model system for mammalian seven-transmembrane segment receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomalmore » location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.« less

  11. Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking.

    PubMed

    Hurt, Carl M; Sorensen, Matt W; Angelotti, Timothy

    2014-06-01

    Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.

  12. LOCALIZATION OF CALCITONIN RECEPTOR-LIKE RECEPTOR (CLR) AND RECEPTOR ACTIVITY-MODIFYING PROTEIN 1 (RAMP1) IN HUMAN GASTROINTESTINAL TRACT

    PubMed Central

    Cottrell, Graeme S.; Alemi, Farzad; Kirkland, Jacob G.; Grady, Eileen F.; Corvera, Carlos U.; Bhargava, Aditi

    2012-01-01

    Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR•RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility. PMID:22484227

  13. Regulation of Calcium Channels and Exocytosis in Mouse Adrenal Chromaffin Cells by Prostaglandin EP3 Receptors

    PubMed Central

    Jewell, Mark L.; Breyer, Richard M.

    2011-01-01

    Prostaglandin (PG) E2 controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1–EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE2 in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca2+ influx through voltage-gated Ca2+ channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE2 might modulate chromaffin cell function. PGE2 did not alter resting intracellular [Ca2+] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit CaV2 voltage-gated Ca2+ channel currents (ICa). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other Gi/o-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of ICa. Finally, changes in membrane capacitance showed that Ca2+-dependent exocytosis was reduced in parallel with ICa. To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE2. PMID:21383044

  14. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice.

    PubMed

    Higashino, Kosuke; Ago, Yukio; Umeki, Takahiro; Hasebe, Shigeru; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2016-02-01

    The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.

  15. Diversity in arrestin function.

    PubMed

    Kendall, Ryan T; Luttrell, Louis M

    2009-09-01

    The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein 'signalsome' complexes. Arrestin-binding thus 'switches' receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.

  16. Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches

    PubMed Central

    Gavériaux-Ruff, Claire; Kieffer, Brigitte Lina

    2012-01-01

    Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of delta receptor function in pain control. These include several novel delta agonists with potent analgesic properties, as well as genetic mouse models with targeted mutations in the delta opioid receptor gene. Also, recent findings have further documented the regulation of delta receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in vivo research, as well as proposed mechanisms at molecular level, have tremendously increased our understanding of delta receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders. PMID:21836459

  17. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    PubMed

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However, liver levels of GHR1 and GHR2 transcripts, and liver and muscle levels of IGF-I transcripts were unaffected by fasting. These results clearly indicate tissue specific expression and differential physiological regulation of GH family receptors in the tilapia.

  18. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp; Sekiguchi, Toshio; Nagata, Sayaka

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding andmore » AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.« less

  19. Dexmedetomidine Prevents Excessive γ-Aminobutyric Acid Type A Receptor Function after Anesthesia.

    PubMed

    Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Lei, Gang; Mostafa, Fariya; Wang, Junhui; Lecker, Irene; Avramescu, Sinziana; Xie, Yu-Feng; Chan, Nathan K; Fernandez-Escobar, Alejandro; Woo, Junsung; Chan, Darren; Ramsey, Amy J; Sivak, Jeremy M; Lee, C Justin; Bonin, Robert P; Orser, Beverley A

    2018-06-08

    Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.

  20. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    PubMed

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor internalization-induced changes in neuronal functions of the CNS.

  1. Purification of Plant Receptor Kinases from Plant Plasma Membranes.

    PubMed

    Lee, Jin Suk

    2017-01-01

    Receptor kinases play a central role in various biological processes, but due to their low abundance and highly hydrophobic and dynamic nature, only a few of them have been functionally characterized, and their partners and ligands remain unidentified. Receptor protein extraction and purification from plant tissues is one of the most challenging steps for the success of various biochemical analyses to characterize their function. Immunoprecipitation is a widely used and selective method for enriching or purifying a specific protein. Here we describe two different optimized protein purification protocols, batch and on-chip immunoprecipitation, which efficiently isolate plant membrane receptor kinases for functional analysis.

  2. Estrogen-related receptor β (ERRβ) – renaissance receptor or receptor renaissance?

    PubMed Central

    Divekar, Shailaja D.; Tiek, Deanna M.; Fernandez, Aileen; Riggins, Rebecca B.

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  3. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    PubMed

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  4. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk.

    PubMed

    Tóth, András D; Turu, Gábor; Hunyady, László; Balla, András

    2018-04-01

    AT 1 angiotensin receptor (AT 1 R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT 1 R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT 1 R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT 1 R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT 1 R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT 1 R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB 1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT 1 R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases. Copyright © 2018. Published by Elsevier Ltd.

  5. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs?

    PubMed

    Barwell, James; Gingell, Joseph J; Watkins, Harriet A; Archbold, Julia K; Poyner, David R; Hay, Debbie L

    2012-05-01

    The calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR) are two of the 15 human family B (or Secretin-like) GPCRs. CTR and CLR are of considerable biological interest as their pharmacology is moulded by interactions with receptor activity-modifying proteins. They also have therapeutic relevance for many conditions, such as osteoporosis, diabetes, obesity, lymphatic insufficiency, migraine and cardiovascular disease. In light of recent advances in understanding ligand docking and receptor activation in both the family as a whole and in CLR and CTR specifically, this review reflects how applicable general family B GPCR themes are to these two idiosyncratic receptors. We review the main functional domains of the receptors; the N-terminal extracellular domain, the juxtamembrane domain and ligand interface, the transmembrane domain and the intracellular C-terminal domain. Structural and functional findings from the CLR and CTR along with other family B GPCRs are critically appraised to gain insight into how these domains may function. The ability for CTR and CLR to interact with receptor activity-modifying proteins adds another level of sophistication to these receptor systems but means careful consideration is needed when trying to apply generic GPCR principles. This review encapsulates current thinking in the realm of family B GPCR research by highlighting both conflicting and recurring themes and how such findings relate to two unusual but important receptors, CTR and CLR. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development

    PubMed Central

    Diévart, Anne; Dalal, Monica; Tax, Frans E.; Lacey, Alexzandria D.; Huttly, Alison; Li, Jianming; Clark, Steven E.

    2003-01-01

    The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain. PMID:12724544

  7. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  8. Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists.

    PubMed

    Hansen, Martin; Phonekeo, Karina; Paine, James S; Leth-Petersen, Sebastian; Begtrup, Mikael; Bräuner-Osborne, Hans; Kristensen, Jesper L

    2014-03-19

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor.

  9. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana

    PubMed Central

    Balfanz, Sabine

    2017-01-01

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine. PMID:29084141

  10. PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana.

    PubMed

    Blenau, Wolfgang; Balfanz, Sabine; Baumann, Arnd

    2017-10-30

    The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP] i ) whereas type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . Here; we report that the American cockroach ( Periplaneta americana ) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP] i . Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana ; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.

  11. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  12. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  13. Elevated endothelin-1 (ET-1) levels may contribute to hypoadiponectinemia in childhood obesity.

    PubMed

    Nacci, Carmela; Leo, Valentina; De Benedictis, Leonarda; Carratù, Maria Rosaria; Bartolomeo, Nicola; Altomare, Maria; Giordano, Paola; Faienza, Maria Felicia; Montagnani, Monica

    2013-04-01

    Pediatric obesity is associated with endothelial dysfunction and hypoadiponectinemia, but the relationship between these two conditions remains to be fully clarified. Whether enhanced release of endothelin-1 (ET-1) may directly impair adiponectin (Ad) production in obese children is not known. The aim of the study was to explore whether and how high circulating levels of ET-1 may contribute to impair Ad production, release, and vascular activity. Sixty children were included into obese (Ob; n = 30), overweight (OW; n = 11), and lean (n = 19) groups. Total and high-molecular-weight Ad, ET-1, vascular cell adhesion molecule-1, and von Willebrand factor levels were measured in serum samples. Adipocytes were stimulated with exogenous ET-1 or with sera from lean, OW, and Ob, and Ad production and release measured in the absence or in the presence of ETA (BQ-123) and ETB (BQ-788) receptor blockers, p42/44 MAPK inhibitor PD-98059, or c-Jun NH2-terminal protein kinase inhibitor SP-600125. Vasodilation to Ad was evaluated in rat isolated arteries in the absence or in the presence of BQ-123/788. Total and high-molecular-weight Ad was significantly decreased and ET-1 levels significantly increased in OW (P < .01) and Ob (P < .001) children. A statistically significant linear regression (P < .01) was found between Ad and ET-1. Exposure of adipocytes to exogenous ET-1 or serum from OW and Ob significantly decreased Ad mRNA and protein levels (P < 0.001). The inhibitory effect of ET-1 on Ad was reverted by BQ-123/788 or PD-98059 but not SP-600125. Ad-mediated vasodilation was further increased in arteries pretreated with BQ-123/788. ET-1-mediated inhibition of Ad synthesis via p42/44 MAPK signaling may provide a possible explanation for hypoadiponectinemia in pediatric obesity and contribute to the development of cardiovascular complications.

  14. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  15. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias

    PubMed Central

    Shochat, Chen; Tal, Noa; Bandapalli, Obul R.; Palmi, Chiara; Ganmore, Ithamar; te Kronnie, Geertruy; Cario, Gunnar; Cazzaniga, Giovanni; Kulozik, Andreas E.; Stanulla, Martin; Schrappe, Martin; Biondi, Andrea; Basso, Giuseppe; Bercovich, Dani; Muckenthaler, Martina U.

    2011-01-01

    Interleukin-7 receptor α (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia. PMID:21536738

  16. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex.

    PubMed

    Bele, Tanja; Fabbretti, Elsa

    2016-08-01

    P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level. © 2016 International Society for Neurochemistry.

  17. A modern ionotropic glutamate receptor with a K(+) selectivity signature sequence.

    PubMed

    Janovjak, H; Sandoz, G; Isacoff, E Y

    2011-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K(+) channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.

  18. Plant cysteine proteases that evoke itch activate protease-activated receptors

    PubMed Central

    Reddy, V.B.; Lerner, E.A.

    2013-01-01

    Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769

  19. Modern approaches to the design of memory and cognitive function stimulants based on AMPA receptor ligands

    NASA Astrophysics Data System (ADS)

    Grigoriev, V. V.; Proshin, A. N.; Kinzirsky, A. S.; Bachurin, Sergey O.

    2009-05-01

    Data on the structure and properties of compounds acting on AMPA receptors, the key subtype of ionotropic glutamate receptors of the mammalian central nervous system, are analyzed. Data on the role of these receptors in provision of memory and cognitive function formation and impairment processes are presented. The attention is focused on the modern views on the mechanisms of AMPA receptor desensitization and deactivation and action of substances affecting these processes. The structures of key positive modulators of AMPA receptors are given. The problems of application of these substances as therapeutic means for preventing and treating neurodegenerative and psychoneurological diseases are discussed. Bibliography — 121 references.

