Sample records for etching pattern cdu

  1. CDU improvement technology of etching pattern using photo lithography

    NASA Astrophysics Data System (ADS)

    Tadokoro, Masahide; Shinozuka, Shinichi; Jyousaka, Megumi; Ogata, Kunie; Morimoto, Tamotsu; Konishi, Yoshitaka

    2008-03-01

    Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving Resist Pattern CDU is to control post-exposure bake (PEB) temperature. When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. Resist Pattern CDU improvement contributes to Etching Pattern CDU improvement to a certain degree. To further improve Etching Pattern CDU, etcher-specific CD variation needs to be controlled. In this evaluation, 1. We verified whether etcher-specific CD variation can be controlled and consequently Etching Pattern CDU can be further improved by controlling resist patterns through PEB control. 2. Verifying whether Etching Pattern CDU improvement through has any effect on the reduction in wiring resistance variation. The evaluation procedure is as follows.1. Wafers with base film of Doped Poly-Si (D-Poly) were prepared. 2. Resist patterns were created on them. 3. To determine etcher-specific characteristics, the first etching was performed, and after cleaning off the resist and BARC, CD of etched D-Poly was measured. 4. Using the obtained within-wafer CD distribution of the etching patterns, within-wafer temperature distribution in the PEB process was modified. 5. Resist patterns were created again, followed by the second etching and cleaning, which was followed by CD measurement. We used Optical CD Measurement (OCD) for measurement of resist patterns and etching patterns as OCD is minimally affected by Line Edge Roughness (LER). As a result, 1. We confirmed the effect of Resist Pattern CD control through PEB control on the reduction in etcher-specific CD variation and the improvement in Etching Pattern CDU. 2. The improvement in Etching Pattern CDU has an effect on the reduction in wiring resistance variation. The method for Etching Pattern CDU improvement through PEB control reduces within-wafer variation of MOS transistor's gate length. Therefore, with this method, we can expect to observe uniform within-wafer MOS transistor characteristics.

  2. Effects produced by CDU improvement of resist pattern with PEB temperature control for wiring resistance variation reduction

    NASA Astrophysics Data System (ADS)

    Tadokoro, Masahide; Shinozuka, Shinichi; Ogata, Kunie; Morimoto, Tamotsu

    2008-03-01

    Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving CDU of resist pattern is to control the temperature of post-exposure bake (PEB). When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. We have already applied this method to Resist Pattern CDU improvement and have achieved these results. In this evaluation, we aim at: 1. Clarifying the relationship between the improvement in Resist Pattern CDU through PEB temperature control and the improvement in Etching Pattern CDU. 2. Verifying whether Resist Pattern CDU improvement through PEB temperature control has any effect on the reduction in wiring resistance variation. The evaluation procedure is: 1. Preparation of wafers with base film of doped Poly-Si (D-Poly). 2. Creation of two sets of samples on the base, a set of samples with good Resist Pattern CDU and a set of samples with poor Resist Pattern CDU. 3. Etching of the two sets under the same conditions. 4. Measurements of CD and wiring resistance. We used Optical CD Measurement (OCD) for measurement of resist pattern and etching pattern for the reason that OCD is minimally affected by Line Edge Roughness (LER). As a result, we found that; 1. The improvement in Resist Pattern CDU leads to the improvement in Etching Pattern CDU . 2. The improvement in Resist Pattern CDU has an effect on the reduction in wiring resistance variation. There is a cause-and-effect relationship between wiring resistance variation and transistor characteristics. From this relationship, we expect that the improvement in Resist Pattern CDU through PEB temperature control can contribute to device performance improvement.

  3. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  4. DDR process and materials for novel tone reverse technique

    NASA Astrophysics Data System (ADS)

    Shigaki, Shuhei; Shibayama, Wataru; Takeda, Satoshi; Tamura, Mamoru; Nakajima, Makoto; Sakamoto, Rikimaru

    2018-03-01

    We developed the novel process and material which can be created reverse-tone pattern without any collapse. The process was Dry Development Rinse (DDR) process, and the material used in this process was DDR material. DDR material was containing siloxane polymer which could be replaced the space area of the photo resist pattern. And finally, the reverse-tone pattern could be obtained by dry etching process without any pattern collapse issue. DDR process could be achieved fine line and space patterning below hp14nm without any pattern collapse by combination of PTD or NTD photo resist. DDR materials were demonstrated with latest coater track at imec. DDR process was fully automated and good CD uniformity was achieved after dry development. Detailed evaluation could be achieved with whole wafer such a study of CD uniformity (CDU). CDU of DDR pattern was compared to pre-pattern's CDU. Lower CDU was achieved and CDU healing was observed with special DDR material. By further evaluation, special DDR material showed relatively small E-slope compared to another DDR material. This small E-slope caused CDU improvement.

  5. Co-optimization of lithographic and patterning processes for improved EPE performance

    NASA Astrophysics Data System (ADS)

    Maslow, Mark J.; Timoshkov, Vadim; Kiers, Ton; Jee, Tae Kwon; de Loijer, Peter; Morikita, Shinya; Demand, Marc; Metz, Andrew W.; Okada, Soichiro; Kumar, Kaushik A.; Biesemans, Serge; Yaegashi, Hidetami; Di Lorenzo, Paolo; Bekaert, Joost P.; Mao, Ming; Beral, Christophe; Larivière, Stephane

    2017-03-01

    Complimentary lithography is already being used for advanced logic patterns. The tight pitches for 1D Metal layers are expected to be created using spacer based multiple patterning ArF-i exposures and the more complex cut/block patterns are made using EUV exposures. At the same time, control requirements of CDU, pattern shift and pitch-walk are approaching sub-nanometer levels to meet edge placement error (EPE) requirements. Local variability, such as Line Edge Roughness (LER), Local CDU, and Local Placement Error (LPE), are dominant factors in the total Edge Placement error budget. In the lithography process, improving the imaging contrast when printing the core pattern has been shown to improve the local variability. In the etch process, it has been shown that the fusion of atomic level etching and deposition can also improve these local variations. Co-optimization of lithography and etch processing is expected to further improve the performance over individual optimizations alone. To meet the scaling requirements and keep process complexity to a minimum, EUV is increasingly seen as the platform for delivering the exposures for both the grating and the cut/block patterns beyond N7. In this work, we evaluated the overlay and pattern fidelity of an EUV block printed in a negative tone resist on an ArF-i SAQP grating. High-order Overlay modeling and corrections during the exposure can reduce overlay error after development, a significant component of the total EPE. During etch, additional degrees of freedom are available to improve the pattern placement error in single layer processes. Process control of advanced pitch nanoscale-multi-patterning techniques as described above is exceedingly complicated in a high volume manufacturing environment. Incorporating potential patterning optimizations into both design and HVM controls for the lithography process is expected to bring a combined benefit over individual optimizations. In this work we will show the EPE performance improvement for a 32nm pitch SAQP + block patterned Metal 2 layer by cooptimizing the lithography and etch processes. Recommendations for further improvements and alternative processes will be given.

  6. EUV process improvement with novel litho track hardware

    NASA Astrophysics Data System (ADS)

    Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2017-03-01

    Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.

  7. Graphoepitaxy integration and pattern transfer of lamellar silicon-containing high-chi block copolymers

    NASA Astrophysics Data System (ADS)

    Bézard, P.; Chevalier, X.; Legrain, A.; Navarro, C.; Nicolet, C.; Fleury, G.; Cayrefourcq, I.; Tiron, R.; Zelsmann, M.

    2018-03-01

    In this work, we present our recent achievements on the integration and transfer etching of a novel silicon-containing high-χ block copolymer for lines/spaces applications. Developed carbo-silane BCPs are synthesized under industrial conditions and present periodicities as low as 14 nm. A full directed self-assembly by graphoepitaxy process is shown using standard photolithography stacks and all processes are performed on 300 mm wafer compatible tools. Specific plasma processes are developed to isolate perpendicular lamellae and sub-12 nm features are finally transferred into silicon substrates. The quality of the final BCP hard mask (CDU, LWR, LER) are also investigated. Finally, thanks to the development of dedicated neutral layers and top-coats allowing perpendicular orientations, it was possible to investigate plasma etching experiments on full-sheets at 7 nm resolution, opening the way to the integration of these polymers in chemoepitaxy stacks.

  8. Within-wafer CD variation induced by wafer shape

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2016-03-01

    In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked vertical flash cell array has been proposed. In constructing 3D NAND flash memories, the bit number per unit area is increased as increasing the number of stacked layers. However, the increased number of stacked layers has made the film stress control extremely important for maintaining good process quality. The residual film stress alters the wafer shape accordingly several process impacts have been readily observed across wafer, such as film deposition non-uniformity, etch rate non-uniformity, wafer chucking error on scanner, materials coating/baking defects, overlay degradation and critical dimension (CD) non-uniformity. The residual tensile and compressive stresses on wafers will result in concave and convex wafer shapes, respectively. This study investigates within-wafer CD uniformity (CDU) associated with wafer shape change induced by the 3D NAND flash memory processes. Within-wafer CDU was correlated with several critical parameters including different wafer bow heights of concave and convex wafer shapes, photo resists with different post exposure baking (PEB) temperature sensitivities, and DoseMapper compensation. The results indicated the trend of within-wafer CDU maintains flat for convex wafer shapes with bow height up to +230um and concave wafer shapes with bow height ranging from 0 ~ -70um, while the within-wafer CDU trends up from -70um to -246um wafer bow heights. To minimize the within-wafer CD distribution induced by wafer warpage, carefully tailoring the film stack and thermal budget in the process flow for maintaining the wafer shape at CDU friendly range is indispensable and using photo-resist materials with lower PEB temperature sensitivity is also suggested. In addition, DoseMapper compensation is also an alternative to greatly suppress the within-wafer CD non-uniformity but the photo-resist profile variation induced by across-wafer PEB temperature non-uniformity attributed to wafer warpage is uncorrectable, and the photo-resist profile variation is believed to affect across-wafer etch bias uniformity to some degree.

  9. Development of a robust reverse tone pattern transfer process

    NASA Astrophysics Data System (ADS)

    Khusnatdinov, Niyaz; Doyle, Gary; Resnick, Douglas J.; Ye, Zhengmao; LaBrake, Dwayne; Milligan, Brennan; Alokozai, Fred; Chen, Jerry

    2017-03-01

    Pattern transfer is critical to any lithographic technology, and plays a significant role in defining the critical features in a device layer. As both the memory and logic roadmaps continue to advance, greater importance is placed on the scheme used to do the etching. For many critical layers, a need has developed which requires a multilayer stack to be defined in order to perform the pattern transfer. There are many cases however, where this standard approach does not provide the best results in terms of critical dimension (CD) fidelity and CD uniformity. As an example, when defining a contact pattern, it may be advantageous to apply a bright field mask (in order to maximize the normalized inverse log slope (NILS)) over the more conventional dark field mask. The result of applying the bright field mask in combination with positive imaging resist is to define an array of pillar patterns, which then must be converted back to holes before etching the underlying dielectric material. There have been several publications on tone reversal that is introduced in the resist process itself, but often an etch transfer process is applied to reverse the pattern tone. The purpose of this paper is to describe the use of a three layer reverse tone process (RTP) that is capable of reversing the tone of every printed feature type. The process utilizes a resist pattern, a hardmask layer and an additional protection layer. The three layer approach overcomes issues encountered when using a single masking layer. Successful tone reversal was demonstrated both on 300mm wafers and imprint masks, including the largest features in the pattern, with dimensions as great as 60 microns. Initial in-field CD uniformity is promising. CDs shifted by about 2.6nm and no change was observed in either LER or LWR. Follow-up work is required to statistically qualify in-field CDU and also understand both across wafer uniformity and feature linearity.

  10. Improved mask-based CD uniformity for gridded-design-rule lithography

    NASA Astrophysics Data System (ADS)

    Faivishevsky, Lev; Khristo, Sergey; Sagiv, Amir; Mangan, Shmoolik

    2009-03-01

    The difficulties encountered during lithography of state-of-the-art 2D patterns are formidable, and originate from the fact that deep sub-wavelength features are being printed. This results in a practical limit of k1 >=0.4 as well as a multitude of complex restrictive design rules, in order to mitigate or minimize lithographic hot spots. An alternative approach, that is gradually attracting the lithographic community's attention, restricts the design of critical layers to straight, dense lines (a 1D grid), that can be relatively easily printed using current lithographic technology. This is then followed by subsequent, less critical trimming stages to obtain circuit functionality. Thus, the 1D gridded approach allows hotspot-free, proximity-effect free lithography of ultra low- k1 features. These advantages must be supported by a stable CD control mechanism. One of the overriding parameters impacting CDU performance is photo mask quality. Previous publications have demonstrated that IntenCDTM - a novel, mask-based CDU mapping technology running on Applied Materials' Aera2TM aerial imaging mask inspection tool - is ideally fit for detecting mask-based CDU issues in 1D (L&S) patterned masks for memory production. Owing to the aerial nature of image formation, IntenCD directly probes the CD as it is printed on the wafer. In this paper we suggest that IntenCD is naturally fit for detecting mask-based CDU issues in 1D GDR masks. We then study a novel method of recovering and quantifying the physical source of printed CDU, using a novel implementation of the IntenCD technology. We demonstrate that additional, simple measurements, which can be readily performed on board the Aera2TM platform with minimal throughput penalty, may complement IntenCD and allow a robust estimation of the specific nature and strength of mask error source, such as pattern width variation or phase variation, which leads to CDU issues on the printed wafer. We finally discuss the roles played by IntenCD in advanced GDR mask production, starting with tight control over mask production process, continuing to mask qualification at mask shop and ending at in-line wafer CDU correction in fabs.

  11. Electrical study of DSA shrink process and CD rectification effect at sub-60nm using EUV test vehicle

    NASA Astrophysics Data System (ADS)

    Chi, Cheng; Liu, Chi-Chun; Meli, Luciana; Guo, Jing; Parnell, Doni; Mignot, Yann; Schmidt, Kristin; Sanchez, Martha; Farrell, Richard; Singh, Lovejeet; Furukawa, Tsuyoshi; Lai, Kafai; Xu, Yongan; Sanders, Daniel; Hetzer, David; Metz, Andrew; Burns, Sean; Felix, Nelson; Arnold, John; Corliss, Daniel

    2017-03-01

    In this study, the integrity and the benefits of the DSA shrink process were verified through a via-chain test structure, which was fabricated by either DSA or baseline litho/etch process for via layer formation while metal layer processes remain the same. The nearest distance between the vias in this test structure is below 60nm, therefore, the following process components were included: 1) lamella-forming BCP for forming self-aligned via (SAV), 2) EUV printed guiding pattern, and 3) PS-philic sidewall. The local CDU (LCDU) of minor axis was improved by 30% after DSA shrink process. We compared two DSA Via shrink processes and a DSA_Control process, in which guiding patterns (GP) were directly transferred to the bottom OPL without DSA shrink. The DSA_Control apparently resulted in larger CD, thus, showed much higher open current and shorted the dense via chains. The non-optimized DSA shrink process showed much broader current distribution than the improved DSA shrink process, which we attributed to distortion and dislocation of the vias and ineffective SAV. Furthermore, preliminary defectivity study of our latest DSA process showed that the primary defect mode is likely to be etch-related. The challenges, strategies applied to improve local CD uniformity and electrical current distribution, and potential adjustments were also discussed.

  12. EUV local CDU healing performance and modeling capability towards 5nm node

    NASA Astrophysics Data System (ADS)

    Jee, Tae Kwon; Timoshkov, Vadim; Choi, Peter; Rio, David; Tsai, Yu-Cheng; Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Schoofs, Stijn

    2017-10-01

    Both local variability and optical proximity correction (OPC) errors are big contributors to the edge placement error (EPE) budget which is closely related to the device yield. The post-litho contact hole healing will be demonstrated to meet after-etch local variability specifications using a low dose, 30mJ/cm2 dose-to-size, positive tone developed (PTD) resist with relevant throughput in high volume manufacturing (HVM). The total local variability of the node 5nm (N5) contact holes will be characterized in terms of local CD uniformity (LCDU), local placement error (LPE), and contact edge roughness (CER) using a statistical methodology. The CD healing process has complex etch proximity effects, so the OPC prediction accuracy is challenging to meet EPE requirements for the N5. Thus, the prediction accuracy of an after-etch model will be investigated and discussed using ASML Tachyon OPC model.

  13. Patterning control strategies for minimum edge placement error in logic devices

    NASA Astrophysics Data System (ADS)

    Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim

    2017-03-01

    In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.

  14. Process variation challenges and resolution in the negative-tone develop double patterning for 20nm and below technology node

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David

    2015-03-01

    Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and color balanced layouts.

  15. Comparative study between REAP 200 and FEP171 CAR with 50-kV raster e-beam system for sub-100-nm technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Lem, Homer Y.; Dean, Robert L.; Osborne, Stephen; Mueller, Mark; Abboud, Frank E.

    2003-08-01

    In this paper, a process established with a positive-tone chemically amplified resist (CAR) from TOK REAP200 and Fujifilm Arch FEP171 and 50kV MEBES system is discussed. This TOK resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. In the mask industries, the most popular positive tone CAR is FEP171, which is a high activation energy type CAR. REAP (Raster E-beam Advanced Process) 200 is low activation energy type and new acetal protecting polymer. In this study, we compared to these different type resists in terms of contrast, PAB and PEB latitude, resist profile, footing, T-topping, PED stability, LER, Global CDU (Critical Dimension Uniformity) and resolution. The REAP200 Resist obtained 75nm isolated lines and spaces, 90nm dense patterns with vertical profile, and a good stability of delay time.

  16. Pattern optimizing verification of self-align quadruple patterning

    NASA Astrophysics Data System (ADS)

    Yamato, Masatoshi; Yamada, Kazuki; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shouhei; Koike, Kyohei; Yaegashi, Hidetami

    2017-03-01

    Lithographic scaling continues to advance by extending the life of 193nm immersion technology, and spacer-type multi-patterning is undeniably the driving force behind this trend. Multi-patterning techniques such as self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) have come to be used in memory devices, and they have also been adopted in logic devices to create constituent patterns in the formation of 1D layout designs. Multi-patterning has consequently become an indispensible technology in the fabrication of all advanced devices. In general, items that must be managed when using multi-patterning include critical dimension uniformity (CDU), line edge roughness (LER), and line width roughness (LWR). Recently, moreover, there has been increasing focus on judging and managing pattern resolution performance from a more detailed perspective and on making a right/wrong judgment from the perspective of edge placement error (EPE). To begin with, pattern resolution performance in spacer-type multi-patterning is affected by the process accuracy of the core (mandrel) pattern. Improving the controllability of CD and LER of the mandrel is most important, and to reduce LER, an appropriate smoothing technique should be carefully selected. In addition, the atomic layer deposition (ALD) technique is generally used to meet the need for high accuracy in forming the spacer film. Advances in scaling are accompanied by stricter requirements in the controllability of fine processing. In this paper, we first describe our efforts in improving controllability by selecting the most appropriate materials for the mandrel pattern and spacer film. Then, based on the materials selected, we present experimental results on a technique for improving etching selectivity.

  17. Understanding the critical challenges of self-aligned octuple patterning

    NASA Astrophysics Data System (ADS)

    Yu, Ji; Xiao, Wei; Kang, Weiling; Chen, Yijian

    2014-03-01

    In this paper, we present a thorough investigation of self-aligned octuple patterning (SAOP) process characteristics, cost structure, integration challenges, and layout decomposition. The statistical characteristics of SAOP CD variations such as multi-modality are analyzed and contributions from various features to CDU and MTT (mean-to-target) budgets are estimated. The gap space is found to have the worst CDU+MTT performance and is used to determine the required overlay accuracy to ensure a satisfactory edge-placement yield of a cut process. Moreover, we propose a 5-mask positive-tone SAOP (pSAOP) process for memory FEOL patterning and a 3-mask negative-tone SAOP (nSAOP) process for logic BEOL patterning. The potential challenges of 2-D SAOP layout decomposition for BEOL applications are identified. Possible decomposition approaches are explored and the functionality of several developed algorithm is verified using 2-D layout examples from Open Cell Library.

  18. Mask characterization for CDU budget breakdown in advanced EUV lithography

    NASA Astrophysics Data System (ADS)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2012-11-01

    As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget Breakdown per product/process and Litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps to extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.

  19. Mask characterization for critical dimension uniformity budget breakdown in advanced extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2013-04-01

    As the International Technology Roadmap for Semiconductors critical dimension uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. We will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for advanced extreme ultraviolet (EUV) lithography with 1D (dense lines) and 2D (dense contacts) feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CDs and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples. Mask stack reflectivity variations should also be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We also observed mask error enhancement factor (MEEF) through field fingerprints in the studied EUV cases. Variations of MEEF may play a role towards the total intrafield CDU and may need to be taken into account for EUV lithography. We characterized MEEF-through-field for the reviewed features, with results herein, but further analysis of this phenomenon is required. This comprehensive approach to quantifying the mask part of the overall EUV CDU contribution helps deliver an accurate and integral CDU BB per product/process and litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.

  20. Arbitrating Control of Control and Display Units

    NASA Technical Reports Server (NTRS)

    Sugden, Paul C.

    2007-01-01

    The ARINC 739 Switch is a computer program that arbitrates control of two multi-function control and display units (MCDUs) between (1) a commercial flight-management computer (FMC) and (2) NASA software used in research on transport aircraft. (MCDUs are the primary interfaces between pilots and FMCs on many commercial aircraft.) This program was recently redesigned into a software library that can be embedded in research application programs. As part of the redesign, this software was combined with software for creating custom pages of information to be displayed on a CDU. This software commands independent switching of the left (pilot s) and right (copilot s) MCDUs. For example, a custom CDU page can control the left CDU while the FMC controls the right CDU. The software uses menu keys to switch control of the CDU between the FMC or a custom CDU page. The software provides an interface that enables custom CDU pages to insert keystrokes into the FMC s CDU input interface. This feature allows the custom CDU pages to manipulate the FMC as if it were a pilot.

  1. Reimbursement Policies for Carotid Duplex Ultrasound that are Based on International Classification of Diseases Codes May Discourage Testing in High-Yield Groups.

    PubMed

    Go, Michael R; Masterson, Loren; Veerman, Brent; Satiani, Bhagwan

    2016-02-01

    To curb increasing volumes of diagnostic imaging and costs, reimbursement for carotid duplex ultrasound (CDU) is dependent on "appropriate" indications as documented by International Classification of Diseases (ICD) codes entered by ordering physicians. Historically, asymptomatic indications for CDU yield lower rates of abnormal results than symptomatic indications, and consensus documents agree that most asymptomatic indications for CDU are inappropriate. In our vascular laboratory, we perceived an increased rate of incorrect or inappropriate ICD codes. We therefore sought to determine if ICD codes were useful in predicting the frequency of abnormal CDU. We hypothesized that asymptomatic or nonspecific ICD codes would yield a lower rate of abnormal CDU than symptomatic codes, validating efforts to limit reimbursement in asymptomatic, low-yield groups. We reviewed all outpatient CDU done in 2011 at our institution. ICD codes were recorded, and each medical record was then reviewed by a vascular surgeon to determine if the assigned ICD code appropriately reflected the clinical scenario. CDU findings categorized as abnormal (>50% stenosis) or normal (<50% stenosis) were recorded. Each individual ICD code and group 1 (asymptomatic), group 2 (nonhemispheric symptoms), group 3 (hemispheric symptoms), group 4 (preoperative cardiovascular examination), and group 5 (nonspecific) ICD codes were analyzed for correlation with CDU results. Nine hundred ninety-four patients had 74 primary ICD codes listed as indications for CDU. Of assigned ICD codes, 17.4% were deemed inaccurate. Overall, 14.8% of CDU were abnormal. Of the 13 highest frequency ICD codes, only 433.10, an asymptomatic code, was associated with abnormal CDU. Four symptomatic codes were associated with normal CDU; none of the other high frequency codes were associated with CDU result. Patients in group 1 (asymptomatic) were significantly more likely to have an abnormal CDU compared to each of the other groups (P < 0.001, P < 0.001, P = 0.020, P = 0.002) and to all other groups combined (P < 0.001). Asymptomatic indications by ICD codes yielded higher rates of abnormal CDU than symptomatic indications. This finding is inconsistent with clinical experience and historical data, and we suggest that inaccurate coding may play a role. Limiting reimbursement for CDU in low-yield groups is reasonable. However, reimbursement policies based on ICD coding, for example, limiting payment for asymptomatic ICD codes, may impede use of CDU in high-yield patient groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evaluating the effect of clinical decision units on patient flow in seven Canadian emergency departments.

    PubMed

    Schull, Michael J; Vermeulen, Marian J; Stukel, Therese A; Guttmann, Astrid; Leaver, Chad A; Rowe, Brian H; Sales, Anne

    2012-07-01

    To evaluate the effect of emergency department (ED) clinical decision units (CDUs) on overall ED patient flow in a pilot project funded in 2008 by the Ontario Ministry of Health and Long-Term Care (MOHLTC). A retrospective analysis of unscheduled ED visits at seven CDU pilot and nine control sites was conducted using administrative data. The authors examined trends in CDU utilization and compared outcomes between pilot-CDU and control sites 1 year prior to implementation, with the first 18 months of CDU operation. Sites that were unsuccessful in their applications for CDU program funding served as controls. Outcomes included ED length of stay (LOS), admission rates, and ED revisit rates. At CDU sites, roughly 4% of ED patients were admitted to CDUs. The presence of a pilot-CDU was independently associated with a small reduction in ED LOS for all low-acuity patients (-0.14 hour, 95% confidence interval [CI]=-0.22 to -0.07) and nonadmitted patients (-0.11 hour, 95% CI=-0.16 to -0.07). A small independent effect on absolute hospital admission rate for all high-acuity patients (-0.8%, 95% CI=-1.5% to -0.03%) and moderate-acuity patients (-0.6%, 95% CI=-1.1% to -0.2%) was also observed. Pilot-CDUs were not associated with changes in ED revisit rates. With only 4% of ED patients admitted to CDUs, the potential for efficiency gains in these EDs was limited. Nonetheless, these findings suggest small improvements in the operation of the ED through CDU implementation. Although marginal, the observed effects of CDU operation were in the desired direction of reduced ED LOS, reduced admission rate, and no increase in ED revisit rate. © 2012 by the Society for Academic Emergency Medicine.

  3. Comparison of Two Devices for Intraoperative Portal Venous Flow Measurement in Living-Donor Liver Transplantation: Transit Time Ultrasound and Conventional Doppler Ultrasound.

    PubMed

    Wang, H-K; Chen, C-Y; Lin, N-C; Liu, C-S; Loong, C-C; Lin, Y-H; Lai, Y-C; Chiou, H-J

    2018-05-01

    Intraoperative portal venous flow measurement provides surgeons with instant guidance for portal flow modulation during living-donor liver transplantation (LDLT). In this study, we compared the agreement of portal flow measurement obtained by 2 devices: transit time ultrasound (TTU) and conventional Doppler ultrasound (CDU). Fifty-four recipients of LDLT underwent intraoperative measurement of portal flow after completion of vascular anastomosis of the implanted partial liver graft. Both TTU and CDU were used concurrently. Agreement of TTU and CDU was assessed by intraclass correlation coefficient using a model of 2-way random effects, absolute agreement, and single measurement. A Bland-Altman plot was applied to assess the variability between the 2 devices. The mean, median, and range of portal venous flow was 1456, 1418, and 117 to 2776 mL/min according to TTU; and 1564, 1566, and 119 to 3216 mL/min according to CDU. The intraclass correlation coefficient of portal venous flow between TTU and CDU was 0.68 (95% confidence interval, 0.51-0.80). The Bland-Altman plots revealed an average variation of 4.8% between TTU and CDU but with a rather wide 95% confidence interval of variation ranging from -57.7% to 67.4%. Intraoperative TTU and CDU showed moderate agreement in portal flow measurement. However, a relatively wide range of variation exists between TTU and CDU, indicating that data obtained from the 2 devices may not be interchangeable. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Penile Doppler sonographic and clinical characteristics in Peyronie's disease and/or erectile dysfunction: an analysis of 1500 men with male sexual dysfunction.

    PubMed

    Chung, Eric; Yan, Hanmu; De Young, Ling; Brock, Gerald B

    2012-10-01

    What's known on the subject? and What does the study add? Penile colour Doppler ultrasonography (CDU) can be an invaluable investigative tool to characterize penile abnormalities to complement clinical history and physical examination in the evaluation of men with Peyronie's disease (PD) and/or erectile dysfunction (ED). Although CDU findings between men with PD and those with ED were not markedly different, subtle differences were observed. The classic penile CDU findings in men with PD comprise tunical thickening, intracavernosal fibrosis, septal fibrosis and intracavernosal calcification, while, in men with ED, low peak systolic velocity and high end-diastolic velocity are found on penile haemodynamics. Previously published studies have focused predominantly on either ED or PD exclusively, or examine the risk of progression to ED in the PD population. To our knowledge, this is the largest and most comprehensive analysis of penile CDU and clinical findings in men with PD and/or ED. The large sample size and multivariable analysis allow meaningful interpretation of the results. This study has found some substantial differences in the penile CDU findings of men with PD and/or ED that have not previously been reported. Although the risk factors of ED may be greater than those for PD, there is crossover in age, cardiovascular risk factors, trauma and penile CDU findings in men with PD and/or ED. To explore the differences in penile colour Doppler ultrasonography (CDU) findings between men with Peyronie's disease (PD) and those with erectile dysfunction (ED). Patients presenting with PD and/or ED who underwent penile CDU were recruited to the study. Patient demographics, comorbidities, International Index of Erectile Function-5 scores, previous therapies and physical findings were documented. Penile curvature, presence of tunical thickening, septal fibrosis, intracavernosal fibrosis and calcification, and cavernosal vascular status were recorded. A total of 1500 men underwent penile CDU during the 10-year period. Of these men, 891 men presented with PD and 609 men had ED only. Men with ED had higher rates of diabetes and coronary artery disease (P < 0.05). Isolated tunical thickening was more common in older men and in the PD cohort. The presence of intracavernosal fibrosis correlated strongly with difficulty maintaining erection (P < 0.05). Impaired cavernosal arterial flow was observed in men with decrease penile rigidity and penile pain, while higher end-diastolic velocities were found in men with difficulty maintaining erection and tunical thickening on penile CDU. Men with PD and ED had many similarities and differences on penile CDU. Penile CDU continues to be an invaluable clinical tool in the management of men with male sexual dysfunction. © 2012 BJU INTERNATIONAL.

  5. The Evaluation of Two CDU Concepts and Their Effects on FMS Training

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1995-01-01

    One of the biggest challenges for a pilot in the transition to a "glass" cockpit is understanding the Flight Management System (FMS). This is due to both the complex nature of the FMS and to the pilot-FMS interface. For these reasons, a large portion of transition training is devoted to the FMS. The intent of the current study was to examine the impact of the primary pilot-FMS interface, the Control Display Unit (CDU), on FMS training. The hypothesis of this study was that the interface design could have a significant impact on training. An FMS simulation was developed with two separate interfaces. One interface was similar to a current-generation design and the other was a multi-windows CDU based on graphical user interface techniques. For both application and evaluation reasons, constraints were applied to the graphical CDU design to maintain as much similarity as possible with the conventional CDU.

  6. Can an emergency department-based Clinical Decision Unit successfully utilize alternatives to emergency hospitalization?

    PubMed

    Roberts, Mark Vignesha; Baird, Wendy; Kerr, Paul; O'Reilly, Seamus

    2010-04-01

    To evaluate a Clinical Decision Unit (CDU) designed to utilize alternatives to emergency hospitalization. CDUs are one model of care designed to strengthen the gatekeeper role of Emergency Departments (EDs). This retrospective cohort study was carried out in a UK NHS acute hospital. All 854 patients in the CDU cohort were compared with three age-stratified, historical cohorts from the same clinical centre. The median age was 62 years (range 16-94).The main outcome measures were discharge to general practitioner, outpatient services or hospitalization, the 30-day unplanned reattendance rate for those not hospitalized, and monthly medical admission figures. Approximately 511 [59.8%, 95% confidence interval (CI): 56.5-63.1%] to 560 (65.6%, 95% CI: 62.3-68.7%) patients were admitted in the comparison cohorts, compared with only 186 (21.8%, 95% CI: 19.1-24.7%) in the CDU cohort (P≤0.05). Approximately 243 (28.5%, 95% CI: 25.5-31.6%) to 289 (33.8%, 95% CI: 30.7-37.1%) patients were discharged to general practitioner services in the comparison groups, compared with 562 (65.8%, 95% CI: 62.6-68.9%) in the CDU group (P≤0.05). Approximately eight (0.9, 95% CI: 0.5-1.8%) to 17 (2%, 95% CI: 1.2-3.2%) patients in the comparison groups were discharged to outpatient clinics, compared with 82 (9.6%, 95% CI: 7.8-11.8%) in the CDU group (P≤0.05). There was no consistent trend towards statistically significant rises in unplanned reattendance (P>0.05). Monthly medical admissions fell substantially during CDU operation. This CDU model was associated with statistically and clinically significant reductions in hospital admissions. The judicious application of this CDU model to other ED environments can be expected to yield similar benefits.

  7. EUV via hole pattern fidelity enhancement through novel resist and post-litho plasma treatment

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Koike, Kyohei; Fonseca, Carlos; Yamashita, Fumiko; Kaushik, Kumar; Morikita, Shinya; Ito, Kiyohito; Yoshimura, Shota; Timoshkov, Vadim; Maslow, Mark; Jee, Tae Kwon; Reijnen, Liesbeth; Choi, Peter; Feng, Mu; Spence, Chris; Schoofs, Stijn

    2018-03-01

    Extreme UV(EUV) technology must be potential solution for sustainable scaling, and its adoption in high volume manufacturing(HVM) is getting realistic more and more. This technology has a wide capability to mitigate various technical problem in Multi-patterning (LELELE) for via hole patterning with 193-i. It induced local pattern fidelity error such like CDU, CER, Pattern placement error. Exactly, EUV must be desirable scaling-driving tool, however, specific technical issue, named RLS (Resolution-LER-Sensitivity) triangle, obvious remaining issue. In this work, we examined hole patterning sensitizing (Lower dose approach) utilizing hole patterning restoration technique named "CD-Healing" as post-Litho. treatment.

  8. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300mm wafers exposed and the cleaning brought it back almost to its original state after manufacture. Wafer CD, photomask CD and iCDU results can be compared, before and after a standard mask shop cleaning. Measurement points have be chosen in logic areas and SRAM areas, so that their respective behaviours can be studied separately. Transmitted maps before and after cleaning were analysed in terms of CD shift and CDU degradation. The delta map shows a nice correlation with photomask CD shift. iCDU demonstrated the capability to detect a reliable CD range degradation of 5nm on photomask by a comparison between a reference inspection and the current inspection. Die to die inspection mode provides also valuable data, highlighting the degraded chrome sidewalls, more in the photomask centre than on the edges. Ultimately, these results would enable to trigger the preventive cleanings rather than on predefined thresholds. The expected gains for wafer fabs are cost savings (adapted cleanings frequency), increased photomask availability for production, longer photomask lifetime, no additional SEM time neither for photomask nor on wafer.

  9. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  10. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  11. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  12. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  13. Optimized plasma etch window of block copolymers and neutral brush layers for enhanced direct self-assembly pattern transfer into a hardmask layer

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.

  14. High-definition flow Doppler ultrasonographic technique to assess hepatic vasculature compared with color or power Doppler ultrasonography: preliminary experience.

    PubMed

    Kim, Se Hyung; Lee, Jeong Min; Kim, Young Jun; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2008-10-01

    The purpose of this study was to introduce a new high-definition flow (HDF) Doppler technique and to compare its performance with those of color Doppler ultrasonography (CDU) and power Doppler ultrasonography (PDU) for assessment of hepatic vasculature in native and transplanted livers. High-definition flow was invented as a high-resolution bidirectional PDU technique. We obtained CDU, PDU, and HDF images of the hepatic artery (HA), portal vein (PV), and hepatic vein from 60 patients. They were divided into 2 groups: a liver transplantation group (group 1, n = 10) and a native liver group (group 2, n = 50). Two radiologists independently reviewed the cine images and graded them using a 4-point scale in terms of the clarity of the vessel margin and degree of depiction of the HA, flow filling, and flash artifacts. The degree of differentiation between the HA and PV was also evaluated. Flow directionality was recorded, and interobserver agreement was finally analyzed. Moderate to almost perfect agreement was achieved between radiologists for all parameters of each ultrasonographic technique. High-definition flow was significantly superior to both CDU and PDU with respect to all analyzed items except the degree of flash artifacts (P < .05). With regard to flash artifacts, CDU was significantly better than either PDU or HDF. High-definition flow provided directional information, as did CDU. The HDF technique provides better resolution for depicting hepatic vessels as well as their margins with less blooming compared with conventional Doppler ultrasonography in both native and transplanted liver. It also provides solid directional flow information. One point of concern, however, is the frequency of flash artifacts compared with that on CDU.

  15. Evaluation of Thyroid Disorders During Head-and-Neck Radiotherapy by Using Functional Analysis and Ultrasonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshandeh, Mohsen; Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir; Mahdavi, Seyed Rabie

    2012-05-01

    Purpose: To evaluate thyroid function and vascular changes during radiotherapy for patients with head and neck cancer. Methods and Materials: Fifty patients treated with primary or postoperative radiotherapy for various cancers in the head and neck region were prospectively evaluated. The serum samples (triiodothyronine [T3], thyroxine [T4], thyroid-stimulating hormone [TSH], free triiodothyronine [FT3], and free thyroxine [FT4]), the echo level of the thyroid gland, and color Doppler ultrasonography (CDU) parameters of the right inferior thyroid artery (RITA) of the patients were measured before and at regular intervals during radiotherapy. The thyroid gland dose-volume histograms of the patients were derived frommore » their computed tomography-based treatment plans. Results: There was a significant fall in TSH level (p < 0.0001) but an increase in FT4 (p < 0.0001) and T4 (p < 0.022) levels during the radiotherapy course. The threshold dose required to produce significant changes was 12 Gy (Biologically Effective Dose in 2-Gy fractions, BED{sub 2}). There were significant rises in the patients' pulsatility index, resistive index, peak systolic velocity, blood volume flow levels, and RITA diameter (p < 0.0001), as detected by CDU during radiotherapy, compared to those parameters measured before the treatment. Hypoechogenicity and irregular echo patterns (p < 0.0001) were seen during radiotherapy compared to those before treatment. There was significant Pearson's correlation between the CDU parameters and T4, FT4, and TSH levels. Conclusions: Radiation-induced thyroiditis is regarded as primary damage to the thyroid gland. Thyroiditis can subsequently result in hypothyroidism or hyperthyroidism. Our results demonstrated that changes in thyroid vessels occur during radiotherapy delivered to patients. Vessel changes also can be attributed to the late effect of radiation on the thyroid gland. The hypoechogenicity and irregular echo patterns observed in patients may result from the increase in intrathyroidal flow.« less

  16. Prospects of DUV OoB suppression techniques in EUV lithography

    NASA Astrophysics Data System (ADS)

    Park, Chang-Min; Kim, Insung; Kim, Sang-Hyun; Kim, Dong-Wan; Hwang, Myung-Soo; Kang, Soon-Nam; Park, Cheolhong; Kim, Hyun-Woo; Yeo, Jeong-Ho; Kim, Seong-Sue

    2014-04-01

    Though scaling of source power is still the biggest challenge in EUV lithography (EUVL) technology era, CD and overlay controls for transistor's requirement are also precondition of adopting EUVL in mass production. Two kinds of contributors are identified as risks for CDU and Overlay: Infrared (IR) and deep ultraviolet (DUV) out of band (OOB) radiations from laser produced plasma (LPP) EUV source. IR from plasma generating CO2 laser that causes optics heating and wafer overlay error is well suppressed by introducing grating on collector to diffract IR off the optical axis and is the effect has been confirmed by operation of pre-production tool (NXE3100). EUV and DUV OOB which are reflected from mask black boarder (BB) are root causes of EUV-specific CD error at the boundaries of exposed shots which would result in the problem of CDU out of spec unless sufficiently suppressed. Therefore, control of DUV OOB reflection from the mask BB is one of the key technologies that must be developed prior to EUV mass production. In this paper, quantitative assessment on the advantage and the disadvantage of potential OOB solutions will be discussed. EUV and DUV OOB impacts on wafer CDs are measured from NXE3100 & NXE3300 experiments. Significant increase of DUV OOB impact on CD from NXE3300 compared with NXE3100 is observed. There are three ways of technology being developed to suppress DUV OOB: spectral purity filter (SPF) as a scanner solution, multi-layer etching as a solution on mask, and resist top-coating as a process solution. PROs and CONs of on-scanner, on-mask, and on-resist solution for the mass production of EUV lithography will be discussed.

  17. Improving access to medicines through centralised dispensing in the public sector: a case study of the Chronic Dispensing Unit in the Western Cape Province, South Africa.

