Ethanol production from renewable resources.
Gong, C S; Cao, N J; Du, J; Tsao, G T
1999-01-01
Vast amounts of renewable biomass are available for conversion to liquid fuel, ethanol. In order to convert biomass to ethanol, the efficient utilization of both cellulose-derived and hemicellulose-derived carbohydrates is essential. Six-carbon sugars are readily utilized for this purpose. Pentoses, on the other hand, are more difficult to convert. Several metabolic factors limit the efficient utilization of pentoses (xylose and arabinose). Recent developments in the improvement of microbial cultures provide the versatility of conversion of both hexoses and pentoses to ethanol more efficiently. In addition, novel bioprocess technologies offer a promising prospective for the efficient conversion of biomass and recovery of ethanol.
USDA-ARS?s Scientific Manuscript database
Seed protein and starch composition determines the efficiency of ethanol conversion in the production of grain-based biofuels. Sorghum, highly water- and nutrient-efficient, has the potential to replace fuel crops with greater irrigation and fertiliser requirements, such as maize. However, sorghum g...
Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production
USDA-ARS?s Scientific Manuscript database
Lignocellulose-to-ethanol conversion is a promising technology to supplement corn-based ethanol production. However, the recalcitrant structure of lignocellulosic material is a major obstacle to the efficient conversion. To improve the enzymatic digestibility of switchgrass for the fermentable sugar...
A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels
NASA Astrophysics Data System (ADS)
He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua
The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.
NASA Astrophysics Data System (ADS)
Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.
2015-11-01
Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.
Narula, Chaitanya K; Li, Zhenglong; Casbeer, Erik M; Geiger, Robert A; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V; Davison, Brian H
2015-11-03
Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.
Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.
2015-01-01
Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX. PMID:26526963
Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; ...
2015-11-03
Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C 2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C 2 (<13%) as compared to that over H-ZSM-5. Experiments with C 2H 5OD and in situ DRIFT suggest that most of the productsmore » come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.« less
Genetic improvement of native xylose-fermenting yeasts for ethanol production.
Harner, Nicole K; Wen, Xin; Bajwa, Paramjit K; Austin, Glen D; Ho, Chi-Yip; Habash, Marc B; Trevors, Jack T; Lee, Hung
2015-01-01
Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient. This remains one of the key challenges in lignocellulosic biomass conversion. Native pentose-fermenting yeasts can ferment both glucose and xylose in lignocellulosic biomass to ethanol. However, they perform poorly in the presence of hydrolysate inhibitors, exhibit low ethanol tolerance and glucose repression, and ferment pentoses less efficiently than the main hexoses glucose and mannose. This paper reviews classical and molecular strain improvement strategies applied to native pentose-fermenting yeasts for improved ethanol production from xylose and lignocellulosic substrates. We focus on Pachysolen tannophilus, Scheffersomyces (Candida) shehatae, Scheffersomyces (Pichia) stipitis, and Spathaspora passalidarum which are good ethanol producers among the native xylose-fermenting yeasts. Strains obtained thus far are not robust enough for efficient ethanol production from lignocellulosic hydrolysates and can benefit from further improvements.
Maleic acid treatment of bioabated corn stover liquors improves cellulose conversion to ethanol
USDA-ARS?s Scientific Manuscript database
Elimination of inhibitory compounds released during pretreatment of lignocellulose is critical for efficient cellulose conversion and ethanol fermentation. This study examined the effect of bioabated liquor from pretreated corn stover on enzyme hydrolysis of Solka Floc or pretreated corn stover soli...
Sustainable Bioproducts LLC’s proposed research will further develop an efficient, economical and scalable process for conversion of municipal solid wastes and agricultural wastes to biodiesel and ethanol. The technology is based on use of a novel extremophilic fun...
Eom, In-Yong; Yu, Ju-Hyun; Jung, Chan-Duck; Hong, Kyung-Sik
2015-01-01
Oil palm trunk (OPT) is a valuable bioresource for the biorefinery industry producing biofuels and biochemicals. It has the distinct feature of containing a large amount of starch, which, unlike cellulose, can be easily solubilized by water when heated and hydrolyzed to glucose by amylolytic enzymes without pretreatment for breaking down the biomass recalcitrance. Therefore, it is suggested as beneficial to extract most of the starch from OPT through autoclaving and subsequent amylolytic hydrolysis prior to pretreatment. However, this treatment requires high capital and operational costs, and there could be a high probability of microbial contamination during starch processing. In terms of biochemical conversion of OPT, this study aimed to develop a simple and efficient ethanol conversion process without any chemical use such as acids and bases or detoxification. For comparison with the proposed efficient ethanol conversion process, OPT was subjected to hydrothermal treatment at 180 °C for 30 min. After enzymatic hydrolysis of PWS, 43.5 g of glucose per 100 g dry biomass was obtained, which corresponds to 81.3 % of the theoretical glucose yield. Through subsequent alcohol fermentation, 81.4 % ethanol yield of the theoretical ethanol yield was achieved. To conduct the proposed new process, starch in OPT was converted to ethanol through enzymatic hydrolysis and subsequent fermentation prior to hydrothermal treatment, and the resulting slurry was subjected to identical processes that were applied to control. Consequently, a high-glucose yield of 96.3 % was achieved, and the resulting ethanol yield was 93.5 %. The proposed new process was a simple method for minimizing the loss of starch during biochemical conversion and maximizing ethanol production as well as fermentable sugars from OPT. In addition, this methodology offers the advantage of reducing operational and capital costs due to minimizing the process for ethanol production by excluding expensive processes related to detoxification prior to enzymatic hydrolysis and fermentation such as washing/conditioning and solid-liquid separation of pretreated slurry. The potential future use of xylose-digestible microorganisms could further increase the ethanol yield from the proposed process, thereby increasing its effectiveness for the conversion of OPT into biofuels and biochemicals.
Greater transportation energy and GHG offsets from bioelectricity than ethanol.
Campbell, J E; Lobell, D B; Field, C B
2009-05-22
The quantity of land available to grow biofuel crops without affecting food prices or greenhouse gas (GHG) emissions from land conversion is limited. Therefore, bioenergy should maximize land-use efficiency when addressing transportation and climate change goals. Biomass could power either internal combustion or electric vehicles, but the relative land-use efficiency of these two energy pathways is not well quantified. Here, we show that bioelectricity outperforms ethanol across a range of feedstocks, conversion technologies, and vehicle classes. Bioelectricity produces an average of 81% more transportation kilometers and 108% more emissions offsets per unit area of cropland than does cellulosic ethanol. These results suggest that alternative bioenergy pathways have large differences in how efficiently they use the available land to achieve transportation and climate goals.
NASA Astrophysics Data System (ADS)
Ferchak, J. D.; Pye, E. K.
The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.
USDA-ARS?s Scientific Manuscript database
This study reports the first lower-cost cellulosic ethanol production from mild alkali retreated rice straw using a native ß-glucosidase producing yeast strain, Clavispora NRRL Y-50464 by SSF. Ethanol production and efficiency of ethanol conversion from 10, 15, and 20% of solids loading of rice stra...
Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion
NASA Astrophysics Data System (ADS)
Pashchenko, D. I.
2013-06-01
In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.
Efficient approach for bioethanol production from red seaweed Gelidium amansii.
Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong
2015-01-01
Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass. PMID:24713041
Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon
2013-02-28
Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor strains with new Thermoanaerobacter strains underline the importance of using specific strain combinations for high ethanol yields. These co-cultures provide an efficient CBP pathway for ethanol production and represent an ideal starting point for development of a highly integrated commercial ethanol production process.
Ethanol production from woody biomass: Silvicultural opportunities for suppressed western conifers
Andrew Youngblood; Junyong Zhu; C. Tim Scott
2010-01-01
The 2007 Energy Security and Independence Act (ESIA) requires 16 billion gallons of ethanol to be produced from lignocellulose biomass by 2022 in the United States. Forests can be a key source of renewable lignocellulose for ethanol production if cost and conversion efficiency barriers can be overcome. We explored opportunities for using woody biomass from thinning...
Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Jang, Gil Su; Nam, Seunghoon; Park, Byungwoo
2016-01-01
High power conversion efficiency and device stabilization are two major challenges for CH3NH3PbI3 (MAPbI3) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C2H5OH into the PbCl2 film was observed to be more favorable than that of MAI/C3H7OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl2 converting into MAPbI3. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition. PMID:27156481
Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents
NASA Astrophysics Data System (ADS)
Sarwono, Rakhman; Pusfitasari, Eka Dian
2017-01-01
Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.
Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
Chung, Daehwan; Cha, Minseok; Guss, Adam M.; Westpheling, Janet
2014-01-01
Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169–172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production. PMID:24889625
Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.
Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet
2014-06-17
Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.
Liu, Zhi-Hua; Chen, Hong-Zhang
2017-01-01
The simultaneous saccharification and fermentation (SSF) of corn stover biomass for ethanol production was performed by integrating steam explosion (SE) pretreatment, hydrolysis and fermentation. Higher SE pretreatment severity and two-step size reduction increased the specific surface area, swollen volume and water holding capacity of steam exploded corn stover (SECS) and hence facilitated the efficiency of hydrolysis and fermentation. The ethanol production and yield in SSF increased with the decrease of particle size and post-washing of SECS prior to fermentation to remove the inhibitors. Under the SE conditions of 1.5MPa and 9min using 2.0cm particle size, glucan recovery and conversion to glucose by enzymes were 86.2% and 87.2%, respectively. The ethanol concentration and yield were 45.0g/L and 85.6%, respectively. With this two-step size reduction and post-washing strategy, the water utilization efficiency, sugar recovery and conversion, and ethanol concentration and yield by the SSF process were improved. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Harvind K.; Muppaneni, Tapaswy; Patil, Prafulla D.
This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel samplemore » produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.« less
USDA-ARS?s Scientific Manuscript database
Economically viable production of lignocellulosic ethanol requires efficient conversion of feedstock sugars to ethanol. Saccharomyces cerevisiae cannot ferment xylose, the main five-carbon sugars in biomass, but can ferment xylulose, an enzymatically derived isomer. Xylulose fermentation is slow rel...
An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
Yue, Hairong; Ma, Xinbin; Gong, Jinlong
2014-05-20
Ethanol is an attractive end product and a versatile feedstock because a widespread market exists for its commercial use as a fuel additive or a potential substitute for gasoline. Currently, ethanol is produced primarily by fermentation of biomass-derived sugars, particularly those containing six carbons, but coproducts 5-carbon sugars and lignin remain unusable. Another major process for commercial production of ethanol is hydration of ethylene over solid acidic catalysts, yet not sustainable considering the depletion of fossil fuels. Catalytic conversion of synthetic gas (CO + H2) could produce ethanol in large quantities. However, the direct catalytic conversion of synthetic gas to ethanol remains challenging, and no commercial process exists as of today although the research has been ongoing for the past 90 years, since such the process suffers from low yield and poor selectivity due to slow kinetics of the initial C-C bond formation and fast chain growth of the C2 intermediates. This Account describes recent developments in an alternative approach for the synthesis of ethanol via synthetic gas. This process is an integrated technology consisting of the coupling of CO with methanol to form dimethyl oxalate and the subsequent hydrogenation to yield ethanol. The byproduct of the second step (methanol) can be separated and used in circulation as the feedstock for the coupling step. The coupling reaction of carbon monoxide for producing dimethyl oxalate takes place under moderate reaction conditions with high selectivity (∼95%), which ideally leads to a self-closing, nonwaste, catalytic cycling process. This Account also summarizes the progress on the development of copper-based catalysts for the hydrogenation reaction with remarkable efficiencies and stability. The unique lamellar structure and the cooperative effect between surface Cu(0) and Cu(+) species are responsible for the activity of the catalyst with high yield of ethanol (∼91%). The understanding of nature of valence states of Cu could also guide the rational design of Cu-based catalysts for other similar reactions, particularly for hydrogenation catalytic systems. In addition, by regulating the reaction condition and the surface structure of the catalysts, the products in the hydrogenation steps, such as ethanol, methyl glycolate, and ethylene glycol, could be tuned efficiently. This synthetic approach enables a more sustainable ethanol, methyl glycolate, and ethylene glycol synthesis in industry and greatly reduces the dependence on petroleum resources and the emission of the greenhouse gas.