  20. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  1. Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor.

    PubMed

    Choudhary, Pooja; Loewen, Michele C

    2016-01-01

    Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities. © Crown copyright 2015.

  2. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  3. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. AT1 receptor signaling pathways in the cardiovascular system.

    PubMed

    Kawai, Tatsuo; Forrester, Steven J; O'Brien, Shannon; Baggett, Ariele; Rizzo, Victor; Eguchi, Satoru

    2017-11-01

    The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Research progress of the bitter taste receptor genes in primates.

    PubMed

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  6. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    PubMed

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  7. The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization*

    PubMed Central

    Gilliland, C. Taylor; Salanga, Catherina L.; Kawamura, Tetsuya; Trejo, JoAnn; Handel, Tracy M.

    2013-01-01

    Activation of G protein-coupled receptors by their associated ligands has been extensively studied, and increasing structural information about the molecular mechanisms underlying ligand-dependent receptor activation is beginning to emerge with the recent expansion in GPCR crystal structures. However, some GPCRs are also able to adopt active conformations in the absence of agonist binding that result in the initiation of signal transduction and receptor down-modulation. In this report, we show that the CC-type chemokine receptor 1 (CCR1) exhibits significant constitutive activity leading to a variety of cellular responses. CCR1 expression is sufficient to induce inhibition of cAMP formation, increased F-actin content, and basal migration of human and murine leukocytes. The constitutive activity leads to basal phosphorylation of the receptor, recruitment of β-arrestin-2, and subsequent receptor internalization. CCR1 concurrently engages Gαi and β-arrestin-2 in a multiprotein complex, which may be accommodated by homo-oligomerization or receptor clustering. The data suggest the presence of two functional states for CCR1; whereas receptor coupled to Gαi functions as a canonical GPCR, albeit with high constitutive activity, the CCR1·β-arrestin-2 complex is required for G protein-independent constitutive receptor internalization. The pertussis toxin-insensitive uptake of chemokine by the receptor suggests that the CCR1·β-arrestin-2 complex may be related to a potential scavenging function of the receptor, which may be important for maintenance of chemokine gradients and receptor responsiveness in complex fields of chemokines during inflammation. PMID:24056371

  8. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis

    PubMed Central

    Regan, Patrick M.; Langford, T. Dianne; Khalili, Kamel

    2015-01-01

    Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364

  9. Gammadelta T cells: functional plasticity and heterogeneity.

    PubMed

    Carding, Simon R; Egan, Paul J

    2002-05-01

    Gammadelta T cells remain an enigma. They are capable of generating more unique antigen receptors than alphabeta T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of gammadelta T cells in infectious and autoimmune diseases, we argue that gammadelta T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.

  10. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    PubMed Central

    Kleinau, Gunnar; Worth, Catherine L.; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to understand the molecular activation mechanisms of this receptor comprehensively. Finally, limitations of current knowledge and lack of information are discussed highlighting the need for intensified efforts toward TSHR structure elucidation. PMID:28484426

  11. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors.

    PubMed

    Proenca, Catia C; Song, Minseok; Lee, Francis S

    2016-08-01

    Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors. © 2016 International Society for Neurochemistry.

  12. Nuclear receptors and nonalcoholic fatty liver disease1

    PubMed Central

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26962021

  13. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    PubMed

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  14. Reciprocal regulation of two G protein-coupled receptors sensing extracellular concentrations of Ca2+ and H+

    PubMed Central

    Wei, Wei-Chun; Jacobs, Benjamin; Becker, Esther B. E.; Glitsch, Maike D.

    2015-01-01

    G protein-coupled receptors (GPCRs) are cell surface receptors that detect a wide range of extracellular messengers and convey this information to the inside of cells. Extracellular calcium-sensing receptor (CaSR) and ovarian cancer gene receptor 1 (OGR1) are two GPCRs that sense extracellular Ca2+ and H+, respectively. These two ions are key components of the interstitial fluid, and their concentrations change in an activity-dependent manner. Importantly, the interstitial fluid forms part of the microenvironment that influences cell function in health and disease; however, the exact mechanisms through which changes in the microenvironment influence cell function remain largely unknown. We show that CaSR and OGR1 reciprocally inhibit signaling through each other in central neurons, and that this is lost in their transformed counterparts. Furthermore, strong intracellular acidification impairs CaSR function, but potentiates OGR1 function. Thus, CaSR and OGR1 activities can be regulated in a seesaw manner, whereby conditions promoting signaling through one receptor simultaneously inhibit signaling through the other receptor, potentiating the difference in their relative signaling activity. Our results provide insight into how small but consistent changes in the ionic microenvironment of cells can significantly alter the balance between two signaling pathways, which may contribute to disease progression. PMID:26261299

  15. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    PubMed

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  16. The immunomodulatory properties of the CD5 lymphocyte receptor in health and disease

    PubMed Central

    Soldevila, Gloria; Raman, Chander; Lozano, Francisco

    2011-01-01

    Summary CD5 is a scavenger-like receptor expressed in association with the antigen-specific receptors on T and B-1a lymphocytes. Recent studies reveal a broader biology for CD5 that includes its role as regulator of cell death and as a receptor for pathogen associated molecular patterns, in addition to its previously described function as an inhibitory receptor. These findings shed new light into the mechanistic role of CD5 in leukemias and effector cells to exogenous (infectious) or endogenous (autoimmune, tumoral) antigens. The newly identified properties make this receptor a potential candidate to be targeted for therapeutic intervention as well as immune modulation. This review describes the current knowledge on the function of CD5 as an immunomodulatory receptor both in health and disease. PMID:21482089

  17. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond.

    PubMed

    Rytz, Raphael; Croset, Vincent; Benton, Richard

    2013-09-01

    Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  20. Functional expression of cysteinyl leukotriene receptors on human platelets.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Hashimoto, Kunio; Suzuki, Yasuo; Hirano, Reiji; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Normal peripheral blood leukocytes, such as basophils, eosinophils, B lymphocytes and monocytes/macrophages, have a cysteinyl leukotriene 1 (CysLT1) receptor, while the cysteinyl leukotriene 2 (CysLT2) receptor is expressed in cardiac Purkinje cells, endothelium, brain and leukocytes. However, it is unknown whether or not platelets express the CysLT1 or CysLT2 receptor. In this study we identify and characterize the biological function of the CysLT receptor of human platelets. We determined the CysLT1 or CysLT2 receptor mRNA expression in normal human platelets by RT-PCR and determined protein expression by Western blotting and flow cytometry. Moreover, we examined the effect of cysteinyl leukotrienes (CysLTs) in platelets on the induction of RANTES (Regulated on Activation, Normal T Expressed, and presumably Secreted). We also investigated whether the CysLT1 receptor antagonist pranlukast inhibits CysLT-induced RANTES release. In conclusion, we showed the functional expression of CysLT receptors on human platelets and demonstrated that CysLTs induced the release of significant amounts of RANTES, which suggests a novel role for human platelets in CysLT-mediated allergic inflammation.

  1. Peptide receptor targeting in cancer: the somatostatin paradigm.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Pattarozzi, Alessandra; Gatti, Monica; Würth, Roberto; Thellung, Stefano; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2013-01-01

    Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1-5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.

  2. Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives.

    PubMed

    De Jaco, Antonella; Bernardini, Laura; Rosati, Jessica; Tata, Ada Maria

    2017-01-01

    The α7 nicotinic receptor consists of identical subunits and is one of the most abundant acetylcholine receptors in the mammalian central nervous system. However its expression is also found in the peripheral nervous system as well as in the immune system and various peripheral tissues. Nicotinic Receptors: They are involved in the regulation of several activities ranging from excitatory neurotransmission, the modulation of the release of several neurotransmitters, regulation of neurite outgrowth, and even neuronal survival/death. Its expression is found in brain areas that underlie learning and memory, suggesting their involvement in regulating cognitive functions. The α7-nicotinic receptor has a strategic role during development in regulating molecular pathways activated during neurogenesis. Because of its pleiotropic effects, receptor dysfunction or dysregulated expression is found in pathophysiological conditions of the nervous system including neurodegenerative diseases and neurodevelopmental disorders. Here we review the physiological and pathological roles of alpha-7 nicotinic receptor in different nervous system disorders and the current therapeutic strategies developed to target selectively this receptor for potentiating or reducing its functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Klotho converts canonical FGF receptor into a specific receptor for FGF23.

    PubMed

    Urakawa, Itaru; Yamazaki, Yuji; Shimada, Takashi; Iijima, Kousuke; Hasegawa, Hisashi; Okawa, Katsuya; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi

    2006-12-07

    FGF23 is a unique member of the fibroblast growth factor (FGF) family because it acts as a hormone that derives from bone and regulates kidney functions, whereas most other family members are thought to regulate various cell functions at a local level. The renotropic activity of circulating FGF23 indicates the possible presence of an FGF23-specific receptor in the kidney. Here we show that a previously undescribed receptor conversion by Klotho, a senescence-related molecule, generates the FGF23 receptor. Using a renal homogenate, we found that Klotho binds to FGF23. Forced expression of Klotho enabled the high-affinity binding of FGF23 to the cell surface and restored the ability of a renal cell line to respond to FGF23 treatment. Moreover, FGF23 incompetence was induced by injecting wild-type mice with an anti-Klotho monoclonal antibody. Thus, Klotho is essential for endogenous FGF23 function. Because Klotho alone seemed to be incapable of intracellular signalling, we searched for other components of the FGF23 receptor and found FGFR1(IIIc), which was directly converted by Klotho into the FGF23 receptor. Thus, the concerted action of Klotho and FGFR1(IIIc) reconstitutes the FGF23 receptor. These findings provide insights into the diversity and specificity of interactions between FGF and FGF receptors.