    PubMed

    Magadzire, Bvudzai Priscilla; Marchal, Bruno; Ward, Kim

    2015-11-17

    The Chronic Dispensing Unit (CDU) is an out-sourced, public sector centralised dispensing service that has been operational in the Western Cape Province in South Africa since 2005. The CDU dispenses medicines for stable patients with chronic conditions. The aim is to reduce pharmacists' workload, reduce patient waiting times and decongest healthcare facilities. Our objectives are to describe the intervention's scope, illustrate its interface with the health system and describe its processes and outcomes. Secondly, to quantify the magnitude of missed appointments by enrolled patients and to describe the implications thereof in order to inform a subsequent in-depth empirical study on the underlying causes. We adopted a case study design in order to elicit the programme theory underlying the CDU strategy. We consulted 15 senior and middle managers from the provincial Department of Health who were working closely with the intervention and the contractor using focus group discussions and key informant interviews. In addition, relevant literature, and policy and programme documents were reviewed and analysed. We found that the CDU scope has significantly expanded over the last 10 years owing to technological advancements. As such, in early 2015, the CDU produced nearly 300,000 parcels monthly. Medicines supply, patient enrollment processes, healthcare professionals' compliance to legislation and policies, mechanisms for medicines distribution, management of non-collected medicines (emanating from patients' missed appointments) and the array of actors involved are all central to the CDU's functioning. Missed appointments by patients are a problem, affecting an estimated 8%-12% of patients each month. However, the causes have not been investigated thoroughly. Implications of missed appointments include a cost to government for services rendered by the contractor, potential losses due to expired medicines, additional workload for the contractor and healthcare facility staff and potential negative therapeutic outcomes for patients. The CDU demonstrates innovation in a context of overwhelming demand for dispensing medicines for chronic conditions. However, it is not a panacea to address access-to-medicines related challenges. A multi-level assessment that is currently underway will provide more insights on how existing challenges can be addressed.

  18. Introduction of pre-etch deposition techniques in EUV patterning

    NASA Astrophysics Data System (ADS)

    Xiang, Xun; Beique, Genevieve; Sun, Lei; Labonte, Andre; Labelle, Catherine; Nagabhirava, Bhaskar; Friddle, Phil; Schmitz, Stefan; Goss, Michael; Metzler, Dominik; Arnold, John

    2018-04-01

    The thin nature of EUV (Extreme Ultraviolet) resist has posed significant challenges for etch processes. In particular, EUV patterning combined with conventional etch approaches suffers from loss of pattern fidelity in the form of line breaks. A typical conventional etch approach prevents the etch process from having sufficient resist margin to control the trench CD (Critical Dimension), minimize the LWR (Line Width Roughness), LER (Line Edge Roughness) and reduce the T2T (Tip-to-Tip). Pre-etch deposition increases the resist budget by adding additional material to the resist layer, thus enabling the etch process to explore a wider set of process parameters to achieve better pattern fidelity. Preliminary tests with pre-etch deposition resulted in blocked isolated trenches. In order to mitigate these effects, a cyclic deposition and etch technique is proposed. With optimization of deposition and etch cycle time as well as total number of cycles, it is possible to open the underlying layers with a beneficial over etch and simultaneously keep the isolated trenches open. This study compares the impact of no pre-etch deposition, one time deposition and cyclic deposition/etch techniques on 4 aspects: resist budget, isolated trench open, LWR/LER and T2T.

  19. Optimum ArFi laser bandwidth for 10nm node logic imaging performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Timoshkov, Vadim; Wong, Patrick; Rechtsteiner, Gregory; Baselmans, Jan; Mailfert, Julien

    2015-03-01

    Lithography process window (PW) and CD uniformity (CDU) requirements are being challenged with scaling across all device types. Aggressive PW and yield specifications put tight requirements on scanner performance, especially on focus budgets resulting in complicated systems for focus control. In this study, an imec N10 Logic-type test vehicle was used to investigate the E95 bandwidth impact on six different Metal 1 Logic features. The imaging metrics that track the impact of light source E95 bandwidth on performance of hot spots are: process window (PW), line width roughness (LWR), and local critical dimension uniformity (LCDU). In the first section of this study, the impact of increasing E95 bandwidth was investigated to observe the lithographic process control response of the specified logic features. In the second section, a preliminary assessment of the impact of lower E95 bandwidth was performed. The impact of lower E95 bandwidth on local intensity variability was monitored through the CDU of line end features and the LWR power spectral density (PSD) of line/space patterns. The investigation found that the imec N10 test vehicle (with OPC optimized for standard E95 bandwidth of300fm) features exposed at 200fm showed pattern specific responses, suggesting areas of potential interest for further investigation.

  20. 78 FR 3363 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ...-mechanical brake flex shaft (short flexshaft) of the thrust reverser actuation system (TRAS). This proposed... the electro-mechanical brake and center drive unit (CDU) cone brake to verify the holding torque, and... describes a functional test of the electro-mechanical brake and CDU cone brake to verify the holding torque...

  1. Wafer hotspot prevention using etch aware OPC correction

    NASA Astrophysics Data System (ADS)

    Hamouda, Ayman; Power, Dave; Salama, Mohamed; Chen, Ao

    2016-03-01

    As technology development advances into deep-sub-wavelength nodes, multiple patterning is becoming more essential to achieve the technology shrink requirements. Recently, Optical Proximity Correction (OPC) technology has proposed simultaneous correction of multiple mask-patterns to enable multiple patterning awareness during OPC correction. This is essential to prevent inter-layer hot-spots during the final pattern transfer. In state-of-art literature, multi-layer awareness is achieved using simultaneous resist-contour simulations to predict and correct for hot-spots during mask generation. However, this approach assumes a uniform etch shrink response for all patterns independent of their proximity, which isn't sufficient for the full prevention of inter-exposure hot-spot, for example different color space violations post etch or via coverage/enclosure post etch. In this paper, we explain the need to include the etch component during multiple patterning OPC. We also introduce a novel approach for Etch-aware simultaneous Multiple-patterning OPC, where we calibrate and verify a lumped model that includes the combined resist and etch responses. Adding this extra simulation condition during OPC is suitable for full chip processing from a computation intensity point of view. Also, using this model during OPC to predict and correct inter-exposures hot-spots is similar to previously proposed multiple-patterning OPC, yet our proposed approach more accurately corrects post-etch defects too.

  2. Expanding Library Services and Instruction Through LibGuides.

    PubMed

    Ream, Tim; Parker-Kelly, Darlene

    2016-01-01

    Beginning in 2012, the Charles R. Drew University (CDU) Health Sciences Library used LibGuides in a number of innovative ways. Librarians constructed e-book databases, in-depth tutorials on technology-related topics, and web pages highlighting special events. To assess similar LibGuides innovation, CDU librarians developed an eight-question survey distributed to health sciences and hospital libraries throughout Southern California and Arizona. Results showed that libraries used LibGuides primarily to deliver access to online resources and to provide supplementary materials supporting instruction. Responses also revealed that many libraries had not yet adopted LibGuides. These findings were analyzed and compared to past and current LibGuides design at CDU.

  3. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  4. Exploration of suitable dry etch technologies for directed self-assembly

    NASA Astrophysics Data System (ADS)

    Yamashita, Fumiko; Nishimura, Eiichi; Yatsuda, Koichi; Mochiki, Hiromasa; Bannister, Julie

    2012-03-01

    Directed self-assembly (DSA) has shown the potential to replace traditional resist patterns and provide a lower cost alternative for sub-20-nm patterns. One of the possible roadblocks for DSA implementation is the ability to etch the polymers to produce quality masks for subsequent etch processes. We have studied the effects of RF frequency and etch chemistry for dry developing DSA patterns. The results of the study showed a capacitively-coupled plasma (CCP) reactor with very high frequency (VHF) had superior pattern development after the block co-polymer (BCP) etch. The VHF CCP demonstrated minimal BCP height loss and line edge roughness (LER)/line width roughness (LWR). The advantage of CCP over ICP is the low dissociation so the etch rate of BCP is maintained low enough for process control. Additionally, the advantage of VHF is the low electron energy with a tight ion energy distribution that enables removal of the polymethyl methacrylate (PMMA) with good selectivity to polystyrene (PS) and minimal LER/LWR. Etch chemistries were evaluated on the VHF CCP to determine ability to treat the BCPs to increase etch resistance and feature resolution. The right combination of RF source frequencies and etch chemistry can help overcome the challenges of using DSA patterns to create good etch results.

  5. Hot spot variability and lithography process window investigation by CDU improvement using CDC technique

    NASA Astrophysics Data System (ADS)

    Thamm, Thomas; Geh, Bernd; Djordjevic Kaufmann, Marija; Seltmann, Rolf; Bitensky, Alla; Sczyrba, Martin; Samy, Aravind Narayana

    2018-03-01

    Within the current paper, we will concentrate on the well-known CDC technique from Carl Zeiss to improve the CD distribution of the wafer by improving the reticle CDU and its impact on hotspots and Litho process window. The CDC technique uses an ultra-short pulse laser technology, which generates a micro-level Shade-In-Element (also known as "Pixels") into the mask quartz bulk material. These scatter centers are able to selectively attenuate certain areas of the reticle in higher resolution compared to other methods and thus improve the CD uniformity. In a first section, we compare the CDC technique with scanner dose correction schemes. It becomes obvious, that the CDC technique has unique advantages with respect to spatial resolution and intra-field flexibility over scanner correction schemes, however, due to the scanner flexibility across wafer both methods are rather complementary than competing. In a second section we show that a reference feature based correction scheme can be used to improve the CDU of a full chip with multiple different features that have different MEEF and dose sensitivities. In detail we will discuss the impact of forward scattering light originated by the CDC pixels on the illumination source and the related proximity signature. We will show that the impact on proximity is small compared to the CDU benefit of the CDC technique. Finally we show to which extend the reduced variability across reticle will result in a better common electrical process window of a whole chip design on the whole reticle field on wafer. Finally we will discuss electrical verification results between masks with purposely made bad CDU that got repaired by the CDC technique versus inherently good "golden" masks on a complex logic device. No yield difference is observed between the repaired bad masks and the masks with good CDU.

  6. Novel EUV mask black border suppressing EUV and DUV OoB light reflection

    NASA Astrophysics Data System (ADS)

    Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-05-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including impact of OOB light in the die edge area is evaluated which shows that the OOB impact from HBB becomes comparable with other CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  7. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  8. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  9. Modeling of block copolymer dry etching for directed self-assembly lithography

    NASA Astrophysics Data System (ADS)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  10. Direct comparison of the performance of commonly used e-beam resists during nano-scale plasma etching of Si, SiO2, and Cr

    NASA Astrophysics Data System (ADS)

    Goodyear, Andy; Boettcher, Monika; Stolberg, Ines; Cooke, Mike

    2015-03-01

    Electron beam writing remains one of the reference pattern generation techniques, and plasma etching continues to underpin pattern transfer. We report a systematic study of the plasma etch resistance of several e-beam resists, both negative and positive as well as classical and Chemically Amplified Resists: HSQ[1,2] (Dow Corning), PMMA[3] (Allresist GmbH), AR-P6200 (Allresist GmbH), ZEP520 (Zeon Corporation), CAN028 (TOK), CAP164 (TOK), and an additional pCAR (non-disclosed provider). Their behaviour under plasma exposure to various nano-scale plasma etch chemistries was examined (SF6/C4F8 ICP silicon etch, CHF3/Ar RIE SiO2 etch, Cl2/O2 RIE and ICP chrome etch, and HBr ICP silicon etch). Samples of each resist type were etched simultaneously to provide a direct comparison of their etch resistance. Resist thicknesses (and hence resist erosion rates) were measured by spectroscopic ellipsometer in order to provide the highest accuracy for the resist comparison. Etch selectivities (substrate:mask etch rate ratio) are given, with recommendations for the optimum resist choice for each type of etch chemistry. Silicon etch profiles are also presented, along with the exposure and etch conditions to obtain the most vertical nano-scale pattern transfer. We identify one resist that gave an unusually high selectivity for chlorinated and brominated etches which could enable pattern transfer below 10nm without an additional hard mask. In this case the resist itself acts as a hard mask. We also highlight the differing effects of fluorine and bromine-based Silicon etch chemistries on resist profile evolution and hence etch fidelity.

  11. High-NA optical CD metrology on small in-cell targets enabling improved higher order dose control and process control for logic

    NASA Astrophysics Data System (ADS)

    Cramer, Hugo; Mc Namara, Elliott; van Laarhoven, Rik; Jaganatharaja, Ram; de la Fuente, Isabel; Hsu, Sharon; Belletti, Filippo; Popadic, Milos; Tu, Ward; Huang, Wade

    2017-03-01

    The logic manufacturing process requires small in-device metrology targets to exploit the full dose correction potential of the modern scanners and process tools. A high-NA angular resolved scatterometer (YieldStar S-1250D) was modified to demonstrate the possibility of OCD measurements on 5x5µm2 targets. The results obtained on test wafers in a logic manufacturing environment, measured after litho and after core etch, showed a good correlation to larger reference targets and AEI to ADI intra-field CDU correlation, thereby demonstrating the feasibility of OCD on such small targets. The data was used to determine a reduction potential of 55% for the intra-field CD variation, using 145 points per field on a few inner fields, and 33% of the process induced across wafer CD variation using 16 points per field full wafer. In addition, the OCD measurements reveal valuable information on wafer-to-wafer layer height variations within a lot.

  12. Effects of Bias Pulsing on Etching of SiO2 Pattern in Capacitively-Coupled Plasmas for Nano-Scale Patterning of Multi-Level Hard Masks.

    PubMed

    Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung

    2016-05-01

    In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern.

  13. Sequential infiltration synthesis for enhancing multiple-patterning lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih

    Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.

  14. Common drive unit

    NASA Technical Reports Server (NTRS)

    Ellis, R. C.; Fink, R. A.; Moore, E. A.

    1987-01-01

    The Common Drive Unit (CDU) is a high reliability rotary actuator with many versatile applications in mechanism designs. The CDU incorporates a set of redundant motor-brake assemblies driving a single output shaft through differential. Tachometers provide speed information in the AC version. Operation of both motors, as compared to the operation of one motor, will yield the same output torque with twice the output speed.

  15. Application of cyclic fluorocarbon/argon discharges to device patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik, E-mail: dmetzler@umd.edu; Uppireddi, Kishore; Bruce, Robert L.

    2016-01-15

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less

  16. Application of cyclic fluorocarbon/argon discharges to device patterning

    DOE PAGES

    Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...

    2015-11-13

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less

  17. Dry etch challenges for CD shrinkage in memory process

    NASA Astrophysics Data System (ADS)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  18. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  19. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  20. Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching.

    PubMed

    Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong

    2013-08-23

    Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.

  1. JPRS Report, West Europe.

    DTIC Science & Technology

    1988-02-23

    Loss of Ground 11 Excessive Trust, Excessive Disillusionment [Jose Miguel Judice; SEMANARIO, 19 Dec 87] .. 11 Lack of Opposition Seen as...the CDU associations Westphalia and Rhineland is to make any sense, then one must combine forces. And naturally this weight influences the formation...SPD to its desired objective. CDU/CSU losses in past months have been offset by FDP gains , and the opposition has not become stronger overall—there

  2. Seminal, clinical and colour-Doppler ultrasound correlations of prostatitis-like symptoms in males of infertile couples.

    PubMed

    Lotti, F; Corona, G; Mondaini, N; Maseroli, E; Rossi, M; Filimberti, E; Noci, I; Forti, G; Maggi, M

    2014-01-01

    'Prostatitis-like symptoms' (PLS) are a cluster of bothersome conditions defined as 'perineal and/or ejaculatory pain or discomfort and National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) pain subdomain score ≥4' (Nickel's criteria). PLS may originate from the prostate or from other portions of the male genital tract. Although PLS could be associated with 'prostatitis', they should not be confused. The NIH-CPSI is considered the gold-standard for assessing PLS severity. Although previous studies investigated the impact of prostatitis, vesiculitis or epididymitis on semen parameters, correlations between their related symptoms and seminal or scrotal/transrectal colour-Doppler ultrasound (CDU) characteristics have not been carefully determined. And no previous study evaluated the CDU features of PLS in infertile men. This study was aimed at investigating possible associations among NIH-CPSI (total and subdomain) scores and PLS, with seminal, clinical and scrotal/transrectal CDU parameters in a cohort of males of infertile couples. PLS of 400 men (35.8 ± 7.2 years) with a suspected male factor were assessed by the NIH-CPSI. All patients underwent, during the same day, semen analysis, seminal plasma interleukin 8 (sIL-8, a marker of male genital tract inflammation), biochemical evaluation, urine/seminal cultures, scrotal/transrectal CDU. PLS was detected in 39 (9.8%) subjects. After adjusting for age, waist and total testosterone (TT), no association among NIH-CPSI (total or subdomain) scores or PLS and sperm parameters was observed. However, we found a positive association with current positive urine and/or seminal cultures, sIL-8 levels and CDU features suggestive of inflammation of the epididymis, seminal vesicles, prostate, but not of the testis. The aforementioned significant associations of PLS were further confirmed by comparing PLS patients with age-, waist- and TT-matched PLS-free patients (1 : 3 ratio). In conclusion, NIH-CPSI scores and PLS evaluated in males of infertile couples, are not related to sperm parameters, but mainly to clinical and CDU signs of infection/inflammation. © 2013 American Society of Andrology and European Academy of Andrology.

  3. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  4. Improving contact layer patterning using SEM contour based etch model

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka; Hertzsch, Tino; Moll, Hans-Peter

    2016-10-01

    The patterning of the contact layer is modulated by strong etch effects that are highly dependent on the geometry of the contacts. Such litho-etch biases need to be corrected to ensure a good pattern fidelity. But aggressive designs contain complex shapes that can hardly be compensated with etch bias table and are difficult to characterize with standard CD metrology. In this work we propose to implement a model based etch compensation method able to deal with any contact configuration. With the help of SEM contours, it was possible to get reliable 2D measurements particularly helpful to calibrate the etch model. The selections of calibration structures was optimized in combination with model form to achieve an overall errRMS of 3nm allowing the implementation of the model in production.

  5. RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks

    NASA Astrophysics Data System (ADS)

    Hogg, Chip; Majetich, Sara A.; Bain, James A.

    2009-03-01

    Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.

  6. Translations on Eastern Europe Political, Sociological, and Military Affairs No. 1575

    DTIC Science & Technology

    1978-08-08

    Developments in European Communist Movement Assessed (Alfred Marter; HORIZONT, No 27, 1978) 49 Position of Churches, CDU on Military Training Stated...Editorial; FRANKFURTER RUNDSCHAU, 29 Jun 78) 58 Protestant League Guidelines CDU Position Paper West German Comment: GDR Church Hits School...conspicuously aggravated external economic conditions, the balance of the party’s economic policy is positive . Thus, the recent years are honorably linked with

  7. A Comparison of Two Control Display Unit Concepts on Flight Management System Training

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1997-01-01

    One of the biggest challenges for a pilot in the transition to a 'glass' cockpit is understanding the flight management system (FMS). Because of both the complex nature of the FMS and the pilot-FMS interface, a large portion of transition training is devoted to the FMS. The current study examined the impact of the primary pilot-FMS interface, the control display unit (CDU), on FMS training. Based on the hypothesis that the interface design could have a significant impact on training, an FMS simulation with two separate interfaces was developed. One interface was similar to a current-generation design, and the other was a multiwindows CDU based on graphical user interface techniques. For both application and evaluation reasons, constraints were applied to the graphical CDU design to maintain as much similarity as possible with the conventional CDU. This preliminary experiment was conducted to evaluate the interface effects on training. Sixteen pilots with no FMS experience were used in a between-subjects test. A time-compressed, airline-type FMS training environment was simulated. The subjects were trained to a fixed-time criterion, and performance was measured in a final, full-mission simulation context. This paper describes the technical approach, simulation implementation, and experimental results of this effort.

  8. Reduction of across-wafer CDU via constrained optimization of a multichannel PEB plate controller based on in-situ measurements of thermal time constants

    NASA Astrophysics Data System (ADS)

    Tiffany, Jason E.; Cohen, Barney M.

    2004-05-01

    As line widths approach 90nm node in volume production, post exposure bake (PEB) uniformity becomes a much larger component of the across wafer critical dimension uniformity (CDU). In production, the need for PEB plate matching has led to novel solutions such as plate specific dose offsets. This type of correction does not help across wafer CDU. Due to unequal activation energies of the critical PEB processes, any thermal history difference can result in a corresponding CD variation. The rise time of the resist to the target temperature has been shown to affect CD, with the most critical time being the first 5-7 seconds. A typical PEB plate has multi-zone thermal control with one thermal sensor per zone. The current practice is to setup each plate to match the steady-state target temperature, ignoring any dynamic performance. Using an in-situ wireless RTD wafer, it is possible to characterize the dynamic performance, or time constant, of each RTD location on the sensing wafer. Constrained by the zone structure of the PEB plate, the proportional, integral and derivative (PID) settings of each controller channel could be optimized to reduce the variations in rise time across the RTD wafer, thereby reducing the PEB component of across wafer CDU.

  9. Deep inductively coupled plasma etching of ELO-GaN grown with high fill factor

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Lee, Jaesoong; Ni, Xianfeng; Leach, Jacob; Özgür, Ümit; Morkoç, Hadis

    2011-02-01

    The epitaxial lateral overgrowth (ELO) gallium nitride (GaN) was grown with high fill factor using metal organic chemical vapor deposition (MOCVD). The inductively coupled plasma (ICP) etching of ELO-GaN based on Cl2/Ar/SiCl4 gas mixture was performed. Surface properties of ELO-GaN subjected to ICP etching have been investigated and optimized etching condition in ELO-GaN with ICP etching is presented. Radiofrequency (RF) power and the flow rate of Cl2 gas were modified during the experiments. The window region, wing region and the edge region of ELO-GaN pattern present different etching characteristics. Different etching conditions were studied to get the minimized plasma-induced damage, relatively high etching rates, and excellent surface profiles. Etch depths of the etched ELO-GaN with smooth surface up to about 19 μm were achieved. The most suitable three-step etching condition is discussed with the assessment based on the morphology observation of the etched surface of ELO-GaN patterns.

  10. Selective dry etching of silicon containing anti-reflective coating

    NASA Astrophysics Data System (ADS)

    Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok

    2018-03-01

    Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.

  11. New type of dummy layout pattern to control ILD etch rate

    NASA Astrophysics Data System (ADS)

    Pohland, Oliver; Spieker, Julie; Huang, Chih-Ta; Govindaswamy, Srikanth; Balasinski, Artur

    2007-12-01

    Adding dummy features (waffles) to drawn geometries of the circuit layout is a common practice to improve its manufacturability. As an example, local dummy pattern improves MOSFET line and space CD control by adjusting short range optical proximity and reducing the aggressiveness of its correction features (OPC) to widen the lithography process window. Another application of dummy pattern (waffles) is to globally equalize layout pattern density, to reduce long-range inter-layer dielectric (ILD) thickness variations after the CMP process and improve contact resistance uniformity over the die area. In this work, we discuss a novel type of dummy pattern with a mid-range interaction distance, to control the ILD composition driven by its deposition and etch process. This composition is reflected on sidewall spacers and depends on the topography of the underlying poly pattern. During contact etch, it impacts the etch rate of the ILD. As a result, the deposited W filling the damascene etched self-aligned trench contacts in the ILD may electrically short to the underlying gates in the areas of isolated poly. To mitigate the dependence of the ILD composition on poly pattern distribution, we proposed a special dummy feature generation with the interaction range defined by the ILD deposition and etch process. This helped equalize mid-range poly pattern density without disabling the routing capability with damascene trench contacts in the periphery which would have increased the layout footprint.

  12. Development and Research on the Mechanism of Novel Mist Etching Method for Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Kawaharamura, Toshiyuki; Hirao, Takashi

    2012-03-01

    A novel etching process with etchant mist was developed and applied to oxide thin films such as zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and indium tin oxide (ITO). By using this process, it was shown that precise control of the etching characteristics is possible with a reasonable etching rate, for example, in the range of 10-100 nm/min, and a fine pattern of high accuracy can also be realized, even though this is usually very difficult by conventional wet etching processes, for ZnO and ZnMgO. The mist etching process was found to be similarly and successfully applied to ITO. The mechanism of mist etching has been studied by examining the etching temperature dependence of pattern accuracy, and it was shown that the mechanism was different from that of conventional liquid-phase spray etching. It was ascertained that fine pattern etching was attained using mist droplets completely (or partly) gasified by the heat applied to the substrate. This technique was applied to the fabrication of a ZnO thin-film transistor (TFT) with a ZnO active channel length of 4 µm. The electrical properties of the TFT were found to be excellent with fine uniformity over the entire 4-in. wafer.

  13. DSA patterning options for logics and memory applications

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Chun; Franke, Elliott; Mignot, Yann; LeFevre, Scott; Sieg, Stuart; Chi, Cheng; Meli, Luciana; Parnell, Doni; Schmidt, Kristin; Sanchez, Martha; Singh, Lovejeet; Furukawa, Tsuyoshi; Seshadri, Indira; De Silva, Ekmini Anuja; Tsai, Hsinyu; Lai, Kafai; Truong, Hoa; Farrell, Richard; Bruce, Robert; Somervell, Mark; Sanders, Daniel; Felix, Nelson; Arnold, John; Hetzer, David; Ko, Akiteru; Metz, Andrew; Colburn, Matthew; Corliss, Daniel

    2017-03-01

    The progress of three potential DSA applications, i.e. fin formation, via shrink, and pillars, were reviewed in this paper. For fin application, in addition to pattern quality, other important considerations such as customization and design flexibility were discussed. An electrical viachain study verified the DSA rectification effect on CD distribution by showing a tighter current distribution compared to that derived from the guiding pattern direct transfer without using DSA. Finally, a structural demonstration of pillar formation highlights the importance of pattern transfer in retaining both the CD and local CDU improvement from DSA. The learning from these three case studies can provide perspectives that may not have been considered thoroughly in the past. By including more important elements during DSA process development, the DSA maturity can be further advanced and move DSA closer to HVM adoption.

  14. Comparative Evaluation of the Etching Pattern of Er,Cr:YSGG & Acid Etching on Extracted Human Teeth-An ESEM Analysis

    PubMed Central

    Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi

    2016-01-01

    Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05

    0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a highly significant result (p<.001). GrD2 had a mean dentinal tubule diameter of 2.78μm and GrD3 of 1.09μm. Conclusion The present study revealed type I etching pattern after acid etching, while type III etching pattern in enamel after laser etching. The lased dentin showed preferential removal of intertubular dentin while acid etching had more effect on the peritubular dentin. No significant differences was observed in removal of smear layer between the acid etched and lased groups. Although diameter of the exposed dentinal tubules was lesser after lased treatment in comparison to acid etching, further long term in vivo studies are needed with different parameters to establish the usage of Er,Cr:YSGG as a sole etching agent. PMID:27437337

  15. Effect of EDTA and phosphoric Acid pretreatment on the bonding effectiveness of self-etch adhesives to ground enamel.

    PubMed

    Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M

    2010-10-01

    This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.

  16. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  17. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  18. Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-08-01

    surface coating developed during the NiTi deposition or anneal that is relatively resistant to the wet etch. Fig. 2 SEMs after the NiTi wet -etch...SEMs of NiTi devices after the 600 °C anneal , wet -etch patterning of the NiTi. A 120-nm Au capping layer was also sputtered. Figure 3a shows a 200-nm...Ni50Ti50 Cantilever 2 3. Results and Discussion 3 3.1 Wet -Etch Patterning NiTi 3 3.2 Dry-Etch Release of NiTi Devices 5 3.3 Thermal Actuation of

  19. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  20. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  1. Understanding and controlling the step bunching instability in aqueous silicon etching

    NASA Astrophysics Data System (ADS)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110) substrate. Combining data from these etched patterns and surface IR spectra, a modified mechanism, which explained most experimental observations, was proposed. Control of the step-bunching instability was accomplished with a second micromachined etch barrier pattern which consisted of a circular array of seventy-two long, narrow trenches in an etch mask. Using this pattern, well aligned, regularly shaped, evenly-distributed, near-atomically flat terraces in micron size were produced controllably.

  2. Does active application of universal adhesives to enamel in self-etch mode improve their performance?

    PubMed

    Loguercio, Alessandro D; Muñoz, Miguel Angel; Luque-Martinez, Issis; Hass, Viviane; Reis, Alessandra; Perdigão, Jorge

    2015-09-01

    To evaluate the effect of adhesion strategy on the enamel microshear bond strengths (μSBS), etching pattern, and in situ degree of conversion (DC) of seven universal adhesives. 84 extracted third molars were sectioned in four parts (buccal, lingual, proximal) and divided into 21 groups, according to the combination of the main factors adhesive (AdheSE Universal [ADU], All-Bond Universal [ABU], Clearfil Universal [CFU], Futurabond U [FBU], G-Bond Plus [GBP], Prime&Bond Elect (PBE), and Scotchbond Universal Adhesive [SBU]), and adhesion strategy (etch-and-rinse, active self-etch, and passive self-etch). Specimens were stored in water (37°C/24h) and tested at 1.0mm/min (μSBS). Enamel-resin interfaces were evaluated for DC using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a field-emission scanning electron microscope (direct and replica techniques). Data were analyzed with two-way ANOVA and Tukey's test (α=0.05). Active self-etch application increased μSBS and DC for five out of the seven universal adhesives when compared to passive application (p<0.001). A deeper enamel-etching pattern was observed for all universal adhesives in the etch-and-rinse strategy. A slight improvement in etching ability was observed in active self-etch application compared to that of passive self-etch application. Replicas of GBP and PBE applied in active self-etch mode displayed morphological features compatible with water droplets. The DC of GBP and PBE were not affected by the application/strategy mode. In light of the improved performance of universal adhesives when applied actively in SE mode, selective enamel etching with phosphoric acid may not be crucial for their adhesion to enamel. The active application of universal adhesives in self-etch mode may be a practical alternative to enamel etching in specific clinical situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.

    2018-04-01

    In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.

  4. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  5. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  6. Alternative stitching method for massively parallel e-beam lithography

    NASA Astrophysics Data System (ADS)

    Brandt, Pieter; Tranquillin, Céline; Wieland, Marco; Bayle, Sébastien; Milléquant, Matthieu; Renault, Guillaume

    2015-03-01

    In this study a novel stitching method other than Soft Edge (SE) and Smart Boundary (SB) is introduced and benchmarked against SE. The method is based on locally enhanced Exposure Latitude without cost of throughput, making use of the fact that the two beams that pass through the stitching region can deposit up to 2x the nominal dose. The method requires a complex Proximity Effect Correction that takes a preset stitching dose profile into account. On a Metal clip at minimum half-pitch of 32 nm for MAPPER FLX 1200 tool specifications, the novel stitching method effectively mitigates Beam to Beam (B2B) position errors such that they do not induce increase in CD Uniformity (CDU). In other words, the same CDU can be realized inside the stitching region as outside the stitching region. For the SE method, the CDU inside is 0.3 nm higher than outside the stitching region. 5 nm direct overlay impact from B2B position errors cannot be reduced by a stitching strategy.

  7. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.

  8. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    PubMed

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  9. Developing a performance data suite to facilitate lean improvement in a chemotherapy day unit.

    PubMed

    Lingaratnam, Senthil; Murray, Danielle; Carle, Amber; Kirsa, Sue W; Paterson, Rebecca; Rischin, Danny

    2013-07-01

    A multidisciplinary team from the Peter MacCallum Cancer Centre in Melbourne, Australia, developed a performance data suite to support a service improvement project based on lean manufacturing principles in its 19-chair chemotherapy day unit (CDU) and cytosuite chemotherapy production facility. The aims of the project were to reduce patient wait time and improve equity of access to the CDU. A project team consisting of a pharmacist and CDU nurse supported the management team for 10 months in engaging staff and customers to identify waste in processes, analyze root causes, eliminate non-value-adding steps, reduce variation, and level workloads to improve quality and flow. Process mapping, staff and patient tracking and opinion surveys, medical record audits, and interrogation of electronic treatment records were undertaken. This project delivered a 38% reduction in median wait time on the day (from 32 to 20 minutes; P < .01), 7-day reduction in time to commencement of treatment for patients receiving combined chemoradiotherapy regimens (from 25 to 18 days; P < .01), and 22% reduction in wastage associated with expired drug and pharmacy rework (from 29% to 7%; P < .01). Improvements in efficiency enabled the cytosuite to increase the percentage of product manufactured within 10 minutes of appointment times by 29% (from 47% to 76%; P < .01). A lean improvement methodology provided a robust framework for improved understanding and management of complex system constraints within a CDU, resulting in improved access to treatment and reduced waiting times on the day.

  10. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers.

    PubMed

    Hambach, R; Lison, D; D'Haese, P C; Weyler, J; De Graef, E; De Schryver, A; Lamberts, L V; van Sprundel, M

    2013-10-24

    Research on the effect of co-exposure to Cd and Pb on the kidney is scarce. The objective of the present study was to assess the effect of co-exposure to these metals on biomarkers of early renal effect. Cd in blood (Cd-B), Cd in urine (Cd-U), Pb in blood (Pb-B) and urinary renal biomarkers, i.e., microalbumin (μ-Alb), beta-2-microglobulin (β₂-MG), retinol binding protein (RBP), N-acetyl-β-d-glucosaminidase (NAG), intestinal alkaline phosphatase (IAP) were measured in 122 metallurgic refinery workers examined in a cross-sectional survey. The median Cd-B, Cd-U, Pb-B were: 0.8 μg/l (IQR = 0.5, 1.2), 0.5 μg/g creatinine (IQR = 0.3, 0.8) and 158.5 μg/l (IQR = 111.0, 219.3), respectively. The impact of Cd-B on the urinary excretion of NAG and IAP was only evident among workers with Pb-B concentrations ≥ 75th percentile. The association between Cd-U and the renal markers NAG and RBP was also evidenced when Pb-B ≥ 75th percentile. No statistically significant interaction terms were observed for the associations between Cd-B or Cd-U and the other renal markers under study (i.e., μ-Alb and β2-MG). Our findings indicate that Pb increases the impact of Cd exposure on early renal biomarkers. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Critical dimension control using ultrashort laser for improving wafer critical dimension uniformity

    NASA Astrophysics Data System (ADS)

    Avizemer, Dan; Sharoni, Ofir; Oshemkov, Sergey; Cohen, Avi; Dayan, Asaf; Khurana, Ranjan; Kewley, Dave

    2015-07-01

    Requirements for control of critical dimension (CD) become more demanding as the integrated circuit (IC) feature size specifications become tighter and tighter. Critical dimension control, also known as CDC, is a well-known laser-based process in the IC industry that has proven to be robust, repeatable, and efficient in adjusting wafer CD uniformity (CDU) [Proc. SPIE 6152, 615225 (2006)]. The process involves locally and selectively attenuating the deep ultraviolet light which goes through the photomask to the wafer. The input data for the CDC process in the wafer fab is typically taken from wafer CDU data, which is measured by metrology tools such as wafer-critical dimension-scanning electron microscopy (CD-SEM), wafer optical scatterometry, or wafer level CD (WLCD). The CD correction process uses the CDU data in order to create an attenuation correction contour, which is later applied by the in-situ ultrashort laser system of the CDC to locally change the transmission of the photomask. The ultrashort pulsed laser system creates small, partially scattered, Shade-In-Elements (also known as pixels) by focusing the laser beam inside the quartz bulk of the photomask. This results in the formation of a localized, intravolume, quartz modified area, which has a different refractive index than the quartz bulk itself. The CDC process flow for improving wafer CDU in a wafer fab with detailed explanations of the shading elements formation inside the quartz by the ultrashort pulsed laser is reviewed.

  12. Pattern transfer with stabilized nanoparticle etch masks

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R.; Picard, Yoosuf N.; Narasimhan, Amrit; Bain, James A.; Majetich, Sara A.

    2013-03-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiOx substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results.

  13. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    PubMed Central

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  14. Method of fabricating a scalable nanoporous membrane filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less

  15. Deterministic Nanopatterning of Diamond Using Electron Beams.

    PubMed

    Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos

    2018-03-27

    Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

  16. A novel methodology for litho-to-etch pattern fidelity correction for SADP process

    NASA Astrophysics Data System (ADS)

    Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng

    2017-03-01

    For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.

  17. Investigation of the layout and optical proximity correction effects to control the trench etching process on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Kyoung, Sinsu; Jung, Eun-Sik; Sung, Man Young

    2017-07-01

    Although trench gate and super-junction technology have micro-trench problems when applied to the SiC process due to the material characteristics. In this paper, area effects are analyzed from the test element group with various patterns and optical proximity correction (OPC) methods are proposed and analyzed to reduce micro-trenches in the SiC trench etching process. First, the loading effects were analyzed from pattern samples with various trench widths (Wt). From experiments, the area must limited under a proper size for a uniform etching profile and reduced micro-trenches because a wider area accelerates the etch rate. Second, the area effects were more severely unbalanced at corner patterns because the corner pattern necessarily has an in-corner and out-corner that have different etching areas to each other. We can balance areas using OPC patterns to overcome this. Experiments with OPC represented improved micro-trench profile from when comparing differences of trench depth (Δdt) at out corner and in corner. As a result, the area effects can be used to improve the trench profile with optimized etching process conditions. Therefore, the trench gate and super-junction pillar of the SiC power MOSFET can have an improved uniform profile without micro-trenches using proper design and OPC.[Figure not available: see fulltext.

  18. Influence of Conditioning Time of Universal Adhesives on Adhesive Properties and Enamel-Etching Pattern.

    PubMed

    Cardenas, A M; Siqueira, F; Rocha, J; Szesz, A L; Anwar, M; El-Askary, F; Reis, A; Loguercio, A

    2016-01-01

    To evaluate the effect of application protocol in resin-enamel microshear bond strength (μSBS), in situ degree of conversion, and etching pattern of three universal adhesive systems. Sixty-three extracted third molars were sectioned in four parts (buccal, lingual, and proximals) and divided into nine groups, according to the combination of the main factors-Adhesive (Clearfil Universal, Kuraray Noritake Dental Inc, Tokyo, Japan; Futurabond U, VOCO, Cuxhaven, Germany; and Scotchbond Universal Adhesive, 3M ESPE, St Paul, MN, USA)-and enamel treatment/application time (etch-and-rinse mode [ER], self-etch [SE] application for 20 seconds [SE20], and SE application for 40 seconds [SE40]). Specimens were stored in water (37°C/24 h) and tested at 1.0 mm/min (μSBS). The degree of conversion of the adhesives at the resin-enamel interfaces was evaluated using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data were analyzed with two-way analysis of variance and Tukey test (α=0.05). In general, the application of the universal adhesives in the SE40 produced μSBS and degree of conversion that were higher than in the SE20 (p<0.01) and similar to the ER mode. The deepest enamel-etching pattern was obtained in the ER mode, followed by the SE40. The active and prolonged application of universal adhesives in the SE mode may be a viable alternative to increase the degree of conversion, etching pattern, and resin-enamel bond strength.

  19. Physics and chemistry of complex oxide etching and redeposition control

    NASA Astrophysics Data System (ADS)

    Margot, Joëlle

    2012-10-01

    Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.

  20. Silicon vertical microstructure fabrication by catalytic etching

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Jung; Yang, Chii-Rong; Chang, Chun-Ming; Chu, Nien-Nan; Shiao, Ming-Hua

    2012-08-01

    This study presents an effective, simple and inexpensive process for forming micro-scale vertical structures on a (1 0 0) silicon wafer. Several modified etchants and micro-patterns including rectangular, snake-like, circular and comb patterns were employed to determine the optimum etching process. We found that an etchant solution consisting of 4.6 M hydrofluoric acid, 0.44 M hydrogen peroxide and isopropyl alcohol produces microstructures at an etching rate of 0.47 µm min-1 and surface roughness of 17.4 nm. All the patterns were transferred faithfully to the silicon substrate.

  1. Ultimate intra-wafer critical dimension uniformity control by using lithography and etch tool corrections

    NASA Astrophysics Data System (ADS)

    Kubis, Michael; Wise, Rich; Reijnen, Liesbeth; Viatkina, Katja; Jaenen, Patrick; Luca, Melisa; Mernier, Guillaume; Chahine, Charlotte; Hellin, David; Kam, Benjamin; Sobieski, Daniel; Vertommen, Johan; Mulkens, Jan; Dusa, Mircea; Dixit, Girish; Shamma, Nader; Leray, Philippe

    2016-03-01

    With shrinking design rules, the overall patterning requirements are getting aggressively tighter. For the 7-nm node and below, allowable CD uniformity variations are entering the Angstrom region (ref [1]). Optimizing inter- and intra-field CD uniformity of the final pattern requires a holistic tuning of all process steps. In previous work, CD control with either litho cluster or etch tool corrections has been discussed. Today, we present a holistic CD control approach, combining the correction capability of the etch tool with the correction capability of the exposure tool. The study is done on 10-nm logic node wafers, processed with a test vehicle stack patterning sequence. We include wafer-to-wafer and lot-to-lot variation and apply optical scatterometry to characterize the fingerprints. Making use of all available correction capabilities (lithography and etch), we investigated single application of exposure tool corrections and of etch tool corrections as well as combinations of both to reach the lowest CD uniformity. Results of the final pattern uniformity based on single and combined corrections are shown. We conclude on the application of this holistic lithography and etch optimization to 7nm High-Volume manufacturing, paving the way to ultimate within-wafer CD uniformity control.