Yu, Heng; Ren, Jiwei; Liu, Lei; Zheng, Zhaojuan; Zhu, Junjun; Yong, Qiang; Ouyang, Jia
2016-01-01
This study established a new more neutral magnesium bisulfate pretreatment (MBSP) using magnesium bisulfate as sulfonating agent for improving the enzymatic hydrolysis efficiency of corn stover. Using the MBSP with 5.21% magnesium bisulfate, 170°C and pH 5.2 for 60 min, about 90% of lignin and 80% of hemicellulose were removed from biomass and more than 90% cellulose conversion of substrate was achieved after 48 h hydrolysis. About 6.19 kg raw corn stover could produce 1 kg ethanol by Saccharomyces cerevisiae. Meanwhile, MBSP also could protect sugars from excessive degradation, prevent fermentation inhibition formation and directly convert the hemicelluloses into xylooligosaccharides as higher-value products. These results suggested that the MBSP method offers an alternative approach to the efficient conversion of nonwoody lignocellulosic biomass to ethanol and had broad space for development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficient process for producing saccharides and ethanol from a biomass feedstock
Okeke, Benedict C.; Nanjundaswamy, Ananda K.
2017-04-11
Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.
Dhiman, Saurabh Sudha; David, Aditi; Shrestha, Namita; Johnson, Glenn R; Benjamin, Kenneth M; Gadhamshetty, Venkataramana; Sani, Rajesh K
2017-11-01
The one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process was developed for simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic (growing at 65°C) anaerobic bacteria. Unlike existing waste to energy technologies, the CRUDE process obviates the need for any pre-treatment or enzyme addition. A High-Temperature-High-Pressure (HTHP) distillation technique was also applied that facilitated efficient use of fermentation medium, inoculum recycling, and in-situ ethanol collection. For material balancing of the process, each characterized component was represented in terms of C-mol. Recovery of 94% carbon at the end confirmed the operational efficiency of CRUDE process. The overall energy retaining efficiency calculated from sugars to ethanol was 1262.7kJdryweightkg -1 of volatile solids using HTHP. These results suggest that the CRUDE process can be a starting point for the development of a commercial ethanol production process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, L. V. A.; Reddy, O. V. S.; Basappa, S. C.
In recent years, the use of renewable and abundantly available starchy and cellulosic materials for industrial production of ethanol is gaining importance, in view of the fact, that ethanol is one of the most prospective future motor fuels, that can be expected to replace fossil fuels, which are fast depleting in the world scenario. Although, the starch and the starchy substrates could be converted successfully to ethanol on industrial scales by the use of commercial amylolytic enzymes and yeast fermentation, the cost of production is rather very high. This is mainly due to the non-enzymatic and enzymatic conversion (gelatinization, liquefaction and saccharification) of starch to sugars, which costs around 20 % of the cost of production of ethanol from starch. In this context, the use of amylolytic yeasts, that can directly convert starch to ethanol by a single step, are potentially suited to reduce the cost of production of ethanol from starch. Research advances made in this direction have shown encouraging results, both in terms of identifying the potentially suited yeasts for the purpose and also their economic ethanol yields. This chapter focuses on the types of starch and starchy substrates and their digestion to fermentable sugars, optimization of fermentation conditions to ethanol from starch, factors that affect starch fermentation, potential amylolytic yeasts which can directly convert starch to ethanol, genetic improvement of these yeasts for better conversion efficiency and their future economic prospects in the new millennium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asther, M.; Khan, A.W.
1984-01-01
To convert sugar mixtures containing cellobiose, glucose, and xylose to ethanol in a single step, the possibility of using a coculture consisting of Clostridium saccharolyticum and Zymomonas anaerobia was studied. In monoculture, C. saccharolyticum utilized all three sugars; however, it preferentially utilized glucose and produced acetic acid in addition to ethanol. The formation of acetic acid from the metabolism of glucose inhibited the growth of C. saccharolyticum and, consequently, the utilization of cellobiose and xylose. In monoculture, Z. anaerobia utilized glucose at a rate of 50 g/L day, but it did not ferment cellobiose or xylose. In coculture, Z. anaerobiamore » converted most of the glucose to ethanol during the lag phase of growth of C. saccharolyticum, which then converted cellobiose and xylose to ethanol. The use of this coculture increased both the rate and the efficiency of the conversion of these three sugars to ethanol, and produced relatively small amounts of acetic acid.« less
Unrean, Pornkamol; Srienc, Friedrich
2010-01-01
We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108
Continuous production of ethanol with Zymomonas mobilis growing on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allais, J.J.; Torres, E.F.; Baratti, J.
1987-04-01
Recent work from the authors laboratory has shown that, compared to yeasts, much higher ethanol productivity and yield can be obtained in batch or continuous cultures using the bacterium Zymomonas mobilis grown on fructose media. In batch culture, hydrolyzed Jerusalem artichoke juice with sugar concentrations ranging from 100 to 250 g/L can be converted efficiently to ethanol. The present work describes the conversion of the hydrolyzed juice to ethanol in continuous culture. The extraction and enzymatic hydrolysis of inulin from the tubers of Jerusalem artichoke is also reported.
Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu
2010-10-01
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.
NASA Astrophysics Data System (ADS)
Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu
2010-10-01
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.
Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; ...
2015-06-02
Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less
Petit, Elsa; Coppi, Maddalena V; Hayes, James C; Tolonen, Andrew C; Warnick, Thomas; Latouf, William G; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J; Church, George M; Leschine, Susan B; Blanchard, Jeffrey L
2015-01-01
Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.
Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol.
Anderson, William F; Dien, Bruce S; Brandon, Sarah K; Peterson, Joy Doran
2008-03-01
Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g(-1) of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g(-1)) and two giant reed clones (109 and 85 mg g(-1)). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g(-1)) being superior to Coastal (247 mg g(-1)) and Tifton 44 (245 mg g(-1)). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.
Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol
NASA Astrophysics Data System (ADS)
Anderson, William F.; Dien, Bruce S.; Brandon, Sarah K.; Peterson, Joy Doran
Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g-1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g-1) and two giant reed clones (109 and 85 mg g-1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g-1) being superior to Coastal (247 mg g-1) and Tifton 44 (245 mg g-1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.
Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality.
Lee, Scott J; Warnick, Thomas A; Pattathil, Sivakumar; Alvelo-Maurosa, Jesús G; Serapiglia, Michelle J; McCormick, Heather; Brown, Virginia; Young, Naomi F; Schnell, Danny J; Smart, Lawrence B; Hahn, Michael G; Pedersen, Jeffrey F; Leschine, Susan B; Hazen, Samuel P
2012-02-08
There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.). Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality.
Pacheco, Alexandre Monteiro; Gondim, Diego Romão; Gonçalves, Luciana Rocha Barros
2010-05-01
In this work, cashew apple bagasse (CAB) was used for Saccharomyces cerevisiae immobilization. The support was prepared through a treatment with a solution of 3% HCl, and delignification with 2% NaOH was also conducted. Optical micrographs showed that high populations of yeast cells adhered to pre-treated CAB surface. Ten consecutive fermentations of cashew apple juice for ethanol production were carried out using immobilized yeasts. High ethanol productivity was observed from the third fermentation assay until the tenth fermentation. Ethanol concentrations (about 19.82-37.83 g L(-1) in average value) and ethanol productivities (about 3.30-6.31 g L(-1) h(-1)) were high and stable, and residual sugar concentrations were low in almost all fermentations (around 3.00 g L(-1)) with conversions ranging from 44.80% to 96.50%, showing efficiency (85.30-98.52%) and operational stability of the biocatalyst for ethanol fermentation. Results showed that cashew apple bagasse is an efficient support for cell immobilization aiming at ethanol production.
Process simulation of ethanol production from biomass gasification and syngas fermentation.
Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed
2017-12-01
The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions
Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center : Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel
USDA-ARS?s Scientific Manuscript database
Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Corn stover (supplied by a local farmer) used in this study contained 37.0±0.4% cellulose, 31.3±0.6% hemicelluloses, and 17.8±0.2% lignin. Generation of fermentable sugars from ...
NASA Astrophysics Data System (ADS)
Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.
2015-10-01
Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.
Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily
2010-07-01
Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.
Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.
Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy
2018-03-01
Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.
Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo
2017-06-02
Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
Huang, Wei-Dong; Zhang, Y-H Percival
2011-01-01
Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941
Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality
2012-01-01
Background There is currently considerable interest in developing renewable sources of energy. One strategy is the biological conversion of plant biomass to liquid transportation fuel. Several technical hurdles impinge upon the economic feasibility of this strategy, including the development of energy crops amenable to facile deconstruction. Reliable assays to characterize feedstock quality are needed to measure the effects of pre-treatment and processing and of the plant and microbial genetic diversity that influence bioconversion efficiency. Results We used the anaerobic bacterium Clostridium phytofermentans to develop a robust assay for biomass digestibility and conversion to biofuels. The assay utilizes the ability of the microbe to convert biomass directly into ethanol with little or no pre-treatment. Plant samples were added to an anaerobic minimal medium and inoculated with C. phytofermentans, incubated for 3 days, after which the culture supernatant was analyzed for ethanol concentration. The assay detected significant differences in the supernatant ethanol from wild-type sorghum compared with brown midrib sorghum mutants previously shown to be highly digestible. Compositional analysis of the biomass before and after inoculation suggested that differences in xylan metabolism were partly responsible for the differences in ethanol yields. Additionally, we characterized the natural genetic variation for conversion efficiency in Brachypodium distachyon and shrub willow (Salix spp.). Conclusion Our results agree with those from previous studies of lignin mutants using enzymatic saccharification-based approaches. However, the use of C. phytofermentans takes into consideration specific organismal interactions, which will be crucial for simultaneous saccharification fermentation or consolidated bioprocessing. The ability to detect such phenotypic variation facilitates the genetic analysis of mechanisms underlying plant feedstock quality. PMID:22316115
Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes
Caspeta, Luis; Castillo, Tania; Nielsen, Jens
2015-01-01
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154
Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.
Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos
2017-01-01
Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.
You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin
2017-01-01
Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an effective conversion process for ethanol production at high solid loading.
Ntaikou, Ioanna; Menis, Nikolaos; Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos
2018-04-30
The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L -1 initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L -1 was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi
2008-06-01
Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.
Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.
Xu, Lei; Tschirner, Ulrike
2014-08-01
Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.
Kumar, Deepak; Murthy, Ganti S
2011-09-05
While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.
2011-01-01
Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958
Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi
2016-06-01
The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
Okamoto, Kenji; Kanawaku, Ryuichi; Masumoto, Masaru; Yanase, Hideshi
2012-02-10
The efficient production of bioethanol on an industrial scale requires the use of renewable lignocellulosic biomass as a starting material. A limiting factor in developing efficient processes is identifying microorganisms that are able to effectively ferment xylose, the major pentose sugar found in hemicellulose, and break down carbohydrate polymers without pre-treatment steps. Here, a basidiomycete brown rot fungus was isolated as a new biocatalyst with unprecedented fermentability, as it was capable of converting not only the 6-carbon sugars constituting cellulose, but also the major 5-carbon sugar xylose in hemicelluloses, to ethanol. The fungus was identified as Neolentinus lepideus and was capable of assimilating and fermenting xylose to ethanol in yields of 0.30, 0.33, and 0.34 g of ethanol per g of xylose consumed under aerobic, oxygen-limited, and anaerobic conditions, respectively. A small amount of xylitol was detected as the major by-product of xylose metabolism. N. lepideus produced ethanol from glucose, mannose, galactose, cellobiose, maltose, and lactose with yields ranging from 0.34 to 0.38 g ethanol per g sugar consumed, and also exhibited relatively favorable conversion of non-pretreated starch, xylan, and wheat bran. These results suggest that N. lepideus is a promising candidate for cost-effective and environmentally friendly ethanol production from lignocellulosic biomass. To our knowledge, this is the first report on efficient ethanol fermentation from various carbohydrates, including xylose, by a naturally occurring brown rot fungus. Copyright © 2011 Elsevier Inc. All rights reserved.
Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
Teh, Kwee-Yan; Lutz, Andrew E
2010-05-17
Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.
Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo
2017-12-01
Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi
2014-04-01
A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tsai, Tsai-Ling; Liu, Shiu-Mei; Lee, Shi-Chiang; Chen, Wei-Jei; Chou, Sheng-Hsin; Hsu, Tseng-Chieh; Guo, Gia-Luen; Hwang, Wen-Song; Wiegel, Juergen
2011-01-01
A new extremely thermophilic, anaerobic, gram-negative bacterium, strain NTOU1, was enriched and isolated from acidic marine hydrothermal fluids off Gueishandao island in Taiwan with 0.5% starch and 0.5% maltose as carbon sources. This strain was capable of growth utilizing various sugars found in lignocellulosic biomass as well as xylan and cellulose, and produced ethanol, lactate, acetate, and CO(2) as fermentation products. The results of a 16S rRNA gene sequence analysis (1,520 bp) revealed NTOU1 to belong to the genus Thermoanaerobacterium. When tested for the ability to grow and produce ethanol from xylose or rice straw hemicellulosic hydrolysate at 70°C, the strain showed the highest levels of ethanol production (1.65 mol ethanol mol xylose(-1)) in a medium containing 0.5% xylose plus 0.5% yeast extract. Maximum ethanol production from the rice straw hemicellulose was 0.509 g g(-1), equivalent to 98.8% theoretical conversion efficiency. Low concentrations of inhibitors (derived from dilute acid hydrolysis) in the rice straw hemicellulose hydrolysate did not affect the ethanol yield. Thus, Thermoanaerobacterium strain NTOU1 has the potential to be used for ethanol production from hemicellulose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pihl, Josh A.; Toops, Todd J.; Fisher, Galen B.
Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NO x conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH 3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%.more » NO 2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH 3 SCR of NO x does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. In conclusion, the gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.« less
Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions
NASA Astrophysics Data System (ADS)
Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng
The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.
Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J
2015-03-11
Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.
Renewable energy: energy from agricultural products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-06-01
This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvestingmore » water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less
Renewable energy: energy from agricultural products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-06-01
This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napiermore » grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less
Enhanced performance in perovskite solar cells via bromide ion substitution and ethanol treatment
NASA Astrophysics Data System (ADS)
Feng, Bingjie; Duan, Jinxia; Tao, Li; Zhang, Jun; Wang, Hao
2018-02-01
Mixed lead halide (Pb(I1-xBrx)2) as the seed layer was employed to prepare mixed lead-halide perovskite (MAPbI3-2xBr2x, MA = CH3NH3) films through two-step sequential deposition method. Ethanol treatment process was also introduced for the control of morphology and microstructure of Pb(I1-xBrx)2 films. The ethanol treatment accelerates the crystallization of Pb(I1-xBrx)2 and the resulted Pb(I1-xBrx)2 films exhibit a porous structure which facilitates more complete conversion of PbI2 at the same time. As a result, high purity and highly crystallized MAPbI3-2xBr2x films are obtained. The photovoltaic performance of assembled perovskite solar cells based on MAPbI3-2xBr2x films are improved upon ethanol treatment and a champion power conversion efficiency (PCE) of 15.53% is obtained with x = 0.2. After exposed in air condition for 14 days, a 86% of initial PCE remains in the champion device.
Song, Yang; Peng, Rui; Hensley, Dale K.; ...
2016-09-28
Carbon dioxide is a pollutant, but also a potential carbon source provided an efficient means to convert it to useful products. Herein we report a nanostructured catalyst for the direct electrochemical reduction of dissolved CO 2 to ethanol with high Faradaic efficiency (63%) and high selectivity (84%). The catalyst is comprised of Cu nanoparticle on a highly textured, N-doped graphene film. Detailed electrochemical analysis and complementary DFT calculations indicate a novel mechanism in which multiple active sites, working sequentially, control the coupling of carbon monoxide radicals and mediate the subsequent electrochemical reduction to alcohol.
2014-01-01
Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051
Selective Hydrogenation of CO2 to Ethanol over Cobalt Catalysts.
Wang, Lingxiang; Wang, Liang; Zhang, Jian; Liu, Xiaolong; Wang, Hai; Zhang, Wei; Yang, Qi; Ma, Jingyuan; Dong, Xue; Yoo, Seung Jo; Kim, Jin-Gyu; Meng, Xiangju; Xiao, Feng-Shou
2018-05-22
Methods for the hydrogenation of CO 2 into valuable chemicals are in great demand but their development is still challenging. Herein, we report the selective hydrogenation of CO 2 into ethanol over non-noble cobalt catalysts (CoAlO x ), presenting a significant advance for the conversion of CO 2 into ethanol as the major product. By adjusting the composition of the catalysts through the use of different prereduction temperatures, the efficiency of CO 2 to ethanol hydrogenation was optimized; the catalyst reduced at 600 ° gave an ethanol selectivity of 92.1 % at 140 °C with an ethanol time yield of 0.444 mmol g -1 h -1 . Operando FT-IR spectroscopy revealed that the high ethanol selectivity over the CoAlO x catalyst might be due to the formation of acetate from formate by insertion of *CH x , a key intermediate in the production of ethanol by CO 2 hydrogenation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Treebupachatsakul, Treesukon; Shioya, Koki; Nakazawa, Hikaru; Kawaguchi, Takashi; Morikawa, Yasushi; Shida, Yosuke; Ogasawara, Wataru; Okada, Hirofumi
2015-12-01
The capacity of Trichoderma reesei cellulase to degrade lignocellulosic biomass has been enhanced by the construction of a recombinant T. reesei strain expressing Aspergillus aculeatus β-glucosidase I. We have confirmed highly efficient ethanol production from converge-milled Japanese cedar by recombinant T. reesei expressing A. aculeatus β-glucosidase I (JN11). We investigated the ethanol productivity of JN11 and compared it with the cocktail enzyme T. reesei PC-3-7 with reinforced cellobiase activity by the commercial Novozyme 188. Results showed that the ethanol production efficiency under enzymatic hydrolysis of JN11 was comparable to the cocktail enzyme both on simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF) processes. Moreover, the cocktail enzyme required more protein loading for attaining similar levels of ethanol conversion as JN11. We propose that JN11 is an intrinsically economical enzyme that can eliminate the supplementation of BGL for PC-3-7, thereby reducing the cost of industrial ethanol production from lignocellulosic biomass. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok
2012-02-01
The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.
Grain sorghum is a viable feedstock for ethanol production.
Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R
2008-05-01
Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.
Lu, Ting; Li, Xiukai; Gu, Liuqun; Zhang, Yugen
2014-09-01
The production of bulk chemicals and fuels from renewable biobased feedstocks is of significant importance for the sustainability of human society. The production of ethanol from biomass has dramatically increased and bioethanol also holds considerable potential as a versatile building block for the chemical industry. Herein, we report a highly selective process for the conversion of ethanol to C4 bulk chemicals, such as 2,3-butanediol and butene, via a vitamin B1 (thiamine)-derived N-heterocyclic carbene (NHC)-catalyzed acetoin condensation as the key step to assemble two C2 acetaldehydes into a C4 product. The environmentally benign and cheap natural catalyst vitamin B1 demonstrates high selectivity (99%), high efficiency (97% yield), and high tolerance toward ethanol and water impurities in the acetoin reaction. The results enable a novel and efficient process for ethanol upgrading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo
2016-03-01
Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.
Singh, Jitendra K; Vyas, Preeti; Dubey, Anamika; Upadhyaya, Chandrama Prakash; Kothari, Richa; Tyagi, Vineet Veer; Kumar, Ashwani
2018-06-01
The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.
Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.
Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing
2017-05-24
Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.
Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment.
Kang, Hee-Kyoung; Kim, Doman
2012-01-01
Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.
Chang, Ho; Lai, Xuan-Rong
2016-02-01
This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s.
Qin, Lei; Zhao, Xiong; Li, Wen-Chao; Zhu, Jia-Qing; Liu, Li; Li, Bing-Zhi; Yuan, Ying-Jin
2018-01-01
Improving ethanol concentration and reducing enzyme dosage are main challenges in bioethanol refinery from lignocellulosic biomass. Ethylenediamine (EDA) pretreatment is a novel method to improve enzymatic digestibility of lignocellulose. In this study, simultaneous saccharification and co-fermentation (SSCF) process using EDA-pretreated corn stover was analyzed and optimized to verify the constraint factors on ethanol production. Highest ethanol concentration was achieved with the following optimized SSCF conditions at 6% glucan loading: 12-h pre-hydrolysis, 34 °C, pH 5.4, and inoculum size of 5 g dry cell/L. As glucan loading increased from 6 to 9%, ethanol concentration increased from 33.8 to 48.0 g/L, while ethanol yield reduced by 7%. Mass balance of SSCF showed that the reduction of ethanol yield with the increasing solid loading was mainly due to the decrease of glucan enzymatic conversion and xylose metabolism of the strain. Tween 20 and BSA increased ethanol concentration through enhancing enzymatic efficiency. The solid-recycled SSCF process reduced enzyme dosage by 40% (from 20 to 12 mg protein/g glucan) to achieve the similar ethanol concentration (~ 40 g/L) comparing to conventional SSCF. Here, we established an efficient SSCF procedure using EDA-pretreated biomass. Glucose enzymatic yield and yeast viability were regarded as the key factors affecting ethanol production at high solid loading. The extensive analysis of SSCF would be constructive to overcome the bottlenecks and improve ethanol production in cellulosic ethanol refinery.
Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S
2015-01-01
Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 22 full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725
Shih, Chien-Ju; Smith, Emily A
2009-10-27
Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L(-1). The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86+/-4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78+/-8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L(-1). Comparison of the fermentation efficiencies measured by Raman spectroscopy (80+/-10%) and gas chromatography-mass spectrometry (87+/-9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to generate lignocellulosic ethanol.
Ensilage and bioconversion of grape pomace into fuel ethanol.
Zheng, Yi; Lee, Christopher; Yu, Chaowei; Cheng, Yu-Shen; Simmons, Christopher W; Zhang, Ruihong; Jenkins, Bryan M; VanderGheynst, Jean S
2012-11-07
Two types of grape pomace were ensiled with eight strains of lactic acid bacteria (LAB). Both fresh grape pomace (FrGP) and fermented grape pomace (FeGP) were preserved through alcoholic fermentation but not malolactic conversion. Water leaching prior to storage was used to reduce water-soluble carbohydrates and ethanol from FrGP and FeGP, respectively, to increase malolactic conversion. Leached FeGP had spoilage after 28 days of ensilage, whereas FrGP was preserved. Dilute acid pretreatment was examined for increasing the conversion of pomace to ethanol via Escherichia coli KO11 fermentation. Dilute acid pretreatment doubled the ethanol yield from FeGP, but it did not improve the ethanol yield from FrGP. The ethanol yields from raw pomace were nearly double the yields from the ensiled pomace. For this reason, the recovery of ethanol produced during winemaking from FeGP and ethanol produced during storage of FrGP is critical for the economical conversion of grape pomace to biofuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, C.H.
1989-01-01
A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponentmore » system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.« less
Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus
Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk
2016-01-01
Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously. PMID:27103854
Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin
2016-05-01
Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Designer organisms for photosynthetic production of ethanol from carbon dioxide and water
Lee, James Weifu [Knoxville, TN
2011-07-05
The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.
Ra, Chae Hun; Kim, Min Ji; Jeong, Gwi-Taek; Kim, Sung-Koo
2017-03-01
A total monosaccharide concentration of 37.8 g/L and 85.9% conversion from total fermentable monosaccharides of 44.0 g/L from 110 g dw/L Eucheuma denticulatum slurry were obtained by thermal acid hydrolysis and enzymatic saccharification. Subsequent adsorption treatment to remove 5-hydroxymethylfurfural (5-HMF) using 5% activated carbon and an adsorption time of 10 min were used to prevent a prolonged lag phase, reduced cell growth, and low ethanol production. The equilibrium adsorption capacity (q e ) of HMF (58.183 mg/g) showed high affinity to activated carbon comparing to those of galactose (2.466 mg/g) and glucose (2.474 mg/g). The efficiency of cell growth and ethanol production with activated carbon treatment was higher than that without activated carbon treatment. Fermentation using S. stipitis KCTC7228 produced a cell concentration of 3.58 g dw/L with Y X/S of 0.107, and an ethanol concentration of 15.8 g/L with Y P/S of 0.48 in 96 h.
Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.
Wu, Fang-Chen; Wu, Jane-Yii; Liao, Yi-Jyun; Wang, Man-Ying; Shih, Ing-Lung
2014-03-01
Gracilaria sp., a red alga, was used as a feedstock for the production of bioethanol. Saccharification of Gracilaria sp. by sequential acid and enzyme hydrolysis in situ produced a high quality hydrolysate that ensured its fermentability to produce ethanol. The optimal saccharification process resulted in total 11.85g/L (59.26%) of glucose and galactose, Saccharomyces cerevisiae Wu-Y2 showed a good performance on co-fermentability of glucose and galactose released in the hydrolysate from Gracilaria sp. The final ethanol concentrations of 4.72g/L (0.48g/g sugar consumed; 94% conversion efficiency) and the ethanol productivity 4.93g/L/d were achieved. 1g of dry Gracilaria can be converted to 0.236g (23.6%) of bioethanol via the processes developed. Efficient alcohol production by immobilized S. cerevisiae Wu-Y2 in batch and repeated batch fermentation was also demonstrated. The findings of this study revealed that Gracilaria sp. can be a potential feedstock in biorefinery for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André
2009-01-01
The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.
Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode
NASA Astrophysics Data System (ADS)
Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.
2018-01-01
Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.
Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel
2013-01-01
Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.
Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.
Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela
2010-06-22
For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.
Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols
NASA Astrophysics Data System (ADS)
Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.