  4. Progesterone receptor in the prostate: A potential suppressor for benign prostatic hyperplasia and prostate cancer.

    PubMed

    Chen, RuiQi; Yu, Yue; Dong, Xuesen

    2017-02-01

    Advanced prostate cancer undergoing androgen receptor pathway inhibition (ARPI) eventually progresses to castrate-resistant prostate cancer (CRPC), suggesting that (i) androgen receptor (AR) blockage is incomplete, and (ii) there are other critical molecular pathways contributing to prostate cancer (PCa) progression. Although most PCa occurs in the epithelium, prostate stroma is increasingly believed to play a crucial role in promoting tumorigenesis and facilitating tumor progression. In the stroma, sex steroid hormone receptors such as AR and estrogen receptor-α are implicated to have important functions, whereas the progesterone receptor (PR) remains largely under-investigated despite the high sequence and structural similarities between PR and AR. Stromal progesterone/PR signaling may play a critical role in PCa development and progression because not only progesterone is a critical precursor for de novo androgen steroidogenesis and an activator of mutant androgen receptors, but also PR functions in a ligand-independent manner in various important pathways. In fact, recent progress in our understanding of stromal PR function suggests that this receptor may exert an inhibitory effect on benign prostatic hyperplasia (BPH), reactive stroma development, and PCa progression. These early findings of stromal PR warrant further investigations as this receptor could be a potential biomarker and therapeutic target in PCa management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. GABA, its receptors, and GABAergic inhibition in mouse taste buds

    PubMed Central

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220

  6. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  7. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibα, Glycoprotein VI, and Glycoprotein IIb/IIIa.

    PubMed

    Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-07

    The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.

  8. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression.

    PubMed

    Souazé, Frédérique; Dupouy, Sandra; Viardot-Foucault, Véronique; Bruyneel, Erik; Attoub, Samir; Gespach, Christian; Gompel, Anne; Forgez, Patricia

    2006-06-15

    Emerging evidence supports neurotensin as a trophic and antiapoptotic factor, mediating its control via the high-affinity neurotensin receptor (NT1 receptor) in several human solid tumors. In a series of 51 patients with invasive ductal breast cancers, 34% of all tumors were positive for neurotensin and 91% positive for NT1 receptor. We found a coexpression of neurotensin and NT1 receptor in a large proportion (30%) of ductal breast tumors, suggesting a contribution of the neurotensinergic signaling cascade within breast cancer progression. Functionally expressed NT1 receptor, in the highly malignant MDA-MB-231 human breast cancer cell line, coordinated a series of transforming functions, including cellular migration, invasion, induction of the matrix metalloproteinase (MMP)-9 transcripts, and MMP-9 gelatinase activity. Disruption of NT1 receptor signaling by silencing RNA or use of a specific NT1 receptor antagonist, SR48692, caused the reversion of these transforming functions and tumor growth of MDA-MB-231 cells xenografted in nude mice. Our findings support the contribution of neurotensin in human breast cancer progression and point out the utility to develop therapeutic molecules targeting neurotensin or NT1 receptor signaling cascade. These strategies would increase the range of therapeutic approaches and be beneficial for specific patients.

  9. From The Cover: Microtransplantation of functional receptors and channels from the Alzheimer's brain to frog oocytes

    NASA Astrophysics Data System (ADS)

    Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.

    2004-02-01

    About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain

  10. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    NASA Astrophysics Data System (ADS)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  11. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors

    PubMed Central

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.

    2011-01-01

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370

  12. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function?

    PubMed Central

    Urlacher, Elodie; Soustelle, Laurent; Parmentier, Marie-Laure; Verlinden, Heleen; Gherardi, Marie-Julie; Fourmy, Daniel; Mercer, Alison R.

    2016-01-01

    Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling. PMID:26741132

  13. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases.

    PubMed

    Cabral-Marques, Otavio; Riemekasten, Gabriela

    2017-11-01

    G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.

  14. Important roles of P2Y receptors in the inflammation and cancer of digestive system.

    PubMed

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-05-10

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.

  15. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    PubMed Central

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2009-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998

  16. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    PubMed

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  17. Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.

    PubMed

    Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana

    2008-01-01

    Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  18. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  19. Steroid receptors and their ligands: Effects on male gamete functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors,more » may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens/AR mediate sperm death which is a novel field of investigation in sperm biology.« less

  20. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer.

    PubMed

    Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Jiang, Wen G

    2011-03-01

    Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer.

  1. Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti

    DTIC Science & Technology

    2011-06-30

    Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti Alan J. Grant, Joseph C...Dickens JC (2011) Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti . PLoS...palps. Both sexes of mosquitoes possess basiconic sensilla that contain three neurons; in Aedes aegypti these sensilla number about 35 in females and 21

  2. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors.

    PubMed

    Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg

    2012-07-01

    Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.

  3. Conformational suppression of inter-receptor signaling defects

    PubMed Central

    Ames, Peter; Parkinson, John S.

    2006-01-01

    Motile bacteria follow gradients of attractant and repellent chemicals with high sensitivity. Their chemoreceptors are physically clustered, which may enable them to function as a cooperative array. Although native chemoreceptor molecules are typically transmembrane homodimers, they appear to associate through their cytoplasmic tips to form trimers of dimers, which may be an important architectural element in the assembly and operation of receptor clusters. The five receptors of Escherichia coli that mediate most of its chemotactic and aerotactic behaviors have identical trimer contact residues and have been shown by in vivo crosslinking methods to form mixed trimers of dimers. Mutations at the trimer contact sites of Tsr, the serine chemoreceptor, invariably abrogate Tsr function, but some of those lesions (designated Tsr*) are epistatic and block the function of heterologous chemoreceptors. We isolated and characterized mutations (designated Tar⋀) in the aspartate chemoreceptor that restored function to Tsr* receptors. The suppressors arose at or near the Tar trimer contact sites and acted in an allele-specific fashion on Tsr* partners. Alone, many Tar⋀ receptors were unable to mediate chemotactic responses to aspartate, but all formed clusters with varying efficiencies. Most of those Tar⋀ receptors were epistatic to WT Tsr, but some regained Tar function in combination with a suppressible Tsr* partner. Tar⋀–Tsr* suppression most likely occurs through compensatory changes in the conformation or dynamics of a mixed receptor signaling complex, presumably based on trimer-of-dimer interactions. These collaborative teams may be responsible for the high-gain signaling properties of bacterial chemoreceptors. PMID:16751275

  4. [MODERN PROKINETICS AND THEIR ROLE IN THE TREATMENT OF GASTROENTEROLOGICAL PATHOLOGY].

    PubMed

    Sheptulin, A A; Belousova, I B

    2016-01-01

    The importance of prokinetics (drugs stimulating motor function of the gastrointestinal tract) arises from the high prevalence of gastroenterological pathology associated with primary or secondary disturbances of this function in esophagus, stomach, and intestines. The main groups of prokinetics are beta-blockers of dopamine receptors, inhibitors of acetylcholine esterase (or their combination with dopamine receptor blockers), 5-HT4-receptor agonists. They find wide application for the treatment of gastroesophgeal reflux disease, functional dyspepsia and constipation, obstipational form of irritable bowel syndrome, and other conditions accompanied by motor function disorders of the gastrointestinal tract.

  5. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    PubMed Central

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  6. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain.

    PubMed

    Sanger, Gareth J

    2004-04-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.

  7. B cell receptor editing in tolerance and autoimmunity

    PubMed Central

    Luning Prak, Eline T.; Monestier, Marc; Eisenberg, Robert A.

    2010-01-01

    Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by “editing” the specificities of their receptors with additional antibody gene rearrangements. Nemazee points out, “receptor editing separates receptor selection from cellular selection.”1 As such, editing complicates the Clonal Selection Hypothesis, because edited cells are not simply endowed for life with a single, invariant antigen receptor.2 For example, an edited B cell changes the specificity of its B cell receptor (BCR), and if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated, and the B cell can exhibit two specificities. Here we will describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire. PMID:21251012

  8. Distinct functional characteristics of levocabastine sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Yamada, M; Yamada, M; Lombet, A; Forgez, P; Rostène, W

    1998-01-01

    Neurotensin has been shown to produce pharmacological effects both in brain and periphery. Several of these effects are mediated by a high-affinity neurotensin NT1 receptor. On the other hand, a low-affinity levocabastine-sensitive neurotensin NT2 receptor was molecularly cloned from rodent brain recently. In this study, in contrast to NT1 receptor, levocabastine (a histamine H1 receptor antagonist) and SR48692 (an antagonist for NT1 receptor) strongly stimulated intracellular Ca2+ mobilization in transfected Chinese hamster ovary cells expressing rat NT2 receptor, thus acting as potent NT2 receptor. Furthermore, despite of their affinities for NT2 receptor, the Ca2+ responses to potent NT1 agonists, neurotensin or JMV449 ([Lys8-(CH2NH)-Lys9]Pro-Tyr-Ile-Leu, a peptidase resistant analogue of neurotensin) were much smaller than that observed with SR48692. These findings suggest that NT1 and NT2 receptors present distinct functional characteristics and that SR48692 may act as a potent agonist for NT2 receptor.

  9. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  10. The role of 5-HT(1A) receptors in learning and memory.

    PubMed

    Ogren, Sven Ove; Eriksson, Therese M; Elvander-Tottie, Elin; D'Addario, Claudio; Ekström, Joanna C; Svenningsson, Per; Meister, Björn; Kehr, Jan; Stiedl, Oliver

    2008-12-16

    The ascending serotonin (5-HT) neurons innervate the cerebral cortex, hippocampus, septum and amygdala, all representing brain regions associated with various domains of cognition. The 5-HT innervation is diffuse and extensively arborized with few synaptic contacts, which indicates that 5-HT can affect a large number of neurons in a paracrine mode. Serotonin signaling is mediated by 14 receptor subtypes with different functional and transductional properties. The 5-HT(1A) subtype is of particular interest, since it is one of the main mediators of the action of 5-HT. Moreover, the 5-HT(1A) receptor regulates the activity of 5-HT neurons via autoreceptors, and it regulates the function of several neurotransmitter systems via postsynaptic receptors (heteroreceptors). This review assesses the pharmacological and genetic evidence that implicates the 5-HT(1A) receptor in learning and memory. The 5-HT(1A) receptors are in the position to influence the activity of glutamatergic, cholinergic and possibly GABAergic neurons in the cerebral cortex, hippocampus and in the septohippocampal projection, thereby affecting declarative and non-declarative memory functions. Moreover, the 5-HT(1A) receptor regulates several transduction mechanisms such as kinases and immediate early genes implicated in memory formation. Based on studies in rodents the stimulation of 5-HT(1A) receptors generally produces learning impairments by interfering with memory-encoding mechanisms. In contrast, antagonists of 5-HT(1A) receptors facilitate certain types of memory by enhancing hippocampal/cortical cholinergic and/or glutamatergic neurotransmission. Some data also support a potential role for the 5-HT(1A) receptor in memory consolidation. Available results also implicate the 5-HT(1A) receptor in the retrieval of aversive or emotional memories, supporting an involvement in reconsolidation. The contribution of 5-HT(1A) receptors in cognitive impairments in various psychiatric disorders is still unclear. However, there is evidence that 5-HT(1A) receptors may play differential roles in normal brain function and in psychopathological states. Taken together, the evidence indicates that the 5-HT(1A) receptor is a target for novel therapeutic advances in several neuropsychiatric disorders characterized by various cognitive deficits.