  2. Analyzing implementation dynamics using theory-driven evaluation principles: lessons learnt from a South African centralized chronic dispensing model.

    PubMed

    Magadzire, Bvudzai Priscilla; Marchal, Bruno; Mathys, Tania; Laing, Richard O; Ward, Kim

    2017-12-04

    Centralized dispensing of essential medicines is one of South Africa's strategies to address the shortage of pharmacists, reduce patients' waiting times and reduce over-crowding at public sector healthcare facilities. This article reports findings of an evaluation of the Chronic Dispensing Unit (CDU) in one province. The objectives of this process evaluation were to: (1) compare what was planned versus the actual implementation and (2) establish the causal elements and contextual factors influencing implementation. This qualitative study employed key informant interviews with the intervention's implementers (clinicians, managers and the service provider) [N = 40], and a review of policy and program documents. Data were thematically analyzed by identifying the main influences shaping the implementation process. Theory-driven evaluation principles were applied as a theoretical framework to explain implementation dynamics. The overall participants' response about the CDU was positive and the majority of informants concurred that the establishment of the CDU to dispense large volumes of medicines is a beneficial strategy to address healthcare barriers because mechanical functions are automated and distribution of medicines much quicker. However, implementation was influenced by the context and discrepancies between planned activities and actual implementation were noted. Procurement inefficiencies at central level caused medicine stock-outs and affected CDU activities. At the frontline, actors were aware of the CDU's implementation guidelines regarding patient selection, prescription validity and management of non-collected medicines but these were adapted to accommodate practical realities and to meet performance targets attached to the intervention. Implementation success was a result of a combination of 'hardware' (e.g. training, policies, implementation support and appropriate infrastructure) and 'software' (e.g. ownership, cooperation between healthcare practitioners and trust) factors. This study shows that health system interventions have unpredictable paths of implementation. Discrepancies between planned and actual implementation reinforce findings in existing literature suggesting that while tools and defined operating procedures are necessary for any intervention, their successful application depends crucially on the context and environment in which implementation occurs. We anticipate that this evaluation will stimulate wider thinking about the implementation of similar models in low- and middle-income countries.

  3. Assessment of local variability by high-throughput e-beam metrology for prediction of patterning defect probabilities

    NASA Astrophysics Data System (ADS)

    Wang, Fuming; Hunsche, Stefan; Anunciado, Roy; Corradi, Antonio; Tien, Hung Yu; Tang, Peng; Wei, Junwei; Wang, Yongjun; Fang, Wei; Wong, Patrick; van Oosten, Anton; van Ingen Schenau, Koen; Slachter, Bram

    2018-03-01

    We present an experimental study of pattern variability and defectivity, based on a large data set with more than 112 million SEM measurements from an HMI high-throughput e-beam tool. The test case is a 10nm node SRAM via array patterned with a DUV immersion LELE process, where we see a variation in mean size and litho sensitivities between different unique via patterns that leads to a seemingly qualitative differences in defectivity. The large available data volume enables further analysis to reliably distinguish global and local CDU variations, including a breakdown into local systematics and stochastics. A closer inspection of the tail end of the distributions and estimation of defect probabilities concludes that there is a common defect mechanism and defect threshold despite the observed differences of specific pattern characteristics. We expect that the analysis methodology can be applied for defect probability modeling as well as general process qualification in the future.

  4. Developing a Performance Data Suite to Facilitate Lean Improvement in a Chemotherapy Day Unit

    PubMed Central

    Lingaratnam, Senthil; Murray, Danielle; Carle, Amber; Kirsa, Sue W.; Paterson, Rebecca; Rischin, Danny

    2013-01-01

    Purpose: A multidisciplinary team from the Peter MacCallum Cancer Centre in Melbourne, Australia, developed a performance data suite to support a service improvement project based on lean manufacturing principles in its 19-chair chemotherapy day unit (CDU) and cytosuite chemotherapy production facility. The aims of the project were to reduce patient wait time and improve equity of access to the CDU. Methods: A project team consisting of a pharmacist and CDU nurse supported the management team for 10 months in engaging staff and customers to identify waste in processes, analyze root causes, eliminate non–value-adding steps, reduce variation, and level workloads to improve quality and flow. Process mapping, staff and patient tracking and opinion surveys, medical record audits, and interrogation of electronic treatment records were undertaken. Results: This project delivered a 38% reduction in median wait time on the day (from 32 to 20 minutes; P < .01), 7-day reduction in time to commencement of treatment for patients receiving combined chemoradiotherapy regimens (from 25 to 18 days; P < .01), and 22% reduction in wastage associated with expired drug and pharmacy rework (from 29% to 7%; P < .01). Improvements in efficiency enabled the cytosuite to increase the percentage of product manufactured within 10 minutes of appointment times by 29% (from 47% to 76%; P < .01). Conclusion: A lean improvement methodology provided a robust framework for improved understanding and management of complex system constraints within a CDU, resulting in improved access to treatment and reduced waiting times on the day. PMID:23942927

  5. Process margin enhancement for 0.25-μm metal etch process

    NASA Astrophysics Data System (ADS)

    Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey

    2000-06-01

    This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.

  6. Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch

    NASA Astrophysics Data System (ADS)

    Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun

    2004-05-01

    Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.

  7. Method to control artifacts of microstructural fabrication

    DOEpatents

    Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.

    2006-09-12

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.

  8. Effects of gas flow rate on the etch characteristics of a low- k sicoh film with an amorphous carbon mask in dual-frequency CF4/C4F8/Ar capacitively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu

    2013-01-01

    Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.

  9. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    PubMed Central

    Pires, Patrícia T.; Ferreira, João C.; Oliveira, Sofia A.; Azevedo, Álvaro F.; Dias, Walter R.; Melo, Paulo R.

    2013-01-01

    Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I – 37% phosphoric acid (PA)+ ExciTE®; Group II – ExciTE®; Group III – AdheSE® self-etching; Group IV – FuturaBond® no-rinse. NR; Group V – Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Results: Mean bond strengths were Group I – 47.17 ± 1.61 MPa (type I etching pattern); Group II – 32.56 ± 1.64 MPa, Group III – 29.10 ± 1.34 MPa, Group IV – 23.32 ± 1.53 MPa (type III etching pattern); Group V – 24.43 MPa ± 1.55 (type II etching pattern). Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used. PMID:23853447

  10. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser.

    PubMed

    Pires, Patrícia T; Ferreira, João C; Oliveira, Sofia A; Azevedo, Alvaro F; Dias, Walter R; Melo, Paulo R

    2013-01-01

    Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA)+ ExciTE(®); Group II - ExciTE(®); Group III - AdheSE(®) self-etching; Group IV - FuturaBond(®) no-rinse. NR; Group V - Xeno(®) V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Mean bond strengths were Group I - 47.17 ± 1.61 MPa (type I etching pattern); Group II - 32.56 ± 1.64 MPa, Group III - 29.10 ± 1.34 MPa, Group IV - 23.32 ± 1.53 MPa (type III etching pattern); Group V - 24.43 MPa ± 1.55 (type II etching pattern). Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE(®) and ExciTE(®) without condition with PA. FuturaBond(®) NR and Xeno(®) V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  11. Performance improvements of binary diffractive structures via optimization of the photolithography and dry etch processes

    NASA Astrophysics Data System (ADS)

    Welch, Kevin; Leonard, Jerry; Jones, Richard D.

    2010-08-01

    Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.

  12. The development of a method of producing etch resistant wax patterns on solar cells

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    A potentially attractive technique for wax masking of solar cells prior to etching processes was studied. This technique made use of a reuseable wax composition which was applied to the solar cell in patterned form by means of a letterpress printing method. After standard wet etching was performed, wax removal by means of hot water was investigated. Application of the letterpress wax printing process to silicon was met with a number of difficulties. The most serious shortcoming of the process was its inability to produce consistently well-defined printed patterns on the hard silicon cell surface.

  13. Developing quartz wafer mold manufacturing process for patterned media

    NASA Astrophysics Data System (ADS)

    Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa

    2009-04-01

    Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.

  14. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.

    PubMed

    Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji

    2017-08-18

    Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.

  15. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  16. Environmentally benign semiconductor processing for dielectric etch

    NASA Astrophysics Data System (ADS)

    Liao, Marci Yi-Ting

    Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi-k dielectric material, ZrO2, was studied. A novel cross-contamination sampling technique was developed, along with a mass transfer model.

  17. Advanced in-line metrology strategy for self-aligned quadruple patterning

    NASA Astrophysics Data System (ADS)

    Chao, Robin; Breton, Mary; L'herron, Benoit; Mendoza, Brock; Muthinti, Raja; Nelson, Florence; De La Pena, Abraham; Le, Fee li; Miller, Eric; Sieg, Stuart; Demarest, James; Gin, Peter; Wormington, Matthew; Cepler, Aron; Bozdog, Cornel; Sendelbach, Matthew; Wolfling, Shay; Cardinal, Tom; Kanakasabapathy, Sivananda; Gaudiello, John; Felix, Nelson

    2016-03-01

    Self-Aligned Quadruple Patterning (SAQP) is a promising technique extending the 193-nm lithography to manufacture structures that are 20nm half pitch or smaller. This process adopts multiple sidewall spacer image transfers to split a rather relaxed design into a quarter of its original pitch. Due to the number of multiple process steps required for the pitch splitting in SAQP, the process error propagates through each deposition and etch, and accumulates at the final step into structure variations, such as pitch walk and poor critical dimension uniformity (CDU). They can further affect the downstream processes and lower the yield. The impact of this error propagation becomes significant for advanced technology nodes when the process specifications of device design CD requirements are at nanometer scale. Therefore, semiconductor manufacturing demands strict in-line process control to ensure a high process yield and improved performance, which must rely on precise measurements to enable corrective actions and quick decision making for process development. This work aims to provide a comprehensive metrology solution for SAQP. During SAQP process development, the challenges in conventional in-line metrology techniques start to surface. For instance, critical-dimension scanning electron microscopy (CDSEM) is commonly the first choice for CD and pitch variation control. However, it is found that the high aspect ratio at mandrel level processes and the trench variations after etch prevent the tool from extracting the true bottom edges of the structure in order to report the position shift. On the other hand, while the complex shape and variations can be captured with scatterometry, or optical CD (OCD), the asymmetric features, such as pitch walk, show low sensitivity with strong correlations in scatterometry. X-ray diffraction (XRD) is known to provide useful direct measurements of the pitch walk in crystalline arrays, yet the data analysis is influenced by the incoming geometry and must be used carefully. A successful implementation of SAQP process control for yield improvement requires the metrology issues to be addressed. By optimizing the measurement parameters and beam configurations, CDSEM measurements distinguish each of the spaces corresponding to the upstream mandrel processes and report their CDs separately to feed back to the process team for the next development cycle. We also utilize the unique capability in scatterometry to measure the structure details in-line and implement a "predictive" process control, which shows a good correlation between the "predictive" measurement and the cross-sections from our design of experiments (DOE). The ability to measure the pitch walk in scatterometry was also demonstrated. This work also explored the frontier of in-line XRD capability by enabling an automatic RSM fitting on tool to output pitch walk values. With these advances in metrology development, we are able to demonstrate the impacts of in-line monitoring in the SAQP process, to shorten the patterning development learning cycle to improve the yield.

  18. An optimized one-step wet etching process of Pb(Zr0.52Ti0.48)O3 thin films for microelectromechanical system applications

    NASA Astrophysics Data System (ADS)

    Che, L.; Halvorsen, E.; Chen, X.

    2011-10-01

    The existence of insoluble residues as intermediate products produced during the wet etching process is the main quality-reducing and structure-patterning issue for lead zirconate titanate (PZT) thin films. A one-step wet etching process using the solutions of buffered HF (BHF) and HNO3 acid was developed for patterning PZT thin films for microelectomechanical system (MEMS) applications. PZT thin films with 1 µm thickness were prepared on the Pt/Ti/SiO2/Si substrate by the sol-gel process for compatibility with Si micromachining. Various compositions of the etchant were investigated and the patterns were examined to optimize the etching process. The optimal result is demonstrated by a high etch rate (3.3 µm min-1) and low undercutting (1.1: 1). The patterned PZT thin film exhibits a remnant polarization of 24 µC cm-2, a coercive field of 53 kV cm-1, a leakage current density of 4.7 × 10-8 A cm-2 at 320 kV cm-1 and a dielectric constant of 1100 at 1 KHz.

  19. Self-aligned blocking integration demonstration for critical sub-40nm pitch Mx level patterning

    NASA Astrophysics Data System (ADS)

    Raley, Angélique; Mohanty, Nihar; Sun, Xinghua; Farrell, Richard A.; Smith, Jeffrey T.; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton

    2017-04-01

    Multipatterning has enabled continued scaling of chip technology at the 28nm node and beyond. Selfaligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) as well as Litho- Etch/Litho-Etch (LELE) iterations are widely used in the semiconductor industry to enable patterning at sub 193 immersion lithography resolutions for layers such as FIN, Gate and critical Metal lines. Multipatterning requires the use of multiple masks which is costly and increases process complexity as well as edge placement error variation driven mostly by overlay. To mitigate the strict overlay requirements for advanced technology nodes (7nm and below), a self-aligned blocking integration is desirable. This integration trades off the overlay requirement for an etch selectivity requirement and enables the cut mask overlay tolerance to be relaxed from half pitch to three times half pitch. Selfalignement has become the latest trend to enable scaling and self-aligned integrations are being pursued and investigated for various critical layers such as contact, via, metal patterning. In this paper we propose and demonstrate a low cost flexible self-aligned blocking strategy for critical metal layer patterning for 7nm and beyond from mask assembly to low -K dielectric etch. The integration is based on a 40nm pitch SADP flow with 2 cut masks compatible with either cut or block integration and employs dielectric films widely used in the back end of the line. As a consequence this approach is compatible with traditional etch, deposition and cleans tools that are optimized for dielectric etches. We will review the critical steps and selectivities required to enable this integration along with bench-marking of each integration option (cut vs. block).

  20. Consideration of correlativity between litho and etching shape

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2012-03-01

    We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.

  1. Ultrastructure of the surface of dental enamel with molar incisor hypomineralization (MIH) with and without acid etching.

    PubMed

    Bozal, Carola B; Kaplan, Andrea; Ortolani, Andrea; Cortese, Silvina G; Biondi, Ana M

    2015-01-01

    The aim of the present work was to analyze the ultrastructure and mineral composition of the surface of the enamel on a molar with MIH, with and without acid etching. A permanent tooth without clinical MIH lesions (control) and a tooth with clinical diagnosis of mild and moderate MIH, with indication for extraction, were processed with and without acid etching (H3PO4 37%, 20") for observation with scanning electron microscope (SEM) ZEISS (Supra 40) and mineral composition analysis with an EDS detector (Oxford Instruments). The control enamel showed normal prismatic surface and etching pattern. The clinically healthy enamel on the tooth with MIH revealed partial loss of prismatic pattern. The mild lesion was porous with occasional cracks. The moderate lesion was more porous, with larger cracks and many scales. The mineral composition of the affected surfaces had lower Ca and P content and higher O and C. On the tooth with MIH, even on normal looking enamel, the demineralization does not correspond to an etching pattern, and exhibits exposure of crystals with rods with rounded ends and less demineralization in the inter-prismatic spaces. Acid etching increased the presence of cracks and deep pores in the adamantine structure of the enamel with lesion. In moderate lesions, the mineral composition had higher content of Ca, P and Cl. Enamel with MIH, even on clinically intact adamantine surfaces, shows severe alterations in the ultrastructure and changes in ionic composition, which affect the acid etching pattern and may interfere with adhesion.

  2. Etch challenges for DSA implementation in CMOS via patterning

    NASA Astrophysics Data System (ADS)

    Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.

    2014-03-01

    This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.

  3. Process For Patterning Dispenser-Cathode Surfaces

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  4. Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer

    DOEpatents

    Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.

    2005-08-16

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.

  5. High-uniformity centimeter-wide Si etching method for MEMS devices with large opening elements

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuki; Tohyama, Yukiya; Inagaki, Shunsuke; Takiguchi, Mikio; Ono, Tomoki; Lebrasseur, Eric; Mita, Yoshio

    2018-04-01

    We propose a compensated mesh pattern filling method to achieve highly uniform wafer depth etching (over hundreds of microns) with a large-area opening (over centimeter). The mesh opening diameter is gradually changed between the center and the edge of a large etching area. Using such a design, the etching depth distribution depending on sidewall distance (known as the local loading effect) inversely compensates for the over-centimeter-scale etching depth distribution, known as the global or within-die(chip)-scale loading effect. Only a single DRIE with test structure patterns provides a micro-electromechanical systems (MEMS) designer with the etched depth dependence on the mesh opening size as well as on the distance from the chip edge, and the designer only has to set the opening size so as to obtain a uniform etching depth over the entire chip. This method is useful when process optimization cannot be performed, such as in the cases of using standard conditions for a foundry service and of short turn-around-time prototyping. To demonstrate, a large MEMS mirror that needed over 1 cm2 of backside etching was successfully fabricated using as-is-provided DRIE conditions.

  6. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  7. In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.

    2014-07-01

    Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.

  8. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  9. Demonstration of an N7 integrated fab process for metal oxide EUV photoresist

    NASA Astrophysics Data System (ADS)

    De Simone, Danilo; Mao, Ming; Kocsis, Michael; De Schepper, Peter; Lazzarino, Frederic; Vandenberghe, Geert; Stowers, Jason; Meyers, Stephen; Clark, Benjamin L.; Grenville, Andrew; Luong, Vinh; Yamashita, Fumiko; Parnell, Doni

    2016-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a robust, high-resolution photoresist for EUV lithography. In this paper we demonstrate the full integration of a baseline Inpria resist into an imec N7 BEOL block mask process module. We examine in detail both the lithography and etch patterning results. By leveraging the high differential etch resistance of metal oxide photoresists, we explore opportunities for process simplification and cost reduction. We review the imaging results from the imec N7 block mask patterns and its process windows as well as routes to maximize the process latitude, underlayer integration, etch transfer, cross sections, etch equipment integration from cross metal contamination standpoint and selective resist strip process. Finally, initial results from a higher sensitivity Inpria resist are also reported. A dose to size of 19 mJ/cm2 was achieved to print pillars as small as 21nm.

  10. Continuous quality improvement for the clinical decision unit.

    PubMed

    Mace, Sharon E

    2004-01-01

    Clinical decision units (CDUs) are a relatively new and growing area of medicine in which patients undergo rapid evaluation and treatment. Continuous quality improvement (CQI) is important for the establishment and functioning of CDUs. CQI in CDUs has many advantages: better CDU functioning, fulfillment of Joint Commission on Accreditation of Healthcare Organizations mandates, greater efficiency/productivity, increased job satisfaction, better performance improvement, data availability, and benchmarking. Key elements include a database with volume indicators, operational policies, clinical practice protocols (diagnosis specific/condition specific), monitors, benchmarks, and clinical pathways. Examples of these important parameters are given. The CQI process should be individualized for each CDU and hospital.

  11. Design and development of sustainable remediation process for mitigation of fluoride contamination in ground water and field application for domestic use.

    PubMed

    Gwala, Poonam; Andey, Subhash; Nagarnaik, Pranav; Ghosh, Sarika Pimpalkar; Pal, Prashant; Deshmukh, Prashant; Labhasetwar, Pawan

    2014-08-01

    Decentralised household chemo defluoridation unit (CDU) was developed and designed based on a combination of coagulation and sorption processes. Chemo-defluoridation process was optimised to reduce use of chemicals and increase acceptability among beneficiaries without affecting palatability of water. Chemical dose optimization undertaken in the laboratory using jar test revealed the optimum calcium salt to initial fluoride ratio of 60 for fluoride removal. Performance of CDU was evaluated in the laboratory for removal efficiency, water quality parameters, filter bed cleaning cycle and desorption of fluoride. CDU evaluation in the laboratory with spiked water (5 mg/L) and field water (~4.2 mg/L) revealed treated water fluoride concentration of less than 1mg/L. Seventy five CDUs were installed in households at Sakhara Village, Yavatmal District in Maharashtra State of India. Monthly monitoring of CDUs for one year indicated reduction of the raw water fluoride concentration from around 4 mg/L to less than 1mg/L. Post implementation survey after regular consumption of treated drinking water by the users for one year indicated user satisfaction and technological sustainability. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Alternative stitching method for massively parallel e-beam lithography

    NASA Astrophysics Data System (ADS)

    Brandt, Pieter; Tranquillin, Céline; Wieland, Marco; Bayle, Sébastien; Milléquant, Matthieu; Renault, Guillaume

    2015-07-01

    In this study, a stitching method other than soft edge (SE) and smart boundary (SB) is introduced and benchmarked against SE. The method is based on locally enhanced exposure latitude without throughput cost, making use of the fact that the two beams that pass through the stitching region can deposit up to 2× the nominal dose. The method requires a complex proximity effect correction that takes a preset stitching dose profile into account. Although the principle of the presented stitching method can be multibeam (lithography) systems in general, in this study, the MAPPER FLX 1200 tool is specifically considered. For the latter tool at a metal clip at minimum half-pitch of 32 nm, the stitching method effectively mitigates beam-to-beam (B2B) position errors such that they do not induce an increase in critical dimension uniformity (CDU). In other words, the same CDU can be realized inside the stitching region as outside the stitching region. For the SE method, the CDU inside is 0.3 nm higher than outside the stitching region. A 5-nm direct overlay impact from the B2B position errors cannot be reduced by a stitching strategy.

  13. Metal1 patterning study for random-logic applications with 193i, using calibrated OPC for litho and etch

    NASA Astrophysics Data System (ADS)

    Mailfert, Julien; Van de Kerkhove, Jeroen; De Bisschop, Peter; De Meyer, Kristin

    2014-03-01

    A Metal1-layer (M1) patterning study is conducted on 20nm node (N20) for random-logic applications. We quantified the printability performance on our test vehicle for N20, corresponding to Poly/M1 pitches of 90/64nm, and with a selected minimum M1 gap size of 70nm. The Metal1 layer is patterned with 193nm immersion lithography (193i) using Negative Tone Developer (NTD) resist, and a double-patterning Litho-Etch-Litho-Etch (LELE) process. Our study is based on Logic test blocks that we OPCed with a combination of calibrated models for litho and for etch. We report the Overlapping Process Window (OPW), based on a selection of test structures measured after-etch. We find that most of the OPW limiting structures are EOL (End-of-Line) configurations. Further analysis of these individual OPW limiters will reveal that they belong to different types, such as Resist 3D (R3D) and Mask 3D (M3D) sensitive structures, limiters related to OPC (Optical Proximity Corrections) options such as assist placement, or the choice of CD metrics and tolerances for calculation of the process windows itself. To guide this investigation, we will consider a `reference OPC' case to be compared with other solutions. In addition, rigorous simulations and OPC verifications will complete the after-etch measurements to help us to validate our experimental findings.

  14. Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.

    PubMed

    Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S

    2018-08-17

    This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.

  15. A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wild, Larry

    2003-01-01

    Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article, several experiments on RIE in BCl3 and Cl2 (and sometimes Ar) had demonstrated the 10:1 selectivity ratio, and further experiments to enhance understanding and obtain further guidance for optimizing process conditions were planned.

  16. Etching-free patterning method for electrical characterization of atomically thin MoSe2 films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Utama, M. Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua

    2014-10-01

    Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures. Electronic supplementary information (ESI) available: Further experiments on patterning and additional electrical characterizations data. See DOI: 10.1039/c4nr03817g

  17. Aggressiveness of contemporary self-etching adhesives. Part II: etching effects on unground enamel.

    PubMed

    Pashley, D H; Tay, F R

    2001-09-01

    The aggressiveness of three self-etching adhesives on unground enamel was investigated. Ultrastructural features and microtensile bond strength were examined, first using these adhesives as both the etching and resin-infiltration components, and then examining their etching efficacy alone through substitution of the proprietary resins with the same control resins. For SEM examination, buccal, mid-coronal, unground enamel from human extracted bicuspids were etched with either Clearfil Mega Bond (Kuraray), Non-Rinse Conditioner (NRC; Dentsply DeTrey) or Prompt L-Pop (ESPE). Those in the control group were etched with 32% phosphoric acid (Bisco) for 15s. They were all rinsed off prior to examination of the etching efficacy. For TEM examination, the self-etching adhesives were used as recommended. Unground enamel treated with NRC were further bonded using Prime&Bond NT (Dentsply), while those in the etched, control group were bonded using All-Bond 2 (Bisco). Completely demineralized, resin replicas were embedded in epoxy resin for examination of the extent of resin infiltration. For microtensile bond strength evaluation, specimens were first etched and bonded using the self-etching adhesives. A second group of specimens were etched with the self-etching adhesives, rinsed but bonded using a control adhesive. Following restoration with Z100 (3M Dental Products), they were sectioned into beams of uniform cross-sectional areas and stressed to failure. Etching patterns of aprismatic enamel, as revealed by SEM, and the subsurface hybrid layer morphology, as revealed by TEM, varied according to the aggressiveness of the self-etching adhesives. Clearfil Mega Bond exhibited the mildest etching patterns, while Prompt L-Pop produced an etching effect that approached that of the total-etch control group. Microtensile bond strength of the three experimental groups were all significantly lower than the control group, but not different from one another. When the self-etching adhesives were replaced with the control adhesive after etching, bond strengths of NRC/Prime&Bond NT and Prompt L-Pop were not significantly different from that of the control group, but were significantly higher than that of Clearfil Mega Bond. Both etching efficacy and strength of the resins are important contributing factors in bonding of self-etching adhesives to unground enamel.

  18. Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki

    2012-08-01

    We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.

  19. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  20. Selective etching of silicon carbide films

    DOEpatents

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  1. Electrolytic etching of fine stainless-steel pipes patterned by laser-scan lithography

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Sagara, Tomoya; Horiuchi, Toshiyuki

    2017-07-01

    Recently, it is required to develop a method for fabricating cylindrical micro-components in the field of measurement and medical engineering. Here, electrolytic etching of fine stainless-steel pipes patterned by laser-scan lithography was researched. The pipe diameter was 100 μm. At first, a pipe coated with 3-7 μm thick positive resist (tok, PMER P LA-900) was exposed to a violet laser beam with a wavelength of 408 nm (Neoark,TC20-4030-45). The laser beam was reshaped in a circle by placing a pinhole, and irradiated on the pipe by reducing the size in 1/20 using a reduction projection optics. Linearly arrayed 22 slit patterns with a width of 25 μm and a length of 175 μm were delineated in every 90-degree circumferential direction. That is, 88 slits in total were delineated at an exposure speed of 110 μm/s. In the axial direction, patterns were delineated at intervals of 90 μm. Following the pattern delineation, the pipe masked by the resist patterns was electrolytically etched. The pipe was used as an anode and an aluminum cylinder was set as a cathode around the pipe. As the electrolyte, aqueous solution of NaCl and NH4Cl was used. After etching the pipe, the resist was removed by ultrasonic cleaning in acetone. Although feasibility for fabricating multi-slit pipes was demonstrated, sizes of the etched slits were enlarged being caused by the undercut, and the shapes were partially deformed, and all the pipes were snapped at the chuck side.

  2. Patterning of light-extraction nanostructures on sapphire substrates using nanoimprint and ICP etching with different masking materials.

    PubMed

    Chen, Hao; Zhang, Qi; Chou, Stephen Y

    2015-02-27

    Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.

  3. Etching-free patterning method for electrical characterization of atomically thin MoSe2 films grown by chemical vapor deposition.

    PubMed

    Utama, M Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua

    2014-11-07

    Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.

  4. Guiding gate-etch process development using 3D surface reaction modeling for 7nm and beyond

    NASA Astrophysics Data System (ADS)

    Dunn, Derren; Sporre, John R.; Deshpande, Vaibhav; Oulmane, Mohamed; Gull, Ronald; Ventzek, Peter; Ranjan, Alok

    2017-03-01

    Increasingly, advanced process nodes such as 7nm (N7) are fundamentally 3D and require stringent control of critical dimensions over high aspect ratio features. Process integration in these nodes requires a deep understanding of complex physical mechanisms to control critical dimensions from lithography through final etch. Polysilicon gate etch processes are critical steps in several device architectures for advanced nodes that rely on self-aligned patterning approaches to gate definition. These processes are required to meet several key metrics: (a) vertical etch profiles over high aspect ratios; (b) clean gate sidewalls free of etch process residue; (c) minimal erosion of liner oxide films protecting key architectural elements such as fins; and (e) residue free corners at gate interfaces with critical device elements. In this study, we explore how hybrid modeling approaches can be used to model a multi-step finFET polysilicon gate etch process. Initial parts of the patterning process through hardmask assembly are modeled using process emulation. Important aspects of gate definition are then modeled using a particle Monte Carlo (PMC) feature scale model that incorporates surface chemical reactions.1 When necessary, species and energy flux inputs to the PMC model are derived from simulations of the etch chamber. The modeled polysilicon gate etch process consists of several steps including a hard mask breakthrough step (BT), main feature etch steps (ME), and over-etch steps (OE) that control gate profiles at the gate fin interface. An additional constraint on this etch flow is that fin spacer oxides are left intact after final profile tuning steps. A natural optimization required from these processes is to maximize vertical gate profiles while minimizing erosion of fin spacer films.2

  5. A comparison of advanced overlay technologies

    NASA Astrophysics Data System (ADS)

    Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee

    2010-03-01

    The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.

  6. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.

    PubMed

    Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun

    2016-03-01

    We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si.

  7. Trench formation in <110> silicon for millimeter-wave switching device

    NASA Astrophysics Data System (ADS)

    Datta, P.; Kumar, Praveen; Nag, Manoj; Bhattacharya, D. K.; Khosla, Y. P.; Dahiya, K. K.; Singh, D. V.; Venkateswaran, R.; Kumar, Devender; Kesavan, R.

    1999-11-01

    Anisotropic etching using alkaline solution has been adopted to form trenches in silicon while fabricating surface oriented bulk window SPST switches. An array pattern has been etched on silicon with good control on depth of trenches. KOH-water solution is seen to yield a poor surface finish. Use of too much of additive like isopropyl alcohol improves the surface condition but distorts the array pattern due to loss of anisotropy. However, controlled use of this additive during the last phase of trench etching is found to produce trenched arrays with desired depth, improved surface finish and minimum distortion of lateral dimensions.

  8. Ocular Blood Flow Changes in Behçet Disease Patients with/without Thrombotic Disease

    PubMed Central

    Yüksel, Harun; Türkcü, Fatih M.; Hamidi, Cihat; Cingü, Abdullah K.; Çinar, Yasin; Şahin, Muhammed; Özkurt, Zeynep; Çaça, İhsan

    2014-01-01

    ABSTRACT In this study, the authors aimed to evaluate ocular blood flow changes in Behçet disease (BD) with and without thrombotic disease. Ninety eyes of 90 patients with a diagnosis of BD (30 eyes with active uveitis, 23 eyes with inactive uveitis, 25 eyes without ocular involvement, and 12 eyes without ocular involvement and with a history of thrombosis) and 30 eyes of 30 age- and sex-matched control patients without any systemic disease with a total of 120 eyes were evaluated. In all cases, ophthalmic, central retinal, and ciliary artery flow parameters were measured with colour Doppler ultrasonography (CDU). The ocular blood flow parameters of all vessels in patients with active uveitis were found to be affected. All the flow parameters in the CRAs of the study groups were significantly different from the control group (p < 0.001). Additionally, in non-ocular BD patients with thrombosis, blood flow parameters were affected more than the parameters in non-ocular BD patients without thrombosis and control patients. In conclusion, major haemodynamic changes were observed using CDU in the ophthalmic vessels of ocular Behçet patients. Also, CDU may detect ocular blood flow alterations before initial ocular clinical manifestations appear in BD patients PMID:27928286

  9. Ocular Blood Flow Changes in Behçet Disease Patients with/without Thrombotic Disease.

    PubMed

    Yüksel, Harun; Türkcü, Fatih M; Hamidi, Cihat; Cingü, Abdullah K; Çinar, Yasin; Şahin, Muhammed; Özkurt, Zeynep; Çaça, İhsan

    2014-01-01

    In this study, the authors aimed to evaluate ocular blood flow changes in Behçet disease (BD) with and without thrombotic disease. Ninety eyes of 90 patients with a diagnosis of BD (30 eyes with active uveitis, 23 eyes with inactive uveitis, 25 eyes without ocular involvement, and 12 eyes without ocular involvement and with a history of thrombosis) and 30 eyes of 30 age- and sex-matched control patients without any systemic disease with a total of 120 eyes were evaluated. In all cases, ophthalmic, central retinal, and ciliary artery flow parameters were measured with colour Doppler ultrasonography (CDU). The ocular blood flow parameters of all vessels in patients with active uveitis were found to be affected. All the flow parameters in the CRAs of the study groups were significantly different from the control group ( p  < 0.001). Additionally, in non-ocular BD patients with thrombosis, blood flow parameters were affected more than the parameters in non-ocular BD patients without thrombosis and control patients. In conclusion, major haemodynamic changes were observed using CDU in the ophthalmic vessels of ocular Behçet patients. Also, CDU may detect ocular blood flow alterations before initial ocular clinical manifestations appear in BD patients.

  10. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.

    PubMed

    Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling

    2015-01-14

    Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.

  11. Patterning with metal-oxide EUV photoresist: patterning capability, resist smoothing, trimming, and selective stripping

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Lazzarino, Frederic; De Schepper, Peter; De Simone, Danilo; Piumi, Daniele; Luong, Vinh; Yamashita, Fumiko; Kocsis, Michael; Kumar, Kaushik

    2017-03-01

    Inpria metal-oxide photoresist (PR) serves as a thin spin-on patternable hard mask for EUV lithography. Compared to traditional organic photoresists, the ultrathin metal-oxide photoresist ( 12nm after development) effectively mitigates pattern collapse. Because of the high etch resistance of the metal-oxide resist, this may open up significant scope for more aggressive etches, new chemistries, and novel integration schemes. We have previously shown that metal-oxide PR can be successfully used to pattern the block layer for the imec 7-nm technology node[1] and advantageously replace a multiple patterning approach, which significantly reduces the process complexity and effectively decreases the cost. We also demonstrated the formation of 16nm half pitch 1:1 line/space with EUV single print[2], which corresponds to a metal 2 layer for the imec 7-nm technology node. In this paper, we investigate the feasibility of using Inpria's metal-oxide PR for 16nm line/space patterning. In meanwhile, we also explore the different etch process for LWR smoothing, resist trimming and resist stripping.

  12. Low-Cost Rapid Prototyping of Whole-Glass Microfluidic Devices

    ERIC Educational Resources Information Center

    Yuen, Po Ki; Goral, Vasiliy N.

    2012-01-01

    A low-cost, straightforward, rapid prototyping of whole-glass microfluidic devices is presented using glass-etching cream that can be easily purchased in local stores. A self-adhered vinyl stencil cut out by a desktop digital craft cutter was used as an etching mask for patterning microstructures in glass using the glass-etching cream. A specific…

  13. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, Wing C.

    1994-01-01

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.

  14. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, W.C.

    1994-02-15

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.

  15. Farbrication of diffractive optical elements on a Si chip by an imprint lithography using nonsymmetrical silicon mold

    NASA Astrophysics Data System (ADS)

    Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio

    2001-11-01

    Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.

  16. Patterned microstructures formed with MeV Au implantation in Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.

    2006-09-01

    Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.

  17. Pattern uniformity control in integrated structures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shinji; Okada, Soichiro; Shimura, Satoru; Nafus, Kathleen; Fonseca, Carlos; Biesemans, Serge; Enomoto, Masashi

    2017-03-01

    In our previous paper dealing with multi-patterning, we proposed a new indicator to quantify the quality of final wafer pattern transfer, called interactive pattern fidelity error (IPFE). It detects patterning failures resulting from any source of variation in creating integrated patterns. IPFE is a function of overlay and edge placement error (EPE) of all layers comprising the final pattern (i.e. lower and upper layers). In this paper, we extend the use cases with Via in additional to the bridge case (Block on Spacer). We propose an IPFE budget and CD budget using simple geometric and statistical models with analysis of a variance (ANOVA). In addition, we validate the model with experimental data. From the experimental results, improvements in overlay, local-CDU (LCDU) of contact hole (CH) or pillar patterns (especially, stochastic pattern noise (SPN)) and pitch walking are all critical to meet budget requirements. We also provide a special note about the importance of the line length used in analyzing LWR. We find that IPFE and CD budget requirements are consistent to the table of the ITRS's technical requirement. Therefore the IPFE concept can be adopted for a variety of integrated structures comprising digital logic circuits. Finally, we suggest how to use IPFE for yield management and optimization requirements for each process.

  18. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  19. Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2015-03-01

    Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.

  20. The Implementation Of Solid State Switches In A Parallel Configuration To Gain Output Current Capacity In A High Current Capacitive Discharge Unit (CDU).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaves, Mario Paul

    2017-07-01

    For my project I have selected to research and design a high current pulse system, which will be externally triggered from a 5V pulse. The research will be conducted in the region of paralleling the solid state switches for a higher current output, as well as to see if there will be any other advantages in doing so. The end use of the paralleled solid state switches will be used on a Capacitive Discharge Unit (CDU). For the first part of my project, I have set my focus on the design of the circuit, selection of components, and simulation ofmore » the circuit.« less

  1. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xie, Qian; Jiang, Lan; Han, Weina; Wang, Qingsong; Wang, Andong; Hu, Jie; Lu, Yongfeng

    2017-05-01

    In this study, silicon micro/nanostructures of controlled size and shape are fabricated by chemical-etching-assisted femtosecond laser single-pulse irradiation, which is a flexible, high-throughput method. The pulse fluence is altered to create various laser printing patterns for the etching mask, resulting in the sequential evolution of three distinct surface micro/nanostructures, namely, ring-like microstructures, flat-top pillar microstructures, and spike nanostructures. The characterized diameter of micro/nanostructures reveals that they can be flexibly tuned from the micrometer (˜2 μm) to nanometer (˜313 nm) scales by varying the laser pulse fluence in a wide range. Micro-Raman spectroscopy and transmission electron microscopy are utilized to demonstrate that the phase state changes from single-crystalline silicon (c-Si) to amorphous silicon (a-Si) after single-pulse femtosecond laser irradiation. This amorphous layer with a lower etching rate then acts as a mask in the wet etching process. Meanwhile, the on-the-fly punching technique enables the efficient fabrication of large-area patterned surfaces on the centimeter scale. This study presents a highly efficient method of controllably manufacturing silicon micro/nanostructures with different single-pulse patterns, which has promising applications in the photonic, solar cell, and sensors fields.

  2. FIB Secondary Etching Method for Fabrication of Fine CNT Forest Metamaterials

    NASA Astrophysics Data System (ADS)

    Pander, Adam; Hatta, Akimitsu; Furuta, Hiroshi

    2017-10-01

    Anisotropic materials, like carbon nanotubes (CNTs), are the perfect substitutes to overcome the limitations of conventional metamaterials; however, the successful fabrication of CNT forest metamaterial structures is still very challenging. In this study, a new method utilizing a focused ion beam (FIB) with additional secondary etching is presented, which can obtain uniform and fine patterning of CNT forest nanostructures for metamaterials and ranging in sizes from hundreds of nanometers to several micrometers. The influence of the FIB processing parameters on the morphology of the catalyst surface and the growth of the CNT forest was investigated, including the removal of redeposited material, decreasing the average surface roughness (from 0.45 to 0.15 nm), and a decrease in the thickness of the Fe catalyst. The results showed that the combination of FIB patterning and secondary etching enabled the growth of highly aligned, high-density CNT forest metamaterials. The improvement in the quality of single-walled CNTs (SWNTs), defined by the very high G/D peak ratio intensity of 10.47, demonstrated successful fine patterning of CNT forest for the first time. With a FIB patterning depth of 10 nm and a secondary etching of 0.5 nm, a minimum size of 150 nm of CNT forest metamaterials was achieved. The development of the FIB secondary etching method enabled for the first time, the fabrication of SWNT forest metamaterials for the optical and infrared regime, for future applications, e.g., in superlenses, antennas, or thermal metamaterials.