2016-06-01
Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.
Ferdowsi, Milad; Ramirez, Antonio Avalos; Jones, Joseph Peter; Heitz, Michèle
2017-09-01
Methane (CH 4 ) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH 4 inlet load (IL) of 13 ± 0.5 g CH4 m -3 h -1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH 4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 g ethanol m -3 h -1 . Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO 2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO 2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 g ethanol m -3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH 2 O m -1 ) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH 2 O m -1 .
Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M
2016-10-01
To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.
Engineering yeast transcription machinery for improved ethanol tolerance and production.
Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory
2006-12-08
Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.
Cui, Xingkai; Zhao, Xuebing; Zeng, Jing; Loh, Soh Kheang; Choo, Yuen May; Liu, Dehua
2014-08-01
Oil palm empty fruit bunch (EFB) was pretreated by Formiline process to overcome biomass recalcitrance and obtain hemicellulosic syrup and lignin. Higher formic acid concentration led to more lignin removal but also higher degree of cellulose formylation. Cellulose digestibility could be well recovered after deformylation with a small amount of lime. After digested by enzyme loading of 15 FPU+10 CBU/g solid for 48 h, the polysaccharide conversion could be over 90%. Simultaneous saccharification and fermentation (SSF) results demonstrated that ethanol concentration reached 83.6 g/L with approximate 85% of theoretic yield when performed at an initial dry solid consistency of 20%. A mass balance showed that via Formiline pretreatment 0.166 kg of ethanol could be produced from 1 kg of dry EFB with co-production of 0.14 kg of high-purity lignin and 5.26 kg hemicellulosic syrup containing 2.8% xylose. Formiline pretreatment thus can be employed as an entry for biorefining of EFB. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, John F; Huff, Shean P; West, Brian H
2012-04-01
The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPAmore » certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.« less
Falletta, Ermelinda; Rossi, Michele; Teles, Joaquim Henrique; Della Pina, Cristina
2016-03-19
Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'yachkov, Aleksei B; Labozin, Valerii P
The results of experiments on the 510 {yields} 578-nm conversion of high-power radiation from a copper vapour laser (CVL) in a dye cell are presented. The use of the efficient laser dye Pyrromethane 597 (PM-597) made it possible to convert the 120-W CVL radiation (72 W at 510 nm + 48 W at 578 nm) into 102-W radiation at 578 nm, which is equivalent to a conversion efficiency of 85%. Photostability of the dye in various solvents is studied. The photostability (more than 45 GJ mole{sup -1}) of PM-597 in n-heptane is found to be higher than that of Rhmore » 6G in ethanol. (control of laser radiation parameters)« less
[New strains of basidiomycetes that produce bioethanol from lignocellulose biomass].
Kozhevnikova, E Yu; Petrova, D A; Kopitsyn, D S; Nivikov, A A; Shnyreva, A V; Barkov, A V; Vinokurov, V A
2016-01-01
Sixty six isolates were screened for ability of bioethanol production; dynamics of product accumulation and substrate utilization were investigated for two selected strains Trametes hirsuta MT-24.24 and Trametes versicolor IT-1. The strains’ efficiency was evaluated as bioethanol production by 1 g biomass. Strain T. versicolor IT-1 producing over 33 g/L of the ethanol for 9 d was selected. Direct conversion of Na-carboxymethyl cellulose, microcrystalline cellulose and straw was shown with ethanol yields of 2.1, 1.6 and 1.7 g/L, respectively, for 9 d fermentation time.
Liquid Fuels from Lignins: Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chum, H. L.; Johnson, D. K.
1986-01-01
This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.
Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R
2015-10-01
A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrocatalytic activity of ZnS nanoparticles in direct ethanol fuel cells
NASA Astrophysics Data System (ADS)
Bredol, Michael; Kaczmarek, Michał; Wiemhöfer, Hans-Dieter
2014-06-01
Low temperature fuel cells consuming ethanol without reformation would be a major step toward the use of renewable energy sources from biomass. However, the necessary electrodes and electrocatalysts still are far from being perfect and suffer from various poisoning and deactivation processes. This work describes investigations on systems using carbon/ZnS-based electrocatalysts for ethanol oxidation in complete membrane electrode assemblies (MEAs). MEAs were built on Nafion membranes with active masses prepared from ZnS nanoparticles and Vulcan carbon support. Under operation, acetic acid and acetaldehyde were identified and quantified as soluble oxidation products, whereas the amount of CO2 generated could not be quantified directly. Overall conversion efficiencies of up to 25% were estimated from cells operated over prolonged time. From polarization curves, interrupt experiments and analysis of reaction products, mass transport problems (concentration polarization) and breakthrough losses were found to be the main deficiencies of the ethanol oxidation electrodes fabricated so far.
Theuretzbacher, Franz; Blomqvist, Johanna; Lizasoain, Javier; Klietz, Lena; Potthast, Antje; Horn, Svein Jarle; Nilsen, Paal J; Gronauer, Andreas; Passoth, Volkmar; Bauer, Alexander
2015-10-01
Ethanol and biogas are energy carriers that could contribute to a future energy system independent of fossil fuels. Straw is a favorable bioenergy substrate as it does not compete with food or feed production. As straw is very resistant to microbial degradation, it requires a pretreatment to insure efficient conversion to ethanol and/or methane. This study investigates the effect of combining biological pretreatment and steam explosion on ethanol and methane yields in order to improve the coupled generation process. Results show that the temperature of the steam explosion pretreatment has a particularly strong effect on possible ethanol yields, whereas combination with the biological pretreatment showed no difference in overall energy yield. The highest overall energy output was found to be 10.86 MJ kg VS(-1) using a combined biological and steam explosion pretreatment at a temperature of 200°C. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Yi-Zhou; Zou, Shan-Mei; He, Mei-Lin; Wang, Chang-Hai
2015-04-01
It has been found that recombinant Saccharomyces cerevisiae 6525 can produce high concentration of ethanol in one-step fermentation from the extract of Jerusalem artichoke tubers or inulin. However, the utilization rate of raw materials was low and the fermentation process was costly and complicated. Therefore, in this study, after the optimum processing conditions for ethanol production in fed-batch fermentation were determined in flask, the recombinant S. cerevisiae 6525 was first used to produce ethanol from the dry powder of Jerusalem artichoke tubers in 5-L agitating fermentor. After 72 h of fermentation, around 84.3 g/L ethanol was produced in the fermentation liquids, and the conversion efficiency of inulin-type sugars to ethanol was 0.453, or 88.6 % of the theoretical value of 0.511. This study showed high feasibility of bioethanol industrial production from the Jerusalem artichoke tubers and provided a basis for it in the future.
Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong
2011-07-27
We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.
Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Cooper, Joyce; Vajzovic, Azra
2012-01-01
There is little research literature on the conversion of lignocellulosic rich waste streams to ethanol, and even fewer have investigated both the technical aspects and environmental impacts together. This study assessed technical and environmental challenges of converting three lignocellulosic waste streams to ethanol: municipal solid waste (MSW), low grade mixed waste paper (MWP), and organic yard waste (YW). Experimental results showed high conversion yields for all three streams using suitable conversion methods. Environmental impacts are highly dependent on conversion technology, and process conditions used. Life cycle assessment results showed that both chemicals production and waste collection are important factors to be included within a waste-to-ethanol study. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Lignocellulosic biomass conversion inhibitors furfural and HMF inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor ...
Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.
Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong
2017-07-01
Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, M.
2013-04-01
Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to thismore » bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.« less
Chen, Yanli
2011-05-01
This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49-0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.
Pie waste - A component of food waste and a renewable substrate for producing ethanol.
Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh
2017-04-01
Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe
Slade, Raphael; Bauen, Ausilio; Shah, Nilay
2009-01-01
Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy intensive steps in enzyme production to be reduced, or if other process synergies are available. If biofuels policy in the EU remains contingent on favourable environmental performance then the multi-scale nature of bioenergy supply chains presents a genuine challenge. Lignocellulosic ethanol holds promise for emission reductions, but maximising greenhouse gas savings will not only require efficient supply chain design but also a better understanding of the spatial and temporal factors which affect overall performance. PMID:19682352
Zymomonas pentose-sugar fermenting strains and uses thereof
Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Golden, CO; Howe, William [Golden, CO; Eddy, Christine [Golden, CO; Evans, Kent [Littleton, CO; Mohagheghi, Ali [Northglenn, CO
2007-05-29
Disclosed in the present invention is a Zymomonas integrant and derivatives of these integrants that posses the ability to ferment pentose into ethanol. The genetic sequences encoding for the pentose-fermenting enzymes are integrated into the Zymomonas in a two-integration event of homologous recombination and transposition. Each operon includes more than one pentose-reducing enzyme encoding sequence. The integrant in some embodiments includes enzyme sequences encoding xylose isomerase, xylulokinase, transketolase and transketolase. The Zymomonas integrants are highly stable, and retain activity for producing the pentose-fermenting enzyme for between 80 to 160 generations. The integrants are also resistant to acetate inhibition, as the integrants demonstrate efficient ethanol production even in the presence of 8 up to 16 grams acetate per liter media. These stably integrated sequences provide a unique Zymomonas that may then be used for the efficient conversion of pentose sugars (xylose, arabinose) to ethanol. Method of using the Zymomonas integrants and derivatives thereof in production of ethanol from cellulosic feedstock is also disclosed. The invention also provides a method for preparing a Zymomonas integrant as part of the present invention. The host Zymomonas strain found particularly useful in the creation of these compositions and methods is Zymomonas mobilis 31821.
Ranjan, Preeti; Pandey, Ashok; Binod, Parameswaran
2017-09-01
Chiral intermediates have wide application and high demand in pharmaceutical, agricultural, and other biotechnological industries for the preparation of bulk drug substances or fine chemicals. (S)-1-(1-napthyl) ethanol is an important synthetic intermediate of mevinic acid analog and a potential inhibitor of 3-hydroxy methyl glutaryl coenzyme A reductase enzymes which is rate limiting for cholesterol synthesis. The present study focuses on the resolution of (RS)-1-(1-napthyl) ethanol using whole cell biotransformation approach. The screening of microbial strains for the specific conversion were performed by the enrichment techniques using (RS)-1-(1-napthyl) ethanol. Evaluation of resolution, i.e., the enantioselective conversion of (R)-1-(1-napthyl) ethanol into 1-acetonapthone and production of (S)-1-(1-napthyl) ethanol with high purity were carried out. Among the isolates, a novel strain Bacillus cereus WG3 was found to be potent for the resolution and conversion of (S)-1-(1-napthyl) ethanol. This strain showed 86% conversion of (R)-1-(1-napthyl) ethanol and 95% yield of S-1-(1-napthyl) ethanol with 80% ee after 24 h. Further, the optimization of biotransformation reactions was carried out and the optimal parameters were found to be pH 7.0 and temperature 30 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.
2017-02-01
In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.
Conversion of paper sludge to ethanol, II: process design and economic analysis.
Fan, Zhiliang; Lynd, Lee R
2007-01-01
Process design and economics are considered for conversion of paper sludge to ethanol. A particular site, a bleached kraft mill operated in Gorham, NH by Fraser Papers (15 tons dry sludge processed per day), is considered. In addition, profitability is examined for a larger plant (50 dry tons per day) and sensitivity analysis is carried out with respect to capacity, tipping fee, and ethanol price. Conversion based on simultaneous saccharification and fermentation with intermittent feeding is examined, with ethanol recovery provided by distillation and molecular sieve adsorption. It was found that the Fraser plant achieves positive cash flow with or without xylose conversion and mineral recovery. Sensitivity analysis indicates economics are very sensitive to ethanol selling price and scale; significant but less sensitive to the tipping fee, and rather insensitive to the prices of cellulase and power. Internal rates of return exceeding 15% are projected for larger plants at most combinations of scale, tipping fee, and ethanol price. Our analysis lends support to the proposition that paper sludge is a leading point-of-entry and proving ground for emergent industrial processes featuring enzymatic hydrolysis of cellulosic biomass.
Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki
2014-05-25
Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. Copyright © 2014 Elsevier B.V. All rights reserved.
Dong, Hong-Wei; Fan, Li-Qiang; Luo, Zichen; Zhong, Jian-Jiang; Ryu, Dewey D Y; Bao, Jie
2013-09-01
Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate. Copyright © 2013 Wiley Periodicals, Inc.
Very high gravity (VHG) ethanolic brewing and fermentation: a research update.