  11. The β3-adrenergic receptor is dispensable for browning of adipose tissues.

    PubMed

    de Jong, Jasper M A; Wouters, René T F; Boulet, Nathalie; Cannon, Barbara; Nedergaard, Jan; Petrovic, Natasa

    2017-06-01

    Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β 3 -adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β 3 -adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β 3 -adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β 3 -adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression ( Ucp1 , Pgc1a , Dio2 , and Cidea ) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β 3 -adrenergic receptor. Experiments with the β 3 -adrenergic receptor agonist CL-316,243 verified the functional absence of β 3 -adrenergic signaling in these knockout mice. The β 3 -adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β 3 -adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells. Copyright © 2017 the American Physiological Society.

  12. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors.

    PubMed

    Gwynne, R M; Bornstein, J C

    2007-03-01

    Digestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT(3) receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y(1) receptor and the NK(1) receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.

  13. A Highly Conserved Salt Bridge Stabilizes the Kinked Conformation of β2,3-Sheet Essential for Channel Function of P2X4 Receptors.

    PubMed

    Zhao, Wen-Shan; Sun, Meng-Yang; Sun, Liang-Fei; Liu, Yan; Yang, Yang; Huang, Li-Dong; Fan, Ying-Zhe; Cheng, Xiao-Yang; Cao, Peng; Hu, You-Min; Li, Lingyong; Tian, Yun; Wang, Rui; Yu, Ye

    2016-04-08

    Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the function of P2X receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. L-glutamate Receptor In Paramecium

    NASA Astrophysics Data System (ADS)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  15. Analysis of odorant receptor protein function in the yellow fever mosquito, aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Odorant receptors (ORs) in insects are ligand-gated ion channels comprised of two subunits: a variable receptor and an obligatory co-receptor (Orco). This protein receptor complex of unknown stoichiometry interacts with an odor molecule leading to changes in permeability of the sensory dendrite, th...

  16. L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions

    PubMed Central

    Slominski, Andrzej; Zmijewski, Michal; Pawelek, John

    2011-01-01

    Summary Evidence reveals that L-tyrosine and L-DOPA, besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as it would regulate the melanocyte functions through activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate older theory proposing that receptors for amino-acid derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates. PMID:21834848

  17. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  18. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, J.; Malchiodi, E; Cho, S

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less

  19. In vivo functions of GPR30/GPER-1, a membrane receptor for estrogen: from discovery to functions in vivo.

    PubMed

    Mizukami, Yoichi

    2010-01-01

    G protein-coupled receptor 30/G protein-coupled estrogen receptor-1 (GPR30/GPER-1) was reported as a novel membrane receptor for estrogen in 2005. However, the research on GPR30 has produced conflicting reports with regard to its intracellular localization, the tissue distribution of its expression, and some its functions. Recently, in addition to the finding of G-1, a GPR30 agonist, GPR30 KO mice have been produced in laboratories, and this has significantly increased the confidence in the data. In this review, the intrinsic appearance of GPR30 is approached based mainly on data obtained in vivo.

  20. NMDA Receptors Regulate Genes Responsible for Major Immune Functions of Mononuclears in Human Peripheral Blood.

    PubMed

    Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V

    2018-06-19

    To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).

  1. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    DTIC Science & Technology

    2007-02-01

    Supplemental Table 1). In addition, the expression of several synaptic receptor genes, including NMDA receptor 1, AMPA receptor 4 and metabotropic ...glutamate receptor , ionotropic , AMPA3 (alpha 3) DOWN 1425595_at Gabbr1 gamma-aminobutyric acid (GABA-B) receptor , 1 DOWN 1436297_a_at Grina glutamate... receptor , ionotropic , N-methyl D-asparate-associated protein 1 DOWN Synaptic receptor 1436772_at Gria4 Glutamate receptor , ionotropic , AMPA4 (alpha 4) UP

  2. Detection of p75NTR Trimers: Implications for Receptor Stoichiometry and Activation

    PubMed Central

    Barker, Phillip A.; Chao, Moses V.

    2015-01-01

    The p75 neurotrophin receptor (p75NTR) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75NTR interacts with dimeric ligands (i.e., proneurotrophins or mature neurotrophins), but several of the intracellular adaptors that mediate p75NTR signaling are trimeric (i.e., TNFR-associated factor 6 or TRAF6). Consequently, the active receptor signaling unit remains uncertain. To identify the functional receptor complex, we evaluated its oligomerization in vitro and in mice brain tissues using a combination of biochemical techniques. We found that the most abundant homotypic arrangement for p75NTR is a trimer and that monomers and trimers coexist at the cell surface. Interestingly, trimers are not required for ligand-independent or ligand-dependent p75NTR activation in a growth cone retraction functional assay. However, monomers are capable of inducing acute morphological effects in neurons. We propose that p75NTR activation is regulated by its oligomerization status and its levels of expression. These results indicate that the oligomeric state of p75NTR confers differential responses and offers an explanation for the diverse and contradictory actions of this receptor in the nervous system. SIGNIFICANCE STATEMENT The p75 neurotrophin receptor (p75NTR) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75NTR predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75NTR activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75NTR begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity. PMID:26311773

  3. Detection of p75NTR Trimers: Implications for Receptor Stoichiometry and Activation.

    PubMed

    Anastasia, Agustin; Barker, Phillip A; Chao, Moses V; Hempstead, Barbara L

    2015-08-26

    The p75 neurotrophin receptor (p75(NTR)) is a multifunctional receptor that participates in many critical processes in the nervous system, ranging from apoptosis to synaptic plasticity and morphological events. It is a member of the tumor necrosis factor receptor (TNFR) superfamily, whose members undergo trimeric oligomerization. Interestingly, p75(NTR) interacts with dimeric ligands (i.e., proneurotrophins or mature neurotrophins), but several of the intracellular adaptors that mediate p75(NTR) signaling are trimeric (i.e., TNFR-associated factor 6 or TRAF6). Consequently, the active receptor signaling unit remains uncertain. To identify the functional receptor complex, we evaluated its oligomerization in vitro and in mice brain tissues using a combination of biochemical techniques. We found that the most abundant homotypic arrangement for p75(NTR) is a trimer and that monomers and trimers coexist at the cell surface. Interestingly, trimers are not required for ligand-independent or ligand-dependent p75(NTR) activation in a growth cone retraction functional assay. However, monomers are capable of inducing acute morphological effects in neurons. We propose that p75(NTR) activation is regulated by its oligomerization status and its levels of expression. These results indicate that the oligomeric state of p75(NTR) confers differential responses and offers an explanation for the diverse and contradictory actions of this receptor in the nervous system. The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75(NTR) predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75(NTR) activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75(NTR) begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity. Copyright © 2015 the authors 0270-6474/15/3511911-10$15.00/0.

  4. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor

    PubMed Central

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-01-01

    Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. PMID:20233210

  5. AUTONOMOUS AND NONAUTONOMOUS REGULATION OF WNT-MEDIATED NEURONAL POLARITY BY THE C. ELEGANS ROR KINASE CAM-1

    PubMed Central

    Chien, Shih-Chieh Jason; Gurling, Mark; Kim, Changsung; Craft, Teresa; Forrester, Wayne; Garriga, Gian

    2015-01-01

    Wnts are a conserved family of secreted glycoproteins that regulate various developmental processes in metazoans. Three of the five C. elegans Wnts, CWN-1, CWN-2 and EGL-20, and the sole Wnt receptor of the Ror kinase family, CAM-1, are known to regulate the anterior polarization of the mechanosensory neuron ALM. Here we show that CAM-1 and the Frizzled receptor MOM-5 act in parallel pathways to control ALM polarity. We also show that CAM-1 has two functions in this process: an autonomous signaling function that promotes anterior polarization and a nonautonomous Wnt-antagonistic function that inhibits anterior polarization. These antagonistic activities can account for the weak ALM phenotypes displayed by cam-1 mutants. Our observations suggest that CAM-1 could function as a Wnt receptor in many developmental processes, but the analysis of cam-1 mutants may fail to reveal CAM-1’s role as a receptor in these processes because of its Wnt-antagonistic activity. In this model, loss of CAM-1 results in increased levels of Wnts that act through other Wnt receptors, masking CAM-1’s autonomous role as a Wnt receptor. PMID:25917219

  6. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  7. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS.

    PubMed

    McIlroy, Graham; Foldi, Istvan; Aurikko, Jukka; Wentzell, Jill S; Lim, Mei Ann; Fenton, Janine C; Gay, Nicholas J; Hidalgo, Alicia

    2013-09-01

    Neurotrophin receptors corresponding to vertebrate Trk, p75(NTR) or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogs unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit flies. Toll-6 and Toll-7 are expressed in the CNS throughout development and regulate locomotion, motor axon targeting and neuronal survival. DNT1 (also known as NT1 and spz2) and DNT2 (also known as NT2 and spz5) interact genetically with Toll-6 and Toll-7, and DNT1 and DNT2 bind to Toll-6 and Toll-7 promiscuously and are distributed in vivo in domains complementary to or overlapping with those of Toll-6 and Toll-7. We conclude that in fruit flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.

  8. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    PubMed Central

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  9. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex

    PubMed Central

    Zilles, Karl; Palomero-Gallagher, Nicola

    2017-01-01

    We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785

  10. HAVCR1 (CD365) and Its Mouse Ortholog Are Functional Hepatitis A Virus (HAV) Cellular Receptors That Mediate HAV Infection.