  3. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin; Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holesmore » resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.« less

  4. Surface-pattern geometry, topography, and chemical modifications during KrF excimer laser micro-drilling of p-type Si (111) wafers in ambient environment of HCl fumes in air

    NASA Astrophysics Data System (ADS)

    Zakria Butt, Muhammad; Saher, Sobia; Waqas Khaliq, Muhammad; Siraj, Khurram

    2016-11-01

    Eight mirror-like polished p-type Si (111) wafers were irradiated with 100, 200, 300, 400, 800, 1200, 1600, and 2000 KrF excimer laser pulses in ambient environment of HCl fumes in air. The laser parameters were: wavelength = 248 nm, pulse width = 20 ns, pulse energy = 20 mJ, and repetition rate = 20 Hz. For each set of laser pulses, characterization of the rectangular etched patterns formed on target surface was done by optical/scanning electron microscopy, XRD, and EDX techniques. The average etched depth increased with the increase in number of laser pulses from 100 to 2000 in accord with Sigmoidal (Boltzmann) function, whereas the average etch rate followed an exponential decay with the increase in number of laser pulses. However, the etched area, maximum etched depth, and maximum etch rate were found to increase linearly with the number of laser pulses, but the rate of increase was faster for 100-400 laser pulses (region I) than that for 800-2000 laser pulses (region II). The elemental composition for each etched-pattern determined by EDX shows that both O and Cl contents increase progressively with the increase in the number of laser shots in region I. However, in region II both O and Cl contents attain saturation values of about 39.33 wt.% and 0.14 wt.%, respectively. Perforation of Si wafers was achieved on irradiation with 1200-2000 laser pulses. XRD analysis confirmed the formation of SiO2, SiCl2 and SiCl4 phases in Si (111) wafers due to chemical reaction of silicon with both HCl fumes and oxygen in air.

  5. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting

    2009-01-01

    Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.

  6. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  7. Sequential infiltration synthesis for advanced lithography

    DOEpatents

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing

    2015-03-17

    A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.

  8. Graphene nanoribbons: Relevance of etching process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less

  9. Directional Etching of Silicon by Silver Nanostructures

    NASA Astrophysics Data System (ADS)

    Sharma, Pradeep; Wang, Yuh-Lin

    2011-02-01

    We report directional etching of nanostructures (nanochannels and nanotrenches) into the Si(100) substrates in aqueous HF and H2O2 solution by lithographically defined Ag patterns (nanoparticles, nanorods, and nanorings). The Effect of Ag/Si interface oxide on the directional etching has been studied by etching Ag/SiOx/Si samples of known interface oxide thickness. Based on high resolution transmission electron microscopy (HRTEM) imaging and TEM-energy dispersive X-ray (EDX) spectra of the Ag/Si interfaces, we propose that maintenance of the sub-nanometer oxide at the Ag/Si interfaces and Ag-Si interaction are the key factors which regulate the directional etching of Si.

  10. Cl 2-based dry etching of the AlGaInN system in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cho, Hyun; Vartuli, C. B.; Abernathy, C. R.; Donovan, S. M.; Pearton, S. J.; Shul, R. J.; Han, J.

    1998-12-01

    Cl 2-Based inductively coupled plasmas with low additional d.c. self-biases (-100 V) produce convenient etch rates (500-1500 Å·min -1) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas (Ar, N 2, H 2), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl 2 in the discharge for all three mixtures and to have an increase (decrease) in etch rate with source power (pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

  11. Study of flowability effect on self-planarization performance at SOC materials

    NASA Astrophysics Data System (ADS)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  12. Self-etch and etch-and-rinse adhesive systems in clinical dentistry.

    PubMed

    Ozer, Fusun; Blatz, Markus B

    2013-01-01

    Current adhesive systems follow either an "etch-and-rinse" or "self-etch" approach, which differ in how they interact with natural tooth structures. Etch-and-rinse systems comprise phosphoric acid to pretreat the dental hard tissues before rinsing and subsequent application of an adhesive. Self-etch adhesives contain acidic monomers, which etch and prime the tooth simultaneously. Etch-and-rinse adhesives are offered as two- or three-step systems, depending on whether primer and bonding are separate or combined in a single bottle. Similarly, self-etch adhesives are available as one- or two-step systems. Both etch-and-rinse and self-etch systems form a hybrid layer as a result of resins impregnating the porous enamel or dentin. Despite current trends toward fewer and simpler clinical application steps, one-step dentin bonding systems exhibit bonding agent lower bond strengths and seem less predictable than multi-step etch-and-rinse and self-etch systems. The varying evidence available today suggests that the choice between etch-and-rinse and self-etch systems is often a matter of personal preference. In general, however, phosphoric acid creates a more pronounced and retentive etching pattern in enamel. Therefore, etch-and-rinse bonding systems are often preferred for indirect restorations and when large areas of enamel are still present. Conversely, self-etch adhesives provide superior and more predictable bond strength to dentin and are, consequently, recommended for direct composite resin restorations, especially when predominantly supported by dentin.

  13. Active application of primer acid on acid-treated enamel: Influence on the bond effectiveness of self-etch adhesives systems.

    PubMed

    Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Costa, Daiane Cristianismo; Bosso, Mariana Avalone; Coppini, Erick Kamiya; Dias, Carlos Tadeu Santos; Paulillo, Luis Alexandre Maffei Sartini

    2017-08-01

    Evaluate the composite-to-enamel bond after passive or active application of self-etching primer systems on polished or pre-etched enamel with phosphoric acid. Two self-etch adhesives systems (SEAS) were used: Clearfil SE Bond and Easy Bond. Third human molars were divided into 8 groups (N = 10). The crown of each tooth was sectioned into halves and the mesial/distal surfaces were used. The adhesives were actively or passively applied on enamel with or without prior phosphoric-acid etching. Resin composite cylinders were built after adhesive application. After stored in relative humidity for 24 hr/37°C the specimens were subjected to microshear test in universal testing a machine at a crosshead speed of 0.5 mm/minute. The results were analyzed with three-way ANOVA and the Tukey test. The enamel-etching pattern was evaluated under SEM. The 2-step SEAS system presented significantly higher adhesive bond strength means (47.37 MPa) than the 1-step (36.87 MPa). A poor enamel- etching pattern was observed in active mode showing irregular and short resin tags, however there was not compromised the bond strength. Active or passive application produced similar values of bond strength to enamel regardless of enamel pretreatment and type of SEAS. © 2017 Wiley Periodicals, Inc.

  14. Spontaneous Recanalization After Carotid Artery Dissection: The Case for an Ultrasound-Only Monitoring Strategy

    PubMed Central

    Lumsden, Sarah; Rosta, Gabor; Bismuth, Jean; Lumsden, Alan B.; Garami, Zsolt

    2017-01-01

    Dissection of the internal carotid artery (ICA) accounts for 5% to 25% of ischemic strokes in young adults. We report a case of spontaneous recanalization of a traumatic ICA dissection in which carotid duplex (CDU) and transcranial color-coded duplex ultrasound (TCCD) were used. A 47-year-old male presented with intermittent episodes of headache, blurry vision, anisocoria, and loss of taste sensation following a whiplash injury while body surfing. Magnetic resonance angiogram (MRA) of the neck revealed absent flow in the cavernous ICA and a clot at the skull base. Carotid duplex, used to further evaluate flow, demonstrated reverberating color Doppler and spectrum signal. A TCCD showed ICA occlusion and smaller-caliber intracranial ICA. The patient reported for follow-up after 1 month on anticoagulation therapy. Upon his return, CDU and TCCD were normal and the ICA showed normal color and spectrum signals. Computed tomography angiogram confirmed ultrasound findings of a dramatic improvement of ICA patency. Additionally, the patient reported that his headaches had resolved. Extracranial CDU and TCCD are useful for monitoring patient progress in cases of spontaneous recanalization following carotid artery dissection. These inexpensive and noninvasive imaging modalities proved to be critical in the initial and follow-up evaluations of the extracranial and intracranial vascular system, providing a strong alternative to expensive magnetic resonance imaging and invasive angiograms and offering more hemodynamic information than “static” MRA. PMID:29744017

  15. Non-contrast-enhanced imaging of haemodialysis fistulas using quiescent-interval single-shot (QISS) MRA: a feasibility study.

    PubMed

    Okur, A; Kantarci, M; Karaca, L; Yildiz, S; Sade, R; Pirimoglu, B; Keles, M; Avci, A; Çankaya, E; Schmitt, P

    2016-03-01

    To assess the efficiency of a novel quiescent-interval single-shot (QISS) technique for non-contrast-enhanced magnetic resonance angiography (MRA) of haemodialysis fistulas. QISS MRA and colour Doppler ultrasound (CDU) images were obtained from 22 haemodialysis patients with end-stage renal disease (ESRD). A radiologist with extensive experience in vascular imaging initially assessed the fistulas using CDU. Two observers analysed each QISS MRA data set in terms of image quality, using a five-point scale ranging from 0 (non-diagnostic) to 4 (excellent), and lumen diameters of all segments were measured. One hundred vascular segments were analysed for QISS MRA. Two anastomosis segments were considered non-diagnostic. None of the arterial or venous segments were evaluated as non-diagnostic. The image quality was poorer for the anastomosis level compared to the other segments (p<0.001 for arterial segments, and p<0.05 for venous segments), while no significant difference was determined for other vascular segments. QISS MRA has the potential to provide valuable complementary information to CDU regarding the imaging of haemodialysis fistulas. In addition, QISS non-enhanced MRA represents an alternative for assessment of haemodialysis fistulas, in which the administration of iodinated or gadolinium-based contrast agents is contraindicated. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  16. Laser etching of polymer masked leadframes

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.

    1997-02-01

    A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.

  17. Fabrication and Theoretical Evaluation of Microlens Arrays on Layered Polymers

    NASA Astrophysics Data System (ADS)

    Oder, Tom; McMaster, Michael; Merlo, Corey; Bagheri, Camron; Reakes, Clayton; Petrus, Joshua; Li, Dingqiang; Crescimanno, Michael; Andrews, James

    2014-03-01

    Arrays of microlens were fabricated on nano-layered polymers using reactive ion etching. Semi hemispherical patterns with diameters ranging from 20 to 80 micrometers were first formed on a thick photoresist film that was spin-coated on the layered polymers using standard photolithographic process employing a gray scale glass mask. These patterns were then transferred to the polymers using dry etching in a reactive ion etching system. The optimized etch condition included a mixture of sulfur hexafluoride and oxygen, which resulted in an etch depth of 5 micrometers and successfully exposed the individual sub-micron thick layers in the polymers. Physical characterization of the microlens arrays was done using atomic force microscope and scanning electron microscope. We combine basic physical optics theory with the transfer matrix analysis of optical transport in nano-layered polymers to address subtleties in the chromatic response of microlenses made from these materials. In particular this method explains the len's behavior in and around the reflection band of the materials. We wish to acknowledge support of funds from NSF through its Center for Layered Polymeric Systems (CLiPS) at Case Western Reserve University.

  18. Designing an Innovative Data Architecture for the Los Angeles Data Resource (LADR).

    PubMed

    Mukherjee, Sukrit; Jenders, Robert A; Delta, Sebastien

    2015-01-01

    The Los Angeles Data Resource (LADR) is a joint project of major Los Angeles health care provider organizations. The LADR helps clinical investigators to explore the size of potential research study cohorts using operational clinical data across all participating institutions. The Charles R. Drew University of Medicine and Science (CDU) LADR team sought to develop an innovative data architecture that would aggregate de-identified clinical data from safety-net providers in the community into CDU LADR node. This in turn would be federated with the other nodes of LADR for a shared view in a way that was never available before. This led to a self-service system to assess patients matching study criteria at each medical center and to search patients by demographics, ICD-9 codes, lab results and medications.

  19. Sequential infiltration synthesis for advanced lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih

    A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned usingmore » photolithography, electron-beam lithography or a block copolymer self-assembly process.« less

  20. Applications of MICP source for next-generation photomask process

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Joo; Chang, Byung-Soo; Choi, Boo-Yeon; Park, Kyung H.; Jeong, Soo-Hong

    2000-07-01

    As critical dimensions of photomask extends into submicron range, critical dimension uniformity, edge roughness, macro loading effect, and pattern slope become tighter than before. Fabrication of photomask relies on the ability to pattern features with anisotropic profile. To improve critical dimension uniformity, dry etcher is one of the solution and inductively coupled plasma (ICP) sources have become one of promising high density plasma sources for dry etcher. In this paper, we have utilized dry etcher system with multi-pole ICP source for Cr etch and MoSi etch and have investigated critical dimension uniformity, slope, and defects. We will present dry etch process data by process optimization of newly designed dry etcher system. The designed pattern area is 132 by 132 mm2 with 23 by 23 matrix test patterns. 3 (sigma) of critical dimension uniformity is below 12 nm at 0.8 - 3.0 micrometers . In most cases, we can obtain zero defect masks which is operated by face- down loading.

  1. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    NASA Astrophysics Data System (ADS)

    Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.

  2. Micro-pyramidal structure fabrication on polydimethylsiloxane (PDMS) by Si (100) KOH wet etching

    NASA Astrophysics Data System (ADS)

    Hwang, Shinae; Lim, Kyungsuk; Shin, Hyeseon; Lee, Seongjae; Jang, Moongyu

    2017-10-01

    A high degree of accuracy in bulk micromachining is essential to fabricate micro-electro-mechanical systems (MEMS) devices. A series of etching experiments is carried out using 40 wt% KOH solutions at the constant temperature of 70 °C. Before wet etching, SF6 and O2 are used as the dry etching gas to etch the masking layers of a 100 nm thick Si3N4 and SiO2, respectively. The experimental results indicate that (100) silicon wafer form the pyramidal structures with (111) single crystal planes. All the etch profiles are analyzed using Scanning Electron Microscope (SEM) and the wet etch rates depend on the opening sizes. The manufactured pyramidal structures are used as the pattern of silicon mold. After a short hardening of coated polydimethylsiloxane (PDMS) layer, micro pyramidal structures are easily transferred to PDMS layer.

  3. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  4. Etching nano-holes in silicon carbide using catalytic platinum nano-particles

    NASA Astrophysics Data System (ADS)

    Moyen, E.; Wulfhekel, W.; Lee, W.; Leycuras, A.; Nielsch, K.; Gösele, U.; Hanbücken, M.

    2006-09-01

    The catalytic reaction of platinum during a hydrogen etching process has been used to perform controlled vertical nanopatterning of silicon carbide substrates. A first set of experiments was performed with platinum powder randomly distributed on the SiC surface. Subsequent hydrogen etching in a hot wall reactor caused local atomic hydrogen production at the catalyst resulting in local SiC etching and hole formation. Secondly, a highly regular and monosized distribution of Pt was obtained by sputter deposition of Pt through an Au membrane serving as a contact mask. After the lift-off of the mask, the hydrogen etching revealed the onset of well-controlled vertical patterned holes on the SiC surface.

  5. Wet etching mechanism and crystallization of indium-tin oxide layer for application in light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu

    2018-01-01

    In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.

  6. Self-aligned quadruple patterning using spacer on spacer integration optimization for N5

    NASA Astrophysics Data System (ADS)

    Thibaut, Sophie; Raley, Angélique; Mohanty, Nihar; Kal, Subhadeep; Liu, Eric; Ko, Akiteru; O'Meara, David; Tapily, Kandabara; Biolsi, Peter

    2017-04-01

    To meet scaling requirements, the semiconductor industry has extended 193nm immersion lithography beyond its minimum pitch limitation using multiple patterning schemes such as self-aligned double patterning, self-aligned quadruple patterning and litho-etch / litho etch iterations. Those techniques have been declined in numerous options in the last few years. Spacer on spacer pitch splitting integration has been proven to show multiple advantages compared to conventional pitch splitting approach. Reducing the number of pattern transfer steps associated with sacrificial layers resulted in significant decrease of cost and an overall simplification of the double pitch split technique. While demonstrating attractive aspects, SAQP spacer on spacer flow brings challenges of its own. Namely, material set selections and etch chemistry development for adequate selectivities, mandrel shape and spacer shape engineering to improve edge placement error (EPE). In this paper we follow up and extend upon our previous learning and proceed into more details on the robustness of the integration in regards to final pattern transfer and full wafer critical dimension uniformity. Furthermore, since the number of intermediate steps is reduced, one will expect improved uniformity and pitch walking control. This assertion will be verified through a thorough pitch walking analysis.

  7. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  8. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3-rich to achieve the highest etch rates. Several different mask materials were investigated, including photoresist, thermal oxide and deposited oxide. Photoresist etches very rapidly in CO/NH 3 and use of a hard mask is necessary to achieve pattern transfer. Due to its physically dominated nature, the CO/NH3 chemistry appears suited to shallow etch depth (≤0.5mum) applications, but mask erosion leads to sloped feature sidewalls for deeper features.

  9. Investigation of hyper-NA scanner emulation for photomask CDU performance

    NASA Astrophysics Data System (ADS)

    Poortinga, Eric; Scheruebl, Thomas; Conley, Will; Sundermann, Frank

    2007-02-01

    As the semiconductor industry moves toward immersion lithography using numerical apertures above 1.0 the quality of the photomask becomes even more crucial. Photomask specifications are driven by the critical dimension (CD) metrology within the wafer fab. Knowledge of the CD values at resist level provides a reliable mechanism for the prediction of device performance. Ultimately, tolerances of device electrical properties drive the wafer linewidth specifications of the lithography group. Staying within this budget is influenced mainly by the scanner settings, resist process, and photomask quality. Tightening of photomask specifications is one mechanism for meeting the wafer CD targets. The challenge lies in determining how photomask level metrology results influence wafer level imaging performance. Can it be inferred that photomask level CD performance is the direct contributor to wafer level CD performance? With respect to phase shift masks, criteria such as phase and transmission control are generally tightened with each technology node. Are there other photomask relevant influences that effect wafer CD performance? A comprehensive study is presented supporting the use of scanner emulation based photomask CD metrology to predict wafer level within chip CD uniformity (CDU). Using scanner emulation with the photomask can provide more accurate wafer level prediction because it inherently includes all contributors to image formation related to the 3D topography such as the physical CD, phase, transmission, sidewall angle, surface roughness, and other material properties. Emulated images from different photomask types were captured to provide CD values across chip. Emulated scanner image measurements were completed using an AIMS TM45-193i with its hyper-NA, through-pellicle data acquisition capability including the Global CDU Map TM software option for AIMS TM tools. The through-pellicle data acquisition capability is an essential prerequisite for capturing final CDU data (after final clean and pellicle mounting) before the photomask ships or for re-qualification at the wafer fab. Data was also collected on these photomasks using a conventional CD-SEM metrology system with the pellicles removed. A comparison was then made to wafer prints demonstrating the benefit of using scanner emulation based photomask CD metrology.

  10. Stability and imaging of the ASML EUV alpha demo tool

    NASA Astrophysics Data System (ADS)

    Hermans, Jan V.; Baudemprez, Bart; Lorusso, Gian; Hendrickx, Eric; van Dijk, Andre; Jonckheere, Rik; Goethals, Anne-Marie

    2009-03-01

    Extreme Ultra-Violet (EUV) lithography is the leading candidate for semiconductor manufacturing of the 22nm technology node and beyond, due to the very short wavelength of 13.5nm. However, reducing the wavelength adds complexity to the lithographic process. The impact of the EUV specific conditions on lithographic performance needs to be understood, before bringing EUV lithography into pre-production. To provide early learning on EUV, an EUV fullfield scanner, the Alpha Demo Tool (ADT) from ASML was installed at IMEC, using a Numerical Aperture (NA) of 0.25. In this paper we report on different aspects of the ADT: the imaging and overlay performance and both short and long-term stability. For 40nm dense Lines-Spaces (LS), the ADT shows an across field overlapping process window of 270nm Depth Of Focus (DOF) at 10% Exposure Latitude (EL) and a wafer CD Uniformity (CDU) of 3nm 3σ, without any corrections for process or reticle. The wafer CDU is correlated to different factors that are known to influence the CD fingerprint from traditional lithography: slit intensity uniformity, focus plane deviation and reticle CD error. Taking these contributions into account, the CD through slit fingerprint for 40nm LS is simulated with excellent agreement to experimental data. The ADT shows good CD stability over 9 months of operation, both intrafield and across wafer. The projection optics reflectivity has not degraded over 9 months. Measured overlay performance with respect to a dry tool shows |Mean|+3σ below 20nm with more correction potential by applying field-by-field corrections (|Mean|+3σ <=10nm). For 22nm SRAM application, both contact hole and metal layer were printed in EUV with 10% CD and 15nm overlay control. Below 40nm, the ADT shows good wafer CDU for 30nm dense and isolated lines (on the same wafer) and 38nm dense Contact Holes (CH). First 28nm dense line CDU data are achieved. The results indicate that the ADT can be used effectively for EUV process development before installation of the pre-production tool, the ASML NXE Gen. 1 at IMEC.

  11. BOND STRENGTH AND MORPHOLOGY OF ENAMEL USING SELF-ETCHING ADHESIVE SYSTEMS WITH DIFFERENT ACIDITIES

    PubMed Central

    Moura, Sandra Kiss; Reis, Alessandra; Pelizzaro, Arlete; Dal-Bianco, Karen; Loguercio, Alessandro Dourado; Arana-Chavez, Victor Elias; Grande, Rosa Helena Miranda

    2009-01-01

    Objectives: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. Material and methods: Composite resin (Filtek Z250) buildups were bonded to untreated (prophylaxis) and treated (burcut or SiC-paper) enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition): Clearfil SE Bond (CSE); OptiBond Solo Plus Self-Etch (OP); AdheSe (AD); Tyrian Self Priming Etching (TY), Adper Scotchbond Multi-Purpose Plus (SBMP) and Adper Single Bond (SB). After storage in water (24 h/37°C), the bonded specimens were sectioned into sticks with 0.8 mm2 cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa) were subjected to two-way ANOVA and Tukey's test (α=0.05). The etching patterns of the adhesive systems were also observed with a scanning electron microscope. Results: The main factor adhesive system was statistically significant (p<0.05). The mean bond strength values (MPa) and standard deviations were: CSE (20.5±3.5), OP (11.3±2.3), AD (11.2±2.8), TY (11.1±3.0), SBMP (21.9±4.0) and SB (24.9±3.0). Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. Conclusion: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed. PMID:19668991

  12. Nitrogen reactive ion etch processes for the selective removal of poly-(4-vinylpyridine) in block copolymer films.

    PubMed

    Flynn, Shauna P; Bogan, Justin; Lundy, Ross; Khalafalla, Khalafalla E; Shaw, Matthew; Rodriguez, Brian J; Swift, Paul; Daniels, Stephen; O'Connor, Robert; Hughes, Greg; Kelleher, Susan M

    2018-08-31

    Self-assembling block copolymer (BCP) patterns are one of the main contenders for the fabrication of nanopattern templates in next generation lithography technology. Transforming these templates to hard mark materials is key for pattern transfer and in some cases, involves selectively removing one block from the nanopattern. For poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), a high χ BCP system which could be potentially incorporated into semiconductor nanofabrication, this selective removal is predominantly done by a wet etch/activation process. Conversely, this process has numerous disadvantages including lack of control and high generation of waste leading to high cost. For these reasons, our motivation was to move away from the wet etch process and optimise a dry etch which would overcome the limitations associated with the activation process. The work presented herein shows the development of a selective plasma etch process for the removal of P4VP cores from PS-b-P4VP nanopatterned film. Results have shown that a nitrogen reactive ion etch plasma has a selectivity for P4VP of 2.2:1 and suggest that the position of the nitrogen in the aromatic ring of P4VP plays a key role in this selectivity. In situ plasma etching and x-ray photoelectron spectrometry measurements were made without breaking vacuum, confirming that the nitrogen plasma has selectivity for removal of P4VP over PS.

  13. A unique patterned diamond stamp for a periodically hierarchical nanoarray structure.

    PubMed

    Wang, Yi; Shen, Yanting; Xu, Weiqing; Xu, Shuping; Li, Hongdong

    2016-09-23

    A diamond stamp with a hierarchical pattern was designed for the direct preparation of a periodic nanoarray structure, which was prepared by the reactive ion etching technique with a hierarchical ultrathin alumina membrane (HUTAM) as a mask. The optimal etching conditions for fabricating the diamond stamp were discussed in order to realize a vertical nanopore structure, avoiding structural damage from lateral etching. By using this diamond stamp, a polymer film with the desired hierarchical nanorod array structure can be obtained easily via the simple stamping process, which greatly simplifies the processing procedure. More importantly, the stamp is reusable because of its super-hardness, which ensures the reproducibility of the nanorod array pattern. Another merit is that the smooth surface of the etched diamond can avoid the use of a release agent. Our results prove that this hard stamp can be used for quick preparation of an elaborate periodic nanoarray structure. This study is significant in that it solves the problems of high cost and easy damage of stamps in nanoimprint lithography, and it might inspire more sophisticated applications of such an ordered structure in nanoplasmonics, biochemical sensing and nanophotonic devices.

  14. Polarity-inverted lateral overgrowth and selective wet-etching and regrowth (PILOSWER) of GaN.

    PubMed

    Jang, Dongsoo; Jue, Miyeon; Kim, Donghoi; Kim, Hwa Seob; Lee, Hyunkyu; Kim, Chinkyo

    2018-03-07

    On an SiO 2 -patterned c-plane sapphire substrate, GaN domains were grown with their polarity controlled in accordance with the pattern. While N-polar GaN was grown on hexagonally arranged circular openings, Ga-polar GaN was laterally overgrown on mask regions due to polarity inversion occurring at the boundary of the circular openings. After etching of N-polar GaN on the circular openings by H 3 PO 4 , this template was coated with 40-nm Si by sputtering and was slightly etched by KOH. After slight etching, a thin layer of Si left on the circular openings of sapphire,but not on GaN, was oxidized during thermal annealing and served as a dielectric mask during subsequent regrowth. Thus, the subsequent growth of GaN was made only on the existing Ga-polar GaN domains, not on the circular openings of the sapphire substrate. Transmission electron microscopy analysis revealed no sign of threading dislocations in this film. This approach may help fabricating an unholed and merged GaN film physically attached to but epitaxially separated from the SiO 2 -patterned sapphire.

  15. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  16. Resistless lithography - selective etching of silicon with gallium doping regions

    NASA Astrophysics Data System (ADS)

    Abdullaev, D.; Milovanov, R.; Zubov, D.

    2016-12-01

    This paper presents the results for used of resistless lithography with a further reactive-ion etching (RIE) in various chemistry after local (Ga+) implantation of silicon with different doping dose and different size doped regions. We describe the different etching regimes for pattern transfer of FIB implanted Ga masks in silicon. The paper studied the influence of the implantation dose on the silicon surface, the masking effect and the mask resistance to erosion at dry etching. Based on these results we conclude about the possibility of using this method to create micro-and nanoscale silicon structures.

  17. Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki

    2018-06-01

    A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.

  18. Changes in boron fiber strength due to surface removal by chemical etching

    NASA Technical Reports Server (NTRS)

    Smith, R. J.

    1976-01-01

    The effects of chemical etching on the tensile strength of commercial boron/tungsten fibers were investigated. Fibers with as-received diameters of 203, 143, and 100 micrometers were etched to diameters as small as 43 micrometers. The etching generally resulted in increasing fiber tensile strength with decreasing fiber diameter. And for the 203 micrometer fibers there was an accompanying significant decrease in the coefficient of variation of the tensile strength for diameters down to 89 micrometers. Heat treating these fibers above 1,173 K in a vacuum caused a marked decrease in the average tensile strength of at least 80 percent. But after the fibers were etched, their strengths exceeded the as-received strengths. The tensile strength behavior is explained in terms of etching effects on surface flaws and the residual stress pattern of the as-received fibers.

  19. PCB Fault Detection Using Image Processing

    NASA Astrophysics Data System (ADS)

    Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.

    2017-08-01

    The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images

  20. Pattern transfer from nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R., III

    This project contributes to the long-term extensibility of bit-patterned media (BPM), by removing obstacles to using a new and smaller class of self-assembling materials: surfactant-coated nanoparticles. Self-assembly rapidly produces regular patterns of small features over large areas. If these patterns can be used as templates for magnetic bits, the resulting media would have both high capacity and high bit density. The data storage industry has identified block copolymers (BCP) as the self-assembling technology for the first generation of BPM. Arrays of surfactant-coated nanoparticles have long shown higher feature densities than BCP, but their patterns could not previously be transferred into underlying substrates. I identify one key obstacle that has prevented this pattern transfer: the particles undergo a disordering transition during etching which I have called "cracking". I compare several approaches to measuring the degree of cracking, and I develop two novel techniques for preventing it and allowing pattern transfer. I demonstrate two different kinds of pattern transfer: positive (dots) and negative (antidots). To make dots, I etch the substrate between the particles with a directional CF4-based reactive ion etch (RIE). I find the ultrasmall gaps (just 2 nm) cause a tremendous slowdown in the etch rate, by a factor of 10 or more---an observation of fundamental significance for any pattern transfer at ultrahigh bit densities. Antidots are made by depositing material in the interstices, then removing the particles to leave behind a contiguous inorganic lattice. This lattice can itself be used as an etch mask for CF4-based RIE, in order to increase the height contrast. The antidot process promises great generality in choice of materials, both for the antidot lattice and the particles themselves; here, I present lattices of Al and Cr, ternplated from arrays of 13.7 nm-diameter Fe3O4 or 30 nm-diameter MnO nanoparticles. The fidelity of transfer is also noticeably better for antidots than for dots, making antidots the more promising technique for industrial applications. The smallest period for which I have shown pattern transfer (15.7 nm) is comparable to (but slightly smaller than) the smallest period currently shown for pattern transfer from block copolymers (17 nm); hence, my results compare favorably with the state of the art. Ultimately, by demonstrating that surfactant-coated nanoparticles can be used as pattern masks, this work increases their viability as an option to continue the exponential growth of bit density in magnetic storage media.

  1. Method for providing an arbitrary three-dimensional microstructure in silicon using an anisotropic deep etch

    DOEpatents

    Morales, Alfredo M.; Gonzales, Marcela

    2004-06-15

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  2. The evaluation of a clinical development unit leadership preparation program by focus group interviews - part 2: negative aspects.

    PubMed

    Greenwood, Jennifer; Parsons, Myra

    2002-10-01

    In Western Sydney, Australia, in 1996, the Area Health Service and the University of Western Sydney entered a strategic alliance to develop a nursing research culture in the health services. One of the strategies implemented to achieve this was the establishment of a network of research-receptive environments known as Clinical Development Units (CDUs). In terms of research receptivity, evidence at the time suggested that it could only be developed in units where the leadership style is democratic and participatory. In terms of CDUs, evidence suggested that their successful development depended critically on the effective management of CDU leadership stressors. In light of this, it was agreed to conduct a CDU leadership preparation program in Western Sydney. The program aimed to furnish CDU leaders with the participatory leadership skills required to develop and manage their units. It was expected that the acquisition of such leadership skills would serve to minimize the leadership stessors they could expect to experience. This is the second of two papers which report course evaluation data. The first focused on the more positive evaluation data; this paper focuses on the negative evaluation data and outlines how the current program has been modified in light of these data. In addition, it discusses two themes which emerged during data analysis. These were nurses' apparent mutual lack of trust and their pressing needs to be recognized as valuable and merit-worthy.

  3. Post exposure bake unit equipped with wafer-shape compensation technology

    NASA Astrophysics Data System (ADS)

    Goto, Shigehiro; Morita, Akihiko; Oyama, Kenichi; Hori, Shimpei; Matsuchika, Keiji; Taniguchi, Hideyuki

    2007-03-01

    In 193nm lithography, it is well known that Critical Dimension Uniformity (CDU) within wafer is especially influenced by temperature variation during Post Exposure Bake (PEB) process. This temperature variation has been considered to be caused by the hot plate unit, and improvement of temperature uniformity within hot plate itself has been focused to achieve higher CDU. However, we have found that the impact of the wafer shape on temperature uniformity within wafer can not be ignored when the conventional PEB processing system is applied to an advanced resist technology. There are two factors concerned with the wafer shape. First, gravity force of the wafer itself generates wafer shape bending because wafer is simply supported by a few proximity gaps on the conventional hot plate. Next, through the semiconductor manufacturing process, wafer is gradually warped due to the difference of the surface stress between silicon and deposited film layers (Ex. Si-Oxide, Si-Nitride). Therefore, the variation of the clearance between wafer backside and hot plate surface leads to non-uniform thermal conductivity within wafer during PEB processing, and eventually impacts on the CDU within wafer. To overcome this problem concerned with wafer shape during PEB processing, we have developed the new hot plate equipped with the wafer shape compensation technology. As a result of evaluation, we have confirmed that this new PEB system has an advantage not only for warped wafer but also for flat (bare) wafer.

  4. A Dry-Etch Process for Low Temperature Superconducting Transition Edge Sensors for Far Infrared Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.

    2003-01-01

    The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.

  5. Photolithography and Selective Etching of an Array of Quartz Tuning Fork Resonators with Improved Impact Resistance Characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Sungkyu

    2001-08-01

    Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.

  6. Optimize of shrink process with X-Y CD bias on hole pattern

    NASA Astrophysics Data System (ADS)

    Koike, Kyohei; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Oyama, Kenichi; Yaegashi, Hidetami

    2017-03-01

    Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][4] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. We tried to cure hole pattern roughness to use additional process such as Line smoothing[5] . Each smoothing process showed different effect. As the result, CDx shrink amount is smaller than CDy without one additional process. In this paper, we will report the pattern controllability comparison of EUV and 193-immersion. And we will discuss optimum method about CD bias on hole pattern.

  7. Spin-on metal oxide materials with high etch selectivity and wet strippability

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  8. Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching

    NASA Astrophysics Data System (ADS)

    Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li

    2016-10-01

    HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.

  9. Anisotropic selective etching between SiGe and Si

    NASA Astrophysics Data System (ADS)

    Ishii, Yohei; Scott-McCabe, Ritchie; Yu, Alex; Okuma, Kazumasa; Maeda, Kenji; Sebastian, Joseph; Manos, Jim

    2018-06-01

    In Si/SiGe dual-channel FinFETs, it is necessary to simultaneously control the etched amounts of SiGe and Si. However, the SiGe etch rate is higher than the Si etch rate in not only halogen plasmas but also physical sputtering. In this study, we found that hydrogen plasma selectively etches Si over SiGe. The result shows that the selectivity of Si over SiGe can be up to 38 with increasing Ge concentration in SiGe. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) results indicate that hydrogen selectively bonds with Si rather than with Ge in SiGe. During the etching, hydrogen-induced Si surface segregation is also observed. It is also observed that the difference in etched amount between SiGe and Si can be controlled from positive to negative values even in Si/SiGe dual-channel fin patterning while maintaining the vertical profiles. Furthermore, no plasma-induced lattice damage was observed by transmission electron microscopy for both Si and SiGe fin sidewalls.

  10. Silicon Carbide Etching Using Chlorine Trifluoride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Oda, Satoko; Fukai, Yasushi; Fukae, Katsuya; Takeuchi, Takashi; Aihara, Masahiko

    2005-03-01

    The etch rate, chemical reactions and etched surface of β-silicon carbide are studied in detail using chlorine trifluoride gas. The etch rate is greater than 10 μm min-1 at 723 K with a flow rate of 0.1 \\ell min-1 at atmospheric pressure in a horizontal reactor. The maximum etch rate at a substrate temperature of 773 K is 40 μm min-1 with a flow rate of 0.25 \\ell min-1. The step-like pattern that initially exists on the β-silicon carbide surface tends to be smoothed; the root-mean-square surface roughness decreases from its initial value of 5 μm to 1 μm within 15 min; this minimum value is maintained for more than 15 min. Therefore, chlorine trifluoride gas is considered to have a large etch rate for β-silicon carbide associated with making a rough surface smooth.

  11. Microfluidic etching and oxime-based tailoring of biodegradable polyketoesters.

    PubMed

    Barrett, Devin G; Lamb, Brian M; Yousaf, Muhammad N

    2008-09-02

    A straightforward, flexible, and inexpensive method to etch biodegradable poly(1,2,6-hexanetriol alpha-ketoglutarate) films is reported. Microfluidic delivery of the etchant, a solution of NaOH, can create micron-scale channels through local hydrolysis of the polyester film. In addition, the presence of a ketone in the repeat unit allows for prior or post chemoselective modifications, enabling the design of functionalized microchannels. Delivery of oxyamine tethered ligands react with ketone groups on the polyketoester to generate covalent oxime linkages. By thermally sealing an etched film to a second flat surface, poly(1,2,6-hexanetriol alpha-ketoglutarate) can be used to create biodegradable microfluidic devices. In order to determine the versatility of the microfluidic etch technique, poly(epsilon-caprolactone) was etched with acetone. This strategy provides a facile method for the direct patterning of biodegradable materials, both through etching and chemoselective ligand immobilization.

  12. Silicon nanowire photodetectors made by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Ni, Chuan; Sarangan, Andrew

    2016-09-01

    Silicon nanowires have unique optical effects, and have potential applications in photodetectors. They can exhibit simple optical effects such as anti-reflection, but can also produce quantum confined effects. In this work, we have fabricated silicon photodetectors, and then post-processed them by etching nanowires on the incident surface. These nanowires were produced by a wet-chemical etching process known as the metal-assisted-chemical etching, abbreviated as MACE. N-type silicon substrates were doped by thermal diffusion from a solid ceramic source, followed by etching, patterning and contact metallization. The detectors were first tested for functionality and optical performance. The nanowires were then made by depositing an ultra-thin film of gold below its percolation thickness to produce an interconnected porous film. This was then used as a template to etch high aspect ratio nanowires into the face of the detectors with a HF:H2O2 mixture.

  13. High-aspect ratio micro- and nanostructures enabled by photo-electrochemical etching for sensing and energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.

    2018-03-01

    Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.

  14. Three-dimensional patterning methods and related devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.

    2016-12-27

    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  15. Optical properties of micromachined polysilicon reflective surfaces with etching holes

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.

    1998-08-01

    MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.

  16. Hemodynamic effects of spiral ePTFE prosthesis compared with standard arteriovenous graft in a carotid to jugular vein porcine model.

    PubMed

    Jahrome, Ommid K; Hoefer, Imo; Houston, Graeme J; Stonebridge, Peter A; Blankestijn, Peter J; Moll, Frans L; de Borst, Gert J

    2011-01-01

    The primary patency rate of arteriovenous (AV) grafts is limited by distal venous anastomosis stenosis or occlusion due to intimal hyperplasia associated with distal graft turbulence. The normal blood flow in native arteries is spiral laminar flow. Standard vascular grafts do not produce spiral laminar flow at the distal anastomosis. Vascular grafts which induce a spiral laminar flow distally result in lower turbulence, particularly near the vessel wall. This initial study compares the hemodynamic effects of a spiral flow-inducing graft and a standard graft in a new AV carotid to jugular vein crossover graft porcine model. Four spiral flow grafts and 4 control grafts were implanted from the carotid artery to the contralateral jugular vein in 4 pigs. Two animals were terminated after 48 hours and 2 at 14 days. Graft patency was assessed by selective catheter digital angiography, and the flow pattern was assessed by intraoperative flow probe and color Doppler ultrasound (CDU) measurements. The spiral grafts were also assessed at enhanced flow rates using an external roller pump to simulate increased flow rates that may occur during dialysis using a standard dialysis needle cannulation. The method increased the flow rate through the graft by 660 ml/min. The graft distal anastomotic appearances were evaluated by explant histopathology. All grafts were patent at explantation with no complications. All anastomoses were found to be wide open and showed no significant angiographic stenosis at the distal anastomosis in both spiral and control grafts. CDU examinations showed a spiral flow pattern in the spiral graft and double helix pattern in the control graft. No gross histopathological effects were seen in either spiral or control grafts. This porcine model is robust and allows hemodynamic flow assessment up to 14 days postimplantation. The spiral flow-inducing grafts produced and maintained spiral flow at baseline and enhanced flow rates during dialysis needle cannulation, whereas control grafts did not produce spiral flow through the distal anastomosis. There was no deleterious effect of the spiral flow-inducing graft on macroscopic and histological examination. The reducing effect of spiral flow on intima hyperplasia formation will be the subject of further study using the same AV graft model at a longer period of implantation.

  17. Bi/In thermal resist for both Si anisotropic wet etching and Si/SiO2 plasma etching

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Tu, Yuqiang; Peng, Jun

    2004-01-01

    Bi/In thermal resist is a bilayer structure of Bi over In films which can be exposed by laser with a wide range of wavelengths and can be developed by diluted RCA2 solutions. Current research shows bimetallic resist can work as etch masking layer for both dry plasma etching and wet anisotropic etching. It can act as both patterning and masking layers for Si and SiO2 with plasma "dry" etch using CF4/CHF3. The etching condition is CF4 flow rate 50 sccm, pressure 150 mTorr, and RF power 100 - 600W. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1 nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In. Bi/In also creates etch masking layers for alkaline-based (KOH, TMAH and EDP) "wet" anisotropic bulk Si etch without the need of SiO2 masking steps. The laser exposed Bi/In etches two times more slowly than SiO2. Experiment result shows that single metal Indium film exhibits thermal resist characteristics but at twice the exposure levels. It can be developed in diluted RCA2 solution and used as an etch mask layer for Si anisotropic etch. X-ray diffraction analysis shows that laser exposure causes both Bi and In single film to oxidize. In film may become amorphous when exposed to high laser power.