Puligundla, Pradeep; Smogrovicova, Daniela; Obulam, Vijaya Sarathi Reddy; Ko, Sanghoon
2011-09-01
There have been numerous developments in ethanol fermentation technology since the beginning of the new millennium as ethanol has become an immediate viable alternative to fast-depleting crude reserves as well as increasing concerns over environmental pollution. Nowadays, although most research efforts are focused on the conversion of cheap cellulosic substrates to ethanol, methods that are cost-competitive with gasoline production are still lacking. At the same time, the ethanol industry has engaged in implementing potential energy-saving, productivity and efficiency-maximizing technologies in existing production methods to become more viable. Very high gravity (VHG) fermentation is an emerging, versatile one among such technologies offering great savings in process water and energy requirements through fermentation of higher concentrations of sugar substrate and, therefore, increased final ethanol concentration in the medium. The technology also allows increased fermentation efficiency, without major alterations to existing facilities, by efficient utilization of fermentor space and elimination of known losses. This comprehensive research update on VHG technology is presented in two main sections, namely VHG brewing, wherein the effects of nutrients supplementation, yeast pitching rate, flavour compound synthesis and foam stability under increased wort gravities are discussed; and VHG bioethanol fermentation studies. In the latter section, aspects related to the role of osmoprotectants and nutrients in yeast stress reduction, substrates utilized/tested so far, including saccharide (glucose, sucrose, molasses, etc.) and starchy materials (wheat, corn, barley, oats, etc.), and mash viscosity issues in VHG bioethanol production are detailed. Thereafter, topics common to both areas such as process optimization studies, mutants and gene level studies, immobilized yeast applications, temperature effect, reserve carbohydrates profile in yeast, and economic aspects are discussed and future prospects are summarized.
Mixed waste paper to ethanol fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
Temperature effect of natural organic extraction upon light absorbance in dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Ahmad Hambali, Nor Azura Malini; Mohamad Shahimin, Mukhzeer
2017-02-01
Natural organic dyes contain pigments which when safely extracted from plants have the potential to be used as a sensitizer while promising a low-cost fabrication, environmental friendly dye-sensitized solar cells (DSSCs). Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella showed different absorption peaks when the extraction process were carried out at different temperatures. Hence, these were used as the basis to determine the conversion efficiency against the dyes extracting temperature. In this study, all dyes extracted in water have shown the best performance at a temperature of 100°C except for Harum Manis mango, while in ethanol, the optimum temperature was obtained between the room temperature, 25°C and 50°C. The absorption spectrum in water showed a broader absorption wavelength vis-à-vis ethanol solvent that resulted in the absorption peak for Ardisia, Harum Manis mango and Rosella between 450 nm and 550 nm. The highest conversion efficiency is observed to be achieved by Oxalis Triangularis extracted in water solution at 100°C, which was approximately 0.96% which corresponds to the broader absorbance trends in the literature. Thus, the optimum condition for extracting temperature for dyes in water and ethanol is room temperature and boiling points of water. Hence, Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella can be an as alternative source for photosensitizer, and the impacts of temperature upon the light absorbance can be further investigated to produce the ultimate natural dye based solar cells.
USDA-ARS?s Scientific Manuscript database
Brown midrib mutants in maize are known to be associated with reduced lignin content and increased cell wall digestibility, which leads to better forage quality and higher efficiency of cellulosic biomass conversion into ethanol. Four well known brown midrib mutants, named bm1-4, were identified sev...
Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong
2018-07-01
An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application
NASA Astrophysics Data System (ADS)
Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.
2016-05-01
In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.
van den Heuvel, Robert H. H.; Fraaije, Marco W.; Laane, Colja; van Berkel, Willem J. H.
1998-01-01
The regio- and stereospecific conversion of prochiral 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase was investigated. The enzyme was active, with 4-alkylphenols bearing aliphatic side chains of up to seven carbon atoms. Optimal catalytic efficiency occurred with 4-ethylphenol and 4-n-propylphenols. These short-chain 4-alkylphenols are stereoselectively hydroxylated to the corresponding (R)-1-(4′-hydroxyphenyl)alcohols (F. P. Drijfhout, M. W. Fraaije, H. Jongejan, W. J. H. van Berkel, and M. C. R. Franssen, Biotechnol. Bioeng. 59:171–177, 1998). (S)-1-(4′-Hydroxyphenyl)ethanol was found to be a far better substrate than (R)-1-(4′-hydroxyphenyl)ethanol, explaining why during the enzymatic conversion of 4-ethylphenol nearly no 4-hydroxyacetophenone is formed. Medium-chain 4-alkylphenols were exclusively converted by vanillyl-alcohol oxidase to the corresponding 1-(4′-hydroxyphenyl)alkenes. The relative cis-trans stereochemistry of these reactions was strongly dependent on the nature of the alkyl side chain. The enzymatic conversion of 4-sec-butylphenol resulted in two (4′-hydroxyphenyl)-sec-butene isomers with identical masses but different fragmentation patterns. We conclude that the water accessibility of the enzyme active site and the orientation of the hydrophobic alkyl side chain of the substrate are of major importance in determining the regiospecific and stereochemical outcome of vanillyl-alcohol oxidase-mediated conversions of 4-alkylphenols. PMID:9791114
Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
NASA Astrophysics Data System (ADS)
Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.
2017-07-01
Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.
Visser, Evan Michael; Oliveira Filho, Delly; Tótola, Marcos Rogério; Martins, Marcio Arêdes; Guimarães, Valéria Monteze
2012-06-01
Jatropha curcas has great potential as an oil crop for use in biodiesel applications, and the outer shell is rich in lignocellulose that may be converted to ethanol, giving rise to the concept of a biorefinery. In this study, two dilute pretreatments of 0.5% H(2)SO(4) and 1.0% NaOH were performed on Jatropha shells with subsequent simultaneous saccharification and fermentation (SSF) of the pretreated water-insoluble solids (WIS) to evaluate the effect of inhibitors in the pretreatment slurry. A cellulase loading of 15 FPU/g WIS, complimented with an excess of cellobiase (19.25 U/g), was used for SSF of either the washed WIS or the original slurry to determine the effect of inhibitors. Ethanol and glucose were monitored during SSF of 20 g of pretreated biomass. The unwashed slurry showed to have a positive effect on SSF efficiency for the NaOH-pretreated biomass. Maximum efficiencies of glucan conversion to ethanol in the WIS were 40.43% and 41.03% for the H(2)SO(4)- and NaOH-pretreated biomasses, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.
1991-04-01
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less
Wingad, Richard L; Bergström, Emilie J E; Everett, Matthew; Pellow, Katy J; Wass, Duncan F
2016-04-14
Catalysts based on ruthenium diphosphine complexes convert methanol/ethanol mixtures to the advanced biofuel isobutanol, with extremely high selectivity (>99%) at good (>75%) conversion via a Guerbet-type mechanism.
Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W
2016-04-01
Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Yun-Jie; Wang, Miao-Miao; Chen, Ya-Wei; Wang, Meng; Fan, Li-Hai; Tan, Tian-Wei
2017-03-06
Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO 2 ) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO 2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO 2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach
NASA Astrophysics Data System (ADS)
Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina
2016-09-01
The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.
Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell
NASA Astrophysics Data System (ADS)
Frusteri, Francesco; Freni, Salvatore
Catalytic and technological aspects in the use of bio-ethanol as fuel to produce hydrogen in both internal (IR-MCFC) and indirect internal reforming (IIR-MCFC) configurations have been considered. In MCFC conditions, even operating at total ethanol conversion, hydrogen productivity depends on the catalyst efficiency to convert methane formed through a mechanism, which foresees as first step the dehydrogenation of ethanol to acetaldehyde and as a second step the decomposition of acetaldehyde to CO and CH 4. Potassium doped Ni/MgO, Ni/La 2O 3 and Rh/MgO resulted to be the most promising catalysts to be used for the hydrogen production by steam reforming of bio-ethanol. Coke formation represents a serious problem, however, it can be drastically depressed by adding to the reaction stream a low amount of oxygen. On the basis of catalytic and technological evaluations, indirect internal reforming configuration should be the more suitable to operate with bio-ethanol. MCFC electric performance using a hydrogen rich gas coming from steam reforming of bio-ethanol is very similar to that of MCFC fed with pure hydrogen. However, the high content of steam in the flow reaction stream must be careful computed for a good thermal balance of the overall plant.
Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.
Mika, László T; Cséfalvay, Edit; Németh, Áron
2018-01-24
The replacement of fossil resources that currently provide more than 90% of our energy needs and feedstocks of the chemical industry in combination with reduced emission of carbon dioxide is one of the most pressing challenges of mankind. Biomass as a globally available resource has been proposed as an alternative feedstock for production of basic building blocks, which could partially or even fully replace the currently utilized fossil-based ones in well-established chemical processes. The destruction of lignocellulosic feed followed by oxygen removal from its cellulose and hemicellulose content by catalytic processes results in the formation of initial platform chemicals (IPCs). However, their sustainable production strongly depends on the availability of resources, their efficient or even industrially viable conversion processes, and replenishment time of feedstocks. Herein, we overview recent advances and developments in catalytic transformations of the carbohydrate content of lignocellulosic biomass to IPCs (i.e., ethanol, 3-hydroxypropionic acid, isoprene, succinic and levulinic acids, furfural, and 5-hydroxymethylfurfural). The mechanistic aspects, development of new catalysts, different efficiency indicators (yield and selectivity), and conversion conditions of their production are presented and compared. The potential biochemical production routes utilizing recently engineered microorganisms are reviewed, as well. The sustainability metrics that could be applied to the chemical industry (individual set of sustainability indicators, composite indices methods, material and energy flow analysis-based metrics, and ethanol equivalents) are also overviewed as well as an outlook is provided to highlight challenges and opportunities associated with this huge research area.
Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery.
Flores-Gómez, Carlos A; Escamilla Silva, Eleazar M; Zhong, Cheng; Dale, Bruce E; da Costa Sousa, Leonardo; Balan, Venkatesh
2018-01-01
Agave-based alcoholic beverage companies generate thousands of tons of solid residues per year in Mexico. These agave residues might be used for biofuel production due to their abundance and favorable sustainability characteristics. In this work, agave leaf and bagasse residues from species Agave tequilana and Agave salmiana were subjected to pretreatment using the ammonia fiber expansion (AFEX) process. The pretreatment conditions were optimized using a response surface design methodology. We also identified commercial enzyme mixtures that maximize sugar yields for AFEX-pretreated agave bagasse and leaf matter, at ~ 6% glucan (w/w) loading enzymatic hydrolysis. Finally, the pretreated agave hydrolysates (at a total solids loading of ~ 20%) were used for ethanol fermentation using the glucose- and xylose-consuming strain Saccharomyces cerevisiae 424A (LNH-ST), to determine ethanol yields at industrially relevant conditions. Low-severity AFEX pretreatment conditions are required (100-120 °C) to enable efficient enzymatic deconstruction of the agave cell wall. These studies showed that AFEX-pretreated A. tequilana bagasse, A. tequilana leaf fiber, and A. salmiana bagasse gave ~ 85% sugar conversion during enzyme hydrolysis and over 90% metabolic yields of ethanol during fermentation without any washing step or nutrient supplementation. On the other hand, although lignocellulosic A. salmiana leaf gave high sugar conversions, the hydrolysate could not be fermented at high solids loadings, apparently due to the presence of natural inhibitory compounds. These results show that AFEX-pretreated agave residues can be effectively hydrolyzed at high solids loading using an optimized commercial enzyme cocktail (at 25 mg protein/g glucan) producing > 85% sugar conversions and over 40 g/L bioethanol titers. These results show that AFEX technology has considerable potential to convert lignocellulosic agave residues to bio-based fuels and chemicals in a biorefinery.
NASA Astrophysics Data System (ADS)
Kou, Nannan
Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn grain) into a single primary product (ethanol). The traditional lower efficient (i.e. lower ethanol yield per bushel of corn and higher capital cost) wet-mill plant has a more diverse and adjustable product portfolio i.e. corn syrup, starch, and ethanol. The fact that only the dry-mill corn ethanol plants have bankrupted while the wet-mill corn ethanol plants have survived the late 2000s economy recession suggests that the higher conversion efficiency achieved by the dry-mill production mode has jeopardized operational flexibility, a design operational feature I agree that is indispensable for the biofuel plant's long term profit and viability. Based on the analysis of corn ethanol production, operational flexibility has been proposed as a key strategy for the next generation biofuel plants to improve its lifetime economic performance, as well as to enhance its survivability under external disturbances. This strategy requires the biofuel plant to adopt a flexible feedstock management, making it possible to utilize alternative types of biomass feedstock when the primary feedstock supply is disturbed. Biofuel plants also need to produce a wider range of final products that could meet the preference variation that either comes from the energy market or from the subsidy policy. Aspen Plus model based numerical simulations have been carried out for a thermochemical ethanol plant and a Fischer Tropsch plant (both are assumed to be located in southwest Indiana) to test this strategy under the external disturbances of extreme weather impact, different energy price projections and various subsidy policy combinations. For the thermochemical ethanol plant, effects of extreme weather conditions are mainly evaluated. It has been shown that this strategy could effectively increase the net present value of the biofuel plant and significantly decrease the GHG emission comparing with the traditional single-feedstock strategy, when the extreme weather conditions are considered. It has also been demonstrated that this strategy could significantly decrease the possibility for the biofuel plant to bankrupt. For the Fischer Tropsch diesel plant, all the three external disturbances have been examined. It has been learned that operational flexibility through full capacity power co-generation, flexible feedstock management and hydrogen production by natural gas autothermal reforming could maximize the net present value under the influence of the external disturbances. Thus it is suggested that the future biofuel plant should adopt operational flexibility to increase the lifetime economic performance and to enhance the survivability under the influence of external disturbance.
Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai
2009-01-01
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.
Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms.
Holtzapple, Mark T; Granda, Cesar B
2009-05-01
To convert biomass to liquid fuels, three platforms are compared: thermochemical, sugar, and carboxylate. To create a common basis, each platform is fed "ideal biomass," which contains polysaccharides (68.3%) and lignin (31.7%). This ratio is typical of hardwood biomass and was selected so that when gasified and converted to hydrogen, the lignin has sufficient energy to produce ethanol from the carboxylic acids produced by the carboxylate platform. Using balanced chemical reactions, the theoretical yield and energy efficiency were determined for each platform. For all platforms, the ethanol yield can be increased by 71% to 107% by supplying external hydrogen produced from other sources (e.g., solar, wind, nuclear, fossil fuels). The alcohols can be converted to alkanes with a modest loss of energy efficiency (3 to 5 percentage points). Of the three platforms considered, the carboxylate platform has demonstrated the highest product yields.
Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, K.M.; Ho, C.S.; Zabriskie, D.W.
1987-01-01
A two-stage process for the enzymatic conversion of cellulose to ethanol is proposed as an alternative to currently incomplete and relatively slow enzymatic conversion processes employing natural insoluble cellulose. This alternative approach is designed to promote faster and more complete conversion of cellulose to fermentable sugars through the use of a homogeneous enzymatic hydrolysis reaction. Cellulose is chemically dissolved in the first stage to form water-soluble cellulose acetate (WSCA). The WSCA is then converted to ethanol in a simultaneous saccharification-fermentation with Pestalotiopsis westerdijkii enzymes (containing cellulolytic and acetyl esterase components) and yeast.
Biofuel production from Jerusalem artichoke tuber inulins: a review
Bhagia, Samarthya; Akinosho, Hannah; Ferreira, Jorge F. S.; ...
2017-06-01
Jerusalem artichoke (JA) has a high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This paper discusses tuber and inulin yields, effect of cultivar and environment on tuber productivity, and approaches to fermentation for ethanol production. Consolidated bioprocessing with Kluyveromyces marxianus has been the most popular approach for fermentation into ethanol. Apart from ethanol, fructose can be dehydrated into into 5-hydrolxymethylfurfural followed by catalytic conversion into hydrocarbons. Finally, findings from several studies indicate that this plant from tubers alone canmore » produce ethanol at yields that rival corn and sugarcane ethanol. JA has tremendous potential for use as a bioenergy feedstock.« less
Biofuel production from Jerusalem artichoke tuber inulins: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagia, Samarthya; Akinosho, Hannah; Ferreira, Jorge F. S.
Jerusalem artichoke (JA) has a high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This paper discusses tuber and inulin yields, effect of cultivar and environment on tuber productivity, and approaches to fermentation for ethanol production. Consolidated bioprocessing with Kluyveromyces marxianus has been the most popular approach for fermentation into ethanol. Apart from ethanol, fructose can be dehydrated into into 5-hydrolxymethylfurfural followed by catalytic conversion into hydrocarbons. Finally, findings from several studies indicate that this plant from tubers alone canmore » produce ethanol at yields that rival corn and sugarcane ethanol. JA has tremendous potential for use as a bioenergy feedstock.« less
Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.
2013-01-01
To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.
Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi
2010-11-01
Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.
Effect of Water on Ethanol Conversion over ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming
2015-10-01
This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidationmore » of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).« less
Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.; ...
2016-01-01
Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.
Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less
A new dawn for industrial photosynthesis.
Robertson, Dan E; Jacobson, Stuart A; Morgan, Frederick; Berry, David; Church, George M; Afeyan, Noubar B
2011-03-01
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO(2) into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.
Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H
2014-01-01
Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses.
2014-01-01
Background Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Results Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Conclusions Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses. PMID:24725504
Chemicals from biomass - The U.S. prospects for the turn of the century
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.; Moacanin, J.
1980-01-01
Historically, chemicals from biomass have been and are expected to be economical in three major areas: byproducts, specialty items and polymers. Assessments of producing major chemicals from biomass in a processing plant based on the available conversion techniques indicate that they are not economically attractive, with the possible exception of conversion to ammonia and ethanol. The deterrents are the heavy capital investments, dependability of raw material supply and transportation costs for large plants, lack of operation experience, inadaptability of market variations, and competition from petroleum and coal. More importantly, it is also shown that even if chemicals from biomass were economical today, the resultant savings in petroleum would be far less than those achieved through other options available for the utilization of biomass as fuel and structural material. Thus, it is concluded that near-term research and development must be toward improved conversion processes, recovery of valuable products from waste streams at existing plants, more efficient use of biomass of energy and more efficient production of superior material products.
de Paula, Felipe Costa; Valentin, Regis de Souza; Borges, Boniek Castillo Dutra; Medeiros, Maria Cristina Dos Santos; de Oliveira, Raiza Freitas; da Silva, Ademir Oliveira
2016-01-01
The surface degree of conversion and crosslink density of composites should not be affected by the use of instrument lubricants in order to provide long-lasting tooth restorations. This study aimed to analyze the effect of instrument lubricants on the degree of conversion and crosslink density of nanocomposites. Samples (N = 10) were fabricated according to the composites (Filtek Z350 XT, 3M ESPE, St. Paul, MN, USA; and IPS Empress Direct, Ivoclar Vivadent AG, Schaan, Liechtenstein and lubricants used (Adper Single Bond 2 and Scotchbond Multi-Purpose bonding agent adhesive systems, 3M ESPE; 70% ethanol, absolute ethanol, and no lubricant). Single composite increments were inserted into a Teflon mold using the same dental instrument. The composite surface was then modeled using a brush wiped with each adhesive system and a spatula wiped with each ethanol. The control group was fabricated with no additional modeling. The surface degree of conversion and crosslink density were measured by Fourier transform infrared spectroscopy and the hardness decrease test, respectively. Data were analyzed using two-way analysis of variance and the Tukey's test (p < 0.05). Filtek Z350 XT showed statistically similar degree of conversion regardless of the lubricant used, whereas the use of adhesive systems and 70% ethanol decreased the degree of conversion for IPS Empress Direct. Only Scotchbond Multi-Purpose bonding agent decreased crosslink density for Filtek Z350 XT, whereas both adhesive systems decreased crosslink density for IPS Empress Direct. Filtek Z350 XT appeared to be less sensitive to the effects of lubricants, and absolute ethanol did not affect the degree of conversion and crosslink density of the nanocomposites tested. Although the use of lubricants may be recommended to minimize the stickiness of dental instruments and composite resin, dentists should choose materials that do not have a negative effect on the surface properties of composites. Only the use of absolute ethanol safely maintains the surface integrity of nanocomposites in comparison with adhesive system and 70% ethanol. © 2015 Wiley Periodicals, Inc.
Ieraci, Alessandro; Herrera, Daniel G
2018-06-01
Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.
A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.; ...
2018-05-19
A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less
Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA
Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence
2013-01-01
Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy. PMID:23577208
USDA-ARS?s Scientific Manuscript database
Furfural and 5-hydroxymethylfurfural (HMF) are inhibitory compounds commonly encountered during lignocellulose-to-ethanol conversion for cleaner transportation fuels. It is possible to in situ detoxify the aldehyde inhibitors by tolerant ethanologenic yeast strains. Multiple gene-mediated reductio...
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
2014-05-21
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.
Partial oxidation of methane by pulsed corona discharges
NASA Astrophysics Data System (ADS)
Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.
2014-09-01
Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-05-01
Candida psuedotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4}, dipotassium hydrogen phosphate K{sub 2}HPO{sub 4}, yeast extract, and combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growthmore » rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth rate of the yeast. The highest ethanol (21.7% g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study. 60 refs., 9 figs., 3 tabs.« less
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.
Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan
2012-01-01
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohite, U.; SivaRaman, H.
1984-01-01
While extensive work has been reported on sugarcane and sugarcane molasses for ethanol production, relatively few reports are available on ethanol production from sweet sorghum juice. With the advent of immobilized cell technology, an attempt has been made to utilize this technology for the production of ethanol from sweet sorghum juice. The species was Sorghum bicolar (Moench). The maximum productivity obtained at 30/sup 0/C with Saccharomyces uvarum cells immobilized in gelatin was 168 g/L h at an ethanol concentration of 2.4 g (w/v) using sweet sorghum juice having 11.5% fermentable sugars. The calculated value for full conversion was 86 g/Lmore » at an ethanol concentration of 5.5 g (w/v). The low concentration of total sugars in the juice, however, would make ethanol recovery expensive unless a uniformly high concentration of 16% or more of total sugars can be obtained.« less
Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production
2013-01-01
Background The C4 perennial grass Miscanthus giganteus has proved to be a promising bio-energy crop. However, the biomass recalcitrance is a major challenge in biofuel production. Effective pretreatment is necessary for achieving a high efficiency in converting the crop to fermentable sugars, and subsequently biofuels and other valued products. Results Miscanthus lutarioriparious was pretreated with a liquid hot water (LHW) reactor. Between the pretreatment severity (PS) of 2.56-4.71, the solid recovery was reduced; cellulose recovery remained nearly unchanged; and the Klason lignin content was slightly increased which was mainly due to the dissolving of hemicellulose and the production of a small amount of pseudo-lignin. The result shows that a LHW PS of 4.71 could completely degrade the hemicellulose in Miscanthus. Hemicellulose removal dislodged the enzymatic barrier of cellulose, and the ethanol conversion of 98.27% was obtained. Conclusions Our study demonstrated that LHW served as an effective pretreatment in case that Miscanthus lutarioriparious was used for ethanol production by simultaneous saccharification and fermentation. The combination and the pretreatment method of Miscanthus feedstock holds a great potential for biofuel production. PMID:23663476
Influence of solvent type on microwave-assisted liquefaction of bamboo
Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu
2016-01-01
Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...
A Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.
ERIC Educational Resources Information Center
Blair, Brittain A.
This guide is a competency-based vocational curriculum designed to provide educators with viable ethanol (100 percent alcohol) engine conversion procedures stated in simple terms and set in a flexible educational environment. The curriculum is designed so that educators can form various combinations of instructional activities and resource…
Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinus, R.J.
2000-08-30
The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depthmore » review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology. The importance of these and future developments is emphasized, since trait measurement constitutes the largest cost associated with adding additional traits to improvement efforts, regardless of genetic approach. In subsequent sections, recent and projected advances in classical selection and breeding, marker-aided selection, and genetic transformation are documented and used to evaluate the feasibility of individual approaches. Interviews with specialists engaged in research and development on each approach were given particular emphasis in gauging feasibilities and defining future needs and directions. Summaries of important findings and major conclusions are presented at the end of individual sections. Closing portions describe the targeted workshop, conducted in December 1999 and list interviewees and literature cited in the text. Information obtained at the workshop was used to improve accuracy, refine conclusions, and recommend priorities for future research, development, and technology transfer.« less
Satyanarayana, Botcha; Balakrishnan, Kesavapillai; Raghava Rao, Tamanam; Seshagiri Rao, Gudapaty
2012-01-01
A repeated batch fermentation system was used to produce ethanol using Saccharomyces cerevisiae strain (NCIM 3640) immobilized on sugarcane (Saccharum officinarum L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65~76.28 g/L in an average value) and ethanol productivities (about 2.27~2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9~3.25 g/L) with conversions ranging from 98.03~99.43%, showing efficiency 91.57~95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations. PMID:22783132
Lee, Sung-Haeng; Kodaki, Tsutomu; Park, Yong-Cheol; Seo, Jin-Ho
2012-04-30
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD⁺-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l⁻¹ h⁻¹ xylose consumption rate, 0.25 g l⁻¹ h⁻¹ ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR 86.101 - General applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... procedures. For example, if you are testing an ethanol-fueled vehicle, perform diagnostics in your evaporative emission enclosure with ethanol and propane. (9) For exhaust emission testing with ethanol-gasoline blends that have less than 25% ethanol by volume, if you use NMHC-to-NMOG conversion factors...