    PubMed

    Costafreda, Maria Isabel; Kaplan, Gerardo

    2018-05-01

    The hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), classified as CD365, was initially discovered as an HAV cellular receptor using an expression cloning strategy. Due to the lack of HAV receptor-negative replication-competent cells, it was not possible to fully prove that HAVCR1 was a functional HAV receptor. However, biochemistry, classical virology, and epidemiology studies further supported the functional role of HAVCR1 as an HAV receptor. Here, we show that an anti-HAVCR1 monoclonal antibody that protected African green monkey kidney (AGMK) cells against HAV infection only partially protected monkey Vero E6 cells and human hepatoma Huh7 cells, indicating that these two cell lines express alternative yet unidentified HAV receptors. Therefore, we focused our work on AGMK cells to further characterize the function of HAVCR1 as an HAV receptor. Advances in clustered regularly interspaced short palindromic repeat/Cas9 technology allowed us to knock out the monkey ortholog of HAVCR1 in AGMK cells. The resulting AGMK HAVCR1 knockout (KO) cells lost susceptibility to HAV infection, including HAV-free viral particles (vpHAV) and exosomes purified from HAV-infected cells (exo-HAV). Transfection of HAVCR1 cDNA into AGMK HAVCR1 KO cells restored susceptibility to vpHAV and exo-HAV infection. Furthermore, transfection of the mouse ortholog of HAVCR1, mHavcr1, also restored the susceptibility of AGMK HAVCR1 KO cells to HAV infection. Taken together, our data clearly show that HAVCR1 and mHavcr1 are functional HAV receptors that mediate HAV infection. This work paves the way for the identification of alternative HAV receptors to gain a complete understanding of their interplay with HAVCR1 in the cell entry and pathogenic processes of HAV. IMPORTANCE HAVCR1, an HAV receptor, is expressed in different cell types, including regulatory immune cells and antigen-presenting cells. How HAV evades the immune response during a long incubation period of up to 4 weeks and the mechanism by which the subsequent necroinflammatory process clears the infection remain a puzzle that most likely involves the HAV-HAVCR1 interaction. Based on negative data, a recent paper from the S. M. Lemon and W. Maury laboratories (A. Das, A. Hirai-Yuki, O. Gonzalez-Lopez, B. Rhein, S. Moller-Tank, R. Brouillette, L. Hensley, I. Misumi, W. Lovell, J. M. Cullen, J. K. Whitmire, W. Maury, and S. M. Lemon, mBio 8:e00969-17, 2017, https://doi.org/10.1128/mBio.00969-17) suggested that HAVCR1 is not a functional HAV receptor, nor it is it required for HAV infection. However, our data, based on regain of the HAV receptor function in HAVCR1 knockout cells transfected with HAVCR1 cDNA, disagree with their findings. Our positive data show conclusively that HAVCR1 is indeed a functional HAV receptor and lays the ground for the identification of alternative HAV receptors and how they interact with HAVCR1 in cell entry and the pathogenesis of HAV. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  11. Do receptors get pregnant too? Adrenergic receptor alterations in human pregnancy.

    PubMed

    Smiley, R M; Finster, M

    1996-01-01

    In this review we discuss adrenergic receptor number and function during pregnancy, with emphasis on evidence that pregnancy results in specific receptor alterations from the nonpregnant state. Changes in adrenergic receptor function or distribution in vascular smooth muscle may be in part responsible for the decreased vascular responsiveness seen in human pregnancy, and the lack of the normal alterations may be a part of the syndromes of gestational hypertension, including preeclampsia-eclampsia. The onset of labor may be influenced by adrenergic modulation, and receptor or postreceptor level molecular alterations may trigger or facilitate normal or preterm labor. Human studies are emphasized when possible to assess the role of adrenergic signal transduction regulation in the physiology and pathophysiology of normal and complicated human pregnancy.

  12. Ror receptor tyrosine kinases: orphans no more.

    PubMed

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  13. Heteromultimerization modulates P2X receptor functions through participating extracellular and C-terminal subdomains.

    PubMed

    Koshimizu, Taka-aki; Ueno, Susumu; Tanoue, Akito; Yanagihara, Nobuyuki; Stojilkovic, Stanko S; Tsujimoto, Gozoh

    2002-12-06

    P2X purinergic receptors (P2XRs) differ among themselves with respect to their ligand preferences and channel kinetics during activation, desensitization, and recovery. However, the contributions of distinct receptor subdomains to the subtype-specific behavior have been incompletely characterized. Here we show that homomeric receptors having the extracellular domain of the P2X(3) subunit in the P2X(2a)-based backbone (P2X(2a)/X(3)ex) mimicked two intrinsic functions of P2X(3)R, sensitivity to alphabeta-methylene ATP and ecto-ATPase-dependent recovery from endogenous desensitization; these two functions were localized to the N- and C-terminal halves of the P2X(3) extracellular loop, respectively. The chimeric P2X(2a)R/X(3)ex receptors also desensitized with accelerated rates compared with native P2X(2a)R, and the introduction of P2X(2) C-terminal splicing into the chimeric subunit (P2X(2b)/X(3)ex) further increased the rate of desensitization. Physical and functional heteromerization of native P2X(2a) and P2X(2b) subunits was also demonstrated. In heteromeric receptors, the ectodomain of P2X(3) was a structural determinant for ligand selectivity and recovery from desensitization, and the C terminus of P2X(2) was an important factor for the desensitization rate. Furthermore, [gamma-(32)P]8-azido ATP, a photoreactive agonist, was effectively cross-linked to P2X(3) subunit in homomeric receptors but not in heteromeric P2X(2) + P2X(3)Rs. These results indicate that heteromeric receptors formed by distinct P2XR subunits develop new functions resulting from integrative effects of the participating extracellular and C-terminal subdomains.

  14. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    PubMed

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Purine ionotropic (P2X) receptors.

    PubMed

    Köles, L; Fürst, S; Illes, P

    2007-01-01

    Purinergic signaling is involved in the proper functioning of virtually all organs of the body. Although in some cases purines have a major influence on physiological functions (e.g. thrombocyte aggregation), more often they are just background modulators contributing to fine tuning of biological events. However, under pathological conditions, when a huge amount of adenosine 5'-triphosphate (ATP) can reach the extracellular space, their significance is increasing. ATP and its various degradation products activate membrane receptors divided into two main classes: the metabotropic P2Y and the ionotropic P2X family. This latter group, the purine ionotropic receptor, is the object of this review. After providing a description about the distribution and functional properties of P2X receptors in the body, their pharmacology will be summarized. In the second part of this review, the role of purines in those organ systems and body functions will be highlighted, where the (patho)physiological role of P2X receptors has been suggested or is even well established. Besides the regulation of organ systems, for instance in the cardiovascular, respiratory, genitourinary or gastrointestinal system, some special issues will also be discussed, such as the role of P2X receptors in pain, tumors, central nervous system (CNS) injury and embryonic development. Several examples will indicate that purine ionotropic receptors might serve as attractive targets for pharmacological interventions in various diseases, and that selective ligands for these receptors will probably constitute important future therapeutic tools in humans.

  16. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface andmore » functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.« less

  17. Back to the future: Rational maps for exploring acetylcholine receptor space and time.

    PubMed

    Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B

    2017-11-01

    Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Different structural requirements for functional ion pore transplantation suggest different gating mechanisms of NMDA and kainate receptors.

    PubMed

    Villmann, Carmen; Hoffmann, Jutta; Werner, Markus; Kott, Sabine; Strutz-Seebohm, Nathalie; Nilsson, Tanja; Hollmann, Michael

    2008-10-01

    Although considerable progress has been made in characterizing the physiological function of the high-affinity kainate (KA) receptor subunits KA1 and KA2, no homomeric ion channel function has been shown. An ion channel transplantation approach was employed in this study to directly test if homomerically expressed KA1 and KA2 pore domains are capable of conducting currents. Transplantation of the ion pore of KA1 or KA2 into GluR6 generated perfectly functional ion channels that allowed characterization of those electrophysiological and pharmacological properties that are determined exclusively by the ion pore of KA1 or KA2. This demonstrates for the first time that KA1 and KA2 ion pore domains are intrinsically capable of conducting ions even in homomeric pore assemblies. NMDA receptors, similar to KA1- or KA2-containing receptors, function only as heteromeric complexes. They are composed of NR1 and NR2 subunits, which both are non-functional when expressed homomerically. In contrast to NR1, the homomeric NR2B ion pore failed to translate ligand binding into pore opening when transplanted into GluR6. Similarly, heteromeric coexpression of the ion channel domains of both NR1 and NR2 inserted into GluR6 failed to produce functional channels. Therefore, we conclude that the mechanism underlying the ion channel opening in the obligatorily heterotetrameric NMDA receptors differs significantly from that in the facultatively heterotetrameric alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and KA receptors.

  19. Research resource: Update and extension of a glycoprotein hormone receptors web application.

    PubMed

    Kreuchwig, Annika; Kleinau, Gunnar; Kreuchwig, Franziska; Worth, Catherine L; Krause, Gerd

    2011-04-01

    The SSFA-GPHR (Sequence-Structure-Function-Analysis of Glycoprotein Hormone Receptors) database provides a comprehensive set of mutation data for the glycoprotein hormone receptors (covering the lutropin, the FSH, and the TSH receptors). Moreover, it provides a platform for comparison and investigation of these homologous receptors and helps in understanding protein malfunctions associated with several diseases. Besides extending the data set (> 1100 mutations), the database has been completely redesigned and several novel features and analysis tools have been added to the web site. These tools allow the focused extraction of semiquantitative mutant data from the GPHR subtypes and different experimental approaches. Functional and structural data of the GPHRs are now linked interactively at the web interface, and new tools for data visualization (on three-dimensional protein structures) are provided. The interpretation of functional findings is supported by receptor morphings simulating intramolecular changes during the activation process, which thus help to trace the potential function of each amino acid and provide clues to the local structural environment, including potentially relocated spatial counterpart residues. Furthermore, double and triple mutations are newly included to allow the analysis of their functional effects related to their spatial interrelationship in structures or homology models. A new important feature is the search option and data visualization by interactive and user-defined snake-plots. These new tools allow fast and easy searches for specific functional data and thereby give deeper insights in the mechanisms of hormone binding, signal transduction, and signaling regulation. The web application "Sequence-Structure-Function-Analysis of GPHRs" is accessible on the internet at http://www.ssfa-gphr.de/.

  20. Glutamate and GABA receptors and transporters in the basal ganglia: What does their subsynaptic localization reveal about their function?

    PubMed Central

    Galvan, Adriana; Kuwajima, Masaaki; Smith, Yoland

    2006-01-01

    GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in the basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia. PMID:17059868

  1. An emerging link between LIM domain proteins and nuclear receptors.

    PubMed

    Sala, Stefano; Ampe, Christophe

    2018-06-01

    Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.

  2. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism.

    PubMed

    Hasbi, Ahmed; Perreault, Melissa L; Shen, Maurice Y F; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F; George, Susan R

    2014-11-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues (404)Glu and (405)Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment. © FASEB.