  18. Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Yano, Takayuki

    2012-06-01

    We produce patterns on minute and curved surfaces of optical fibers, and develop a processing technology for fabricating sensors, antennas, electrical circuits, and other devices on such patterned surfaces by metallization. A three-dimensional processing technology can be used to fabricate a spiral coil on the surface of cylindrical quartz materials, and then the microcoils can also be applied to capillaries of micro-fluid devices, as well as to receiver coils connected to a catheter and an endoscope of nuclear magnetic resonance imaging (MRI) systems used in imaging blood vessels. To create a spiral line pattern with a small linewidth on a full-circumference surface of an optical fiber, focused-ion-beam (FIB) etching was employed. Here, a simple rotation stage comprising a dc motor and an LR3 battery was built. However, during the development of a prototype rotation stage before finalizing a large-scale remodelling of our FIB etching system, a technical problem was encountered where a spiral line could not be processed without running into breaks and notches in the features. It turned out that the problem was caused by axis blur resulting from an eccentric spinning (or wobbling) of the axis of the fiber caused by its unrestrained free end. The problem was solved by installing a rotation guide and an axis suppression device onto the rotation stage. Using this improved rotation stage. we succeeded in the seamless patterning of 1-µm-wide features on the full-circumference surface of a 250-µm-diameter quartz optical fiber (QOF) by FIB etching.

  19. Overcoming etch challenges related to EUV based patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter

    2017-04-01

    Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.

  20. Computational nanometrology of line-edge roughness: noise effects, cross-line correlations and the role of etch transfer

    NASA Astrophysics Data System (ADS)

    Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos

    2018-03-01

    The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and line correlation metrics in SAQP data. We find that the spacer etch steps reduce edge correlations while etch steps with pattern transfer increase these. Furthermore, the density doubling and quadrupling increase edge correlations as well as cross-line correlations.

  1. Method for etching thin films of niboium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.

    1979-11-23

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  2. Inductively Coupled Plasma-Induced Electrical Damage on HgCdTe Etched Surface at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, L. F.; Chen, Y. Y.; Ye, Z. H.; Hu, X. N.; Ding, R. J.; He, L.

    2018-03-01

    Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and p-n junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ˜ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.

  3. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  4. Utilization of optical emission endpoint in photomask dry etch processing

    NASA Astrophysics Data System (ADS)

    Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas

    2002-03-01

    Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.

  5. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    NASA Astrophysics Data System (ADS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.

  6. Nanofabrication of 10-nm T-shaped gates using a double patterning process with electron beam lithography and dry etch

    NASA Astrophysics Data System (ADS)

    Shao, Jinhai; Deng, Jianan; Lu, W.; Chen, Yifang

    2017-07-01

    A process to fabricate T-shaped gates with the footprint scaling down to 10 nm using a double patterning procedure is reported. One of the keys in this process is to separate the definition of the footprint from that for the gate-head so that the proximity effect originated from electron forward scattering in the resist is significantly minimized, enabling us to achieve as narrow as 10-nm foot width. Furthermore, in contrast to the reported technique for 10-nm T-shaped profile in resist, this process utilizes a metallic film with a nanoslit as an etch mask to form a well-defined 10-nm-wide foot in a SiNx layer by reactive ion etch. Such a double patterning process has demonstrated enhanced reliability. The detailed process is comprehensively described, and its advantages and limitations are discussed. Nanofabrication of InP-based high-electron-mobility transistors using the developed process for 10- to 20-nm T-shaped gates is currently under the way.

  7. Multi-spot porous silicon chip prepared from asymmetric electrochemical etching for human immunoglobin G sensor.

    PubMed

    Um, Sungyong; Cho, Bomin; Woo, Hee-Gweon; Sohn, Honglae

    2011-08-01

    Multi-spot porous silicon (MSPS)-based optical biosensor was developed to specify the biomolecules. MSPS chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon. MSPS prepared from anisotropic etching conditions displayed the Fabry-Pérot fringe patterns which varied spatially across the porous silicon (PS). Each spot displayed different reflection resonances and different pore characteristics as a function of the lateral distance from the Pt counter electrode. The sensor system consists of the 3 x 3 spot array of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the reflection patterns in the white light reflection spectrum of MSPS. Molecular binding and specificity was detected as a shift in wavelength of these Fabry-Pérot fringe patterns.

  8. Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Trong Tue, Phan; Shimoda, Tatsuya; Takamura, Yuzuru

    2017-01-01

    Patterning of lead zirconium titanate (PZT) films is crucial for highly integrated piezoelectric/ferroelectric micro-devices. In this work, we report a novel lift-off method using solution-processed indium zinc oxide (IZO) thin film as a sacrificial layer for sub-5 µm fine-patterning PZT film. The processes include IZO layer deposition and patterning, PZT film preparation, and final lift-off. The results reveal that the lift-off PZT processes provide better structural and electrical properties than those formed by the conventional wet-etching method. The successful patterning by the lift-off was mainly due to the fact that the IZO sacrificial layer is easy to etch and has a high-temperature resistance. This finding shows great promise for highly integrated electronic devices.

  9. Impact of materials engineering on edge placement error (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Mitra, Uday; Zhang, Ying

    2017-04-01

    Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.

  10. Test and evaluation of a multifunction keyboard and a dedicated keyboard for control of a flight management computer

    NASA Technical Reports Server (NTRS)

    Crane, J. M.; Boucek, G. P., Jr.; Smith, W. D.

    1986-01-01

    A flight management computer (FMC) control display unit (CDU) test was conducted to compare two types of input devices: a fixed legend (dedicated) keyboard and a programmable legend (multifunction) keyboard. The task used for comparison was operation of the flight management computer for the Boeing 737-300. The same tasks were performed by twelve pilots on the FMC control display unit configured with a programmable legend keyboard and with the currently used B737-300 dedicated keyboard. Flight simulator work activity levels and input task complexity were varied during each pilot session. Half of the points tested were previously familiar with the B737-300 dedicated keyboard CDU and half had no prior experience with it. The data collected included simulator flight parameters, keystroke time and sequences, and pilot questionnaire responses. A timeline analysis was also used for evaluation of the two keyboard concepts.

  11. Improving the efficiency of a chemotherapy day unit: applying a business approach to oncology.

    PubMed

    van Lent, Wineke A M; Goedbloed, N; van Harten, W H

    2009-03-01

    To improve the efficiency of a hospital-based chemotherapy day unit (CDU). The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean thinking, was performed. An integrated set of interventions was implemented, among them a new planning system. The results were evaluated using pre- and post-measurements. We observed 24% growth of treatments and bed utilisation, a 12% increase of staff member productivity and an 81% reduction of overtime. The used method improved process design and led to increased efficiency and a more timely delivery of care. Thus, the business approaches, which were adapted for healthcare, were successfully applied. The method may serve as an example for other oncology settings with problems concerning waiting times, patient flow or lack of beds.

  12. Single-expose patterning development for EUV lithography

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Petrillo, Karen; Meli, Luciana; Shearer, Jeffrey C.; Beique, Genevieve; Sun, Lei; Seshadri, Indira; Oh, Taehwan; Han, Seulgi; Saulnier, Nicole; Lee, Joe; Arnold, John C.; Hamieh, Bassem; Felix, Nelson M.; Furukawa, Tsuyoshi; Singh, Lovejeet; Ayothi, Ramakrishnan

    2017-03-01

    Initial readiness of EUV (extreme ultraviolet) patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. With the substantial cost of EUV exposure there is significant interest in extending the capability to do single exposure patterning with EUV. To enable this, emphasis must be placed on the aspect ratios, adhesion, defectivity reduction, etch selectivity, and imaging control of the whole patterning process. Innovations in resist materials and processes must be included to realize the full entitlement of EUV lithography at 0.33NA. In addition, enhancements in the patterning process to enable good defectivity, lithographic process window, and post etch pattern fidelity are also required. Through this work, the fundamental material challenges in driving down the effective k1 factor will be highlighted.

  13. Improvement of a block co-polymer (PS-b-PDMS) template etch profile using amorphous carbon layer

    NASA Astrophysics Data System (ADS)

    Oh, JiSoo; Oh, Jong Sik; Sung, DaIn; Yim, SoonMin; Song, SeungWon; Yeom, GeunYoung

    2017-03-01

    Block copolymers (BCPs) are consisted of at least two types of monomers which have covalent bonding. One of the widely investigated BCPs is polystyrene-block-polydimethylsiloxane (PS-b-PDMS), which is used as an alternative patterning method for various deep nanoscale devices due to its high Flory-Huggins interaction parameter (χ), such as optical devices and transistors, replacing conventional photolithography. As an alternate or supplementary nextgeneration lithography technology to extreme ultraviolet lithography (EUVL), BCP lithography utilizing the DSA of BCP has been actively studied. However, the nanoscale BCP mask material is easily damaged by the plasma and has a very low etch selectivity over bottom semiconductor materials, because it is composed of polymeric materials even though it contains Si in PDMS. In this study, an amorphous carbon layer (ACL) was inserted as a hardmask material between BCP and materials to be patterned, and, by using O2 plasmas, the characteristics of dry etching of ACL for high aspect ratio (HAR) using a 10 nm PDMS pattern were investigated. The results showed that, by using a PS-b-PDMS pattern with an aspect ratio of 0.3 0.9:1, a HAR PDMS/ACL double layer mask with an aspect ratio of 10:1 could be fabricated. In addition, by the optimization of the plasma etch process, ACL masks with excellent sidewall roughness (SWR,1.35 nm) and sidewall angle (SWA, 87.9˚) could be fabricated.

  14. Use of KRS-XE positive chemically amplified resist for optical mask manufacturing

    NASA Astrophysics Data System (ADS)

    Ashe, Brian; Deverich, Christina; Rabidoux, Paul A.; Peck, Barbara; Petrillo, Karen E.; Angelopoulos, Marie; Huang, Wu-Song; Moreau, Wayne M.; Medeiros, David R.

    2002-03-01

    The traditional mask making process uses chain scission-type resists such as PBS, poly(butene-1-sulfone), and ZEP, poly(methyl a-chloroacrylate-co-a-methylstyrene) for making masks with dimensions greater than 180nm. PBS resist requires a wet etch process to produce patterns in chrome. ZEP was employed for dry etch processing to meet the requirements of shrinking dimensions, optical proximity corrections and phase shift masks. However, ZEP offers low contrast, marginal etch resistance, organic solvent development, and concerns regarding resist heating with its high dose requirements1. Chemically Amplified Resist (CAR) systems are a very good choice for dimensions less than 180nm because of their high sensitivity and contrast, high resolution, dry etch resistance, aqueous development, and process latitude2. KRS-XE was developed as a high contrast CA resist based on ketal protecting groups that eliminate the need for post exposure bake (PEB). This resist can be used for a variety of electron beam exposures, and improves the capability to fabricate masks for devices smaller than 180nm. Many factors influence the performance of resists in mask making such as post apply bake, exposure dose, resist develop, and post exposure bake. These items will be discussed as well as the use of reactive ion etching (RIE) selectivity and pattern transfer.

  15. Overview of several applications of chemical downstream etching (CDE) for IC manufacturing: advantages and drawbacks versus WET processes

    NASA Astrophysics Data System (ADS)

    de Buttet, Côme; Prevost, Emilie; Campo, Alain; Garnier, Philippe; Zoll, Stephane; Vallier, Laurent; Cunge, Gilles; Maury, Patrick; Massin, Thomas; Chhun, Sonarith

    2017-03-01

    Today the IC manufacturing faces lots of problematics linked to the continuous down scaling of printed structures. Some of those issues are related to wet processing, which are often used in the IC manufacturing flow for wafer cleaning, material etching and surface preparation. In the current work we summarize the limitations for the next nodes of wet processing such as metallic contaminations, wafer charging, corrosion and pattern collapse. As a replacement, we promoted the isotropic chemical dry etching (CDE) which is supposed to fix all the above drawbacks. Etching steps of SI3N4 layers were evaluated in order to prove the interest of such technique.

  16. Gray scale x-ray mask

    DOEpatents

    Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA

    2006-03-07

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  17. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    NASA Astrophysics Data System (ADS)

    Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.

    2010-02-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  18. Effects of a non-rinse conditioner on the enamel of primary teeth.

    PubMed

    Fava, Marcelo; Myaki, Silvio Issáo; Arana-Chavez, Victor Elias; Fava-de-Moraes, Flavio

    2003-01-01

    The aim of this in vitro study was to evaluate by scanning electron microscopy the morphological aspects of the enamel of primary teeth after etching with 36% phosphoric acid or a non-rinse conditioner. Ten naturally exfoliated anterior primary teeth were selected. The samples were subjected to prophylaxis with pumice paste and water using a low-speed hand piece. Etching was done on the buccal surface. Specimens were divided into 2 groups: G1 (n=10): etching with 36% phosphoric acid gel - Conditioner 36 (Dentsply) for 20 s, followed by water rinse for 15 s; G2 (n=10): etching with NRC - Non Rinse Conditioner (Dentsply) for 20 s, followed by air drying for 15 s. The samples were dehydrated, mounted on metal stubs, coated with gold and observed with Jeol JSM-6100 scanning electron microscope. Electron-micrographic analysis showed that both etching agents were effective for etching the enamel of primary teeth causing the formation of microporosities on the enamel surface, although the etching pattern was more effective with the use of 36% phosphoric acid gel.

  19. Plasma etching of polymers like SU8 and BCB

    NASA Astrophysics Data System (ADS)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  20. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    DOE PAGES

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less

  1. Mechanical Stress in InP Structures Etched in an Inductively Coupled Plasma Reactor with Ar/Cl2/CH4 Plasma Chemistry

    NASA Astrophysics Data System (ADS)

    Landesman, Jean-Pierre; Cassidy, Daniel T.; Fouchier, Marc; Pargon, Erwine; Levallois, Christophe; Mokhtari, Merwan; Jimenez, Juan; Torres, Alfredo

    2018-02-01

    We investigated the crystal lattice deformation that can occur during the etching of structures in bulk InP using SiNx hard masks with Ar/Cl2/CH4 chemistries in an inductively coupled plasma reactor. Two techniques were used: degree of polarization (DOP) of the photo-luminescence, which gives information on the state of mechanical stress present in the structures, and spectrally resolved cathodo-luminescence (CL) mapping. This second technique also provides elements on the mechanical stress in the samples through analysis of the spectral shift of the CL intrinsic emission lines. Preliminary DOP mapping experiments have been conducted on the SiNx hard mask patterns without etching the underlying InP. This preliminary study demonstrated the potential of DOP to map mechanical stress quantitatively in the structures. In a second step, InP patterns with various widths between 1 μm and 20 μm, and various depths between 1 μm and 6 μm, were analyzed by the 2 techniques. DOP measurements were made both on the (100) top surface of the samples and on the (110) cleaved cross section. CL measurements were made only from the (100) surface. We observed that inside the etched features, close to the vertical etched walls, there is always some compressive deformation, while it is tensile just outside the etched features. The magnitude of these effects depends on the lateral and depth dimensions of the etched structures, and on the separation between them (the tensile deformation increases between them due to some kind of proximity effect when separation decreases).

  2. Silicon micro-mold and method for fabrication

    DOEpatents

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  3. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M [Livermore, CA

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  4. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guole; Wu, Shuang; Zhang, Tingting

    2016-08-01

    Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps atmore » liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.« less

  5. Reducing Line Edge Roughness in Si and SiN through plasma etch chemistry optimization for photonic waveguide applications

    NASA Astrophysics Data System (ADS)

    Marchack, Nathan; Khater, Marwan; Orcutt, Jason; Chang, Josephine; Holmes, Steven; Barwicz, Tymon; Kamlapurkar, Swetha; Green, William; Engelmann, Sebastian

    2017-03-01

    The LER and LWR of subtractively patterned Si and SiN waveguides was calculated after each step in the process. It was found for Si waveguides that adjusting the ratio of CF4:CHF3 during the hard mask open step produced reductions in LER of 26 and 43% from the initial lithography for isolated waveguides patterned with partial and full etches, respectively. However for final LER values of 3.0 and 2.5 nm on fully etched Si waveguides, the corresponding optical loss measurements were indistinguishable. For SiN waveguides, introduction of C4H9F to the conventional CF4/CHF3 measurement was able to reduce the mask height budget by a factor of 5, while reducing LER from the initial lithography by 26%.

  6. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    PubMed

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P < 0.001). Acid etch application to sandblasted surfaces significantly increased the SBS in groups 1, 2, 5, and 6. The SBS of metal brackets debonded from groups 1, 3, and 5 were not significantly different from those of groups 2, 4, and 6. All debonded metal brackets revealed a similar pattern of bond failure at the adhesive-restorative interface. However, ceramic brackets had a significantly different adhesive failure pattern with dominant failure at the adhesive-bracket interface. Ceramic fractures after bracket removal were found more often in groups 1-4. No significant difference in ceramic fracture was observed between the IPS Empress 2 and In-Ceram groups.

  7. Fluorine-Based DRIE of Fused Silica

    NASA Technical Reports Server (NTRS)

    Yee, Karl; Shcheglov, Kirill; Li, Jian; Choi, Daniel

    2007-01-01

    A process of deep reactive-ion etching (DRIE) using a fluorine-based gas mixture enhanced by induction-coupled plasma (ICP) has been demonstrated to be effective in forming high-aspect-ratio three-dimensional patterns in fused silica. The patterns are defined in part by an etch mask in the form of a thick, high-quality aluminum film. The process was developed to satisfy a need to fabricate high-aspect-ratio fused-silica resonators for vibratory microgyroscopes, and could be used to satisfy similar requirements for fabricating other fused-silica components.

  8. Integrated approach to improving local CD uniformity in EUV patterning

    NASA Astrophysics Data System (ADS)

    Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader

    2017-03-01

    Extreme ultraviolet (EUV) lithography is crucial to enabling technology scaling in pitch and critical dimension (CD). Currently, one of the key challenges of introducing EUV lithography to high volume manufacturing (HVM) is throughput, which requires high source power and high sensitivity chemically amplified photoresists. Important limiters of high sensitivity chemically amplified resists (CAR) are the effects of photon shot noise and resist blur on the number of photons received and of photoacids generated per feature, especially at the pitches required for 7 nm and 5 nm advanced technology nodes. These stochastic effects are reflected in via structures as hole-to-hole CD variation or local CD uniformity (LCDU). Here, we demonstrate a synergy of film stack deposition, EUV lithography, and plasma etch techniques to improve LCDU, which allows the use of high sensitivity resists required for the introduction of EUV HVM. Thus, to improve LCDU to a level required by 5 nm node and beyond, film stack deposition, EUV lithography, and plasma etch processes were combined and co-optimized to enhance LCDU reduction from synergies. Test wafers were created by depositing a pattern transfer stack on a substrate representative of a 5 nm node target layer. The pattern transfer stack consisted of an atomically smooth adhesion layer and two hardmasks and was deposited using the Lam VECTOR PECVD product family. These layers were designed to mitigate hole roughness, absorb out-of-band radiation, and provide additional outlets for etch to improve LCDU and control hole CD. These wafers were then exposed through an ASML NXE3350B EUV scanner using a variety of advanced positive tone EUV CAR. They were finally etched to the target substrate using Lam Flex dielectric etch and Kiyo conductor etch systems. Metrology methodologies to assess dimensional metrics as well as chip performance and defectivity were investigated to enable repeatable patterning process development. Illumination conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.

  9. Impact of Parameter Variation in Fabrication of Nanostructure by Atomic Force Microscopy Nanolithography

    PubMed Central

    Dehzangi, Arash; Larki, Farhad; Hutagalung, Sabar D.; Goodarz Naseri, Mahmood; Majlis, Burhanuddin Y.; Navasery, Manizheh; Hamid, Norihan Abdul; Noor, Mimiwaty Mohd

    2013-01-01

    In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (1015 cm−3) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity. PMID:23776479

  10. Control of the sidewall angle of an absorber stack using the Faraday cage system for the change of pattern printability in EUVL

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; Huh, Sung-Min; Moon, Seong-Yong; Woo, Sang-Gyun; Lee, Jin-Kwan; Moon, Sang Heup; Cho, HanKu

    2008-10-01

    A patterned TaN substrate, which is candidate for a mask absorber in extreme ultra-violet lithography (EUVL), was etched to have inclined sidewalls by using a Faraday cage system under the condition of a 2-step process that allowed the high etch selectivity of TaN over the resist. The sidewall angle (SWA) of the patterned substrate, which was in the shape of a parallelogram after etching, could be controlled by changing the slope of a substrate holder that was placed in the Faraday cage. The performance of an EUV mask, which contained the TaN absorber of an oblique pattern over the molybdenum/silicon multi-layer, was simulated for different cases of SWA. The results indicated that the optical properties, such as the critical dimension (CD), an offset in the CD bias between horizontal and vertical patterns (H-V bias), and a shift in the image position on the wafer, could be controlled by changing the SWA of the absorber stack. The simulation result showed that the effect of the SWA on the optical properties became more significant at larger thicknesses of the absorber and smaller sizes of the target CD. Nevertheless, the contrast of the aerial images was not significantly decreased because the shadow effect caused by either sidewall of the patterned substrate cancelled with each other.

  11. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  12. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  13. Characterization and mechanism of He plasma pretreatment of nanoscale polymer masks for improved pattern transfer fidelity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilnboeck, F.; Metzler, D.; Kumar, N.

    2011-12-26

    Roughening of nanoscale polymer masks during plasma etching (PE) limits feature critical dimensions in current and future lithographic technologies. Roughness formation of 193 nm photoresist (PR) is mechanistically explained by plasma-induced changes in mechanical properties introduced at the PR surface ({approx}2 nm) by ions and in parallel in the material bulk ({approx}200 nm) by ultraviolet (UV) plasma radiation. Synergistic roughening of polymer masks can be prevented by pretreating PR patterns with a high dose of He plasma UV exposure to saturate bulk material modifications. During subsequent PE, PR patterns are stabilized and exhibit improved etch resistance and reduced surface/line-edge roughness.

  14. Bonding characteristics of self-etching adhesives to intact versus prepared enamel.

    PubMed

    Perdigão, Jorge; Geraldeli, Saulo

    2003-01-01

    This study tested the null hypothesis that the preparation of the enamel surface would not affect the enamel microtensile bond strengths of self-etching adhesive materials. Ten bovine incisors were trimmed with a diamond saw to obtain a squared enamel surface with an area of 8 x 8 mm. The specimens were randomly assigned to five adhesives: (1) ABF (Kuraray), an experimental two-bottle self-etching adhesive; (2) Clearfil SE Bond (Kuraray), a two-bottle self-etching adhesive; (3) One-Up Bond F (Tokuyama), an all-in-one adhesive; (4) Prompt L-Pop (3M ESPE), an all-in-one adhesive; and (5) Single Bond (3M ESPE), a two-bottle total-etch adhesive used as positive control. For each specimen, one half was roughened with a diamond bur for 5 seconds under water spray, whereas the other half was left unprepared. The adhesives were applied as per manufacturers' directions. A universal hybrid composite resin (Filtek Z250, 3M ESPE) was inserted in three layers of 1.5 mm each and light-cured. Specimens were sectioned in X and Y directions to obtain bonded sticks with a cross-sectional area of 0.8 +/- 0.2 mm2. Sticks were tested in tension in an Instron at a cross-speed of 1 mm per minute. Statistical analysis was carried out with two-way analysis of variance and Duncan's test at p < .05. Ten extra specimens were processed for observation under a field-emission scanning electron microscope. Single Bond, the total-etch adhesive, resulted in statistically higher microtensile bond strength than any of the other adhesives regardless of the enamel preparation (unprepared = 31.5 MPa; prepared = 34.9 MPa, not statistically different at p < .05). All the self-etching adhesives resulted in higher microtensile bond strength when enamel was roughened than when enamel was left unprepared. However, for ABF and for Clearfil SE Bond this difference was not statistically significant at p > .05. When applied to ground enamel, mean bond strengths of Prompt L-Pop were not statistically different from those of Clearfil SE Bond and ABF. One-Up Bond F did not bond to unprepared enamel. Commercial self-etching adhesives performed better on prepared enamel than on unprepared enamel. The field-emission scanning electron microscope revealed a deep interprismatic etching pattern for the total-etch adhesive, whereas the self-etching systems resulted in an etching pattern ranging from absent to moderate.

  15. Fabrication of cylindrical micro-parts using synchronous rotary scan-projection lithography and chemical etching

    NASA Astrophysics Data System (ADS)

    Ito, Kaiki; Suzuki, Yuta; Horiuchi, Toshiyuki

    2017-07-01

    Lithographical patterning on the surface of a fine pipe with a thin wall is required for fabricating three-dimensional micro-parts. For this reason, a new exposure system for printing patterns on a cylindrical pipe by synchronous rotary scan-projection exposure was developed. Using the exposure system, stent-like resist patterns with a width of 251 μm were printed on a surface of stainless-steel pipe with an outer diameter of 2 mm. The exposure time was 30 s. Next, the patterned pipe was chemically etched. As a result, a stent-like mesh pipe with a line width of 230 μm was fabricated. It was demonstrated that the new method had a potential to be applied to fabrications of stent and other cylindrical micro-parts.

  16. Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes

    PubMed Central

    Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.

    2017-01-01

    This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683

  17. Selective Etching via Soft Lithography of Conductive Multilayered Gold Films with Analysis of Electrolyte Solutions

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria T.

    2008-01-01

    This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…

  18. Effect of Different Protocols in Preconditioning With EDTA in Sclerotic Dentin and Enamel Before Universal Adhesives Applied in Self-etch Mode.

    PubMed

    Martini, E C; Parreiras, S O; Gutierrez, M F; Loguercio, A D; Reis, A

    The aim of this study was to investigate the effect of different protocols of 17% ethylene diamine tetra-acetic acid (EDTA) conditioning on the etching pattern and immediate bond strength of universal adhesives to enamel and sclerotic dentin. Forty bovine teeth with sclerotic dentin and 20 human third molars were randomly divided into eight groups resulting from the combination of the main factors surface treatment (none, two-minute EDTA conditioning manual application, 30-second EDTA manual application, 30-second EDTA sonic application) and adhesives systems (Scotchbond Universal Adhesive [SBU] and Prime & Bond Elect [PBE]). Resin-dentin and enamel-dentin bond specimens were prepared and tested under the microtensile bond strength (μTBS) and microshear bond strength (μSBS) tests, respectively. The etching pattern produced on the unground enamel and the sclerotic dentin surfaces under the different protocols and adhesive systems was evaluated under scanning electron microscopy. For enamel, only the main factor adhesive was significant (p<0.0001), with SBU showing the highest μSBS. In sclerotic dentin, the lowest mean was observed for the group without EDTA application and the highest mean in the group with EDTA application with the sonic device for 30 seconds. Regardless of the EDTA protocol, the highest means of μTBS were observed for SBU (p<0.05). EDTA conditioning improves the bonding performance of universal adhesives in the self-etch mode on sclerotic dentin, mainly when applied for 30 seconds with the aid of a sonic device. EDTA pretreatment also improves the retentive etching pattern of enamel, but it does not result in higher enamel bond strength.

  19. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography

    NASA Astrophysics Data System (ADS)

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-01

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  20. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.

    PubMed

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-17

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  1. Effect of clearfil protect bond and transbond plus self-etch primer on shear bond strength of orthodontic brackets

    PubMed Central

    Raji, S. Hamid; Ghorbanipour, Reza; Majdzade, Fateme

    2011-01-01

    Background: The aim of this study was to evaluate the shear bond strength of an antimicrobial and fluoride-releasing self-etch primer (clearfil protect bond) and compare it with transbond plus self-etch primer and conventional acid etching and priming system. Materials and Methods: Forty-eight extracted human premolars were divided randomly to three groups. In group 1, the teeth were bonded with conventional acid etching and priming method. In group 2, the teeth were bonded with clearfil protect bond self-etch primer, and transbond plus self-etch primer was used to bond the teeth in group 3. The samples were stored in 37°C distilled water and thermocycled. Then, the SBS of the sample was evaluated with Zwick testing machine. Descriptive statistics and the analysis of variances (ANOVA) and Tukey's test and Kruskal-Wallis were used to analyze the data. Results: The results of the ANOVA showed that the mean of group 3 was significantly lower than that of other groups. Most of the sample showed a pattern of failure within the adhesive resin. Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel. PMID:23372605

  2. New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nouri, Lamia; Possémé, Nicolas; Landis, Stéfan; Milesi, Frédéric; Gaillard, Frédéric-Xavier

    2017-04-01

    Fabrication processes that microelectronic developed for Integrated circuit (IC) technologies for decades, do not meet the new emerging structuration's requirements, in particular non-IC related technologies one, such as MEMS/NEMS, Micro-Fluidics, photovoltaics, lenses. Actually complex 3D structuration requires complex lithography patterning approaches such as gray-scale electron beam lithography, laser ablation, focused ion beam lithography, two photon polymerization. It is now challenging to find cheaper and easiest technique to achieve 3D structures. In this work, we propose a straightforward process to realize 3D structuration, intended for silicon based materials (Si, SiN, SiOCH). This structuration technique is based on nano-imprint lithography (NIL), ion implantation and selective wet etching. In a first step a pattern is performed by lithography on a substrate, then ion implantation is realized through a resist mask in order to create localized modifications in the material, thus the pattern is transferred into the subjacent layer. Finally, after the resist stripping, a selective wet etching is carried out to remove selectively the modified material regarding the non-modified one. In this paper, we will first present results achieved with simple 2D line array pattern processed either on Silicon or SiOCH samples. This step have been carried out to demonstrate the feasibility of this new structuration process. SEM pictures reveals that "infinite" selectivity between the implanted areas versus the non-implanted one could be achieved. We will show that a key combination between the type of implanted ion species and wet etching chemistries is required to obtain such results. The mechanisms understanding involved during both implantation and wet etching processes will also be presented through fine characterizations with Photoluminescence, Raman and Secondary Ion Mass Spectrometry (SIMS) for silicon samples, and ellipso-porosimetry and Fourier Transform InfraRed spectroscopy (FTIR) for SiOCH samples. Finally the benefit of this new patterning approach will be presented on 3D patterns structures.

  3. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NASA Astrophysics Data System (ADS)

    Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.

    2012-12-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  4. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min-1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ.

  5. Method for nanomachining high aspect ratio structures

    DOEpatents

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  6. Deep Etching Process Developed for the Fabrication of Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2000-01-01

    Silicon carbide (SiC), because of its superior electrical and mechanical properties at elevated temperatures, is a nearly ideal material for the microminiature sensors and actuators that are used in harsh environments where temperatures may reach 600 C or greater. Deep etching using plasma methods is one of the key processes used to fabricate silicon microsystems for more benign environments, but SiC has proven to be a more difficult material to etch, and etch depths in SiC have been limited to several micrometers. Recently, the Sensors and Electronics Technology Branch at the NASA Glenn Research Center at Lewis Field developed a plasma etching process that was shown to be capable of etching SiC to a depth of 60 mm. Deep etching of SiC is achieved by inductive coupling of radiofrequency electrical energy to a sulfur hexafluoride (SF6) plasma to direct a high flux of energetic ions and reactive fluorine atoms to the SiC surface. The plasma etch is performed at a low pressure, 5 mtorr, which together with a high gas throughput, provides for rapid removal of the gaseous etch products. The lateral topology of the SiC microstructure is defined by a thin film of etch-resistant material, such as indium-tin-oxide, which is patterned using conventional photolithographic processes. Ions from the plasma bombard the exposed SiC surfaces and supply the energy needed to initiate a reaction between SiC and atomic fluorine. In the absence of ion bombardment, no reaction occurs, so surfaces perpendicular to the wafer surface (the etch sidewalls) are etched slowly, yielding the desired vertical sidewalls.

  7. Erectile function after anastomotic urethroplasty for pelvic fracture urethral injuries.

    PubMed

    El-Assmy, A; Harraz, A M; Benhassan, M; Nabeeh, A; Ibrahiem, El Hi

    2016-07-01

    There is an established association between ED and pelvic fracture urethral injuries (PFUIs). However, ED can occur after the injury and/or the urethral repair. To our knowledge, only one study of erectile function (EF) after urethroplasty for PFUIs used a validated questionnaire. This study was carried out to determine the impact of anastomotic posterior urethroplasty for PFUIs on EF. We retrospectively reviewed the computerized surgical records to identify patients who underwent anastomotic urethroplasty for PFUIs from 1998 to 2014. Those patients were contacted by phone or mail and were re-evaluated in the outpatient clinic by International Index of Erectile Function questionnaire; in unmarried men, the single-question self-report of ED was used for evaluation of EF, clinical examination and penile color Doppler ultrasonography (CDU) for men with ED. Overall, 58 patients were included in the study among whom 36 (62%) men were sexually active and the remaining 22 (38%) were single. The incidence of ED among our group is 72%. All patients developed ED after initial pelvic trauma and none of our patients had impaired EF after urethroplasty. The incidence of ED increased proportionally with severity of pelvic trauma. All patients with type-C pelvic fracture, associated symphysis pubis diastasis, sacroiliac joints diastasis and bilateral pubic ramus fractures had ED. Men with PFUIs had worse EF than men in other series with pelvic fractures without urethral injury. The majority (88%) of men with ED showed veno-occlusive dysfunction on penile CDU. So we concluded that men with PFUIs had a high incidence of ED up to 72%. Anastomotic posterior urethroplasty had no negative impact on EF and the development of ED after PFUIs was related to the severity of the original pelvic trauma. Veno-occlusive dysfunction is the commonest etiology of ED on penile CDU.

  8. Environmental potential of the use of CO2 from alcoholic fermentation processes. The CO2-AFP strategy.

    PubMed

    Alonso-Moreno, Carlos; García-Yuste, Santiago

    2016-10-15

    A novel Carbon Dioxide Utilization (CDU) approach from a relatively minor CO2 emission source, i.e., alcoholic fermentation processes (AFP), is presented. The CO2 produced as a by-product from the AFP is estimated by examining the EtOH consumed per year reported by the World Health Organization in 2014. It is proposed that the extremely pure CO2 from the AFP is captured in NaOH solutions to produce one of the Top 10 commodities in the chemical industry, Na2CO3, as a good example of an atomic economy process. The novel CDU strategy could yield over 30.6Mt of Na2CO3 in oversaturated aqueous solution on using ca. 12.7Mt of captured CO2 and this process would consume less energy than the synthetic methodology (Solvay ammonia soda process) and would not produce low-value by-products. The quantity of Na2CO3 obtained by this strategy could represent ca. 50% of the world Na2CO3 production in one year. In terms of the green economy, the viability of the strategy is discussed according to the recommendations of the CO2Chem network, and an estimation of the CO2negative emission achieved suggests a capture of around 280.0Mt of CO2 from now to 2020 or ca. 1.9Gt from now to 2050. Finally, the results obtained for this new CDU proposal are discussed by considering different scenarios; the CO2 production in a typical winemaking corporation, the CO2 released in the most relevant wine-producing countries, and the use of CO2 from AFP as an alternative for the top Na2CO3-producing countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High-Si content BARC for dual-BARC systems such as trilayer patterning

    NASA Astrophysics Data System (ADS)

    Kennedy, Joseph; Xie, Song-Yuan; Wu, Ze-Yu; Katsanes, Ron; Flanigan, Kyle; Lee, Kevin; Slezak, Mark; Liu, Zhi; Lin, Shang-Ho

    2009-03-01

    This work discusses the requirements and performance of Honeywell's middle layer material, UVAS, for tri-layer patterning. UVAS is a high Si content polymer synthesized directly from Si containing starting monomer components. The monomers are selected to produce a film that meets the requirements as a middle layer for tri-layer patterning (TLP) and gives us a level of flexibility to adjust the properties of the film to meet the customer's specific photoresist and patterning requirements. Results of simulations of the substrate reflectance versus numerical aperture, UVAS thickness, and under layer film are presented. ArF photoresist line profiles and process latitude versus UVAS bake at temperatures as low as 150ºC are presented and discussed. Immersion lithographic patterning of ArF photoresist line space and contact hole features will be presented. A sequence of SEM images detailing the plasma etch transfer of line space photoresist features through the middle and under layer films comprising the TLP film stack will be presented. Excellent etch selectivity between the UVAS and the organic under layer film exists as no edge erosion or faceting is observed as a result of the etch process. A detailed study of the impact of a PGMEA solvent photoresist rework process on the lithographic process window of a TLP film stack was performed with the results indicating that no degradation to the UVAS film occurs.

  10. Macroscale Transformation Optics Enabled by Photoelectrochemical Etching.

    PubMed

    Barth, David S; Gladden, Christopher; Salandrino, Alessandro; O'Brien, Kevin; Ye, Ziliang; Mrejen, Michael; Wang, Yuan; Zhang, Xiang

    2015-10-28

    Photoelectrochemical etching of silicon can be used to form lateral refractive index gradients for transformation optical devices. This technique allows the fabrication of macroscale devices with large refractive index gradients. Patterned porous layers can also be lifted from the substrate and transferred to other materials, creating more possibilities for novel devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  12. Wafer-scale development and experimental verification of 0.36 mm2 228 mV open-circuit-voltage solid-state CMOS-compatible glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Arata, Shigeki; Hayashi, Kenya; Nishio, Yuya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-04-01

    The world’s smallest (0.36 mm2) solid-state CMOS-compatible glucose fuel cell, which exhibits an open-circuit voltage (OCV) of 228 mV and a power generation density of 1.32 µW/cm2 with a 30 mM glucose solution, is reported in this paper. Compared with conventional wet etching, dry etching (reactive ion etching) for patterning minimizes damage to the anode and cathode, resulting in a cell with a small size and a high OCV, sufficient for CMOS circuit operation.

  13. Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking

    NASA Astrophysics Data System (ADS)

    Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.

    2016-10-01

    We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.

  14. X-ray mask and method for providing same

    DOEpatents

    Morales, Alfredo M [Pleasanton, CA; Skala, Dawn M [Fremont, CA

    2004-09-28

    The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

  15. X-ray mask and method for providing same

    DOEpatents

    Morales, Alfredo M.; Skala, Dawn M.

    2002-01-01

    The present invention describes a method for fabricating an x-ray mask tool which can achieve pattern features having lateral dimension of less than 1 micron. The process uses a thin photoresist and a standard lithographic mask to transfer an trace image pattern in the surface of a silicon wafer by exposing and developing the resist. The exposed portion of the silicon substrate is then anisotropically etched to provide an etched image of the trace image pattern consisting of a series of channels in the silicon having a high depth-to-width aspect ratio. These channels are then filled by depositing a metal such as gold to provide an inverse image of the trace image and thereby providing a robust x-ray mask tool.

  16. EUV patterning using CAR or MOX photoresist at low dose exposure for sub 36nm pitch

    NASA Astrophysics Data System (ADS)

    Thibaut, Sophie; Raley, Angélique; Lazarrino, Frederic; Mao, Ming; De Simone, Danilo; Piumi, Daniele; Barla, Kathy; Ko, Akiteru; Metz, Andrew; Kumar, Kaushik; Biolsi, Peter

    2018-04-01

    The semiconductor industry has been pushing the limits of scalability by combining 193nm immersion lithography with multi-patterning techniques for several years. Those integrations have been declined in a wide variety of options to lower their cost but retain their inherent variability and process complexity. EUV lithography offers a much desired path that allows for direct print of line and space at 36nm pitch and below and effectively addresses issues like cycle time, intra-level overlay and mask count costs associated with multi-patterning. However it also brings its own sets of challenges. One of the major barrier to high volume manufacturing implementation has been hitting the 250W power exposure required for adequate throughput [1]. Enabling patterning using a lower dose resist could help move us closer to the HVM throughput targets assuming required performance for roughness and pattern transfer can be met. As plasma etching is known to reduce line edge roughness on 193nm lithography printed features [2], we investigate in this paper the level of roughness that can be achieved on EUV photoresist exposed at a lower dose through etch process optimization into a typical back end of line film stack. We will study 16nm lines printed at 32 and 34nm pitch. MOX and CAR photoresist performance will be compared. We will review step by step etch chemistry development to reach adequate selectivity and roughness reduction to successfully pattern the target layer.

  17. Anisotropic etching of amorphous perfluoropolymer films in oxygen-based inductively coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Takao; Akagi, Takanori; Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

    2009-01-01

    An amorphous perfluoropolymer, 'Cytop' (Asahi Glass Co., Ltd.), is a preferable material for the fabrication of micro total analysis system devices because of its superior optical transparency over a wide wavelength range and low refractive index of 1.34, which is almost the same as that of water, as well as excellent chemical stability. To establish the precise microfabrication technology for this unique resin, the dry etching of the amorphous perfluoropolymer in Ar/O{sub 2} low-pressure inductively coupled plasma has been studied. A relatively high etch rate of approximately 6.3 {mu}m/min at maximum and highly anisotropic etched features was attained. Plasma measurementsmore » by a single Langmuir probe technique and actinometry revealed that etching is dominated by ion-assisted surface desorption above a 10%O{sub 2} mixing ratio, whereas the supply of active oxygen species is the rate-limiting process below 10%. Moreover, angled x-ray photoelectron spectroscopy measurements of an etched trench pattern revealed that a high anisotropy is attributed to the formation of a carbon-rich sidewall protection layer.« less

  18. Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.

    1981-01-01

    The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.

  19. 64nm pitch metal1 double patterning metrology: CD and OVL control by SEMCD, image based overlay and diffraction based overlay

    NASA Astrophysics Data System (ADS)

    Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe

    2015-03-01

    Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.

  20. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  1. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness,more » etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching showed that the Si fin (source/drain region) was directly damaged by high energy hydrogen and had local variations in the damage distribution, which may lead to a shift in the threshold voltage and the off-state leakage current. Therefore, side-wall etching and ion implantation processes must be carefully designed by considering the Si damage distribution to achieve low damage and high transistor performance for complementary metal–oxide–semiconductor devices.« less

  2. Defying ageing: An expectation for dentine bonding with universal adhesives?

    PubMed

    Zhang, Zheng-yi; Tian, Fu-cong; Niu, Li-na; Ochala, Kirsten; Chen, Chen; Fu, Bai-ping; Wang, Xiao-yan; Pashley, David H; Tay, Franklin R

    2016-02-01

    The present study evaluated the long-term dentine bonding effectiveness of five universal adhesives in etch-and-rinse or self-etch mode after 12 months of water-ageing. The adhesives evaluated included All-Bond Universal, Clearfil Universal Bond, Futurabond U Prime&Bond Elect and Scotchbond Universal. Microtensile bond strength and transmission electron microscopy of the resin-dentine interfaces created in human coronal dentine were examined after 24h or 12 months. Microtensile bond strength were significantly affected by bonding strategy (etch-and-rinse vs self-etch) and ageing (24h vs 12 months). All subgroups showed significantly decreased bond strength after ageing except for Prime&Bond Elect and Scotchbond Universal used in self-etch mode. All five adhesives employed in etch-and-rinse mode exhibited ultrastructural features characteristic of collagen degradation and resin hydrolysis. A previously-unobserved inside-out collagen degradation pattern was identified in hybrid layers created by 10-MDP containing adhesives (All-Bond Universal, Scotchbond Universal and Clearfil Universal Bond) in the etch-and-rinse mode, producing partially degraded collagen fibrils with intact periphery and a hollow core. In the self-etch mode, all adhesives except for Prime&Bond Elect exhibited degradation of the collagen fibrils along the thin hybrid layers. The three 10-MDP containing universal adhesives did not protect surface collagen fibrils from degradation when bonding was performed in the self-etch mode. Despite the adjunctive conclusion that bonds created by universal adhesives in the self-etch bonding mode are more resistant to decline in bond strength when compared with those bonds created using the etch-and-rinse mode, bonds created by universal adhesives are generally incapable of defying ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems.

    PubMed

    William, Vanessa; Burrow, Michael F; Palamara, Joseph E A; Messer, Louise B

    2006-01-01

    When restoring hypomineralized first permanent molars, placement of cavo-surface margins can be difficult to ascertain due to uncertainty of the bonding capability of the tooth surface. The purpose of this study was to investigate the adhesion of resin composite bonded to control and hypomineralized enamel with an all-etch single-bottle adhesive or self-etching primer adhesive. Specimens of control enamel (N=44) and hypomineralized enamel (N=45) had a 0.975-mm diameter composite rod (Filtek Supreme Universal Restorative) bonded with either 3M ESPE Single Bond or Clearfil SE Bond following manufacturers' instructions. Specimens were stressed in shear at 1 mm/min to failure (microshear bond strength). Etched enamel surfaces and enamel-adhesive interfaces were examined under scanning electron microscopy. The microshear bond strength (MPa) of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel (3M ESPE Single Bond=7.08 +/- 4.90 vs 16.27 +/- 10.04; Clearfil SE Bond=10.39 +/- 7.56 vs 19.63 +/- 7.42; P=.001). Fractures were predominantly adhesive in control enamel and cohesive in hypomineralized enamel. Scotchbond etchant produced deep interprismatic and intercrystal porosity in control enamel and shallow etch patterns with minimal intercrystal porosity in hypomineralized enamel. Control enamel appeared almost unaffected by SE Primer; hypomineralized enamel showed shallow etching. The hypomineralized enamel-adhesive interface was porous with cracks in the enamel. The control enamel-adhesive interface displayed a hybrid layer of even thickness. The microshear bond strength of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel. This was supported by differences seen in etch patterns and at the enamel-adhesive interface.

  4. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    PubMed Central

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-01

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235

  5. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    NASA Astrophysics Data System (ADS)

    Geng, Xuewen; Duan, Barrett K.; Grismer, Dane A.; Zhao, Liancheng; Bohn, Paul W.

    2013-06-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal-semiconductor interface.

  6. Overlay metrology for double patterning processes

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double patterning processes.

  7. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    NASA Astrophysics Data System (ADS)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  8. Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon.

    PubMed

    Kim, Jeong Dong; Kim, Munho; Kong, Lingyu; Mohseni, Parsian K; Ranganathan, Srikanth; Pachamuthu, Jayavel; Chim, Wai Kin; Chiam, Sing Yang; Coleman, James J; Li, Xiuling

    2018-03-14

    Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO 2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO 2 which is readily removed by HF alone with no anisotropy. In addition, 320 μm square through-Si-via (TSV) arrays in 550 μm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.

  9. SEM based overlay measurement between resist and buried patterns

    NASA Astrophysics Data System (ADS)

    Inoue, Osamu; Okagawa, Yutaka; Hasumi, Kazuhisa; Shao, Chuanyu; Leray, Philippe; Lorusso, Gian; Baudemprez, Bart

    2016-03-01

    With the continuous shrink in pattern size and increased density, overlay control has become one of the most critical issues in semiconductor manufacturing. Recently, SEM based overlay of AEI (After Etch Inspection) wafer has been used for reference and optimization of optical overlay (both Image Based Overlay (IBO) and Diffraction Based Overlay (DBO)). Overlay measurement at AEI stage contributes monitor and forecast the yield after formation by etch and calibrate optical measurement tools. however those overlay value seems difficult directly for feedback to a scanner. Therefore, there is a clear need to have SEM based overlay measurements of ADI (After Develop Inspection) wafers in order to serve as reference for optical overlay and make necessary corrections before wafers go to etch. Furthermore, to make the corrections as accurate as possible, actual device like feature dimensions need to be measured post ADI. This device size measurement is very unique feature of CDSEM , which can be measured with smaller area. This is currently possible only with the CD-SEM. This device size measurement is very unique feature of CD-SEM , which can be measured with smaller area. In this study, we assess SEM based overlay measurement of ADI and AEI wafer by using a sample from an N10 process flow. First, we demonstrate SEM based overlay performance at AEI by using dual damascene process for Via 0 (V0) and metal 1 (M1) layer. We also discuss the overlay measurements between litho-etch-litho stages of a triple patterned M1 layer and double pattern V0. Second, to illustrate the complexities in image acquisition and measurement we will measure overlay between M1B resist and buried M1A-Hard mask trench. Finally, we will show how high accelerating voltage can detect buried pattern information by BSE (Back Scattering Electron). In this paper we discuss the merits of this method versus standard optical metrology based corrections.

  10. Single exposure EUV patterning of BEOL metal layers on the IMEC iN7 platform

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Bekaert, J.; Mao, M.; Kutrzeba Kotowska, B.; Larivière, S.; Ciofi, I.; Baert, R.; Kim, R. H.; Gallagher, E.; Hendrickx, E.; Tan, L. E.; Gillijns, W.; Trivkovic, D.; Leray, P.; Halder, S.; Gallagher, M.; Lazzarino, F.; Paolillo, S.; Wan, D.; Mallik, A.; Sherazi, Y.; McIntyre, G.; Dusa, M.; Rusu, P.; Hollink, T.; Fliervoet, T.; Wittebrood, F.

    2017-03-01

    This paper summarizes findings on the iN7 platform (foundry N5 equivalent) for single exposure EUV (SE EUV) of M1 and M2 BEOL layers. Logic structures within these layers have been measured after litho and after etch, and variability was characterized both with conventional CD-SEM measurements as well as Hitachi contouring method. After analyzing the patterning of these layers, the impact of variability on potential interconnect reliability was studied by using MonteCarlo and process emulation simulations to determine if current litho/etch performance would meet success criteria for the given platform design rules.

  11. Nanosilicon dot arrays with a bit pitch and a track pitch of 25 nm formed by electron-beam drawing and reactive ion etching for 1 Tbit/in.{sup 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosaka, Sumio; Sano, Hirotaka; Shirai, Masumi

    2006-11-27

    The formation of very fine Si dots with a bit pitch and a track pitch of less than 25 nm using electron-beam (EB) lithography on ZEP520 and calixarene EB resists and CF{sub 4} reactive ion etching has been demonstrated. The experimental results indicate that the calixarene resist is very suitable for forming an ultrahigh-packed bit array pattern of Si dots. This result promises to open the way toward 1 Tbit/in.{sup 2} storage using patterned media with a dot size of <15 nm.

  12. Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors

    DTIC Science & Technology

    2010-11-11

    patterned on the sur- face of the source substrate. The InAs layer was then pattern etched into nano- ribbons using a mixture of citric acid (1 g per ml of...Electron. Dev. 55, 547–556 (2008). 27. DeSalvo, G. C., Kaspi, R. & Bozada, C. A. Citric acid etching of GaAs1-xSbx, Al0.5Ga0.5Sb, and InAs for...interfacial layer formed by thermal oxidation and used for surface passivation is clearly evident. LETTER RESEARCH 1 1 N O V E M B E R 2 0 1 0 | V O L

  13. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been fabricated by this method.

  14. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  15. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  16. Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

    NASA Astrophysics Data System (ADS)

    Xuan, Ming-dong; Dai, Long-gui; Jia, Hai-qiang; Chen, Hong

    2014-01-01

    Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.

  17. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  18. West German NATO Policy: The Next Five Years

    DTIC Science & Technology

    1989-11-01

    West German conservatives have been confronted by the rise of the Republican party on the radical right . The causes underlying such political shifts...rise of the radical right Republican party, initially founded in Bavaria by several deputies from the the CDU’s sister party, the Christian Social

  19. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  20. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    NASA Astrophysics Data System (ADS)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  1. Etude fondamentale des mecanismes de gravure par plasma de materiaux de pointe: Application a la fabrication de dispositifs photoniques

    NASA Astrophysics Data System (ADS)

    Stafford, Luc

    Advances in electronics and photonics critically depend upon plasma-based materials processing either for transferring small lithographic patterns into underlying materials (plasma etching) or for the growth of high-quality films. This thesis deals with the etching mechanisms of materials using high-density plasmas. The general objective of this work is to provide an original framework for the plasma-material interaction involved in the etching of advanced materials by putting the emphasis on complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. Based on a synthesis of the descriptions proposed by different authors to explain the etching characteristics of simple materials in noble and halogenated plasma mixtures, we propose comprehensive rate models for physical and chemical plasma etching processes. These models have been successfully validated using experimental data published in literature for Si, Pt, W, SiO2 and ZnO. As an example, we have been able to adequately describe the simultaneous dependence of the etch rate on ion and reactive neutral fluxes and on the ion energy. From an exhaustive experimental investigation of the plasma and etching properties, we have also demonstrated that the validity of the proposed models can be extended to complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. We also reported for the first time physical aspects involved in plasma etching such as the influence of the film microstructural properties on the sputter-etch rate and the influence of the positive ion composition on the ion-assisted desorption dynamics. Finally, we have used our deep investigation of the etching mechanisms of STO films and the resulting excellent control of the etch rate to fabricate a ridge waveguide for photonic device applications. Keywords: plasma etching, sputtering, adsorption and desorption dynamics, high-density plasmas, plasma diagnostics, advanced materials, photonic applications.

  2. Oblique patterned etching of vertical silicon sidewalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David

    A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  3. Oblique patterned etching of vertical silicon sidewalls

    NASA Astrophysics Data System (ADS)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  4. Oblique patterned etching of vertical silicon sidewalls

    DOE PAGES

    Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David; ...

    2016-04-05

    A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  5. Automatic pattern localization across layout database and photolithography mask

    NASA Astrophysics Data System (ADS)

    Morey, Philippe; Brault, Frederic; Beisser, Eric; Ache, Oliver; Röth, Klaus-Dieter

    2016-03-01

    Advanced process photolithography masks require more and more controls for registration versus design and critical dimension uniformity (CDU). The distribution of the measurement points should be distributed all over the whole mask and may be denser in areas critical to wafer overlay requirements. This means that some, if not many, of theses controls should be made inside the customer die and may use non-dedicated patterns. It is then mandatory to access the original layout database to select patterns for the metrology process. Finding hundreds of relevant patterns in a database containing billions of polygons may be possible, but in addition, it is mandatory to create the complete metrology job fast and reliable. Combining, on one hand, a software expertise in mask databases processing and, on the other hand, advanced skills in control and registration equipment, we have developed a Mask Dataprep Station able to select an appropriate number of measurement targets and their positions in a huge database and automatically create measurement jobs on the corresponding area on the mask for the registration metrology system. In addition, the required design clips are generated from the database in order to perform the rendering procedure on the metrology system. This new methodology has been validated on real production line for the most advanced process. This paper presents the main challenges that we have faced, as well as some results on the global performances.

  6. EUV patterning improvement toward high-volume manufacturing

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Matsunaga, Koichi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie

    2015-03-01

    Extreme ultraviolet lithography (EUVL) technology is a promising candidate for a semiconductor process for 18nm half pitch and beyond. So far, the studies of EUV for manufacturability have been focused on particular aspects. It still requires fine resolution, uniform and smooth patterns, and low defectivity, not only after lithography but also after the etch process. Tokyo Electron Limited and imec are continuously collaborating to improve manufacturing quality of the process of record (POR) on a CLEAN TRACKTM LITHIUS ProTMZ-EUV. This next generation coating/developing system has been upgraded with defectivity reduction enhancements which are applied along with TELTM best known methods. We have evaluated process defectivity post lithography and post etch. Apart from defectivity, FIRMTM rinse material and application compatibility with sub 18nm patterning is improved to prevent line pattern collapse and increase process window on next generation resist materials. This paper reports on the progress of defectivity and patterning performance optimization towards the NXE:3300 POR.

  7. Growth And Patterning Of High-Tc Superconducting Films

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.

    1992-01-01

    Superconducting films of YBa(2)Cu(3)O(7-delta), having high superconducting-transition temperatures (Tc's), deposited on LaAlO3 substrates and etched into patterns representative of passive microwave devices, with no deterioration of superconducting properties.

  8. Durability to oxygen reactive ion etching enhanced by addition of synthesized bis(trimethylsilyl)phenyl-containing (meth)acrylates in ultraviolet nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Ito, Shunya; Sato, Hiroki; Tasaki, Yuhei; Watanuki, Kimihito; Nemoto, Nobukatsu; Nakagawa, Masaru

    2016-06-01

    We investigated the selection of bis(trimethylsilyl)phenyl-containing (meth)acrylates as additives to improve the durability to oxygen reactive ion etching (O2 RIE) of sub-50 nm imprint resist patterns suitable for bubble-defect-free UV nanoimprinting with a readily condensable gas. 2,5-Bis(2-acryloyloxyethoxy)-1,4-bis(trimethylsilyl)benzene, which has a diacrylate chemical structure similar to that of glycerol 1,3-diglycerolate diacrylate used as a base monomer, and 3-(2-methacryloyloxyethoxy)-1-(hydroxylethoxy)-2-propoxy-3,5-bis(trimethylsilyl)benzene, which has a hydroxy group similar to the base monomer, were synthesized taking into consideration the Ohnishi and ring parameters, and the oxidization of the trimethylsilyl moiety to inorganic species during O2 RIE. The addition of the latter liquid additive to the base monomer decreased etching rate owing to the good miscibility of the additive in the base monomer, while the addition of the former crystalline additive caused phase separation after UV nanoimprinting. The latter additive worked as a compatibilizer to the former additive, which is preferred for etching durability improvement. The coexistence of the additives enabled the fabrication of a 45 nm line-and-space resist pattern by UV nanoimprinting, and its residual layer could be removed by O2 RIE.

  9. Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, C.R.; Hobson, W.S.; Hong, J.

    1998-11-04

    Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunctionmore » bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.« less

  10. Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching

    PubMed Central

    2013-01-01

    A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication. PMID:23531381

  11. Enamel Deproteinization using Papacarie and 10% Papain Gel on Shear Bond Strength of Orthodontic Brackets Before and After Acid Etching.

    PubMed

    Agarwal, R M; Yeluri, R; Singh, C; Munshi, A K

    2015-01-01

    To suggest Papacarie(®) as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie(®) for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie(®) for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie(®) and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p < 0.05). It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Papacarie(®) or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.

  12. Precise identification of <1 0 0> directions on Si{0 0 1} wafer using a novel self-aligning pre-etched technique

    NASA Astrophysics Data System (ADS)

    Singh, S. S.; Veerla, S.; Sharma, V.; Pandey, A. K.; Pal, P.

    2016-02-01

    Micromirrors with a tilt angle of 45° are widely used in optical switching and interconnect applications which require 90° out of plane reflection. Silicon wet bulk micromachining based on surfactant added TMAH is usually employed to fabricate 45° slanted walls at the < 1 0 0> direction on Si≤ft\\{0 0 1\\right\\} wafers. These slanted walls are used as 45° micromirrors. However, the appearance of a precise 45° ≤ft\\{0 1 1\\right\\} wall is subject to the accurate identification of the < 1 0 0> direction. In this paper, we present a simple technique based on pre-etched patterns for the identification of < 1 0 0> directions on the Si≤ft\\{0 0 1\\right\\} surface. The proposed pre-etched pattern self-aligns itself at the < 1 0 0> direction while becoming misaligned at other directions. The < 1 0 0> direction is determined by a simple visual inspection of pre-etched patterns and does not need any kind of measurement. To test the accuracy of the proposed method, we fabricated a 32 mm long rectangular opening with its sides aligned along the < 1 0 0> direction, which is determined using the proposed technique. Due to the finite etch rate of the ≤ft\\{1 1 0\\right\\} plane, undercutting occurred, which was measured at 12 different locations along the longer edge of the rectangular strip. The mean of these undercutting lengths, measured perpendicular to the mask edge, is found to be 13.41 μm with a sub-micron standard deviation of 0.38 μm. This level of uniform undercutting indicates that our method of identifying the < 1 0 0> direction is precise and accurate. The developed method will be extremely useful in fabricating arrays of 45° micromirrors.

  13. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  14. A nontransferring dry adhesive with hierarchical polymer nanohairs.

    PubMed

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y

    2009-04-07

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  15. A nontransferring dry adhesive with hierarchical polymer nanohairs

    PubMed Central

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y.

    2009-01-01

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (≈26 N/cm2 in maximum) in the angled direction and easy detachment (≈2.2 N/cm2) in the opposite direction, with a hysteresis value of ≈10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 μm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 × 37.5 cm2, second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization. PMID:19304801

  16. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.

    PubMed

    Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W

    2017-11-28

    Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

  17. Etching twin core fiber for the temperature-independent refractive index sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Pei, Li

    2018-04-01

    We proposed an ultra-compact chemically etched twin core fiber (TCF) based optic refractive index (RI) sensor, in which the etched fiber was fabricated by immersing in an aqueous solution of hydrofluoric acid (HF) to etch the cladding. Due to the multipath evolutions of light during the TCF, the mode induced interference pattern can be used for measurement. Numerical simulations were performed, demonstrating that only the cladding mode strongly interacts with the surrounding media, and the higher cladding modes will be more sensitive to external medium. In the experiment demonstration, the RI response characteristics of the sensor were investigated, which shows a relatively high RI sensitivity and a much low temperature cross-sensitivity with about 1.06 × 10-6 RIU °C-1. Due to low cost and easy fabrication, the sensor can be a suitable candidate in the biochemical field.

  18. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  19. Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer

    NASA Astrophysics Data System (ADS)

    Kicin, S.; Cambel, V.; Kuliffayová, M.; Gregušová, D.; Kováčová, E.; Novák, J.; Kostič, I.; Förster, A.

    2002-01-01

    We present a wet-chemical-etching method developed for the preparation of GaAs four-sided pyramid-shaped mesas. The method uses a fast lateral etching of AlAs interlayer that influences the cross-sectional profiles of etched structures. We have tested the method using H3PO4:H2O2:H2O etchant for the (100) GaAs patterning. The sidewalls of the prepared pyramidal structures together with the (100) bottom facet formed the cross-sectional angles 25° and 42° for mask edges parallel, resp. perpendicular to {011} cleavage planes. For mask edges turned in 45° according to the cleavage planes, 42° cross-sectional angles were obtained. Using the method, symmetric and more than 10-μm-high GaAs "Egyptian" pyramids with smooth tilted facets were prepared.

  20. Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabrication

    NASA Astrophysics Data System (ADS)

    Zhao, Yiping; Jansen, Henri; de Boer, Meint; Berenschot, Erwin; Bouwes, Dominique; Gironès, Miriam; Huskens, Jurriaan; Tas, Niels

    2010-09-01

    Edge lithography in combination with fluorine-based plasma etching is employed to avoid the dependence on crystal orientation in single crystal silicon to create monolithic nanoridges with arbitrary contours. This is demonstrated by using a mask with circular structures and Si etching at cryogenic temperature with SF6+O2 plasma mixtures. Initially, the explored etch recipe was used with Cr as the masking material. Although nanoridges with perfect vertical sidewalls have been achieved, Cr causes severe sidewall roughness due to line edge roughness. Therefore, an SU-8 polymer is used instead. Although the SU-8 pattern definition needs further improvement, we demonstrate the possibility of fabricating Si nanoridges of arbitrary contours providing a width below 50 nm and a height between 25 and 500 nm with smooth surface finish. Artifacts in the ridge profile are observed and are mainly caused by the bird's beak phenomenon which is characteristic for the used LOCOS process.

  1. Effect of lattice defects on Hele-Shaw flow over an etched lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, E.L.; Ignes-Mullol, J.; Baratt, A.

    We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of defects (0{endash}10&hthinsp;{percent}). In all cases, a quantitative measure of the pattern ramification shows a regular trend with injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case, the scaling behavior persists. Only the prefactor of the scaling function shows a dependencemore » on the defect density. For different lattice defect densities, we examine the nature of the different morphology phases. {copyright} {ital 1999} {ital The American Physical Society}« less

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  3. Three-dimensional patterning in polymer optical waveguides using focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher

    2016-07-01

    Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.

  4. Holographic fabrication of gratings in metal substrates

    NASA Technical Reports Server (NTRS)

    Fletcher, R. M.; Wagner, D. K.; Ballantyne, J. M.

    1982-01-01

    A program for investigating the grain enlargement resulting from the laser recrystallization of a thin gallium arsenide film on a patterned substrate, a technique known as graphoepitaxy was evaluated. More specifically, the effects of recrystallizing an uncapped gallium arsenide film using a continuous wave neodymium YAG laser operating at 1.06 microns were studied. In an effort to minimize arsenic loss from the film, the specimens were held in an arsine atmosphere during recrystallization. Two methods for fabricating patterned substrates were developed, one using reactive ion etching of a molybdenum film on both sapphire and silicon substates and another by preferential wet etching of a silicon substrate onto which a film of molybdenum was subsequently deposited.

  5. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  6. Optical-Based Sensors for Monitoring Corrosion of Reinforcement Rebar via an Etched Cladding Bragg Grating

    PubMed Central

    Hassan, Muhammad Rosdi Abu; Bakar, Muhammad Hafiz Abu; Dambul, Katrina; Adikan, Faisal Rafiq Mahamd

    2012-01-01

    In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed. PMID:23202233

  7. Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at

    Science.gov Websites

    NREL | Energy Systems Integration Facility | NREL Asetek Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at NREL Asetek's RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) ultra-energy-efficient high-performance

  8. Theory of Mind Impairments in Women With Cocaine Addiction.

    PubMed

    Sanvicente-Vieira, Breno; Kluwe-Schiavon, Bruno; Corcoran, Rhiannon; Grassi-Oliveira, Rodrigo

    2017-03-01

    This study investigates the Theory of Mind performance of female cocaine-dependent users (CDUs) and possible associations between theory of mind performance and features of cocaine use. Sixty women controlled for age, education, individual income, and IQ participated in this study: 30 in the CDU group and 30 in the healthy control group. Participants were assessed for theory of mind with the Reading the Mind in the Eyes Test (RMET), a test of understanding of first-order and second-order false beliefs, and the Hinting task. Drug use parameters, clinical symptoms, and neuropsychological functioning were also assessed. Analyses of covariance indicated Theory of Mind impairments in negative mental states within the RMET and second-order false-belief understanding of Theory of Mind stories. In addition, Theory of Mind impairment was associated with drug use characteristics, including craving and number of hospitalizations. High-demand Theory of Mind is suggested to be impaired in CDU women, and the deficits appear to be related to drug addiction severity. We found associations between Theory of Mind deficits and worse clinical and social outcomes.

  9. Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications

    NASA Astrophysics Data System (ADS)

    Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.

    2010-09-01

    Silicon (Si) subwavelength grating (SWG) structures were fabricated on Si substrates by holographic lithography and subsequent inductively coupled plasma (ICP) etching process using SiCl4 with or without Ar addition for solar cell applications. To ensure a good nanosized pattern transfer into the underlying Si layer, the etch selectivity of Si over the photoresist mask is optimized by varying the etching parameters, thus improving antireflection characteristics. For antireflection analysis of Si SWG surfaces, the optical reflectivity is measured experimentally and it is also calculated theoretically by a rigorous coupled-wave analysis. The reflectance depends on the height, period, and shape of two-dimensional periodic Si subwavelength structures, correlated with ICP etching parameters. The optimized Si SWG structure exhibits a dramatic decrease in optical reflection of the Si surface over a wide angle of incident light ( θ i ), i.e. less than 5% at wavelengths of 300-1100 nm, leading to good wide-angle antireflection characteristics (i.e. solar-weighted reflection of 1.7-4.9% at θ i <50°) of Si solar cells.

  10. Long-term TEM analysis of the nanoleakage patterns in resin-dentin interfaces produced by different bonding strategies.

    PubMed

    Reis, Andre F; Giannini, Marcelo; Pereira, Patricia N R

    2007-09-01

    The aim of this study was to evaluate the ability of etch-and-rinse and self-etching adhesive systems to prevent time- and water-induced nanoleakage in resin-dentin interfaces over a 6-month storage period. Five commercial adhesives were tested, which comprise three different strategies of bonding resins to tooth hard tissues: one single-step self-etching adhesive (One-up Bond F (OB), Tokuyama); two two-step self-etching primers (Clearfil SE Bond (SE) and an antibacterial fluoride-containing system, Clearfil Protect Bond (CP), Kuraray Inc.); two two-step etch-and-rinse adhesives (Single Bond (SB), 3M ESPE and Prime&Bond NT (PB), Dentsply). Restored teeth were sectioned into 0.9 mm thick slabs and stored in water or mineral oil for 24 h, 3 or 6 months. A silver tracer solution was used to reveal nanometer-sized water-filled spaces and changes that occurred over time within resin-dentin interfaces. Characterization of interfaces was performed with the TEM. The two two-step self-etching primers showed little silver uptake during the 6-month experiment. Etch-and-rinse adhesives exhibited silver deposits predominantly within the hybrid layer (HL), which significantly increased for SB after water-storage. The one-step self-etching adhesive OB presented massive silver accumulation within the HL and water-trees protruding into the adhesive layer, which increased in size and quantity after water-storage. After storage in oil, reduced silver deposition was observed at the interfaces for all groups. Different levels of water-induced nanoleakage were observed for the different bonding strategies. The two-step self-etching primers, especially the antibacterial fluoride-containing system CP, showed the least nanoleakage after 6 months of storage in water.

  11. Development of template and mask replication using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Brooks, Cynthia; Selinidis, Kosta; Doyle, Gary; Brown, Laura; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-09-01

    The Jet and Flash Imprint Lithography (J-FILTM)1-7 process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105 imprints. This suggests that tens of thousands of templates/masks will be required. It is not feasible to employ electronbeam patterning directly to deliver these volumes. Instead, a "master" template - created by directly patterning with an electron-beam tool - will be replicated many times with an imprint lithography tool to produce the required supply of "working" templates/masks. In this paper, we review the development of the pattern transfer process for both template and mask replicas. Pattern transfer of resolutions down to 25nm has been demonstrated for bit patterned media replication. In addition, final resolution on a semiconductor mask of 28nm has been confirmed. The early results on both etch depth and CD uniformity are promising, but more extensive work is required to characterize the pattern transfer process.

  12. Better Informing Decision Making with Multiple Outcomes Cost-Effectiveness Analysis under Uncertainty in Cost-Disutility Space

    PubMed Central

    McCaffrey, Nikki; Agar, Meera; Harlum, Janeane; Karnon, Jonathon; Currow, David; Eckermann, Simon

    2015-01-01

    Introduction Comparing multiple, diverse outcomes with cost-effectiveness analysis (CEA) is important, yet challenging in areas like palliative care where domains are unamenable to integration with survival. Generic multi-attribute utility values exclude important domains and non-health outcomes, while partial analyses—where outcomes are considered separately, with their joint relationship under uncertainty ignored—lead to incorrect inference regarding preferred strategies. Objective The objective of this paper is to consider whether such decision making can be better informed with alternative presentation and summary measures, extending methods previously shown to have advantages in multiple strategy comparison. Methods Multiple outcomes CEA of a home-based palliative care model (PEACH) relative to usual care is undertaken in cost disutility (CDU) space and compared with analysis on the cost-effectiveness plane. Summary measures developed for comparing strategies across potential threshold values for multiple outcomes include: expected net loss (ENL) planes quantifying differences in expected net benefit; the ENL contour identifying preferred strategies minimising ENL and their expected value of perfect information; and cost-effectiveness acceptability planes showing probability of strategies minimising ENL. Results Conventional analysis suggests PEACH is cost-effective when the threshold value per additional day at home ( 1) exceeds $1,068 or dominated by usual care when only the proportion of home deaths is considered. In contrast, neither alternative dominate in CDU space where cost and outcomes are jointly considered, with the optimal strategy depending on threshold values. For example, PEACH minimises ENL when 1=$2,000 and 2=$2,000 (threshold value for dying at home), with a 51.6% chance of PEACH being cost-effective. Conclusion Comparison in CDU space and associated summary measures have distinct advantages to multiple domain comparisons, aiding transparent and robust joint comparison of costs and multiple effects under uncertainty across potential threshold values for effect, better informing net benefit assessment and related reimbursement and research decisions. PMID:25751629

  13. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  14. Process for Smoothing an Si Substrate after Etching of SiO2

    NASA Technical Reports Server (NTRS)

    Turner, Tasha; Wu, Chi

    2003-01-01

    A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas flowing at 75 to 125 stdcm3/min, power between 44 and 55 W, and pressure between 50 and 100 mtorr (between 6.7 and 13.3 Pa).

  15. Fabrication of 2-inch nano patterned sapphire substrate with high uniformity by two-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Dai, LongGui; Yang, Fan; Yue, Gen; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2014-11-01

    Generally, nano-scale patterned sapphire substrate (NPSS) has better performance than micro-scale patterned sapphire substrate (MPSS) in improving the light extraction efficiency of LEDs. Laser interference lithography (LIL) is one of the powerful fabrication methods for periodic nanostructures without photo-masks for different designs. However, Lloyd's mirror LIL system has the disadvantage that fabricated patterns are inevitably distorted, especially for large-area twodimensional (2D) periodic nanostructures. Herein, we introduce two-beam LIL system to fabricate consistent large-area NPSS. Quantitative analysis and characterization indicate that the high uniformity of the photoresist arrays is achieved. Through the combination of dry etching and wet etching techniques, the well-defined NPSS with period of 460 nm were prepared on the whole sapphire substrate. The deviation is 4.34% for the bottom width of the triangle truncated pyramid arrays on the whole 2-inch sapphire substrate, which is suitable for the application in industrial production of NPSS.

  16. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites. The mode of failure had no meaningful relation to the type of composite and etching factor. Key words:Shear bond strength, adhesive, composite resin, silorane, methacrylate. PMID:26644830

  17. SU-8 negative photoresist for optical mask manufacturing

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexei L.

    2000-06-01

    The requirements for better control, linearity, and uniformity of critical dimension (CD) on photomasks in fabrication of 180 and 150 nm generation devices result in increasing demand for thinner, more etching durable, and more sensitive e-beam resists. Novolac based resists with chemical amplification have been a choice for their sensitivity and stability during etching. However, difficult CD control due to the acid catalyzer diffusion and quite narrow post exposure bake (PEB) process window are some of the major drawbacks of these resists. SU-8 is recently introduced to the market negative photoresist. High sensitivity, fairly good adhesion properties, and relatively simple processing of SU-8 make it a good substitution for novolac based chemically amplified negative e-beam resists in optical mask manufacturing. The replacement of traditional chemically amplified resists by SU- 8 can increase the process latitude and reduce resist costs. Among the obvious drawbacks of SU-8 are the use of solvent- based developer and demand of oxygen plasma for resist removal. In this paper the use of SU-8 for optical mask manufacturing is reported. All steps of resist film preparation, exposure and development are paid a share of attention. Possibilities to use reactive ion etching (RIE) with oxygen in order to increase resist mask contrast are discussed. Special exposure strategy (pattern outlining) was employed to further improve the edge definition. The resist PEB temperature and time were studied to estimate their weight in overall CD control performance. Specially designed test patterns with 0.25 micrometer design rule could be firmly transferred into a chromium layer both by wet etching and ion milling. Influence of exposure dose variation on the pattern CD change was studied.

  18. Selective Plasma Deposition of Fluorocarbon Films on SAMs

    NASA Technical Reports Server (NTRS)

    Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.

    2006-01-01

    A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.

  19. Integration of e-beam direct write in BEOL processes of 28nm SRAM technology node using mix and match

    NASA Astrophysics Data System (ADS)

    Gutsch, Manuela; Choi, Kang-Hoon; Hanisch, Norbert; Hohle, Christoph; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2014-10-01

    Many efforts were spent in the development of EUV technologies, but from a customer point of view EUV is still behind expectations. In parallel since years maskless lithography is included in the ITRS roadmap wherein multi electron beam direct patterning is considered as an alternative or complementary approach for patterning of advanced technology nodes. The process of multi beam exposures can be emulated by single beam technologies available in the field. While variable shape-beam direct writers are already used for niche applications, the integration capability of e-beam direct write at advanced nodes has not been proven, yet. In this study the e-beam lithography was implemented in the BEoL processes of the 28nm SRAM technology. Integrated 300mm wafers with a 28nm back-end of line (BEoL) stack from GLOBALFOUNDRIES, Dresden, were used for the experiments. For the patterning of the Metal layer a Mix and Match concept based on the sequence litho - etch - litho - etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. E-beam patterning results of BEoL Metal and Via layers are presented using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMS-CNT. Etch results are shown and compared to the POR. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.

  20. CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media

    NASA Astrophysics Data System (ADS)

    Szívós, János; Pothorszky, Szilárd; Soltys, Jan; Serényi, Miklós; An, Hongyu; Gao, Tenghua; Deák, András; Shi, Ji; Sáfrán, György

    2018-03-01

    CoPt thin films as possible candidates for Bit Patterned magnetic Media (BPM) were prepared and investigated by electron microscopy techniques and magnetic measurements. The structure and morphology of the Direct Current (DC) sputtered films with N incorporation were revealed in both as-prepared and annealed state. Nanopatterning of the samples was carried out by means of Radio Frequency (RF) plasma etching through a Langmuir-Blodgett film of silica nanospheres that is a fast and high throughput technique. As a result, the samples with hexagonally arranged 100 nm size separated dots of fct-phase CoPt were obtained. The influence of the order of nanopatterning and anneling on the nanostructure formation was revealed. The magnetic properties of the nanopatterned fct CoPt films were investigated by Vibrating Sample Magnetometer (VSM) and Magnetic Force Microscopy (MFM). The results show that CoPt thin film nanopatterned by means of the RF plasma etching technique is promising candidate to a possible realization of BPM. Furthermore, this technique is versatile and suitable for scaling up to technological and industrial applications.

  1. Shallow V-Shape Nanostructured Pit Arrays in Germanium Using Aqua Regia Electroless Chemical Etching

    PubMed Central

    Chaabane, Ibtihel; Banerjee, Debika; Touayar, Oualid; Cloutier, Sylvain G.

    2017-01-01

    Due to its high refractive index, reflectance is often a problem when using Germanium for optoelectronic devices integration. In this work, we propose an effective and low-cost nano-texturing method for considerably reducing the reflectance of bulk Germanium. To do so, uniform V-shape pit arrays are produced by wet electroless chemical etching in a 3:1 volume ratio of highly-concentrated hydrochloridric and nitric acids or so-called aqua regia bath using immersion times ranging from 5 to 60 min. The resulting pit morphology, the crystalline structure of the surface and the changes in surface chemistry after nano-patterning are all investigated. Finally, broadband near-infrared reflectance measurements confirm a significant reduction using this simple wet etching protocol, while maintaining a crystalline, dioxide-free, and hydrogen-passivated surface. It is important to mention that reflectance could be further reduced using deeper pits. However, most optoelectronic applications such as photodetectors and solar cells require relatively shallow patterning of the Germanium to allow formation of a pn-junction close to the surface. PMID:28773215

  2. Redundant via insertion in self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Song, Youngsoo; Jung, Jinwook; Shin, Youngsoo

    2017-03-01

    Redundant via (RV) insertion is employed to enhance via manufacturability, and has been extensively studied. Self-aligned double patterning (SADP) process, brings a new challenge to RV insertion since newly created cut for each RV insertion has to be taken care of. Specifically, when a cut for RV, which we simply call RV-cut, is formed, cut conflict may occur with nearby line-end cuts, which results in a decrease in RV candidates. We introduce cut merging to reduce the number of cut conflicts; merged cuts are processed with stitch using litho-etch-litho-etch (LELE) multi-patterning method. In this paper, we propose a new RV insertion method with cut merging in SADP for the first time. In our experiments, a simple RV insertion yields 55.3% vias to receives RVs; our proposed method that considers cut merging increases that number to 69.6% on average of test circuits.

  3. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less

  4. Efficient hybrid metrology for focus, CD, and overlay

    NASA Astrophysics Data System (ADS)

    Tel, W. T.; Segers, B.; Anunciado, R.; Zhang, Y.; Wong, P.; Hasan, T.; Prentice, C.

    2017-03-01

    In the advent of multiple patterning techniques in semiconductor industry, metrology has progressively become a burden. With multiple patterning techniques such as Litho-Etch-Litho-Etch and Sidewall Assisted Double Patterning, the number of processing step have increased significantly and therefore, so as the amount of metrology steps needed for both control and yield monitoring. The amount of metrology needed is increasing in each and every node as more layers needed multiple patterning steps, and more patterning steps per layer. In addition to this, there is that need for guided defect inspection, which in itself requires substantially denser focus, overlay, and CD metrology as before. Metrology efficiency will therefore be cruicial to the next semiconductor nodes. ASML's emulated wafer concept offers a highly efficient method for hybrid metrology for focus, CD, and overlay. In this concept metrology is combined with scanner's sensor data in order to predict the on-product performance. The principle underlying the method is to isolate and estimate individual root-causes which are then combined to compute the on-product performance. The goal is to use all the information available to avoid ever increasing amounts of metrology.

  5. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist

    PubMed Central

    Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-01-01

    Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678

  6. Unbiased roughness measurements: the key to better etch performance

    NASA Astrophysics Data System (ADS)

    Liang, Andrew; Mack, Chris; Sirard, Stephen; Liang, Chen-wei; Yang, Liu; Jiang, Justin; Shamma, Nader; Wise, Rich; Yu, Jengyi; Hymes, Diane

    2018-03-01

    Edge placement error (EPE) has become an increasingly critical metric to enable Moore's Law scaling. Stochastic variations, as characterized for lines by line width roughness (LWR) and line edge roughness (LER), are dominant factors in EPE and known to increase with the introduction of EUV lithography. However, despite recommendations from ITRS, NIST, and SEMI standards, the industry has not agreed upon a methodology to quantify these properties. Thus, differing methodologies applied to the same image often result in different roughness measurements and conclusions. To standardize LWR and LER measurements, Fractilia has developed an unbiased measurement that uses a raw unfiltered line scan to subtract out image noise and distortions. By using Fractilia's inverse linescan model (FILM) to guide development, we will highlight the key influences of roughness metrology on plasma-based resist smoothing processes. Test wafers were deposited to represent a 5 nm node EUV logic stack. The patterning stack consists of a core Si target layer with spin-on carbon (SOC) as the hardmask and spin-on glass (SOG) as the cap. Next, these wafers were exposed through an ASML NXE 3350B EUV scanner with an advanced chemically amplified resist (CAR). Afterwards, these wafers were etched through a variety of plasma-based resist smoothing techniques using a Lam Kiyo conductor etch system. Dense line and space patterns on the etched samples were imaged through advanced Hitachi CDSEMs and the LER and LWR were measured through both Fractilia and an industry standard roughness measurement software. By employing Fractilia to guide plasma-based etch development, we demonstrate that Fractilia produces accurate roughness measurements on resist in contrast to an industry standard measurement software. These results highlight the importance of subtracting out SEM image noise to obtain quicker developmental cycle times and lower target layer roughness.