  3. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  4. High affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling

    PubMed Central

    Fernandes, Herman B.; Catches, Justin S.; Petralia, Ronald S.; Copits, Bryan A.; Xu, Jian; Russell, Theron A.; Swanson, Geoffrey T.; Contractor, Anis

    2009-01-01

    Summary Kainate receptors are atypical members of the glutamate receptor family which are able to signal through both ionotropic and metabotropic pathways. Of the five individual kainate receptor subunits the high-affinity subunits, GluK4 (KA1) and GluK5 (KA2), are unique in that they do not form functional homomeric receptors in recombinant expression systems, but combine with the primary subunits GluK1-3 (GluR5-7) to form heteromeric assemblies. Here we generated a GluK4 mutant mouse by disrupting the Grik4 gene locus. We found that loss of the GluK4 subunit leads to a significant reduction in synaptic kainate receptor currents. Moreover, ablation of both high-affinity subunits in GluK4/GluK5 double knockout mice leads to a complete loss of pre- and postsynaptic ionotropic function of synaptic kainate receptors. The principal subunits remain at the synaptic plasma membrane, but are distributed away from postsynaptic densities and presynaptic active zones. There is also an alteration in the properties of the remaining kainate receptors, as kainic acid application fails to elicit responses in GluK4/GluK5 knockout neurons. Despite the lack of detectable ionotropic synaptic receptors, the kainate receptor-mediated inhibition of the slow afterhyperpolarization current (IsAHP), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown critical role for the high-affinity kainate receptor subunits as obligatory components of ionotropic kainate receptor function, and further, demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels. PMID:19778510

  5. Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells.

    PubMed

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2012-01-03

    It has been known that retinal ganglion cells (RGCs) with distinct morphologies have different physiological properties. It was hypothesized that different functions of RGCs may in part result from various expressions of N-methyl-d-aspartate (NMDA), α-amino-3-hydroxyl-5-methyl-isoxazole-4-propinoic acid (AMPA), and kainic acid (KA) receptors on their dendrites. In the present study, we aimed to characterize the functional expression of AMPA and NMDA receptors of morphologically identified RGCs in the wholemount rabbit retina. The agmatine (AGB) activation assay was used to reveal functional expression of ionotropic glutamate receptors after the RGCs were targeted by injecting Neurobiotin. To examine the excitability of these glutamate receptors in an agonist specific manner, the lower concentrations of AMPA (2 μM) and NMDA (100 μM) were chosen to examine G7 (ON-OFF direction selective ganglion cells) and G11 (alpha ganglion cells) types of RGCs. We found that less than 40% of G7 type RGCs had salient AGB activation when incubated with 2 μM AMPA or 100 μM NMDA. The G11 type RGCs also showed similar activation frequencies, except that all of the OFF subtype examined had no AGB permeation under the same AMPA concentration. These results suggest that RGCs with large somata (G7 and G11 types) may express various heterogeneous functional ionotropic glutamate receptors, thus in part rendering their functional diversity. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effects of Lipid-Analog Detergent Solubilization on the Functionality and Lipidic Cubic Phase Mobility of the Torpedo californica Nicotinic Acetylcholine Receptor

    PubMed Central

    Padilla-Morales, Luis F.; Morales-Pérez, Claudio L.; De La Cruz-Rivera, Pamela C.; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A.

    2011-01-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β2-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility. PMID:21922299

  7. Biomimetic particles for isolation and reconstitution of receptor function.

    PubMed

    Moura, Sérgio P; Carmona-Ribeiro, Ana M

    2006-01-01

    Biomimetic particles supporting lipid bilayers are becoming increasingly important to isolate and reconstitute protein function. Cholera toxin (CT) from Vibrio cholerae, an 87-kDa AB5 hexameric protein, and its receptor, the monosialoganglioside GM1, a cell membrane glycolipid, self-assembled on phosphatidylcholine (PC) bilayer-covered silica particles at 1 CT/5 GM1 molar ratio in perfect agreement with literature. This receptor-ligand recognition represented a proof-of-concept that receptors in general can be isolated and their function reconstituted using biomimetic particles, i.e., bilayer-covered silica. After incubation of colloidal silica with small unilamellar PC vesicles in saline solution, pH 7.4, PC adsorption isotherms on silica from inorganic phosphorus analysis showed a high PC affinity for silica with maximal PC adsorption at bilayer deposition. At 0.3 mM PC, fluorescence of pyrene-labeled GM(1) showed that GM(1) incorporation in biomimetic particles increased as a function of particles concentration. At 1 mg/mL silica, receptor incorporation increased to a maximum of 40% at 0.2-0.3 mM PC and then decreased as a function of PC concentration. At 5 microM GM(1), 0.3 mM PC, and 1 mg/mL silica, CT binding increased as a function of CT concentration with a plateau at 2 mg bound CT/m2 silica, which corresponded to the 5 GM(1)/1 CT molar proportion and showed successful reconstitution of receptor-ligand interaction.

  8. Adverse Effects on β-Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Long-Term Cardiac Function.

    PubMed

    Schreckenberg, Rolf; Bencsik, Péter; Weber, Martin; Abdallah, Yaser; Csonka, Csaba; Gömöri, Kamilla; Kiss, Krisztina; Pálóczi, János; Pipis, Judit; Sárközy, Márta; Ferdinandy, Péter; Schulz, Rainer; Schlüter, Klaus-Dieter

    2017-12-22

    Ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) are currently among the most efficient strategies protecting the heart against ischemia/reperfusion injury. However, the effect of IPC and IPoC on functional recovery following ischemia/reperfusion is less clear, particularly with regard to the specific receptor-mediated signaling of the postischemic heart. The current article examines the effect of IPC or IPoC on the regulation and coupling of β-adrenergic receptors and their effects on postischemic left ventricular function. The β-adrenergic signal transduction was analyzed in 3-month-old Wistar rats for each of the intervention strategies (Sham, ischemia/reperfusion, IPC, IPoC) immediately and 7 days after myocardial infarction. Directly after the infarction a cardioprotective potential was demonstrated for both IPC and IPoC: the infarct size was reduced, apoptosis and production of reactive oxygen species were lowered, and the myocardial tissue was preserved. Seven days after myocardial ischemia, only IPC hearts showed significant functional improvement. Along with a deterioration in fractional shortening, IPoC hearts no longer responded adequately to β-adrenergic stimulation. The stabilization of β-adrenergic receptor kinase-2 via increased phosphorylation of Mdm2 (an E3-ubiquitin ligase) was responsible for desensitization of β-adrenergic receptors and identified as a characteristic specific to IPoC hearts. Immediately after myocardial infarction, rapid and transient activation of β-adrenergic receptor kinase-2 may be an appropriate means to protect the injured heart from excessive stress. In the long term, however, induction and stabilization of β-adrenergic receptor kinase-2, with the resultant loss of positive inotropic function, leads to the functional picture of heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Lidocaine Stimulates the Function of Natural Killer Cells in Different Experimental Settings.

    PubMed

    Cata, Juan P; Ramirez, Maria F; Velasquez, Jose F; Di, A I; Popat, Keyuri U; Gottumukkala, Vijaya; Black, Dahlia M; Lewis, Valerae O; Vauthey, Jean N

    2017-09-01

    One of the functions of natural killer (NK) cells is to eliminate cancer cells. The cytolytic activity of NK cells is tightly regulated by inhibitory and activation receptors located in the surface membrane. Lidocaine stimulates the function of NK cells at clinically relevant concentrations. It remains unknown whether this effect of lidocaine has an impact on the expression of surface receptors of NK cells, can uniformly stimulate across different cancer cell lines, and enhances the function of cells obtained during oncological surgery. NK cells from healthy donors and 43 patients who had undergone surgery for cancer were isolated. The function of NK cells was measured by lactate dehydrogenase release assay. NK cells were incubated with clinically relevant concentrations of lidocaine. By flow cytometry, we determined the impact of lidocaine on the expression of galactosylgalactosylxylosylprotein3-beta-glucuronosytranferase 1, marker of cell maturation (CD57), killer cell lectin like receptor A, inhibitory (NKG2A) receptors and killer cell lectin like receptor D, activation (NKG2D) receptors of NK cells. Differences in expression at p<0.05 were considered statistically significant. Lidocaine increased the expression of NKG2D receptors and stimulated the function of NK cells against ovarian, pancreatic and ovarian cancer cell lines. Lidocaine also increased the cytolytic activity of NK cells from patients who underwent oncological surgery, except for those who had orthopedic procedures. Lidocaine showed an important stimulatory activity on NK cells. Our findings suggest that lidocaine might be used perioperatively to minimize the impact of surgery on NK cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Novel Functional Role of Collagen Glycosylation

    PubMed Central

    Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090

  12. 1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization.

    PubMed

    Tala, Srinivasa R; Singh, Anamika; Lensing, Cody J; Schnell, Sathya M; Freeman, Katie T; Rocca, James R; Haskell-Luevano, Carrie

    2018-05-16

    The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH 2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.

  13. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    PubMed Central

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  14. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity

    PubMed Central

    Eisenstein, Sarah A.; Gredysa, Danuta M.; Antenor–Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M.; Black, Kevin J.; Perlmutter, Joel S.; Moerlein, Stephen M.; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans. PMID:26192187

  15. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    PubMed

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  16. Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT2C Receptor Underlying the Pharmacology of Distinct Ligands.

    PubMed

    Liu, Yue; Canal, Clinton E; Cordova-Sintjago, Tania C; Zhu, Wanying; Booth, Raymond G

    2017-01-18

    While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT 2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT 2C receptors. In HEK293 cells expressing human 5-HT 2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gα q -inositol phosphate signaling, whereas (-)-trans-3'-CF 3 -PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT 2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (K i ) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC 50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF 3 -PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (K D ) of the antagonist radioligand [ 3 H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT 2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT 2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.

  17. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity.

    PubMed

    Tanigawa, Hitoshi; Toyoda, Futoshi; Kumagai, Kosuke; Okumura, Noriaki; Maeda, Tsutomu; Matsuura, Hiroshi; Imai, Shinji

    2018-05-29

    Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E 2 (PGE 2 ) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE 2 release and was attenuated by inhibition of either phospholipase A 2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic target in chondrocyte death associated with cartilage injury and disorders including osteoarthritis.

  18. Dimerization with Cannabinoid Receptors Allosterically Modulates Delta Opioid Receptor Activity during Neuropathic Pain

    PubMed Central

    Stockton, Steven D.; Miller, Lydia K.; Devi, Lakshmi A.

    2012-01-01

    The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB1 cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB1R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB1R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB1R-DOR heteromer-specific antibody, we found increased levels of CB1R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB1R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB1R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB1R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce anxiety associated with chronic pain. PMID:23272051

  19. Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases.