  7. SEMICONDUCTOR MATERIALS: Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu

    2009-08-01

    A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.

  8. Developing Fully Online Pre-Service Music and Arts Education Courses

    ERIC Educational Resources Information Center

    Lierse, Sharon

    2015-01-01

    Charles Darwin University (CDU) offers education courses for students who want to teach in Australian schools. The university is unique due to its geographic location, proximity to Asia and its high Indigenous population compared to the rest of the country. Many courses are offered fully online including music education for pre-service teachers.…

  9. Adult Literacy and Socio-Cultural Learning at "Pina Pina Jarrinjaku" (Yuendumu Learning Centre)

    ERIC Educational Resources Information Center

    Bauer, Ros

    2018-01-01

    The Whole of Community Engagement (WCE) initiative commenced in July 2014, led by the Office of Pro Vice Chancellor of Indigenous Leadership at Charles Darwin University (CDU). WCE aimed to build the aspiration, expectation and capacity of six remote and very remote Indigenous communities in the Northern Territory to participate and achieve in…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ast, D.G.

    Research focused on control of misfit dislocations in strained epitaxial layers of GaAs through prepatterning of the substrate. Patterning and etching trenches into GaAs substrates before epitaxial growth results in nonplanar wafer surface, which makes device fabrication more difficult. Selective ion damaging the substrate prior to growth was investigated. The question of whether the overlayer must or must not be discontinuous was addressed. The third research direction was to extend results from molecular beam epitaxially grown material to organometallic chemical vapor deposition. Effort was increased to study the patterning processes and the damage it introduces into the substrate. The researchmore » program was initiated after the discovery that 500-eV dry etching in GaAs damages the substrate much deeper than the ion range.« less

  11. Nanofabrication on unconventional substrates using transferred hard masks

    DOE PAGES

    Li, Luozhou; Bayn, Igal; Lu, Ming; ...

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less

  12. Catalytically-etched hexagonal boron nitride flakes and their surface activity

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Lee, Minwoo; Ye, Bora; Jang, Ho-Kyun; Kim, Gyu Tae; Lee, Dong-Jin; Kim, Eok-Soo; Kim, Hong Dae

    2017-04-01

    Hexagonal boron nitride (h-BN) is a ceramic compound which is thermally stable up to 1000 °C in air. Due to this, it is a very challenging task to etch h-BN under air atmosphere at low temperature. In this study, we report that h-BN flakes can be easily etched by oxidation at 350 °C under air atmosphere in the presence of transition metal (TM) oxide. After selecting Co, Cu, and Zn elements as TM precursors, we simply oxidized h-BN sheets impregnated with the TM precursors at 350 °C in air. As a result, microscopic analysis revealed that an etched structure was created on the surface of h-BN flakes regardless of catalyst type. And, X-ray diffraction patterns indicated that the air oxidation led to the formation of Co3O4, CuO, and ZnO from each precursor. Thermogravimetric analysis showed a gradual weight loss in the temperature range where the weight of h-BN flakes increased by air oxidation. As a result of etching, pore volume and pore area of h-BN flakes were increased after catalytic oxidation in all cases. In addition, the surface of h-BN flakes became highly active when the h-BN samples were etched by Co3O4 and CuO catalysts. Based on these results, we report that h-BN flakes can be easily oxidized in the presence of a catalyst, resulting in an etched structure in the layered structure.

  13. Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures

    DTIC Science & Technology

    2016-03-01

    batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I

  14. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing

    NASA Astrophysics Data System (ADS)

    Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F.

    2016-10-01

    We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10-3. For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.

  15. Electron-beam induced nano-etching of suspended graphene

    PubMed Central

    Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin

    2015-01-01

    Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495

  16. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    NASA Astrophysics Data System (ADS)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  17. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications.

    PubMed

    Con, Celal; Cui, Bo

    2017-12-16

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  18. Focused ion beam micromachining of TiNi film on Si( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Xie, D. Z.; Ngoi, B. K. A.; Ong, A. S.; Fu, Y. Q.; Lim, B. H.

    2003-11-01

    Having an excellent shape memory effect, titanium-nickel (TiNi) thin films are often used for fabrication of microactuators in microelectromechanical systems. In this work, the Ga + focused ion beam (FIB) etching characteristics of TiNi thin films has been investigated. The thin films were deposited on Si(1 1 1) wafers by co-sputtering NiTi and Ti targets using a magnetron-sputtering system. Some patterns have been etched on the surface of the films by FIB. Atomic force microscopy has been used to analyze the surface morphology of the etched areas. It is found that the etched depth depends linearly on the ion dose per area with a slope of 0.259 μm/(nC/μm 2). However, the etching depth decreases with increasing the ion beam current. The root-mean-square (RMS) surface roughness changes nonlinearly with ion dose and reaches a minimum of about 5.00 nm at a dose of about 0.45 nC/μm 2. The RMS decreases with increasing ion beam current and reaches about 4.00 nm as the ion beam current is increased to 2 nA.

  19. Enamel and dentin bond strengths of a new self-etch adhesive system.

    PubMed

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  20. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    PubMed

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  1. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    NASA Astrophysics Data System (ADS)

    Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.

    2015-01-01

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.

  2. Simultaneous overlay and CD measurement for double patterning: scatterometry and RCWA approach

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Zhuan; Rabello, Silvio; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Park, Jungchul; Singh, Lovejeet

    2009-03-01

    As optical lithography advances to 32 nm technology node and beyond, double patterning technology (DPT) has emerged as an attractive solution to circumvent the fundamental optical limitations. DPT poses unique demands on critical dimension (CD) uniformity and overlay control, making the tolerance decrease much faster than the rate at which critical dimension shrinks. This, in turn, makes metrology even more challenging. In the past, multi-pad diffractionbased overlay (DBO) using empirical approach has been shown to be an effective approach to measure overlay error associated with double patterning [1]. In this method, registration errors for double patterning were extracted from specially designed diffraction targets (three or four pads for each direction); CD variation is assumed negligible within each group of adjacent pads and not addressed in the measurement. In another paper, encouraging results were reported with a first attempt at simultaneously extracting overlay and CD parameters using scatterometry [2]. In this work, we apply scatterometry with a rigorous coupled wave analysis (RCWA) approach to characterize two double-patterning processes: litho-etch-litho-etch (LELE) and litho-freeze-litho-etch (LFLE). The advantage of performing rigorous modeling is to reduce the number of pads within each measurement target, thus reducing space requirement and improving throughput, and simultaneously extract CD and overlay information. This method measures overlay errors and CDs by fitting the optical signals with spectra calculated from a model of the targets. Good correlation is obtained between the results from this method and that of several reference techniques, including empirical multi-pad DBO, CD-SEM, and IBO. We also perform total measurement uncertainty (TMU) analysis to evaluate the overall performance. We demonstrate that scatterometry provides a promising solution to meet the challenging overlay metrology requirement in DPT.

  3. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate.

  4. High-Performance Computing Data Center Cooling System Energy Efficiency |

    Science.gov Websites

    approaches involve a cooling distribution unit (CDU) (2), which interfaces with the facility cooling loop and to the energy recovery water (ERW) loop (5), which is a closed-loop system. There are three heat rejection options for this IT load: When possible, heat energy from the energy recovery loop is transferred

  5. Influence of an arginine-containing toothpaste on bond strength of different adhesive systems to eroded dentin.

    PubMed

    Bergamin, Ana Cláudia Pietrobom; Bridi, Enrico Coser; Amaral, Flávia Lucisano Botelho; Turssi, Cecília Pedroso; Basting, Roberta Tarkany; Aguiar, Flávio Henrique Baggio; França, Fabiana Mantovani Gomes

    2016-01-01

    The aim of this study was to evaluate the bond strength of different adhesive systems to eroded dentin following toothbrushing with an arginine-containing toothpaste. Sixty standardized 3 × 3 × 2-mm fragments of root dentin (n = 10) were prepared. After all surfaces except the buccal surfaces were impermeabilized, specimens were subjected to an erosive wear protocol and stored for 24 hours at 37°C. The specimens underwent 1000 toothbrushing cycles with an arginine-containing toothpaste, an arginine-free toothpaste (positive control group), or artificial saliva (negative control group). Following application of a self-etching or an etch-and-rinse adhesive to the buccal surfaces of the specimens, 6-mm-high composite resin blocks were built up in 2-mm increments. After 24 hours' storage in 100% relative humidity, microtensile test specimens with an approximate area of 1 mm² were prepared. The test was performed at a speed of 0.5 mm/min until specimen fracture, and the failure patterns were evaluated using a stereoscopic loupe. Two-way analysis of variance revealed no significant difference between the toothpastes, the adhesive systems, or the interactions between toothpaste and adhesive system in terms of the bond strength to eroded dentin (P > 0.05). The predominant failure pattern was adhesive in all groups. It was concluded that a toothpaste containing arginine did not interfere with the bond between either the self-etching or the etch-and-rinse adhesive system and eroded dentin.

  6. Risk factors of erectile dysfunction and penile vascular changes after surgical repair of penile fracture.

    PubMed

    El-Assmy, A; El-Tholoth, H S; Abou-El-Ghar, M E; Mohsen, T; Ibrahiem, E H I

    2012-01-01

    This study was conducted to determine the preoperative and intraoperative risk factors of ED and the underlying penile vascular abnormalities among patients with penile fracture treated surgically. In all, 180 patients with penile fracture were treated surgically and followed up in one center. None of our patients had ED before the penile trauma and only two of them had risk factors for systemic vascular diseases, such as diabetes mellitus (one patient) and hypertension (one patient). After a mean follow-up of 106 months, 11 patients (6.6%) developed ED, 7 had mild ED and 4 had moderate ED. The main risk factors for subsequent ED were aging, >50 years, and bilateral corporal involvement. Among the 11 patients with ED, color Doppler ultrasonography (CDU) showed normal Doppler indices in 4 (36.4%), veno-occlusive dysfunction in 4 (36.4%) and arterial insufficiency in the remaining 3 (27.2%) patients. CDU assessments from the injured and intact sides were comparable. ED of either a psychological or vascular origin can be encountered as a long-term sequel of surgical treatment of penile fracture. Aging, >50 years, at presentation and bilateral corporal involvement is the main risk factors for subsequent development of ED.

  7. Micro-PIXE and micro-RBS characterization of micropores in porous silicon prepared using microwave-assisted hydrofluoric acid etching.

    PubMed

    Ahmad, Muthanna; Grime, Geoffrey W

    2013-04-01

    Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

  8. Fabrication of gallium nitride nanowires by metal-assisted photochemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo

    2017-11-01

    Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.

  9. Lithography for enabling advances in integrated circuits and devices.

    PubMed

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  10. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  11. Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih

    2010-09-01

    A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.

  12. Sidewall patterning—a new wafer-scale method for accurate patterning of vertical silicon structures

    NASA Astrophysics Data System (ADS)

    Westerik, P. J.; Vijselaar, W. J. C.; Berenschot, J. W.; Tas, N. R.; Huskens, J.; Gardeniers, J. G. E.

    2018-01-01

    For the definition of wafer scale micro- and nanostructures, in-plane geometry is usually controlled by optical lithography. However, options for precisely patterning structures in the out-of-plane direction are much more limited. In this paper we present a versatile self-aligned technique that allows for reproducible sub-micrometer resolution local modification along vertical silicon sidewalls. Instead of optical lithography, this method makes smart use of inclined ion beam etching to selectively etch the top parts of structures, and controlled retraction of a conformal layer to define a hard mask in the vertical direction. The top, bottom or middle part of a structure could be selectively exposed, and it was shown that these exposed regions can, for example, be selectively covered with a catalyst, doped, or structured further.

  13. A modified thickness extensional disk transducer.

    PubMed

    Trolier, S E; Xu, Q C; Newnham, R E

    1988-01-01

    Photolithography and chemical etching were investigated as a means of patterning miniature piezoelectric devices. Using a processing procedure analogous to that utilized in the production of integrated circuitry, concentrated hydrochloric acid and a commercially available photoresist were used to fabricate a number of complex structures from soft lead zirconate titanate (PZT) substrates. Among the devices produced in this manner was a modified thickness-mode resonator etched to destroy the simple geometry responsible for radial vibrations. The resultant transducer demonstrated significantly smaller amplitudes for lateral resonances and a marked reduction in the effective planar coupling coefficient over the unaltered disk. The results indicate that photolithographic patterning is useful both for eliminating spurious resonances from transducers for medical imaging or nondestructive evaluation and for engineering low planar coupling coefficients into a variety of substrate materials.

  14. Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices

    ERIC Educational Resources Information Center

    Hsu, Keng Hao

    2009-01-01

    Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…

  15. Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-04-01

    With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.

  16. Development of TiO2 containing hardmasks through PEALD deposition

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hao; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-03-01

    With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.

  17. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2015-06-01

    Plasmonic structures on graphene can tailor its optical properties, which is essential for sensing and optoelectronic applications, e.g. for the enhancement of photoresponsivity of graphene photodetectors. Control over their structural and, hence, spectral properties can be attained by using electron beam lithography, which is not a viable solution for the definition of patterns over large areas. For the fabrication of large-area plasmonic nanostructures, we propose to use self-assembled monolayers of nanospheres as a mask for metal evaporation and etching processes. An optimized approach based on self-assembly at air/water interface with a properly designed apparatus allows the attainment of monolayers of hexagonally closely packed patterns with high long-range order and large area coverage; special strategies are devised in order to protect graphene against damage resulting from surface treatment and further processing steps such as reactive ion etching, which could potentially impair graphene properties. Therefore we demonstrate that nanosphere lithography is a cost-effective solution to create plasmonic patterns on graphene. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Double patterning from design enablement to verification

    NASA Astrophysics Data System (ADS)

    Abercrombie, David; Lacour, Pat; El-Sewefy, Omar; Volkov, Alex; Levine, Evgueni; Arb, Kellen; Reid, Chris; Li, Qiao; Ghosh, Pradiptya

    2011-11-01

    Litho-etch-litho-etch (LELE) is the double patterning (DP) technology of choice for 20 nm contact, via, and lower metal layers. We discuss the unique design and process characteristics of LELE DP, the challenges they present, and various solutions. ∘ We examine DP design methodologies, current DP conflict feedback mechanisms, and how they can help designers identify and resolve conflicts. ∘ In place and route (P&R), the placement engine must now be aware of the assumptions made during IP cell design, and use placement directives provide by the library designer. We examine the new effects DP introduces in detail routing, discuss how multiple choices of LELE and the cut allowances can lead to different solutions, and describe new capabilities required by detail routers and P&R engines. ∘ We discuss why LELE DP cuts and overlaps are critical to optical process correction (OPC), and how a hybrid mechanism of rule and model-based overlap generation can provide a fast and effective solution. ∘ With two litho-etch steps, mask misalignment and image rounding are now verification considerations. We present enhancements to the OPCVerify engine that check for pinching and bridging in the presence of DP overlay errors and acute angles.

  19. Vascular stents with submicrometer-scale surface patterning realized via titanium deep reactive ion etching

    NASA Astrophysics Data System (ADS)

    Gott, Shannon C.; Jabola, Benjamin A.; Rao, Masaru P.

    2015-08-01

    Herein, we report progress towards realization of vascular stents that will eventually provide opportunity for evaluating cellular response to rationally-designed, submicrometer-scale surface patterning in physiologically-relevant contexts, i.e. those that provide exposure to the complex multicellular milieu, flow-induced shear, and tissue-device interactions present in vivo. Specifically, using our novel titanium deep reactive ion etching technique (Ti DRIE), we discuss recent advances that have enabled: (a) fabrication of precisely-defined, grating-based surface patterns on planar Ti foils with minimum feature sizes as small as 0.15 μm (b) creation of cylindrical stents from micromachined planar Ti foils; and (c) integration of these processes to produce the first submicrometer-scale surface-patterned Ti stents that are compatible with conventional balloon catheter deployment techniques. We also discuss results from elastoplastic finite element simulations and preliminary mechanical testing of these devices to assess their mechanical performance. These efforts represent key steps towards our long-term goal of developing a new paradigm in stenting, where rationally-designed surface patterning provides a physical means for facilitating healing, and thus, improving outcomes in vascular intervention applications.

  20. Electroless-plated Ni pattern with catalyst printing on indium-gallium-zinc oxide surface

    NASA Astrophysics Data System (ADS)

    Onoue, Miki; Ogura, Shintaro; Kusaka, Yasuyuki; Fukuda, Nobuko; Yamamoto, Noritaka; Kojima, Keisuke; Chikama, Katsumi; Ushijima, Hirobumi

    2017-05-01

    Electroless plated metals have been used for wiring and electrodes in the manufacture of electronic devices. To obtain plated patterns, etching and photoresist are generally used. However, through catalyst patterning by printing, we can obtain metal patterns without etching and photoresists by electroless plating. Solution-processed indium-gallium-zinc oxide (IGZO) has received significant attention for showing high performance and ease of preparation in air atmosphere. In this study, we prepared an electroless plated pattern by catalyst printing as electrodes of IGZO TFT. There are few reports on the application of plated metal electrodes prepared by catalyst printing to the source and drain electrodes of IGZO TFT. The prepared IGZO TFT exhibits a typical current-voltage (I-V) curve. The plated electrodes caused many problems such as performance degradation. However, our result showed that the plated metal electrodes can drive IGZO TFT. In addition, we confirm plated metal growth into the catalyst layer by cross sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) of the plated Ni. We discuss the relevance of the measured work function (WF) of the electrode materials and the performance of IGZO TFT.

  1. Automated process control for plasma etching

    NASA Astrophysics Data System (ADS)

    McGeown, Margaret; Arshak, Khalil I.; Murphy, Eamonn

    1992-06-01

    This paper discusses the development and implementation of a rule-based system which assists in providing automated process control for plasma etching. The heart of the system is to establish a correspondence between a particular data pattern -- sensor or data signals -- and one or more modes of failure, i.e., a data-driven monitoring approach. The objective of this rule based system, PLETCHSY, is to create a program combining statistical process control (SPC) and fault diagnosis to help control a manufacturing process which varies over time. This can be achieved by building a process control system (PCS) with the following characteristics. A facility to monitor the performance of the process by obtaining and analyzing the data relating to the appropriate process variables. Process sensor/status signals are input into an SPC module. If trends are present, the SPC module outputs the last seven control points, a pattern which is represented by either regression or scoring. The pattern is passed to the rule-based module. When the rule-based system recognizes a pattern, it starts the diagnostic process using the pattern. If the process is considered to be going out of control, advice is provided about actions which should be taken to bring the process back into control.

  2. Highχ block copolymers for directed self-assembly patterning without the need for topcoat or solvent annealing

    NASA Astrophysics Data System (ADS)

    Xu, Kui; Hockey, Mary Ann; Calderas, Eric; Guerrero, Douglas; Sweat, Daniel; Fiehler, Jeffrey

    2017-03-01

    High-χ block copolymers for directed self-assembly (DSA) patterning that do not need topcoat or solvent annealing have been developed. A variety of functionalities have been successfully added into the block copolymers, such as balanced surface energy between the polymer blocks, outstandingly high χ, tunable glass transition temperature (Tg), and selective crosslinking. Perpendicular orientation control, as desired for patterning, of the block copolymers can be simply achieved by thermal annealing due to the equal surface energy of the polymer blocks at the annealing temperatures, which allows avoiding solvent annealing or top-coat. The χ value can be tuned up to achieve L0 as low as 8-10 nm for lamellar-structured block copolymers and hole/pillar size as small as 5-6 nm for cylinder-structured block copolymers. The Tg of the block copolymers can be tuned to improve the kinetics of thermal annealing by enhancing the polymer chain mobility. Block-selective crosslinking facilitates the pattern transfer by mitigating pattern collapse during wet etching and improving oxygen plasma etching selectivity between the polymer blocks. This paper provides an introductory review of our high-χ block copolymer materials with various functionalities for achieving improved DSA performance.

  3. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong

    2008-01-01

    Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.

  4. Bilayer lift-off process for aluminum metallization

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (<100 nm) and thick aluminum devices with micron-feature sizes. Our patterning recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  5. Three-Tone Chemical Patterns for Block Copolymer Directed Self-Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Lance D.; Seidel, Robert N.; Chen, Xuanxuan

    Chemical patterns for directed self-assembly (DSA) of lamellaeforming block copolymers (BCP) with density multiplication can be fabricated by patterning resist on a cross-linked polystyrene layer, etching to create guide stripes, and depositing end-grafted brushes in between the stripes as background. To date, two-tone chemical patterns have been targeted with the guide stripes preferentially wet by one block of the copolymer and the background chemistry weakly preferentially wet by the other block. In the course of fabricating chemical patterns in an all-track process using 300 mm wafers, it was discovered that the etching process followed by brush grafting could produce amore » three-tone pattern. We characterized the three regions of the chemical patterns with a combination of SEM, grazing-incidence small-angle X-ray scattering (GISAXS), and assessment of BCP-wetting behavior, and evaluated the DSA behavior on patterns over a range of guide stripe widths. In its best form, the three-tone pattern consists of guide stripes preferentially wet by one block of the copolymer, each flanked by two additional stripes that wet the other block of the copolymer, with a third chemistry as the background. Three-tone patterns guide three times as many BCP domains as two-tone patterns and thus have the potential to provide a larger driving force for the system to assemble into the desired architecture with fewer defects in shorter time and over a larger process window.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E.

    We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.

  7. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.

    2008-06-01

    We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.

  8. Nanopatterns by phase separation of patterned mixed polymer monolayers

    DOEpatents

    Huber, Dale L; Frischknecht, Amalie

    2014-02-18

    Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).

  9. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Stepwise molding, etching, and imprinting to form libraries of nanopatterned substrates.

    PubMed

    Zhao, Zhi; Cai, Yangjun; Liao, Wei-Ssu; Cremer, Paul S

    2013-06-04

    Herein, we describe a novel colloidal lithographic strategy for the stepwise patterning of planar substrates with numerous complex and unique designs. In conjunction with colloidal self-assembly, imprint molding, and capillary force lithography, reactive ion etching was used to create complex libraries of nanoscale features. This combinatorial strategy affords the ability to develop an exponentially increasing number of two-dimensional nanoscale patterns with each sequential step in the process. Specifically, dots, triangles, circles, and lines could be assembled on the surface separately and in combination with each other. Numerous architectures are obtained for the first time with high uniformity and reproducibility. These hexagonal arrays were made from polystyrene and gold features, whereby each surface element could be tuned from the micrometer size scale down to line widths of ~35 nm. The patterned area could be 1 cm(2) or even larger. The techniques described herein can be combined with further steps to make even larger libraries. Moreover, these polymer and metal features may prove useful in optical, sensing, and electronic applications.

  11. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    PubMed Central

    Wei, Mingjie; Wang, Yong

    2015-01-01

    Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407

  12. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization

    PubMed Central

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485

  13. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization.

    PubMed

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO 2 and its possible application as a C 1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer.

  14. Strap-Down Inertial Systems

    DTIC Science & Technology

    1978-05-01

    navigation computer (SNC), sepa- rate alterable memory units for the computer, a control /display unit (CDU), a computer control unit (CCU), and a non ...AND SYSTEM Advisory Group for Aerospace Research and Development, Paris (France). Presented at the 15th Meeting of the Guidance and Control Panel of... Group , Redondo Beach, Calif.) American Institute of Aeronautics and Astronautics, Guidance and Control Conference, Key Biscayne, Fla., August 20-22

  15. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  16. Fluorocarbon assisted atomic layer etching of SiO 2 and Si using cyclic Ar/C 4F 8 and Ar/CHF 3 plasma

    DOE PAGES

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...

    2015-11-11

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  17. From ‘petal effect’ to ‘lotus effect’ on the highly flexible Silastic S elastomer microstructured using a fluorine based reactive ion etching process

    NASA Astrophysics Data System (ADS)

    Frankiewicz, Christophe; Zoueshtiagh, Farzam; Talbi, Abdelkrim; Streque, Jérémy; Pernod, Philippe; Merlen, Alain

    2014-11-01

    A fluorine-based reactive ion etching (RIE) process has been applied on a new family of silicone elastomers named ‘Silastic S’ for the first time. Excellent mechanical properties are the principal advantage of this elastomer. The main objective of this study was (i) to develop a new process with an electrodeposited thin Nickel (Ni) layer as a mask to obtain a more precise pattern transfer for deep etching (ii) to investigate the etch rates and the etch profiles obtained under various plasma conditions (gas mixture ratios and pressure). The resulting process exhibits etch rates that range from 20 µm h-1 to 40 µm h-1. The process was optimized to obtain anisotropic profiles of the edges. Finally, it is shown that (iii) the wetting contact angle could be easily modified with this process from 103° to 162°, with a hysteresis that ranges from 2° to 140°. The process is, at present, the only reported solution to reproduce the ‘petal effect’ (high contact angle hysteresis value) on a highly flexible substrate. A possibility to control the contact angle hysteresis from the ‘petal effect’ to the ‘lotus effect’ (low contact angle hysteresis value) has been investigated to allow a precise control on the required energy to pin or unpin the contact line of water droplets. This opens multiple possibilities to exploit this elastomer in many microfluidics applications.

  18. Collective evolution of submicron hillocks during the early stages of anisotropic alkaline wet chemical etching of Si(1 0 0) surfaces

    NASA Astrophysics Data System (ADS)

    Sana, P.; Vázquez, Luis; Cuerno, Rodolfo; Sarkar, Subhendu

    2017-11-01

    We address experimentally the large-scale dynamics of Si(1 0 0) surfaces during the initial stages of anisotropic wet (KOH) chemical etching, which are characterized through atomic force microscopy. These systems are known to lead to the formation of characteristic pyramids, or hillocks, of typical sizes in the nanometric/micrometer scales, thus with the potential for a large number of applications that can benefit from the nanotexturing of Si surfaces. The present pattern formation process is very strongly disordered in space. We assess the space correlations in such a type of rough surface and elucidate the existence of a complex and rich morphological evolution, featuring at least three different regimes in just 10 min of etching. Such a complex time behavior cannot be consistently explained within a single formalism for dynamic scaling. The pyramidal structure reveals itself as the basic morphological motif of the surface throughout the dynamics. A detailed analysis of the surface slope distribution with etching time reveals that the texturing process induced by the KOH etching is rather gradual and progressive, which accounts for the dynamic complexity. The various stages of the morphological evolution can be accurately reproduced by computer-generated surfaces composed by uncorrelated pyramidal structures. To reach such an agreement, the key parameters are the average pyramid size, which increases with etching time, its distribution and the surface coverage by the pyramidal structures.

  19. Inefficient procurement processes undermine access to medicines in the Western Cape Province of South Africa.

    PubMed

    Magadzire, Bvudzai P; Ward, Kim; Leng, Henry M J; Sanders, David

    2017-06-30

    South Africa (SA) has experienced several stock-outs of life-saving medicines for the treatment of major chronic infectious and non-communicable diseases in the public sector. To identify the causes of stock-outs and to illustrate how they undermine access to medicines (ATM) in the Western Cape Province, SA. This qualitative study was conducted with a sample of over 70 key informants (frontline health workers, sub-structure and provincial health service managers). We employed the critical incident technique to identify significant occurrences in our context, the consequences of which impacted on access to medicines during a defined period. Stock-outs were identified as one such incident, and we explored when, where and why they occurred, in order to inform policy and practice. Medicines procurement is a centralised function in SA. Health service managers unanimously agreed that stock-outs resulted from the following inefficiencies at the central level: (i) delays in awarding of pharmaceutical tenders; (ii) absence of contracts for certain medicines appearing on provincial code lists; and (iii) suppliers' inability to satisfy contractual agreements. The recurrence of stock-outs had implications at multiple levels: (i) health facility operations; (ii) the Chronic Dispensing Unit (CDU), which prepacks medicines for over 300 000 public sector patients; and (iii) community-based medicines distribution systems, which deliver the CDU's prepacked medicines to non-health facilities nearer to patient homes. For instance, stock-outs resulted in omission of certain medicines from CDU parcels that were delivered to health facilities. This increased workload and caused frustration for frontline health workers who were expected to dispense omitted medicines manually. According to frontline health workers, this translated into longer waiting times for patients and associated dissatisfaction. In some instances, patients were asked to return for undispensed medication at a later date, which could potentially affect adherence to treatment and therapeutic outcomes. Stock-outs therefore undermined the intended benefits of ATM strategies. Addressing the procurement challenges, most notably timeous tender awards and supplier performance management, is critical for successful implementation of ATM strategies.

  20. Surface Participation Effects in Titanium Nitride and Niobium Resonators

    NASA Astrophysics Data System (ADS)

    Dove, Allison; Kreikebaum, John Mark; Livingston, William; Delva, Remy; Qiu, Yanjie; Lolowang, Reinhard; Ramasesh, Vinay; O'Brien, Kevin; Siddiqi, Irfan

    Improving the coherence time of superconducting qubits requires a precise understanding of the location and density of surface defects. Superconducting microwave resonators are commonly used for quantum state readout and are a versatile testbed to systematically characterize materials properties as a function of device geometry and fabrication method. We report on sputter deposited titanium nitride and niobium on silicon coplanar waveguide resonators patterned using reactive ion etches to define the device geometry. We discuss the impact of different growth conditions (temperature and electrical bias) and processing techniques on the internal quality factor (Q) of these devices. In particular, to investigate the effect of surface participation, we use a Bosch process to etch many-micron-deep trenches in the silicon substrate and quantify the impact of etch depth and profile on the internal Q. This research was supported by the ARO.

  1. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Wang, Ming; Yang, Chundi

    2009-10-01

    This paper presents a miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only fusion splicing, cleaving, and wet chemical etching. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost. It may also find uses in medical applications.

  2. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Zhou, Junping; Wang, Tingting

    2011-11-01

    A miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber is presented. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only cleaving, wet chemical etching and fusion splicing. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. Experimental results show the sensor has a good linearity. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost.

  3. Lowering the environmental impact of high-kappa/ metal gate stack surface preparation processes

    NASA Astrophysics Data System (ADS)

    Zamani, Davoud

    ABSTRACT Hafnium based oxides and silicates are promising high-κ dielectrics to replace SiO2 as gate material for state-of-the-art semiconductor devices. However, integrating these new high-κ materials into the existing complementary metal-oxide semiconductor (CMOS) process remains a challenge. One particular area of concern is the use of large amounts of HF during wet etching of hafnium based oxides and silicates. The patterning of thin films of these materials is accomplished by wet etching in HF solutions. The use of HF allows dissolution of hafnium as an anionic fluoride complex. Etch selectivity with respect to SiO2 is achieved by appropriately diluting the solutions and using slightly elevated temperatures. From an ESH point of view, it would be beneficial to develop methods which would lower the use of HF. The first objective of this study is to find new chemistries and developments of new wet etch methods to reduce fluoride consumption during wet etching of hafnium based high-κ materials. Another related issue with major environmental impact is the usage of large amounts of rinsing water for removal of HF in post-etch cleaning step. Both of these require a better understanding of the HF interaction with the high-κ surface during the etching, cleaning, and rinsing processes. During the rinse, the cleaning chemical is removed from the wafers. Ensuring optimal resource usage and cycle time during the rinse requires a sound understanding and quantitative description of the transport effects that dominate the removal rate of the cleaning chemicals from the surfaces. Multiple processes, such as desorption and re-adsorption, diffusion, migration and convection, all factor into the removal rate of the cleaning chemical during the rinse. Any of these processes can be the removal rate limiting process, the bottleneck of the rinse. In fact, the process limiting the removal rate generally changes as the rinse progresses, offering the opportunity to save resources. The second objective of this study is to develop new rinse methods to reduce water and energy usage during rinsing and cleaning of hafnium based high-κ materials in single wafer-cleaning tools. It is necessary to have a metrology method which can study the effect of all process parameters that affect the rinsing by knowing surface concentration of contaminants in patterned hafnium based oxides and silicate wafers. This has been achieved by the introduction of a metrology method at The University of Arizona which monitors the transport of contaminant concentrations inside micro- and nano- structures. This is the only metrology which will be able to provide surface concentration of contaminants inside hafnium based oxides and silicate micro-structures while the rinsing process is taking place. The goal of this research is to study the effect of various process parameters on rinsing of patterned hafnium based oxides and silicate wafers, and modify a metrology method for end point detection.

  4. The analysis method of the DRAM cell pattern hotspot

    NASA Astrophysics Data System (ADS)

    Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.

  5. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.

    PubMed

    Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan

    2015-08-01

    In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

  6. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  7. Relation between film character and wafer alignment: critical alignment issues on HV device for VLSI manufacturing

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Chuan; Lee, Chih-Hsiung; Lin, Hsun-Peng; Peng, Chiou-Shian

    1998-06-01

    Several continuous splits for wafer alignment target topography conditions to improve epitaxy film alignment were applied. The alignment evaluation among former layer pad oxide thickness (250 angstrom - 500 angstrom), drive oxide thickness (6000 angstrom - 10000 angstrom), nitride film thickness (600 angstrom - 1500 angstrom), initial oxide etch (fully wet etch, fully dry etch and dry plus wet etch) will be split to this experiment. Also various epitaxy deposition recipe such as: epitaxy source (SiHCl2 or SiCHCl3) and growth rate (1.3 micrometer/min approximately 2.0 micrometer/min) will be used to optimize the process window for alignment issue. All the reflectance signal and cross section photography of alignment target during NIKON stepper alignment process will be examined. Experimental results show epitaxy recipe plays an important role to wafer alignment. Low growth rate with good performance conformity epitaxy lead to alignment target avoid washout, pattern shift and distortion. All the results (signal monitor and film character) combined with NIKON's stepper standard laser scanning alignment system will be discussed in this paper.

  8. Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo

    2004-07-01

    We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.

  9. Micromachined electrical cauterizer

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  10. Micromachined electrical cauterizer

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  11. Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues

    PubMed Central

    Munarin, Fabiola; Kaiser, Nicholas J.; Kim, Tae Yun; Choi, Bum-Rak

    2017-01-01

    Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all. PMID:28457187

  12. Fundamentals of EUV resist-inorganic hardmask interactions

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie

    2017-03-01

    High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (<5nm) inorganic HMs can provide higher etch selectivity, lower post-etch LWR, decreased defectivity and wet strippability compared to spin-on hybrid HMs (e.g., SiARC), however such novel layers can induce resist adhesion failure and resist residue. Therefore, a fundamental understanding of EUV resist-inorganic HM interactions is needed in order to optimize the EUV resist interfacial behavior. In this paper, novel materials and processing techniques are introduced to characterize and improve the EUV resist-inorganic HM interface. HM surface interactions with specific EUV resist components are evaluated for open-source experimental resist formulations dissected into its individual additives using EUV contrast curves as an effective characterization method to determine post-development residue formation. Separately, an alternative adhesion promoter platform specifically tailored for a selected ultrathin inorganic HM based on amorphous silicon (aSi) is presented and the mitigation of resist delamination is exemplified for the cases of positive-tone and negative-tone development (PTD, NTD). Additionally, original wafer priming hardware for the deposition of such novel adhesion promoters is unveiled. The lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.

  13. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing.

    PubMed

    Campos, Edson Alves; Correr, Gisele Maria; Leonardi, Denise Piotto; Barato-Filho, Flares; Gonzaga, Carla Castiglia; Zielak, João César

    2009-02-01

    The purpose of this study was to investigate the effects of chlorhexidine (CHX) digluconate at 0.2% and 2% on dentin bonding durability of etch-and-rinse and self-etch adhesive systems. In this study were used 24 extracted non-carious human third-molars. The occlusal surfaces of the molar crowns were removed with a low-speed diamond saw to expose flat dentin surfaces. The tested materials were Single-Bond (SB) (two-step etch-and-rinse adhesive) and Clearfil Tri S Bond (CTSB) (all-in-one self-etch adhesive) used in association or not with CHX at 0.2% and 2%. The bonding systems were applied according to manufacturer's instructions and followed by composite application (Z250). For each condition, half of the specimens was immediately submitted to microtensile test and half of them was submitted to long-term storage of 6 months under simulated pulpal pressure and thermo-mechanical stressing before testing. The data were analyzed using Two-Way ANOVA and Tukey post hoc test (alpha=0.05). Failure patterns of the specimens were observed using scanning electron microscopy. The falling % in bond strength over the 6-month period was: SB control-43.64%; SB/0.2%CHX-23.79%; SB/2%CHX-26.42%; CTSB control-40.94%; CTSB/0.2%CHX-37.07%; CTSB/2%CHX-22.14%. The fracture modes were predominantly adhesive, mainly in the specimens of terminal groups. CXH digluconate at 2% was able to diminish loss of microtensile bond strength over time associated to both etch-and-rinse and self-etch adhesives. Lower concentration of CHX (0.2%) was not able to diminish the loss of bond strength over time when associated to the self-etch adhesive CTSB.

  14. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    NASA Astrophysics Data System (ADS)

    Wu, Yunfeng; Wang, Yaming; Liu, Hao; Liu, Yan; Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu

    2016-12-01

    Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic 'lotus leaf' hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO3 aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7-9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured 'over growth' oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO3 and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from -1.521 V of the bare magnesium to -1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily extended to the other metal materials.

  15. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  16. In vitro longevity of bonding properties of universal adhesives to dentin.

    PubMed

    Muñoz, M A; Luque-Martinez, I; Malaquias, P; Hass, V; Reis, A; Campanha, N H; Loguercio, A D

    2015-01-01

    To evaluate the immediate and 6-month resin-dentin bond strength (μTBS) and nanoleakage (NL) of universal adhesives that contain or do not contain methacryloyloxydecyl dihydrogen phosphate (MDP) and are used in the etch-and-rinse and self-etch strategies. Forty caries-free extracted third molars were divided into eight groups for μTBS (n=5). The groups were bonded with the Clearfil SE Bond (CSE) and Adper Single Bond 2 (SB) as controls; Peak Universal, self-etch (PkSe) and etch-and rinse (PkEr); Scotchbond Universal Adhesive, self-etch (ScSe) and etch-and-rinse (ScEr); and All Bond Universal, self-etch (AlSe) and etch-and-rinse (AlEr). After composite restorations, specimens were longitudinally sectioned to obtain resin-dentin bonded sticks (0.8 mm(2)). The μTBS of the specimens was tested immediately (IM) or after 6 months of water storage (6M) at 0.5 mm/min. Some sticks at each storage period were immersed in silver nitrate and photo developed, and the NL was evaluated with scanning electron microscopy. Data were analyzed with two-way repeated-measures analysis of variance and Tukey test (α=0.05). At the IM period, PkSe and PkEr showed μTBS similar to the control adhesives (p>0.05) but increased NL pattern and lower μTBS after 6M (p<0.05). ScSe and ScEr showed intermediary μTBS values at the IM period but remained stable after 6 months (p>0.05). AlSe showed the lowest μTBS (p<0.05), but μTBS and NL remained stable after 6M (p>0.05). AlEr showed higher IM μTBS but showed higher degradation after 6M (p<0.05). Universal adhesives that contain MDP showed higher and more stable μTBS with reduced NL at the interfaces after 6 months of water storage.

  17. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator

    DTIC Science & Technology

    2012-09-01

    The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric

  18. Fabrication of patterned surface by soft lithographic technique for confinement of lipid bilayer

    NASA Astrophysics Data System (ADS)

    Moulick, Ranjita Ghosh; Mayer, Dirk

    2018-04-01

    In this paper we demonstrated that a 3D pattern can be well transferred from a silicon Master to a gold substrate using µcontact printing. In this process 1-Octadecanthiol served as an ink and printing followed by etching generated the desired pattern on the gold substrate. The prepatterned substrate was also used for lipid vesicle fusion and revealed that lipid molecules selectively bind to the gold layer.

  19. Optically triggered fire set/detonator system

    DOEpatents

    Chase, Jay B.; Pincosy, Philip A.; Chato, Donna M.; Kirbie, Hugh; James, Glen F.

    2007-03-20

    The present invention is directed to a system having a plurality of capacitor discharge units (CDUs) that includes electrical bridge type detonators operatively coupled to respective explosives. A pulse charging circuit is adapted to provide a voltage for each respective capacitor in each CDU. Such capacitors are discharged through the electrical bridge type detonators upon receiving an optical signal to detonate respective operatively coupled explosives at substantially the same time.

  20. Thermal oxidation and nitridation of Si nanowalls prepared by metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Behera, Anil K.; Viswanath, R. N.; Lakshmanan, C.; Polaki, S. R.; Sarguna, R. M.; Mathews, Tom

    2018-04-01

    Silicon nanowalls with controlled orientation have been prepared using metal assisted chemical etching process. Thermal oxidation and nitridation processes have been carried out on the prepared silicon nanowalls under a control flow of oxygen/nitrogen gases independently at 1050°C for 900s. The morphology and structural properties of the as-prepared, oxidized and nitridated silicon nanowalls have been studied using the scanning electron microscopy and the Grazing incident X-ray diffraction techniques. The results obtained from the analysis of X-ray diffraction patterns and the microscopy images are discussed.

  1. Integrated manufacturing flow for selective-etching SADP/SAQP

    NASA Astrophysics Data System (ADS)

    Ali, Rehab Kotb; Fatehy, Ahmed Hamed; Word, James

    2018-03-01

    Printing cut mask in SAMP (Self Aligned Multi Patterning) is very challenging at advanced nodes. One of the proposed solutions is to print the cut shapes selectively. Which means the design is decomposed into mandrel tracks, Mandrel cuts and non-Mandrel cuts. The mandrel and non-Mandrel cuts are mutually independent which results in relaxing spacing constrains and as a consequence more dense metal lines. In this paper, we proposed the manufacturing flow of selective etching process. The results are quantified in terms of measuring PVBand, EPE and the number of hard bridging and pinching across the layout.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng, E-mail: wy3121685@163.com

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  3. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  4. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-01

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiOx layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W /L=10μm/50μm) fabricated on glass exhibited a high field-effect mobility of 35.8cm2/Vs, a subthreshold gate swing value of 0.59V/decade, a thrseshold voltage of 5.9V, and an Ion/off ratio of 4.9×106, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  5. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  6. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    NASA Astrophysics Data System (ADS)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  7. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali; Iyer, Shanthi

    1988-01-01

    During the period of this research grant, the process of liquid phase electroepitaxy (LPEE) was used to grow ternary and quaternary alloy III-V semiconductor thin films. Selective area growth of InGaAs was performed on InP substrates using a patterned sputtered quartz or spin-on glass layer. The etch back and growth characteristics with respect to substrate orientation were investigated. The etch back behavior is somewhat different from wet chemical etching with respect to the sidewall profiles which are observed. LPEE was also employed to grow epitaxial layers of InGaAsP alloys on InP substrates. The behavior of Mn as an acceptor dopant was investigated with low temperature Hall coefficient and photoluminescence measurements. A metal-organic vapor phase epitaxy system was partially complete within the grant period. This atmospheric pressure system will be used to deposit III-V compound and alloy semiconductor layers in future research efforts.

  8. Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material

    DTIC Science & Technology

    2009-09-01

    exploding foil initiator ( EFI ) type fuzes are being explored to...Acronyms Au gold Cr chromium Cu copper EFI exploding foil initiator BOE buffered oxide etch MEMS microelectromechanical systems RIE reactive ion...Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material by Eugene Zakar and Michael

  9. Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst.

    PubMed

    Dong, Yibo; Xie, Yiyang; Xu, Chen; Fu, Yafei; Fan, Xing; Li, Xuejian; Wang, Le; Xiong, Fangzhu; Guo, Weiling; Pan, Guanzhong; Wang, Qiuhua; Qian, Fengsong; Sun, Jie

    2018-06-14

    Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO 2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.

  10. Characterization of a New Organosilicon Photoresist

    NASA Astrophysics Data System (ADS)

    Cunningham, Wells C.

    1987-08-01

    For a number of years, there has lo'ep. great interest in organometallic based photoresists for use as the top layer in multilevel resist schemes.-' In general, bilevel approaches to lithography are forced upon the industry as a means of planarizing topography for a subsequent patterning step. This pattern is initially defined by exposure and development of a thin top layer (0.3 to 0.5μm) over the thicker bottom layer (1.0 to 2.0μm). (See Figure 1). In a conventional bilevel approach, the chosen bottom layer is photoactive at a wavelength for which the top is relatively opaque. The top level acts as a portable conformable mask (PCM) for image transfer through the bottom layer after its exposure and wet development. By using a silicon containing photoresist on the top image transfer may be accomplished using an oxygen plasma instead of a second exposure and development. The PCM in this case acts as an etch mask by forming a silicon dioxide crust in the plasma which slows the etch rate of the top versus the bottom layer. A generic curve of etch rate of a photoresist versus percent silicon by weight is shown in Figure 2. The shape is similar over a wide range of organosilicon polymers.5,6

  11. Compensation of long-range process effects on photomasks by design data correction

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny

    2002-12-01

    CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.

  12. Advanced overlay analysis through design based metrology

    NASA Astrophysics Data System (ADS)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  13. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  14. Line roughness improvements on self-aligned quadruple patterning by wafer stress engineering

    NASA Astrophysics Data System (ADS)

    Liu, Eric; Ko, Akiteru; Biolsi, Peter; Chae, Soo Doo; Hsieh, Chia-Yun; Kagaya, Munehito; Lee, Choongman; Moriya, Tsuyoshi; Tsujikawa, Shimpei; Suzuki, Yusuke; Okubo, Kazuya; Imai, Kiyotaka

    2018-04-01

    In integrated circuit and memory devices, size shrinkage has been the most effective method to reduce production cost and enable the steady increment of the number of transistors per unit area over the past few decades. In order to reduce the die size and feature size, it is necessary to minimize pattern formation in the advance node development. In the node of sub-10nm, extreme ultra violet lithography (EUV) and multi-patterning solutions based on 193nm immersionlithography are the two most common options to achieve the size requirement. In such small features of line and space pattern, line width roughness (LWR) and line edge roughness (LER) contribute significant amount of process variation that impacts both physical and electrical performances. In this paper, we focus on optimizing the line roughness performance by using wafer stress engineering on 30nm pitch line and space pattern. This pattern is generated by a self-aligned quadruple patterning (SAQP) technique for the potential application of fin formation. Our investigation starts by comparing film materials and stress levels in various processing steps and material selection on SAQP integration scheme. From the cross-matrix comparison, we are able to determine the best stack of film selection and stress combination in order to achieve the lowest line roughness performance while obtaining pattern validity after fin etch. This stack is also used to study the step-by-step line roughness performance from SAQP to fin etch. Finally, we will show a successful patterning of 30nm pitch line and space pattern SAQP scheme with 1nm line roughness performance.

  15. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  16. Micromachined mold-type double-gated metal field emitters

    NASA Astrophysics Data System (ADS)

    Lee, Yongjae; Kang, Seokho; Chun, Kukjin

    1997-12-01

    Electron field emitters with double gates were fabricated using micromachining technology and the effect of the electric potential of the focusing gate (or second gate) was experimentally evaluated. The molybdenum field emission tip was made by filling a cusplike mold formed when a conformal film was deposited on the hole-trench that had been patterned on stacked metals and dielectric layers. The hole-trench was patterned by electron beam lithography and reactive ion etching. Each field emitter has a 0960-1317/7/4/009/img1 diameter extraction gate (or first gate) and a 0960-1317/7/4/009/img2 diameter focusing gate (or second gate). To make a path for the emitted electrons, silicon bulk was etched anisotropically in KOH and EDP (ethylene-diamine pyrocatechol) solution successively. The I - V characteristics and anode current change due to the focusing gate potential were measured.

  17. Enhanced light output from the nano-patterned InP semiconductor substrate through the nanoporous alumina mask.

    PubMed

    Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha

    2012-07-01

    A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  19. Cryo-Etched Black Silicon for Use as Optical Black

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.

    2011-01-01

    Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.

  20. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.

    PubMed

    Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B

    2015-09-02

    In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  2. Enhancing dropwise condensation through bioinspired wettability patterning.

    PubMed

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-04

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  3. High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Olynick, Deirdre; Russell, Thomas; University of Massachusetts Amherst Collaboration; Oxford Instrument Collaboration; Lawrence Berkeley National Lab Collaboration

    2013-03-01

    High-aspect-ratio sub-15 nm silicon trenches are fabricated directly from plasma etching of a block copolymer (BCP) mask. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) 40k-b-18k was spin coated and solvent annealed to form cylindrical structures parallel to the silicon substrate. The BCP thin film was reconstructed by immersion in ethanol and then subjected to an oxygen and argon reactive ion etching to fabricate the polymer mask. A low temperature ion coupled plasma with sulfur hexafluoride and oxygen was used to pattern transfer block copolymer structure to silicon with high selectivity (8:1) and fidelity. The silicon pattern was characterized by scanning electron microscopy and grazing incidence x-ray scattering. We also demonstrated fabrication of silicon nano-holes using polystyrene-b-polyethylene oxide (PS-b-PEO) using same methodology described above for PS-b-P2VP. Finally, we show such silicon nano-strucutre serves as excellent nano-imprint master template to pattern various functional materials like poly 3-hexylthiophene (P3HT).

  4. Selective Epitaxial Graphene Growth on SiC via AlN Capping

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana; Rubio-Roy, Miguel; Moseley, Michael; Lowder, Jonathan; Doolittle, William; Berger, Claire; Dong, Rui; Meindl, James; de Heer, Walt; Georgia Institute of Technology Team

    2011-03-01

    Electronic-quality graphene is epitaxially grown by graphitization of carbon-face silicon carbide (SiC) by the sublimation of silicon atoms from selected regions uncapped by aluminum nitride (AlN). AlN (deposited by molecular beam epitaxy) withstands high graphitization temperatures of 1420o C, hence acting as an effective capping layer preventing the growth of graphene under it. The AlN is patterned and etched to open up windows onto the SiC surface for subsequent graphitization. Such selective epitaxial growth leads to the formation of high-quality graphene in desired patterns without the need for etching and lithographic patterning of graphene itself. No detrimental contact of the graphene with external chemicals occurs throughout the fabrication-process. The impact of process-conditions on the mobility of graphene is investigated. Graphene hall-bars were fabricated and characterized by scanning Raman spectroscopy, ellipsometry, and transport measurements. This controlled growth of graphene in selected regions represents a viable approach to fabrication of high-mobility graphene as the channel material for fast-switching field-effect transistors.

  5. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  6. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less

  7. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.

    PubMed

    Joo, Dong Hyuk; Leem, Jung Woo; Yu, Jae Su

    2011-11-01

    We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.

  8. Development of Ordered, Porous (Sub-25 nm Dimensions) Surface Membrane Structures Using a Block Copolymer Approach.

    PubMed

    Ghoshal, Tandra; Holmes, Justin D; Morris, Michael A

    2018-05-08

    In an effort to develop block copolymer lithography to create high aspect vertical pore arrangements in a substrate surface we have used a microphase separated poly(ethylene oxide) -b- polystyrene (PEO-b-PS) block copolymer (BCP) thin film where (and most unusually) PS not PEO is the cylinder forming phase and PEO is the majority block. Compared to previous work, we can amplify etch contrast by inclusion of hard mask material into the matrix block allowing the cylinder polymer to be removed and the exposed substrate subject to deep etching thereby generating uniform, arranged, sub-25 nm cylindrical nanopore arrays. Briefly, selective metal ion inclusion into the PEO matrix and subsequent processing (etch/modification) was applied for creating iron oxide nanohole arrays. The oxide nanoholes (22 nm diameter) were cylindrical, uniform diameter and mimics the original BCP nanopatterns. The oxide nanohole network is demonstrated as a resistant mask to fabricate ultra dense, well ordered, good sidewall profile silicon nanopore arrays on substrate surface through the pattern transfer approach. The Si nanopores have uniform diameter and smooth sidewalls throughout their depth. The depth of the porous structure can be controlled via the etch process.

  9. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Geyer, Nadine; Wollschläger, Nicole; Fuhrmann, Bodo; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Jungmann, Marco; Krause-Rehberg, Reinhard; Leipner, Hartmut S.

    2015-06-01

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.

  10. Fabrication of sub-diffraction-limit molecular structures by scanning near-field photolithography

    NASA Astrophysics Data System (ADS)

    Ducker, Robert E.; Montague, Matthew T.; Sun, Shuqing; Leggett, Graham J.

    2007-09-01

    Using a scanning near-field optical microscope coupled to a UV laser, an approach we term scanning near-field photolithography (SNP), structures as small as 9 nm (ca. λ/30) may be fabricated in self-assembled monolayers of alkanethiols on gold surfaces. Selective exposure of the adsorbate molecules in the near field leads to photoconversion of the alkylthiolate to a weakly bound alkylsulfonate which may be displaced readily be a contrasting thiol, leading to a chemical pattern, or used as a resist for the selective etching of the underlying metal. A novel ultra-mild etch for gold is reported, and used to etch structures as small as 9 nm. Photopatterning of oligo(ethylene glycol) (OEG) terminated selfassembled monolayers facilitates the fabrication of biomolecular nanostructures. Selective removal of the protein-resistant OEG terminated adsorbates created regions that may be functionalized with a second thiol and derivatized with a biomolecule. Finally, the application of SNP to nanopatterning on oxide surfaces is demonstrated. Selective exposure of monolayers of phosphonic acids adsorbed onto aluminum oxide leads to cleavage of the P-C bond and desorption of the adsorbate molecule. Subsequent etching, using aqueous based, yields structures as small as 100 nm.

  11. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  12. Photovoltaic cell with nano-patterned substrate

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2016-10-18

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  13. Impact of pH and application time of meta-phosphoric acid on resin-enamel and resin-dentin bonding.

    PubMed

    Cardenas, A F M; Siqueira, F S F; Bandeca, M C; Costa, S O; Lemos, M V S; Feitora, V P; Reis, A; Loguercio, A D; Gomes, J C

    2018-02-01

    To evaluate the immediate microshear resin-enamel bond strength (μSBS) and the immediate and 6-month microtensile bond strength (μTBS) and nanoleakage (NL) of the adhesive interface performed by different pHs of 40% meta-phosphoric acid (MPA) were compared with conventional 37% ortho-phosphoric acid (OPA) under different application times. Additionally, the enamel etching patterns were evaluated and the chemical/morphological changes induced by these differents groups were evaluated. One hundred and ninety-eight extracted human molars were randomly assigned into experimental groups according to the combination of independent variables: Acid [37% ortho-phosphoric acid (OPA), 40% meta-phosphoric acid (MPA) at pHs of: 0.5, 1 and 2] and Application Time [7, 15 and 30s]. Enamel-bond specimens were prepared and tested under μSBS. Resin-dentin beams were tested under μTBS tested immediately or after 6-months of water storage. Nanoleakage was evaluated using bonded-beams of each tooth/time-period. Enamel etching pattern and chemical and ultra-morphology analyses were also performed. The μSBS (MPa) data were subjected to a two-way repeated measures ANOVA (Acid vs. Application time). For μTBS, Acid vs application time vs storage time data were subjected to three-way ANOVA and Tukey's test (α = 0.05). MPA pH 0.5 showed μTBS similar to OPA, independently of the application time on enamel (p>0.05) or dentin (p>0.05). OPA provided higher nanoleakage values than MPA (p = 0.003). Significant decreases in TBS and increases in NL were only observed for OPA after 6 months (p = 0.001). An increase in the application time resulted in a more pronounced etching pattern for MPA. Chemical analysis showed that dentin demineralized by MPA depicted peaks of brushite and octacalcium phosphate. MPA exposed less collagen than OPA. However, optimal results for MPA were dependent on pH/application time. The use of 40% meta-phosphoric acid with a pH of 0.5 is an alternative acid-etching agent for dentin and enamel bonding. Furthermore, the use of MPA preserves the resin-dentin interface over a 6-months period, due to presence of brushite and octacalcium phosphate and a reduced demineralization pattern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Leem, Jung Woo; Song, Young Min; Yu, Jae Su

    2013-10-01

    We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b

  15. Lithography process for patterning HgI2 photonic devices

    DOEpatents

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  16. JPRS Report, East Europe.

    DTIC Science & Technology

    1990-05-10

    dismantled. Coeducation of "normal" and disabled chil- The CDU supports developing the opportunity of every dren and adolescents in school can be one...for the cannot be politically right. Respect of ethical principles, benefit of the people requires clear positions, and at the even in the area of...tance in terms of social benefits , and human quality when these nuances are not domi- "* We strive for granting full credit for purposes of job nated

  17. Rigorous assessment of patterning solution of metal layer in 7 nm technology node

    NASA Astrophysics Data System (ADS)

    Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas

    2016-01-01

    In a 7 nm node (N7), the logic design requires a critical poly pitch of 42 to 45 nm and a metal 1 (M1) pitch of 28 to 32 nm. Such high-pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with a triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent three-dimensional (3-D) profile and topology. We use this tool to study the patterning process variations of the N7 M1 layer including the overlay control, the critical dimension uniformity budget, and the lithographic process window (PW). The resulting 3-D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field, and identify hot spots for dielectric reliability. As an example application, the maximum electric field at M1 tip-to-tip, which is one of the most critical patterning locations, has been simulated and extracted. The approach helps to investigate the impact of process variations on dielectric reliability. We have also assessed the alternative M1 patterning flow with a single exposure block using extreme ultraviolet lithography (EUVL) and analyzed its advantages compared to the LE3 block approach.

  18. Laser patterning of laminated structures for electroplating

    DOEpatents

    Mayer, Steven T.; Evans, Leland B.

    1993-01-01

    A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale.

  19. Laser patterning of laminated structures for electroplating

    DOEpatents

    Mayer, S.T.; Evans, L.B.

    1993-11-23

    A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale. 9 figures.

  20. Double exposure using 193nm negative tone photoresist

    NASA Astrophysics Data System (ADS)

    Kim, Ryoung-han; Wallow, Tom; Kye, Jongwook; Levinson, Harry J.; White, Dave

    2007-03-01

    Double exposure is one of the promising methods for extending lithographic patterning into the low k I regime. In this paper, we demonstrate double patterning of k 1-effective=0.25 with improved process window using a negative resist. Negative resist (TOK N- series) in combination with a bright field mask is proven to provide a large process window in generating 1:3 = trench:line resist features. By incorporating two etch transfer steps into the hard mask material, frequency doubled patterns could be obtained.

  1. Method of making photovoltaic cell

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2017-06-20

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  2. Mechanism of the growth of amorphous and microcrystalline silicon from silicon tetrafluoride and hydrogen

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Chen, J.; Campbell, I. H.; Fauchet, P. M.; Wagner, S.

    1990-02-01

    We study the growth of amorphous (a-Si:H,F) and of microcrystalline (μc-Si) silicon over trench patterns in crystalline silicon substrates. We vary the conditions of the SiF4-H2 glow discharge from deposition to etching. All deposited films form lips at the trench mouth and are uniformly thick on the trench walls. Therefore, surface diffusion is not important. The results of a Monte Carlo simulation suggest that film growth is governed by a single growth species with a low (˜0.2) sticking coefficient, in combination with a highly reactive etching species.

  3. Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Jeon, Jaehyeon; Jang, Hanmin; Chang, Jinho; Lee, Kwan-Soo; Kim, Dong Rip

    2018-05-01

    We report a fabrication method to obtain a low-ice-adhesion aluminum surface by surface texturing using solution etching and subsequent thin-film coating. Specifically, the textured surface has microstructures of a low aspect ratio, that is, with a much smaller height than width. Such microstructures can effectively reduce ice-adhesion strengths by sliding the ice during detachment. Because our method is based on solution etching, it can be applied to curved surfaces with complex shapes for uniformly constructing the morphology of a low-ice-adhesion aluminum surface. Finally, the low-ice-adhesion aluminum surface reduces the ice-adhesion strengths by up to 95%.

  4. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    PubMed

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  5. Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

    PubMed Central

    Seidenstücker, Axel; Plettl, Alfred; Ziemann, Paul

    2013-01-01

    Summary The basic idea of using hexagonally ordered arrays of Au nanoparticles (NP) on top of a given substrate as a mask for the subsequent anisotropic etching in order to fabricate correspondingly ordered arrays of nanopillars meets two serious obstacles: The position of the NP may change during the etching process and, thus, the primary pattern of the mask deteriorates or is completely lost. Furthermore, the NP are significantly eroded during etching and, consequently, the achievable pillar height is strongly restricted. The present work presents approaches on how to get around both problems. For this purpose, arrays of Au NPs (starting diameter 12 nm) are deposited on top of silica substrates by applying diblock copolymer micelle nanolithography (BCML). It is demonstrated that evaporated octadecyltrimethoxysilane (OTMS) layers act as stabilizer on the NP position, which allows for an increase of their size up to 50 nm by an electroless photochemical process. In this way, ordered arrays of silica nanopillars are obtained with maximum heights of 270 nm and aspect ratios of 5:1. Alternatively, the NP position can be fixed by a short etching step with negligible mask erosion followed by cycles of growing and reactive ion etching (RIE). In that case, each cycle is started by photochemically re-growing the Au NP mask and thereby completely compensating for the erosion due to the previous cycle. As a result of this mask repair method, arrays of silica nanopillar with heights up to 680 nm and aspect ratios of 10:1 are fabricated. Based on the given recipes, the approach can be applied to a variety of materials like silicon, silicon oxide, and silicon nitride. PMID:24367758

  6. The chemistry screening for ultra low-k dielectrics plasma etching

    NASA Astrophysics Data System (ADS)

    Zotovich, A.; Krishtab, M.; Lazzarino, F.; Baklanov, M. R.

    2014-12-01

    Nowadays, some of the important problems in microelectronics technological node scaling down are related to interconnect delay, dynamic power consumption and crosstalk. This compels introduction and integration of new materials with low dielectric permittivity (low-k materials) as insulator in interconnects. One of such materials under consideration for sub 10 nm technology node is a spin-coated organosilicate glass layer with ordered porosity (37-40%) and a k-value of 2.2 (OSG 2.2). High porosity leads to significant challenges during the integration and one of them is a material degradation during the plasma etching. The low-k samples have been etched in a CCP double frequency plasma chamber from TEL. Standard recipes developed for microporous materials with k<2.5 and based on mixture of C4F8 and CF4 with N2, O2 and Ar were found significantly damaging for high-porous ULK materials. The standard etch recipe was compared with oxygen free etch chemistries based on mixture CF4 with CH2F2 and Ar assuming that the presence of oxygen in the first recipe will have significant negative impact in high porous ULK materials. The film damage has been analyzed using FTIR spectroscopy and the k-value has been extracted by capacitance CV-measurements. There was indirectly shown that vacuum ultraviolet photons cause the main damage of low-k, whereas radicals and ions are not so harmful. Trench structures have been etched in low-k film and cross-SEM analysis with and without HF dipping has been performed to reveal patterning capability and visualize the sidewall damage and. The bottom roughness was analyzed by AFM.

  7. High index glass thin film processing for photonics and photovoltaic (PV) applications

    NASA Astrophysics Data System (ADS)

    Ogbuu, Okechukwu Anthony

    To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are subsequently transferred into glass and polymer thin films via conformal wet etching. High refractive index chalcogenide glass (n = 2.6) thin films with composition As20Se80 was selected for backside LSG material due to their attractive properties. We developed an optimized integration protocol for LSG integration and successfully integrated these LSG structures at the back side of both 30 microm c-Si solar cells and standalone 30 microm c-Si wafers. Optical and electrical characterization of LSG on thin c-Si cells shows that LSG structures create higher absorption enhancement and external quantum efficiency at long wavelengths.

  8. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure indicated by transgranular microvoid coalescence, non-fragmenting rupture and mixed tensile and shear failure modes, regardless of the material states tested. More testing is underway to determine the relationship between SSBD burst pressure and projectile velocity.

  9. Uniquely identifiable tamper-evident device using coupling between subwavelength gratings

    NASA Astrophysics Data System (ADS)

    Fievre, Ange Marie Patricia

    Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident. Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 microm to allow discernible higher transmission orders, and a HWHM of 28 microm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moire fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating. The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was fixed to a translation mount that transmitted the light source through the optical fiber, and the output intensity was measured using a silicon photodiode. The evanescent wave coupling output results for the CSWGs were measured and compared to the simulation results.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu; Li, Chen

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C{sub 4}F{sub 8} ALE based on steady-state Ar plasma in conjunction with periodic, precise C{sub 4}F{sub 8} injection and synchronized plasma-based low energy Ar{sup +} ion bombardment has been established for SiO{sub 2} [Metzler et al., J. Vac. Sci. Technol. A 32, 020603 (2014)]. In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF{sub 3} as a precursor is examined and comparedmore » to C{sub 4}F{sub 8}. CHF{sub 3} is shown to enable selective SiO{sub 2}/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and x-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. Plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  11. Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxin; Quarterman, P.; Wang, Jian-Ping

    2017-05-01

    Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, "The Stopping and Range of Ions in Matter," Volume 1, Pergamon,1985] in comparison with conventional Lennard-Jones "12-6" potential is applied to interactions between etching gas ions and metal atoms. It is shown the post-etch structure defects can include amorphized surface layer and lattice interstitial point defects that caused by etchant ions passed through the surface layer. We show that the amorphized or damaged FePt lattice surface layer (or "magnetic dead-layer") thickness after etching increases with ion energy for Ar ion impacts, but significantly small for He ions at up to 250eV ion energy. However, we showed that He sputtering creates more interstitial defects at lower energy levels and defects are deeper below the surface compared to Ar sputtering. We also calculate the interstitial defect level and depth as dependence on ion energy for both Ar and He ions. Media magnetic property loss due to these defects is also discussed.

  12. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.

    PubMed

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  13. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    PubMed Central

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  14. Photomask etch system and process for 10nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Chandrachood, Madhavi; Grimbergen, Michael; Yu, Keven; Leung, Toi; Tran, Jeffrey; Chen, Jeff; Bivens, Darin; Yalamanchili, Rao; Wistrom, Richard; Faure, Tom; Bartlau, Peter; Crawford, Shaun; Sakamoto, Yoshifumi

    2015-10-01

    While the industry is making progress to offer EUV lithography schemes to attain ultimate critical dimensions down to 20 nm half pitch, an interim optical lithography solution to address an immediate need for resolution is offered by various integration schemes using advanced PSM (Phase Shift Mask) materials including thin e-beam resist and hard mask. Using the 193nm wavelength to produce 10nm or 7nm patterns requires a range of optimization techniques, including immersion and multiple patterning, which place a heavy demand on photomask technologies. Mask schemes with hard mask certainly help attain better selectivity and hence better resolution but pose integration challenges and defectivity issues. This paper presents a new photomask etch solution for attenuated phase shift masks that offers high selectivity (Cr:Resist > 1.5:1), tighter control on the CD uniformity with a 3sigma value approaching 1 nm and controllable CD bias (5-20 nm) with excellent CD linearity performance (<5 nm) down to the finer resolution. The new system has successfully demonstrated capability to meet the 10 nm node photomask CD requirements without the use of more complicated hard mask phase shift blanks. Significant improvement in post wet clean recovery performance was demonstrated by the use of advanced chamber materials. Examples of CD uniformity, linearity, and minimum feature size, and etch bias performance on 10 nm test site and production mask designs will be shown.

  15. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and withoutmore » an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. Copyright 2016 The Authors. Published by Elsevier B.V. All rights reserved.« less

  16. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    DTIC Science & Technology

    2015-11-17

    34Imprintable, Bendable, and Shape-Conformable Polymer Electrolytes for Versatile-Shaped Lithium - Ion Batteries ," Advanced Materials, vol. 25, pp. 1395-1400...center; and (d) close-up of light aperture etched with a focused ion beam [104] ............ 22 Figure 16: (a) Conformal antenna patterned by...where the features are defined using focused ion beam milling (e.g. fishnet patterns) [20], standard micro-/nano- lithography processes that are

  17. Roughness and uniformity improvements on self-aligned quadruple patterning technique for 10nm node and beyond by wafer stress engineering

    NASA Astrophysics Data System (ADS)

    Liu, Eric; Ko, Akiteru; O'Meara, David; Mohanty, Nihar; Franke, Elliott; Pillai, Karthik; Biolsi, Peter

    2017-05-01

    Dimension shrinkage has been a major driving force in the development of integrated circuit processing over a number of decades. The Self-Aligned Quadruple Patterning (SAQP) technique is widely adapted for sub-10nm node in order to achieve the desired feature dimensions. This technique provides theoretical feasibility of multiple pitch-halving from 193nm immersion lithography by using various pattern transferring steps. The major concept of this approach is to a create spacer defined self-aligned pattern by using single lithography print. By repeating the process steps, double, quadruple, or octuple are possible to be achieved theoretically. In these small architectures, line roughness control becomes extremely important since it may contribute to a significant portion of process and device performance variations. In addition, the complexity of SAQP in terms of processing flow makes the roughness improvement indirective and ineffective. It is necessary to discover a new approach in order to improve the roughness in the current SAQP technique. In this presentation, we demonstrate a novel method to improve line roughness performances on 30nm pitch SAQP flow. We discover that the line roughness performance is strongly related to stress management. By selecting different stress level of film to be deposited onto the substrate, we can manipulate the roughness performance in line and space patterns. In addition, the impact of curvature change by applied film stress to SAQP line roughness performance is also studied. No significant correlation is found between wafer curvature and line roughness performance. We will discuss in details the step-by-step physical performances for each processing step in terms of critical dimension (CD)/ critical dimension uniformity (CDU)/line width roughness (LWR)/line edge roughness (LER). Finally, we summarize the process needed to reach the full wafer performance targets of LWR/LER in 1.07nm/1.13nm on 30nm pitch line and space pattern.

  18. Hubble Finds an Hourglass Nebula around a Dying Star

    NASA Image and Video Library

    1996-01-16

    This Hubble telescope snapshot of MyCn18, a young planetary nebula, reveals that the object has an hourglass shape with an intricate pattern of etchings in its walls. A planetary nebula is the glowing relic of a dying, Sun-like star.

  19. Technical Highlights

    Science.gov Websites

    Hopkins) Summary of data on computational modeling and experimental validation of correlations between targetr chemistries and carry out plasma etching assessment 2014: Jane Chang (UCLA) Non-PFC plasma varying physiochemical ENs 2013: Shyam Aravamudhan (NC A&T) Non-PFC plasma chemistries for patterning

  20. Camera Ready Masters. B/M-1 Resource Assessment. B/M-2 Surveying. B/M-3 Tabulation. B/M-4 Selecting Program Goals. B/M-5 Producing CDU's. Career Planning Support System.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational Education.

    This package of camera ready masters is one of a set of twelve documents describing the Career Planning Support System (CPSS) and its use. (CPSS is a comprehensive guidance program management system which (1) provides techniques to improve a high school's career guidance program, (2) focuses on the skills students need to make decisions about and…

  1. Method for forming silicon on a glass substrate

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  2. Method for forming silicon on a glass substrate

    DOEpatents

    McCarthy, A.M.

    1995-03-07

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.

  3. Laser-assisted focused He + ion beam induced etching with and without XeF 2 gas assist

    DOE PAGES

    Stanford, Michael G.; Mahady, Kyle; Lewis, Brett B.; ...

    2016-10-04

    Focused helium ion (He +) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF 2 precursor provides a chemical assist for enhanced material removal rate. In conclusion, amore » pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ~9× relative to the pure He+ sputtering process. These He + induced nanopatterning techniques improve material removal rate, in comparison to standard He + sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He + probe as a nanopattering tool.« less

  4. Laser-assisted focused He + ion beam induced etching with and without XeF 2 gas assist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael G.; Mahady, Kyle; Lewis, Brett B.

    Focused helium ion (He +) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF 2 precursor provides a chemical assist for enhanced material removal rate. In conclusion, amore » pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ~9× relative to the pure He+ sputtering process. These He + induced nanopatterning techniques improve material removal rate, in comparison to standard He + sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He + probe as a nanopattering tool.« less

  5. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  6. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as wide as 15 to 20 nm, but may be sufficient to control the growth of the quantum dots. In the low-contrast method, the resist would be etched in such a way as to form dimples, the shapes of which would mimic the electron-beam density profile. Then by use of a transfer etching process that etches the substrate faster than it etches the resist, either the pattern of holes or a pattern comprising the narrow, lowest portions of the dimples would be imparted to the substrate. Having been thus patterned, the substrate would be cleaned. The resulting holes or dimples in the substrate would serve as nucleation sites for the growth of quantum dots of controlled size in the following steps. The substrate would be cleaned, then placed in a molecular-beam-epitaxy (MBE) chamber, where native oxide would be thermally desorbed and the quantum dots would be grown.

  7. Local electronic structure and photoelectrochemical activity of partial chemically etched Ti-doped hematite

    NASA Astrophysics Data System (ADS)

    Rioult, Maxime; Belkhou, Rachid; Magnan, Hélène; Stanescu, Dana; Stanescu, Stefan; Maccherozzi, Francesco; Rountree, Cindy; Barbier, Antoine

    2015-11-01

    The direct conversion of solar light into chemical energy or fuel through photoelectrochemical water splitting is promising as a clean hydrogen production solution. Ti-doped hematite (Ti:α-Fe2O3) is a potential key photoanode material, which despite its optimal band gap, excellent chemical stability, abundance, non-toxicity and low cost, still has to be improved. Here we give evidence of a drastic improvement of the water splitting performances of Ti-doped hematite photoanodes upon a HCl wet-etching. In addition to the topography investigation by atomic force microscopy, a detailed determination of the local electronic structure has been carried out in order to understand the phenomenon and to provide new insights in the understanding of solar water splitting. Using synchrotron radiation based spectromicroscopy (X-PEEM), we investigated the X-ray absorption spectral features at the L3 Fe edge of the as grown surface and of the wet-etched surface on the very same sample thanks to patterning. We show that HCl wet etching leads to substantial surface modifications of the oxide layer including increased roughness and chemical reduction (presence of Fe2 +) without changing the band gap. We demonstrate that these changes are profitable and correlated to the drastic changes of the photocatalytic activity.

  8. The use of computational inspection to identify process window limiting hotspots and predict sub-15nm defects with high capture rate

    NASA Astrophysics Data System (ADS)

    Ham, Boo-Hyun; Kim, Il-Hwan; Park, Sung-Sik; Yeo, Sun-Young; Kim, Sang-Jin; Park, Dong-Woon; Park, Joon-Soo; Ryu, Chang-Hoon; Son, Bo-Kyeong; Hwang, Kyung-Bae; Shin, Jae-Min; Shin, Jangho; Park, Ki-Yeop; Park, Sean; Liu, Lei; Tien, Ming-Chun; Nachtwein, Angelique; Jochemsen, Marinus; Yan, Philip; Hu, Vincent; Jones, Christopher

    2017-03-01

    As critical dimensions for advanced two dimensional (2D) DUV patterning continue to shrink, the exact process window becomes increasingly difficult to determine. The defect size criteria shrink with the patterning critical dimensions and are well below the resolution of current optical inspection tools. As a result, it is more challenging for traditional bright field inspection tools to accurately discover the hotspots that define the process window. In this study, we use a novel computational inspection method to identify the depth-of-focus limiting features of a 10 nm node mask with 2D metal structures (single exposure) and compare the results to those obtained with a traditional process windows qualification (PWQ) method based on utilizing a focus modulated wafer and bright field inspection (BFI) to detect hotspot defects. The method is extended to litho-etch litho-etch (LELE) on a different test vehicle to show that overlay related bridging hotspots also can be identified.

  9. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays.

    PubMed

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K

    2017-03-10

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  10. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

    NASA Astrophysics Data System (ADS)

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K.

    2017-03-01

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ˜100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  11. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    NASA Astrophysics Data System (ADS)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  12. 3D physical modeling for patterning process development

    NASA Astrophysics Data System (ADS)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  13. Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths

    DOEpatents

    Wheeler, David R.

    2004-01-06

    A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.

  14. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    NASA Astrophysics Data System (ADS)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  15. Photolithography and Fluorescence Correlation Spectroscopy used to examine the rates of exchange in reverse micelle systems

    NASA Astrophysics Data System (ADS)

    Norris, Zach; Mawson, Cara; Johnson, Kyron; Kessler, Sarah; Rebecca, Anne; Wolf, Nathan; Lim, Michael; Nucci, Nathaniel

    Reverse micelles are molecular complexes that encapsulate a nanoscale pool of water in a surfactant shell dissolved in non-polar solvent. These complexes have a wide range of applications, and in all cases, the degree to which reverse micelles (RM) exchange their contents is relevant for their use. Despite its importance, this aspect of RM behavior is poorly understood. Photolithography is employed here to create micro and nano scale fluidic systems in which mixing rates can be precisely measured using fluorescence correlation spectroscopy (FCS). Micro-channel patterns are etched using reactive ion etching process into a layer of silicon dioxide on crystalline silicon substrates. Solutions containing mixtures of reverse micelles, proteins, and fluorophores are placed into reservoirs in the patterns, while diffusion and exchange between RMs is monitored using a FCS system built from a modified confocal Raman spectrometer. Using this approach, the diffusion and exchange rates for RM systems are measured as a function of the components of the RM mixture. Funding provided by Rowan University.

  16. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  17. New approach for pattern collapse problem by increasing contact area at sub-100nm patterning

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Koo; Jung, Jae Chang; Lee, Min Suk; Lee, Sung K.; Kim, Sam Young; Hwang, Young-Sun; Bok, Cheol K.; Moon, Seung-Chan; Shin, Ki S.; Kim, Sang-Jung

    2003-06-01

    To accomplish minimizing feature size to sub 100nm, new light sources for photolithography are emerging, such as ArF(193nm), F2(157nm), and EUV(13nm). However as the pattern size decreases to sub 100nm, a new obstacle, that is pattern collapse problem, becomes most serious bottleneck to the road for the sub 100 nm lithography. The main reason for this pattern collapse problem is capillary force that is increased as the pattern size decreases. As a result there were some trials to decrease this capillary force by changing developer or rinse materials that had low surface tension. On the other hands, there were other efforts to increase adhesion between resists and sub materials (organic BARC). In this study, we will propose a novel approach to solve pattern collapse problems by increasing contact area between sub material (organic BARC) and resist pattern. The basic concept of this approach is that if nano-scale topology is made at the sub material, the contact area between sub materials and resist will be increased. The process scheme was like this. First after coating and baking of organic BARC material, the nano-scale topology (3~10nm) was made by etching at this organic BARC material. On this nano-scale topology, resist was coated and exposed. Finally after develop, the contact area between organic BARC and resist could be increased. Though nano-scale topology was made by etching technology, this 20nm topology variation induced large substrate reflectivity of 4.2% and as a result the pattern fidelity was not so good at 100nm 1:1 island pattern. So we needed a new method to improve pattern fidelity problem. This pattern fidelity problem could be solved by introducing a sacrificial BARC layer. The process scheme was like this. First organic BARC was coated of which k value was about 0.64 and then sacrificial BARC layers was coated of which k value was about 0.18 on the organic BARC. The nano-scale topology (1~4nm) was made by etching of this sacrificial BARC layer and then as the same method mentioned above, the contact area between sacrificial layer and resist could be increased. With this introduction of sacrificial layer, the substrate reflectivity of sacrificial BARC layer was decreased enormously to 0.2% though there is 20nm topology variation of sacrificial BARC layer. With this sacrificial BARC layer, we could get 100nm 1:1 L/S pattern. With conventional process, the minimum CD where no collapse occurred, was 96.5nm. By applying this sacrificial BARC layer, the minimum CD where no collapse occurred, was 65.7nm. In conclusion, with nano-scale topology and sacrificial BARC layer, we could get very small pattern that was strong to pattern collapse issue.

  18. Inversion layer solar cell fabrication and evaluation. [etching on silicon films

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Inversion layer solar cells were fabricated by etching through the diffused layer on p-type silicon wafers in a comb-like contact pattern. The charge separation comes from an induced p-n junction at the surface. The inverted surface is caused by a layer of transparent material applied to the surface that either contains free positive ions or that creates donor states at the interface. Cells are increased from 3 ma I sub sc to 100 ma by application of sodium silicate. The action is unstable, however, and decays. Non-mesa contaminated oxide cells were fabricated with short circuit currents of over 100 ma measured in the sun. Cells of this type have demonstrated stability.

  19. Advanced process and defect characterization methodology to support process development of advanced patterning structures

    NASA Astrophysics Data System (ADS)

    Ketkar, Supriya; Lee, Junhan; Asokamani, Sen; Cho, Winston; Mishra, Shailendra

    2018-03-01

    This paper discusses the approach and solution adopted by GLOBALFOUNDRIES, a high volume manufacturing (HVM) foundry, for dry-etch related edge-signature surface particle defects issue facing the sub-nm node in the gate-etch sector. It is one of the highest die killers for the company in the 14-nm node. We have used different approaches to attack and rectify the edge signature surface particle defect. Several process-related & hardware changes have been successively implemented to achieve defect reduction improvement by 63%. Each systematic process and/or hardware approach has its own unique downstream issues and they have been dealt in a route-cause-effect technique to address the issue.

  20. Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating.

    PubMed

    Saffari, Pouneh; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin

    2012-07-10

    Fabrication and characterization of a UV inscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h)×125 μm(w)×1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off.

Top