    PubMed

    Reyes-Resina, Irene; Navarro, Gemma; Aguinaga, David; Canela, Enric I; Schoeder, Clara T; Zaluski, Michal; Kiec-Kononowicz, Katarzyna; Saura, Carlos A; Müller, Christa E; Franco, Rafael

    2018-06-02

    GPR18, still considered an orphan receptor, may respond to endocannabinoids, whose canonical receptors are CB 1 and CB 2 . GPR18 and CB 2 receptors share a role in peripheral immune response regulation and are co-expressed in microglia, which are immunocompetent cells in the central nervous system (CNS). We aimed at identifying heteroreceptor complexes formed by GPR18 and CB 1 R or CB 2 R in resting and activated microglia. Receptor-receptor interaction was assessed using energy-transfer approaches, and receptor function by determining cAMP levels and ERK1/2 phosphorylation in heterologous cells and primary cultures of microglia. Heteroreceptor identification in primary cultures of microglia was achieved by in situ proximity ligation assays. Energy transfer results showed interaction of GPR18 with CB 2 R but not with CB 1 R. CB 2 -GPR18 heteroreceptor complexes displayed particular functional properties (heteromer prints) often consisting of negative cross-talk (activation of one receptor reduces signaling arising from the partner receptor) and cross-antagonism (the response of one of the receptors is blocked by a selective antagonist of the partner receptor). Activated microglia showed the heteromer print (negative cross-talk and bidirectional cross-antagonism) and increased expression of CB 2 R and GPR18. Due to the important role of CB 2 R in neuroprotection, we further investigated heteroreceptor occurrence in primary cultures of microglia from transgenic mice overexpressing human APP Sw,Ind , an Alzheimer's disease model. Microglial cells from transgenic mice showed the heteromer print and functional interactions that were similar to those found in cells from wild-type animals that were activated by treatment with lipopolysaccharide and interferon-ɤ. Our results show that GPR18 and its heteromers may play important roles in neurodegenerative processes. Copyright © 2018. Published by Elsevier Inc.

  20. High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.

    PubMed

    Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis

    2009-09-24

    Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.

  1. Alternative splicing and the progesterone receptor in breast cancer

    PubMed Central

    Cork, David MW; Lennard, Thomas WJ; Tyson-Capper, Alison J

    2008-01-01

    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions. PMID:18557990

  2. Actions of Steroids: New Neurotransmitters

    PubMed Central

    Cornil, Charlotte A.; Mittelman-Smith, Melinda A.; Rainville, Jennifer R.; Remage-Healey, Luke; Sinchak, Kevin; Micevych, Paul E.

    2016-01-01

    Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain. PMID:27911748

  3. [Neurological and psychiatric aspects of some endocrine diseases. The role of neurosteroids and neuroactive steroids].

    PubMed

    Aszalós, Zsuzsa

    2007-10-14

    Regardless of their origin, neuroactive steroids are capable of modifying neural activities by modulating different types of membrane receptors. Neurosteroids are synthesized de novo in neurones and glia. Steroidogenic enzymes are found in the central nervous system. Classical steroid receptors are localized in the cytoplasm, they exert regulatory actions on the genome, and their activation causes medium- and long-term effects. Non-classical receptors are located within the membrane and act as mediators of short-term effects. Other important players are co-repressors and co-activators that can interfere with or enhance the activity of steroid receptors. Beyond their function in stress, corticosteroids play a very important role in fear, anxiety, and memory functions. Patients with Cushing's syndrome frequently develop mood disorder, reversible brain atrophy with transient memory loss, rarely delirium or psychosis. Well-known peripheral symptom is steroidal myopathy. In patients with Addison's disease the main signs are weakness of muscles, lack of energy, decreased mental functions and reduced quality of life. Estrogen and progesterone have their own respective hormone receptors, whereas allopregnanolone acts via the GABA receptors. These hormones have significant role in the development of brain, the architecture of neural circuits and dendrites, density of axonal connections, and the number of neurons. They influence maturation, neuroprotection, seizures, cognitive functions, mood, anxiety, pain, and restitution of peripheral nerves. Androgens also affect cognitive functions, pain, anxiety, mood, and additionally aggression.

  4. Reconstitution of Homomeric GluA2flop Receptors in Supported Lipid Membranes

    PubMed Central

    Baranovic, Jelena; Ramanujan, Chandra S.; Kasai, Nahoko; Midgett, Charles R.; Madden, Dean R.; Torimitsu, Keiichi; Ryan, John F.

    2013-01-01

    AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain. PMID:23382380

  5. The Thrombopoietin Receptor: Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and Mutated Calreticulin.

    PubMed

    Varghese, Leila N; Defour, Jean-Philippe; Pecquet, Christian; Constantinescu, Stefan N

    2017-01-01

    A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.

  6. Endothelin-a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat.

    PubMed

    Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály

    2002-12-01

    To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.

  7. Recombinant G protein-coupled receptor expression in Saccharomyces cerevisiae for protein characterization.

    PubMed

    Blocker, Kory M; Britton, Zachary T; Naranjo, Andrea N; McNeely, Patrick M; Young, Carissa L; Robinson, Anne S

    2015-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that mediate signaling across the cellular membrane and facilitate cellular responses to external stimuli. Due to the critical role that GPCRs play in signal transduction, therapeutics have been developed to influence GPCR function without an extensive understanding of the receptors themselves. Closing this knowledge gap is of paramount importance to improving therapeutic efficacy and specificity, where efforts to achieve this end have focused chiefly on improving our knowledge of the structure-function relationship. The purpose of this chapter is to review methods for the heterologous expression of GPCRs in Saccharomyces cerevisiae, including whole-cell assays that enable quantitation of expression, localization, and function in vivo. In addition, we describe methods for the micellular solubilization of the human adenosine A2a receptor and for reconstitution of the receptor in liposomes that have enabled its biophysical characterization. © 2015 Elsevier Inc. All rights reserved.

  8. Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ebner, Andreas; Wildling, Linda; Zhu, Rong; Rankl, Christian; Haselgrübler, Thomas; Hinterdorfer, Peter; Gruber, Hermann J.

    The measuring tip of a force microscope can be converted into a monomolecular sensor if one or few "ligand" molecules are attached to the apex of the tip while maintaining ligand function. Functionalized tips are used to study fine details of receptor-ligand interaction by force spectroscopy or to map cognate "receptor" molecules on the sample surface. The receptor (or target) molecules can be present on the surface of a biological specimen; alternatively, soluble target molecules must be immobilized on ultraflat supports. This review describes the methods of tip functionalization, as well as target molecule immobilization. Silicon nitride tips, silicon chips, and mica have usually been functionalized in three steps: (1) aminofunctionalization, (2) crosslinker attachment, and (3) ligand/receptor coupling, whereby numerous crosslinkers are available to couple widely different ligand molecules. Gold-covered tips and/or supports have usually been coated with a self-assembled monolayer, on top of which the ligand/receptor molecule has been coupled either directly or via a crosslinker molecule. Apart from these general strategies, many simplified methods have been used for tip and/or support functionalization, even single-step methods such as adsorption or chemisorption being very efficient under suitable circumstances. All methods are described with the same explicitness and critical parameters are discussed. In conclusion, this review should help to find suitable methods for specific problems of tip and support functionalization.

  9. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Hobbs, J.; Vigues, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain amore » large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.« less

  10. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases.

    PubMed

    Calebiro, Davide; Godbole, Amod

    2018-04-01

    G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    PubMed

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  12. Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation

    PubMed Central

    Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.

    2009-01-01

    Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838

  13. The potential role of dopamine D3 receptor neurotransmission in cognition

    PubMed Central

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  14. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells.

    PubMed

    Moeller, Maria; Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Tanner, Jane E; Cerutti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2004-05-01

    T cells engineered to express single-chain antibody receptors that incorporate TCR-zeta and cluster designation (CD)28 signaling domains (scFv-alpha-erbB2-CD28-zeta) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-zeta receptor, we expressed a series of mutated scFv-CD28-zeta receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-gamma and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-zeta receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-zeta receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-zeta receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-zeta receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.

  15. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

    NASA Astrophysics Data System (ADS)

    di Giglio, Maria Giulia; Muttenthaler, Markus; Harpsøe, Kasper; Liutkeviciute, Zita; Keov, Peter; Eder, Thomas; Rattei, Thomas; Arrowsmith, Sarah; Wray, Susan; Marek, Ales; Elbert, Tomas; Alewood, Paul F.; Gloriam, David E.; Gruber, Christian W.

    2017-02-01

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  16. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  17. Study of low-density lipoprotein receptor regulation by oral (steroid) contraceptives: desogestrel, levonorgestrel and ethinyl estradiol in JEG-3 cell line and placental tissue.

    PubMed

    Ramakrishnan, Gopalakrishnan; Rana, Anita; Das, Chandana; Chandra, Nimai Chand

    2007-10-01

    The aim of this study was to compare in vitro the role of two oral contraceptives, desogestrel (a less androgenic derivative of levonorgestrel) and levonorgestrel--alone and in combination with ethinyl estradiol--on low-density lipoprotein (LDL) receptor regulation by assessing receptor protein expression and functional effectiveness. Placental tissue and cultured placental cells (JEG-3) were used to study the expression and endocytotic activity of LDL receptor protein. The expression of the receptor was assessed by immunocytochemistry and immunoblot assays with and without contraceptive challenge. Functioning activity of LDL receptor was studied by measuring the rate of uptake of LDL by placental cells. Quantification of LDL was based on the total cholesterol content of the lipoprotein. A combination of desogestrel (20 ng/mL of incubation medium) and ethinyl estradiol (10 ng/mL of incubation medium) maintained the LDL receptor at high level of expression and functioning mode. In contrast, the double-blind preparation of levonorgestrel (20 ng/mL) and ethinyl estradiol (10 ng/mL) had shown much lower expression as well as receptor-mediated LDL uptake. The concentration of contraceptives used in this study was similar to the prevailing concentration of oral contraceptives in clinical use. Higher expression of LDL receptor and enhanced rate of LDL uptake by the receptor protein projects the possibility that there might be less atherosclerosis-related disorders from the combination of desogestrol and ethinyl estradiol.

  18. Ly49 Receptors: Innate and Adaptive Immune Paradigms

    PubMed Central

    Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.

    2014-01-01

    The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094

  19. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain.

    PubMed

    Akgül, Gülcan; McBain, Chris J

    2016-10-01

    Glutamate receptor-mediated recruitment of GABAergic inhibitory interneurons is a critical determinant of network processing. Early studies observed that many, but not all, interneuron glutamatergic synapses contain AMPA receptors that are GluA2-subunit lacking and Ca(2+) permeable, making them distinct from AMPA receptors at most principal cell synapses. Subsequent studies demonstrated considerable alignment of synaptic AMPA and NMDA receptor subunit composition within specific subtypes of interneurons, suggesting that both receptor expression profiles are developmentally and functionally linked. Indeed glutamate receptor expression profiles are largely predicted by the embryonic origins of cortical interneurons within the medial and caudal ganglionic eminences of the developing telencephalon. Distinct complements of AMPA and NMDA receptors within different interneuron subpopulations contribute to the differential recruitment of functionally divergent interneuron subtypes by common afferent inputs for appropriate feed-forward and feedback inhibitory drive and network entrainment. In contrast, the lesser-studied kainate receptors, which are often present at both pre- and postsynaptic sites, appear to follow an independent developmental expression profile. Loss of specific ionotropic glutamate receptor (iGluR) subunits during interneuron development has dramatic consequences for both cellular and network function, often precipitating circuit inhibition-excitation imbalances and in some cases lethality. Here we briefly review recent findings highlighting the roles of iGluRs in interneuron development. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    PubMed Central

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  1. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes.

    PubMed

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P; Veldkamp, Christopher T

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by posttranslational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8, and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the lability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods for sulfopeptide analysis. © 2016 Elsevier Inc. All rights reserved.

  2. Preparation and analysis of N-terminal chemokine receptor sulfopeptides using tyrosylprotein sulfotransferase enzymes

    PubMed Central

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P.; Veldkamp, Christopher T.

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by post-translational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8 and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the liability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods from sulfopeptide analysis. PMID:26921955

  3. New-generation 5-HT4 receptor agonists: potential for treatment of gastrointestinal motility disorders.

    PubMed

    Manabe, Noriaki; Wong, Banny S; Camilleri, Michael

    2010-06-01

    Gastrointestinal (GI) dysmotility is an important mechanism in functional GI disorders (FGIDs) including constipation, irritable bowel syndrome, functional dyspepsia, and gastroparesis. 5-hydroxytryptamine(4) (5-HT(4)) receptors are targets for the treatment of GI motility disorders. However, older 5-HT(4) receptor agonists had limited clinical success because they were associated with changes in the function of the cardiac HERG potassium channel. We conducted a PubMed search using the following key words alone or in combination: 5-HT(4), safety, toxicity, pharmacokinetics, pharmacodynamics, clinical trial, cardiac, hERG, arrhythmia, potassium current, elderly, prucalopride, ATI-7505, and velusetrag (TD-5108), to review mechanisms of action, clinical efficacy, safety and tolerability of three new-generation 5-HT(4) receptor agonists. Prucalopride, ATI-7505, and velusetrag (TD-5108) are highly selective, high-affinity 5-HT(4) receptor agonists that are devoid of action on other receptors within their therapeutic range. Their efficacy has been demonstrated in pharmacodynamic studies which demonstrate acceleration of colonic transit and, to a variable degree, in clinical trials that significantly relieve chronic constipation. Currently available evidence shows that the new 5-HT(4) receptor agonists have safe cardiac profiles. New-generation 5-HT(4) receptor agonists and future drugs targeting organ-specific splice variants are promising approaches to treat GI dysmotility, particularly colonic diseases.

  4. Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; Khoo, Pauline; Acosta, Monica L; Kalloniatis, Michael

    2018-02-01

    Retinal ischemia is involved in the pathogenesis of many major vision threatening diseases. Vinpocetine is a natural drug, which has a range of neuroprotective actions against retinal ischemia including modulating cation flow, improving metabolic activity and preventing apoptosis. The exact mechanism behind these actions remains unknown but may involve glutamate receptors, major components of the ischemic cascade. This study examined the effects of vinpocetine in association with specific ionotropic glutamate receptor agonists: N-methyl-D-aspartate (NMDA) and kainate. Vinpocetine's actions to improve cation channel permeability and cell marker immunoreactivity following ischemia appeared to be limited to NMDA activation with no changes observed following kainate stimulation. Vinpocetine's actions were lost in the presence of an NMDA receptor inhibitor further suggesting they may be secondary to NMDA receptor activation. NMDA receptor function was also necessary for vinpocetine's actions on glucose availability during ischemia but not lactate dehydrogenase (LDH) activity in the ischemic retina suggesting not all of vinpocetine's actions are linked to NMDA receptor function. These results may explain vinpocetine's effectiveness as a neuroprotective agent as the NMDA receptor is implicated in the pathogenesis of ischemia in a range of tissues of the central nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    PubMed

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  6. Functional somatostatin receptors on a rat pancreatic acinar cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less

  7. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  8. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  9. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    PubMed

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies for combating drug addiction.

  10. The novel antidyskinetic drug sarizotan elicits different functional responses at human D2-like dopamine receptors.

    PubMed

    Kuzhikandathil, Eldo V; Bartoszyk, Gerd D

    2006-09-01

    Sarizotan (EMD 128130) is a chromane derivative that exhibits affinity at serotonin and dopamine receptors. Sarizotan effectively suppresses levodopa-induced dyskinesia in primate and rodent models of Parkinson's disease, and tardive dyskinesia in a rodent model. Results from clinical trials suggest that sarizotan significantly alleviates levodopa-induced dyskinesia. The functional effects of sarizotan on individual dopamine receptor subtypes are not known. Here we report the functional effects of sarizotan on human D2-like dopamine receptors (D2S, D2L, D3, D4.2 and D4.4) individually expressed in the AtT-20 neuroendocrine cell line. Using the coupling of D2-like dopamine receptors to G-protein coupled inward rectifier potassium channels we determined that sarizotan is a full agonist at D3 and D4.4 receptors (EC50=5.6 and 5.4 nM, respectively) but a partial agonist at D2S, D2L and D4.2 receptors (EC50=29, 23 and 4.5 nM, respectively). Consistent with its partial agonist property, sarizotan is an antagonist at D2S and D2L receptors (IC50=52 and 121 nM, respectively). Using the coupling of D2-like dopamine receptors to adenylyl cyclase we determined that sarizotan is a full agonist at D2L, D3, D4.2 and D4.4 receptors (EC50=0.51, 0.47, 0.48 and 0.23 nM, respectively) but a partial agonist at D2S receptors (EC50=0.6 nM).

  11. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    PubMed

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  12. Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb

    PubMed Central

    Tabor, Rico; Friedrich, Rainer W.

    2008-01-01

    Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb. PMID:18183297

  13. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  14. Large-scale production and study of a synthetic G protein-coupled receptor: Human olfactory receptor 17-4

    PubMed Central

    Cook, Brian L.; Steuerwald, Dirk; Kaiser, Liselotte; Graveland-Bikker, Johanna; Vanberghem, Melanie; Berke, Allison P.; Herlihy, Kara; Pick, Horst; Vogel, Horst; Zhang, Shuguang

    2009-01-01

    Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be ≈50% α-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices. PMID:19581598

  15. Large-scale production and study of a synthetic G protein-coupled receptor: human olfactory receptor 17-4.

    PubMed

    Cook, Brian L; Steuerwald, Dirk; Kaiser, Liselotte; Graveland-Bikker, Johanna; Vanberghem, Melanie; Berke, Allison P; Herlihy, Kara; Pick, Horst; Vogel, Horst; Zhang, Shuguang

    2009-07-21

    Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be approximately 50% alpha-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices.

  16. CRF1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse

    PubMed Central

    Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani

    2010-01-01

    Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073

  17. The effects of early-life stress on dopamine system function in adolescent female rats.

    PubMed

    Majcher-Maślanka, Iwona; Solarz, Anna; Wędzony, Krzysztof; Chocyk, Agnieszka

    2017-04-01

    During adolescence, many neural systems, including the dopamine system, undergo essential remodeling and maturation. It is well known that early-life stress (ELS) increases the risk for many psychopathologies during adolescence and adulthood. It is hypothesized that ELS interferes with the maturation of the dopamine system. There is a sex bias in the prevalence of stress-related mental disorders. Information regarding the effects of ELS on brain functioning in females is very limited. In the current study, maternal separation (MS) procedures were carried out to study the effects of ELS on dopamine system functioning in adolescent female rats. Our study showed that MS increased the density of tyrosine hydroxylase immunoreactive fibers in the prelimbic cortex (PLC) and nucleus accumbens (Acb). These changes were accompanied by a decrease in the level of D5 receptor mRNA and an increase in D2 receptor mRNA expression in the PLC of MS females. Conversely, D1 and D5 receptor mRNA levels were augmented in the caudate putamen (CPu), while the expression of the D3 dopamine receptor transcript was reduced in MS females. Additionally, in the Acb, MS elicited a decrease in D2 receptor mRNA expression. At the behavioral level, MS increased apomorphine-induced locomotion; however, it did not change locomotor responses to selective D1/D5 receptor agonist and attenuated D2/D3 receptor agonist-triggered locomotion. Moreover, MS decreased D1/D5 receptor agonist-induced grooming behavior. These results indicate that ELS disrupts dopamine receptor function in the PLC and basal ganglia during adolescence in females and may predispose them to psychopathologies during adolescence and adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Ebselen has lithium-like effects on central 5-HT2A receptor function.

    PubMed

    Antoniadou, I; Kouskou, M; Arsiwala, T; Singh, N; Vasudevan, S R; Fowler, T; Cadirci, E; Churchill, G C; Sharp, T

    2018-02-27

    Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in G q protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here we investigated both ebselen and lithium in models of the 5-HT 2A receptor, a G q protein coupled receptor implicated in lithium's actions. 5-HT 2A receptor function was modelled in mice by measuring the behavioural (head-twitches) and cortical immediate early gene (IEG; Arc, c-fos and Erg2 mRNA) responses to 5-HT 2A receptor agonist administration. Ebselen and lithium were administered either acutely or chronically prior to assessment of 5-HT 2A receptor function. Given the SSRI augmenting action of lithium and 5-HT 2A antagonists, ebselen was also tested for this action by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT 2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690,330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen increased regional brain 5-HT synthesis and enhanced the increase in extracellular 5-HT induced by citalopram. The current data demonstrate lithium-mimetic effects of ebselen in different experimental models of 5-HT 2A receptor function, likely mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorder, including as an antidepressant augmenting agent. This article is protected by copyright. All rights reserved.

  19. [The mechanism of action of cannabis and cannabinoids].

    PubMed

    Scholten, W K

    2006-01-21

    The effect ofcannabis can be explained on the basis of the function of the cannabinoid receptor system, which consists of CB receptors (CB1, CB2), endoligands to activate these receptors and an enzyme--fatty acid amidohydrolase--to metabolize the endoligands. The endoligands of the cannabinoid receptor system are arachidonic acid-like substances, and are called endocannabinoids. Indications exist that the body also contains arachidonic acid-like substances that inhibit fatty acid amido hydrolase. Various cannabinoids have diverse effects on the receptors, functioning as agonists, antagonists or partial antagonists, as well as affecting the vanilloid receptor. Many known effects ofcannabis can be explained on the basis of this mechanism of action as can the use ofcannabis in various conditions including multiple sclerosis, Parkinson's disease, glaucoma, nausea, vomiting and rheumatoid arthritis.

  20. Automated large-scale purification of a G protein-coupled receptor for neurotensin.

    PubMed

    White, Jim F; Trinh, Loc B; Shiloach, Joseph; Grisshammer, Reinhard

    2004-04-30

    Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.

Top