Trends in biotechnological production of fuel ethanol from different feedstocks.
Sánchez, Oscar J; Cardona, Carlos A
2008-09-01
Present work deals with the biotechnological production of fuel ethanol from different raw materials. The different technologies for producing fuel ethanol from sucrose-containing feedstocks (mainly sugar cane), starchy materials and lignocellulosic biomass are described along with the major research trends for improving them. The complexity of the biomass processing is recognized through the analysis of the different stages involved in the conversion of lignocellulosic complex into fermentable sugars. The features of fermentation processes for the three groups of studied feedstocks are discussed. Comparative indexes for the three major types of feedstocks for fuel ethanol production are presented. Finally, some concluding considerations on current research and future tendencies in the production of fuel ethanol regarding the pretreatment and biological conversion of the feedstocks are presented.
Li, Huiling; Dai, Qingqing; Ren, Junli; Jian, Longfei; Peng, Feng; Sun, Runcang; Liu, Guoliang
2016-01-20
In the present study, a graded ethanol precipitation technique was employed to obtain hemicelluloses from the alkali-extracted corncob liquid. The relationship between the structural characteristics of alkali-soluble corncob hemicelluloses and the production of furfural was investigated by a heterogeneous process in a biphasic system. Results showed that alkali-soluble corncob hemicelluloses mainly consisted of glucuronoarabinoxylans and L-arabino-(4-O-methylglucurono)-D-xylans, and the drying way had less influence on the sugar composition, molecular weights and the functional groups of hemicelluloses obtained by the different ethanol concentration precipitation except for the thermal property, the amorphous structure and the ability for the furfural production. Furthermore, alkali-soluble corncob hemicelluloses with higher xylose content, lower branch degree, higher polydispersity and crystallinity contributed to the furfural production. A highest furfural yield of 45.41% with the xylose conversion efficiency of 99.06% and the furfural selectivity of 45.84% was obtained from the oven-dried hemicelluloses precipitated at the 30% (v/v) ethanol concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2016-06-01
An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylon, Rebecca A.; Sun, Junming; Wang, Yong
2016-01-01
Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%)more » at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.« less
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-01-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290
Illustrations for a Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.
This document contains 56 illustrations for use in an Illinois-developed competency-based course in ethanol spark ignition engine conversion. Each illustration is related to a specific competency in the course curriculum guide. Illustrations, which include photographs and line drawings, cover some of the following topics: carburetion, compression,…
Scale-up of wheat straw conversion to fuel ethanol at 100 liter scale
USDA-ARS?s Scientific Manuscript database
Wheat straw can serve as low cost feedstock for conversion to ethanol. Pretreatment is crucial prior to enzymatic hydrolysis. We have used dilute H2SO4 pretreatment at a high temperature for pretreatment of wheat straw. The pretreated hydrolyzate was bioabated using a novel fungal strain able to ...
Treebupachatsakul, Treesukon; Nakazawa, Hikaru; Shinbo, Hideaki; Fujikawa, Hiroki; Nagaiwa, Asami; Ochiai, Nobuhiro; Kawaguchi, Takashi; Nikaido, Mitsuru; Totani, Kazuhide; Shioya, Koki; Shida, Yosuke; Morikawa, Yasushi; Ogasawara, Wataru; Okada, Hirofumi
2016-01-01
Trichoderma reesei is a filamentous organism that secretes enzymes capable of degrading cellulose to cellobiose. The culture supernatant of T. reesei, however, lacks sufficient activity to convert cellobiose to glucose using β-glucosidase (BGL1). In this study, we identified a BGL (Cel3B) from T. reesei (TrCel3B) and compared it with the active β-glucosidases from Aspergillus aculeatus (AaBGL1). AaBGL1 showed higher stability and conversion of sugars to ethanol compared to TrCel3B, and therefore we chose to express this recombinant protein for use in fermentation processes. We expressed the recombinant protein in the yeast Saccharomyces cerevisiae, combined it with the superb T. reesei cellulase machinery and used the combination in a simultaneous saccharification and fermentation (SSF) process, with the hope that the recombinant would supplement the BGL activity. As the sugars were processed, the yeast immediately converted them to ethanol, thereby eliminating the problem posed by end product inhibition. Recombinant AaBGL1 activity was compared with Novozyme 188, a commercially available supplement for BGL activity. Our results show that the recombinant protein is as effective as the commercial supplement and can process sugars with equal efficiency. Expression of AaBGL1 in S. cerevisiae increased ethanol production effectively. Thus, heterologous expression of AaBGL1 in S. cerevisiae is a cost-effective and efficient process for the bioconversion of ethanol from lignocellulosic biomass. Copyright © 2015. Published by Elsevier B.V.
Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang
2012-12-21
Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.
Lagi, Marco; Bar-Yam, Yavni; Bertrand, Karla Z.; Bar-Yam, Yaneer
2015-01-01
Recent increases in basic food prices are severely affecting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the United States, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time to our knowledge, we construct a dynamic model that quantitatively agrees with food prices. The results show that the dominant causes of price increases are investor speculation and ethanol conversion. Models that just treat supply and demand are not consistent with the actual price dynamics. The two sharp peaks in 2007/2008 and 2010/2011 are specifically due to investor speculation, whereas an underlying upward trend is due to increasing demand from ethanol conversion. The model includes investor trend following as well as shifting between commodities, equities, and bonds to take advantage of increased expected returns. Claims that speculators cannot influence grain prices are shown to be invalid by direct analysis of price-setting practices of granaries. Both causes of price increase, speculative investment and ethanol conversion, are promoted by recent regulatory changes—deregulation of the commodity markets, and policies promoting the conversion of corn to ethanol. Rapid action is needed to reduce the impacts of the price increases on global hunger. PMID:26504216
Lagi, Marco; Bar-Yam, Yavni; Bertrand, Karla Z; Bar-Yam, Yaneer
2015-11-10
Recent increases in basic food prices are severely affecting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the United States, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time to our knowledge, we construct a dynamic model that quantitatively agrees with food prices. The results show that the dominant causes of price increases are investor speculation and ethanol conversion. Models that just treat supply and demand are not consistent with the actual price dynamics. The two sharp peaks in 2007/2008 and 2010/2011 are specifically due to investor speculation, whereas an underlying upward trend is due to increasing demand from ethanol conversion. The model includes investor trend following as well as shifting between commodities, equities, and bonds to take advantage of increased expected returns. Claims that speculators cannot influence grain prices are shown to be invalid by direct analysis of price-setting practices of granaries. Both causes of price increase, speculative investment and ethanol conversion, are promoted by recent regulatory changes-deregulation of the commodity markets, and policies promoting the conversion of corn to ethanol. Rapid action is needed to reduce the impacts of the price increases on global hunger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elander, Richard
This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.
Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis
T. W. Jeffries
1981-01-01
Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan
2013-09-01
Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.
Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol
NASA Astrophysics Data System (ADS)
Gonzalez, Ronalds W.
2011-12-01
Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic and supply chain models specifically for biomass to bioenergy production. The study suggest that this species can be profitably managed for biomass production with rotation length of 11 to 12 years and with a stand tree density of 1,200 trees per acre. Optimum rotation length is greatly affected by seedlings costs and biomass productivity. In the fourth study, a evaluation of seven different feedstocks (loblolly pine, natural mixed hardwood, Eucalyptus, switchgrass, miscanthus, corn stover and sweet sorghum) is made in terms of supply chain, biomass delivered costs, dollar per ton of carbohydrate and dollar per million BTU delivered to a biorefinery. Forest feedstocks present better advantages in terms of a well established supply chain, year round supply and no need for biomass storage. In the same context biomass delivered costs, as well as cost to delivered one ton of carbohydrate and one million BTU is lower in forest feedstocks. In the fifth study, conversion costs, profitability and sensitivity analysis for a novel pretreatment process, green liquor, are modeled for ethanol production with loblolly pine, natural mixed hardwood and Eucalyptus as feedstocks, evaluated in two investment scenarios: green field and repurposing of an old kraft pulp mill. Better financial returns are perceived in the natural hardwood - repurposing scenario, mainly due to lower CAPEX and lower enzyme charge and cost. In the sixth study, conversion cost, CAPEX, ethanol yield and profitability for the thermochemical process (indirect gasification and production of mixed alcohol) is simulated for loblolly pine, natural hardwood, eucalyptus, corn stover and switchgrass. Higher ethanol yield with forest feedstock (due to higher content of %C and %H) result in better economic performance, when compare to agriculture biomass. This research indicates that forest feedstock outperform agriculture biomass in terms of delivered costs, supply chain, ethanol yield and process profitability. Loblolly pine seems to be more suitable for thermochemical processes, while hardwood suit better for biochemical conversion (based on the technologies studied).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; ...
2016-01-19
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang
2012-11-01
An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Warner, E. S.; Zhang, Y.; Newmark, R. L.
2012-12-01
Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.
Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-08-01
High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ethanol production in small- to medium-size facilities
NASA Astrophysics Data System (ADS)
Hiler, E. A.; Coble, C. G.; Oneal, H. P.; Sweeten, J. M.; Reidenbach, V. G.; Schelling, G. T.; Lawhon, J. T.; Kay, R. D.; Lepori, W. A.; Aldred, W. H.
1982-04-01
In early 1980 system design criteria were developed for a small-scale ethanol production plant. The plant was eventually installed on November 1, 1980. It has a production capacity of 30 liters per hour; this can be increased easily (if desired) to 60 liters per hour with additional fermentation tanks. Sixty-six test runs were conducted to date in the alcohol production facility. Feedstocks evaluated in these tests include: corn (28 runs); grain sorghum (33 runs); grain sorghum grits (1 run); half corn/half sorghum (1 run); and sugarcane juice (3 runs). In addition, a small bench-scale fermentation and distillation system was used to evaluate sugarcane and sweet sorghum feedstocks prior to their evaluation in the larger unit. In each of these tests, evaluation of the following items was conducted: preprocessing requirements; operational problems; conversion efficiency (for example, liters of alcohol produced per kilogram of feedstock); energy balance and efficiency; nutritional recovery from stillage; solids separation by screw press; chemical characterization of stillage including liquid and solids fractions; wastewater requirements; and air pollution potential.
RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.
HamediRad, Mohammad; Lian, Jiazhang; Li, Hejun; Zhao, Huimin
2018-06-01
Xylose is a major component of lignocellulosic biomass, one of the most abundant feedstocks for biofuel production. Therefore, efficient and rapid conversion of xylose to ethanol is crucial in the viability of lignocellulosic biofuel plants. In this study, RNAi Assisted Genome Evolution (RAGE) was used to improve the xylose utilization rate in SR8, one of the most efficient publicly available xylose utilizing Saccharomyces cerevisiae strains. To identify gene targets for further improvement, we created a genome-scale library consisting of both genetic over-expression and down-regulation mutations in SR8. Followed by screening in media containing xylose as the sole carbon source, yeast mutants with 29% faster xylose utilization, and 45% higher ethanol productivity were obtained relative to the parent strain. Two known and two new effector genes were identified in these mutant strains. Notably, down-regulation of CDC11, an essential gene, resulted in faster xylose utilization, and this gene target cannot be identified in genetic knock-out screens. © 2018 Wiley Periodicals, Inc.
Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper.
Li, Christina W; Ciston, Jim; Kanan, Matthew W
2014-04-24
The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H(+) source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O ('oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.
Maya-Cornejo, J; Ortiz-Ortega, E; Álvarez-Contreras, L; Arjona, N; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G
2015-02-14
A membraneless nanofluidic fuel cell with flow-through electrodes that works with several fuels (individually or mixed): methanol, ethanol, glycerol and ethylene-glycol in alkaline media is presented. For this application, an efficient Cu@Pd electrocatalyst was synthesized and tested, resulting outstanding performance until now reported, opening the possibility of power nano-devices for multi-uses purposes, regardless of fuel re-charge employed.
Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.
2013-01-01
Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336
Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E
2013-01-01
Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.
Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B
2015-06-01
The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fan, Li-Hai; Zhang, Zi-Jian; Mei, Sen; Lu, Yang-Yang; Li, Mei; Wang, Zai-Yu; Yang, Jian-Guo; Yang, Shang-Tian; Tan, Tian-Wei
2016-01-01
Consolidated bioprocessing (CBP), integrating cellulase production, cellulose saccharification, and fermentation into one step has been widely considered as the ultimate low-cost configuration for producing second-generation fuel ethanol. However, the requirement of a microbial strain able to hydrolyze cellulosic biomass and convert the resulting sugars into high-titer ethanol limits CBP application. In this work, cellulolytic yeasts were developed by engineering Saccharomyces cerevisiae with a heterologous cellodextrin utilization pathway and bifunctional minicellulosomes. The cell-displayed minicellulosome was two-scaffoldin derived, and contained an endoglucanase and an exoglucanase, while the intracellular cellodextrin pathway consisted of a cellodextrin transporter and a β-glucosidase, which mimicked the unique cellulose-utilization system in Clostridium thermocellum and allowed S. cerevisiae to degrade and use cellulose without glucose inhibition/repression on cellulases and mixed-sugar uptake. Consequently, only a small inoculation of the non-induced yeast cells was required to efficiently co-convert both cellulose and galactose to ethanol in a single-step co-fermentation process, achieving a high specific productivity of ~62.61 mg cellulosic ethanol/g cell·h from carboxymethyl cellulose and ~56.37 mg cellulosic ethanol/g cell·h from phosphoric acid-swollen cellulose. Our work provides a versatile engineering strategy for co-conversion of cellulose-mixed sugars to ethanol by S. cerevisiae, and the achievements in this work may further promote cellulosic biofuel production.
Kumar, Rajesh; da Silva, Everson T S G; Singh, Rajesh K; Savu, Raluca; Alaferdov, Andrei V; Fonseca, Leandro C; Carossi, Lory C; Singh, Arvind; Khandka, Sarita; Kar, Kamal K; Alves, Oswaldo L; Kubota, Lauro T; Moshkalev, Stanislav A
2018-04-01
Palladium nanoparticles decorated reduced graphene oxide (Pd-rGO) and palladium nanoparticles intercalated inside nitrogen doped reduced graphene oxide (Pd-NrGO) hybrids have been synthesized by applying a very simple, fast and economic route using microwave-assisted in-situ reduction and exfoliation method. The Pd-NrGO hybrids materials show good activity as catalyst for ethanol electro oxidation for direct ethanol fuel cells (DEFCs) as compared to Pd-rGO hybrids. The enhanced direct ethanol fuel cell can serve as alternative to fossil fuels because it is renewable and environmentally-friendly with a high energy conversion efficiency and low pollutant emission. As proof of concept, the electrocatalytic activity of Pd-NrGO hybrid material was accessed by cyclic voltammetry in presence of ethanol to evaluate its applicability in direct-ethanol fuel cells (DEFCs). The Pd-NrGO catalyst presented higher electro active surface area (∼6.3 m 2 g -1 ) for ethanol electro-oxidation when compared to Pd-rGO hybrids (∼3.7 m 2 g -1 ). Despite the smaller catalytic activity of Pd-NrGO, which was attributed to the lower exfoliation rate of this material in relation to the Pd-rGO, Pd-NrGO showed to be very promising and its catalytic activity can be further improved by tuning the synthesis parameters to increase the exfoliation rate. Copyright © 2018 Elsevier Inc. All rights reserved.
Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas
2006-07-25
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.
Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas
2006-01-01
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. PMID:16837571
NASA Astrophysics Data System (ADS)
Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas
2006-07-01
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel
Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Wold; Robert Divers
2011-06-23
At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and overmore » 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.« less
Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donal F. Day
2009-03-31
The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse inmore » a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.« less
Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Diethelm, Stefan; Van herle, Jan
This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H 2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I- V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.
Mohagheghi, Ali; Schell, Daniel J
2010-04-01
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.
THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Wang, Yong
2013-06-01
At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.
Strategies for the production of high concentrations of bioethanol from seaweeds
Yanagisawa, Mitsunori; Kawai, Shigeyuki; Murata, Kousaku
2013-01-01
Bioethanol has attracted attention as an alternative to petroleum-derived fuel. Seaweeds have been proposed as some of the most promising raw materials for bioethanol production because they have several advantages over lignocellulosic biomass. However, because seaweeds contain low contents of glucans, i.e., polysaccharides composed of glucose, the conversion of only the glucans from seaweed is not sufficient to produce high concentrations of ethanol. Therefore, it is also necessary to produce ethanol from other specific carbohydrate components of seaweeds, including sulfated polysaccharides, mannitol, alginate, agar and carrageenan. This review summarizes the current state of research on the production of ethanol from seaweed carbohydrates for which the conversion of carbohydrates to sugars is a key step and makes comparisons with the production of ethanol from lignocellulosic biomass. This review provides valuable information necessary for the production of high concentrations of ethanol from seaweeds. PMID:23314751
Yanagisawa, Mitsunori; Kawai, Shigeyuki; Murata, Kousaku
2013-01-01
Bioethanol has attracted attention as an alternative to petroleum-derived fuel. Seaweeds have been proposed as some of the most promising raw materials for bioethanol production because they have several advantages over lignocellulosic biomass. However, because seaweeds contain low contents of glucans, i.e., polysaccharides composed of glucose, the conversion of only the glucans from seaweed is not sufficient to produce high concentrations of ethanol. Therefore, it is also necessary to produce ethanol from other specific carbohydrate components of seaweeds, including sulfated polysaccharides, mannitol, alginate, agar and carrageenan. This review summarizes the current state of research on the production of ethanol from seaweed carbohydrates for which the conversion of carbohydrates to sugars is a key step and makes comparisons with the production of ethanol from lignocellulosic biomass. This review provides valuable information necessary for the production of high concentrations of ethanol from seaweeds.
Engineered microbial systems for enhanced conversion of lignocellulosic biomass.
Elkins, James G; Raman, Babu; Keller, Martin
2010-10-01
In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost-effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and industrialists working at the very cutting edge of the field. Although a diverse range of bacteria and fungi possess the enzymatic machinery capable of hydrolyzing plant-derived polymers, none discovered so far meet the requirements for an industrial strength biocatalyst for the direct conversion of biomass to combustible fuels. Synthetic biology combined with a better fundamental understanding of enzymatic cellulose hydrolysis at the molecular level is enabling the rational engineering of microorganisms for utilizing cellulosic materials with simultaneous conversion to fuel. Copyright © 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...
USDA-ARS?s Scientific Manuscript database
Bacterial contamination is a recurring problem in the fuel ethanol industry. The offending microbes are generally species of lactic acid bacteria that drain the sugar available for conversion to ethanol and scavenge essential micronutrients required for optimal yeast growth. Antibiotics are frequent...
Cellulose conversion of corn pericarp without pretreatment.
Kim, Daehwan; Orrego, David; Ximenes, Eduardo A; Ladisch, Michael R
2017-12-01
We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Production of ethyl levulinate by direct conversion of wheat straw in ethanol media.
Chang, Chun; Xu, Guizhuan; Jiang, Xiaoxian
2012-10-01
The production of ethyl levulinate from wheat straw by direct conversion in ethanol media was investigated. Response surface methodology (RSM) was applied to optimize the effects of processing parameters, and the regression analysis was performed on the data obtained. A close agreement between the experimental results and the model predictions was achieved. The optimal conditions for ethyl levulinate production from wheat straw were acid concentration 2.5%, reaction temperature 183°C, mass ratio of liquid to solid 19.8 and reaction time 36 min. Under the optimum conditions, the yield of ethyl levulinate 17.91% was obtained, representing a theoretical yield of 51.0%. The results suggest that wheat straw can be used as potential raw materials for the production of ethyl levulinate by direct conversion in ethanol media. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol
NASA Astrophysics Data System (ADS)
Phillips, Cory Bernard
1999-11-01
This work deals with the synthesis of isobutylene from a hydrous ethanol feedstock over zeolites. The synthesis is accomplished in three steps: (1) low-temperature direct ethanol conversion to ethylene on H-ZSM-5 zeolite, (2) ethylene conversion to butene products over metal-exchanged zeolites, and (3) butene skeletal rearrangement to isobutylene over FER zeolites. The key to understanding and optimizing each synthesis step lies in the ability to control and regulate the zeolite acidity (Bronsted and Lewis)---both strength and number. Therefore, the continuous temperature programmed amine desorption (CTPAD) technique was further developed to simultaneously count the Bronsted acid sites and quantitatively characterize their strength. The adsorption of ethanol, reaction products, amines, coke and ethanol-derived residue (EDR) were monitored gravimetrically using the highly sensitive, novel Tapered Element Oscillating Microreactor (TEOM) apparatus. The TEOM was also used also in conjunction with CTPAD to characterize Bronsted acidity which is a new application for the instrument. For the first synthesis step, a parallel reaction exists which simultaneously produces diethyl ether and ethylene directly over H-ZSM-5. The reaction rates for each pathway were measured directly using a differential reactor operating at low temperatures (<473 K). Water in the ethanol feed enhances the rate of ethylene formation. A mechanism and kinetic expression are proposed for this reaction over H-ZSM-5, with diethyl-ether desorption and ethylene formation as the rate limiting steps. Heat of adsorption values measured from the independent microcalorimetry work reported in the literature are incorporated into the kinetic analysis which reduces the number of regressed parameters. For the remaining synthesis steps, several zeolite structures (ZSM-5, Y, FER) partially exchanged with Pd, Ti, Ni and Au were prepared and tested. It was determined from this screening study that the zeolites containing Pd are the most efficient catalysts for the dimerization reaction. Characterization results from x-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectroscopy, and CTPAD suggest a stable, Pd species with a low oxidation state as part of the active site in Pd-exchanged zeolites. Isobutylene was present in the C4 fraction at reasonable quantities for most of the catalyst candidates, especially those containing an alkali metal co-cation.
Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Ethanol Fuel Blends
Air pollution is among the many environmental and public health concerns associated with increased ethanol use in vehicles. Jacobson [2007] showed for the U.S. market that full conversion to e85 ([85% ethanol, 15% gasoline]—the maximum standard blend used in modern dual fuel veh...
Tahara, Erich B; Cunha, Fernanda M; Basso, Thiago O; Della Bianca, Bianca E; Gombert, Andreas K; Kowaltowski, Alicia J
2013-01-01
Calorie restriction (CR) is an intervention known to extend the lifespan of a wide variety of organisms. In S. cerevisiae, chronological lifespan is prolonged by decreasing glucose availability in the culture media, a model for CR. The mechanism has been proposed to involve an increase in the oxidative (versus fermentative) metabolism of glucose. Here, we measured wild-type and respiratory incompetent (ρ(0)) S. cerevisiae biomass formation, pH, oxygen and glucose consumption, and the evolution of ethanol, glycerol, acetate, pyruvate and succinate levels during the course of 28 days of chronological aging, aiming to identify metabolic changes responsible for the effects of CR. The concomitant and quantitative measurements allowed for calculations of conversion factors between different pairs of substrates and products, maximum specific substrate consumption and product formation rates and maximum specific growth rates. Interestingly, we found that the limitation of glucose availability in CR S. cerevisiae cultures hysteretically increases oxygen consumption rates many hours after the complete exhaustion of glucose from the media. Surprisingly, glucose-to-ethanol conversion and cellular growth supported by glucose were not quantitatively altered by CR. Instead, we found that CR primed the cells for earlier, faster and more efficient metabolism of respiratory substrates, especially ethanol. Since lifespan-enhancing effects of CR are absent in respiratory incompetent ρ(0) cells, we propose that the hysteretic effect of glucose limitation on oxidative metabolism is central toward chronological lifespan extension by CR in this yeast.
Gohel, V; Ranganathan, K; Duan, G
2017-04-21
Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50-5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50-5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT -1 rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT -1 corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.
NASA Astrophysics Data System (ADS)
Reiter, Kyle; Raegen, Adam; Allen, Scott; Quirk, Amanda; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John
2013-03-01
Cellulose is the largest component of biomass on Earth and, as a result, is a significant potential energy source. The production of cellulosic ethanol as a fuel source requires conversion of cellulose fibers into fermentable sugars. Increasing our understanding of the action of cellulose enzymes (cellulases) on cellulose microfibrils is an important step in developing more efficient industrial processes for the production of cellulosic ethanol. We have used a custom designed Surface Plasmon Resonance imaging (SPRi) device to study the action of cellulases from the Hypocrea jecorinasecretome on bacterial cellulose microfibrils. This has allowed us to determine the rates of action and extent of degradation of cellulose microfibrils on exposure to both individual cellulases and combinations of different classes of cellulases, which has allowed us to investigate synergistic interactions between the cellulases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Piaoran; Cao, Peng -Fei; Su, Zhe
Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less
Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong
2017-08-01
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.
2016-04-10
tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...
2016-02-03
Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C 2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al 2O 3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
Zha, Jian; Li, Bing-Zhi; Shen, Ming-Hua; Hu, Meng-Long; Song, Hao; Yuan, Ying-Jin
2013-01-01
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g). PMID:23844185
Production of Chromium Oxide from Turkish Chromite Concentrate Using Ethanol
NASA Astrophysics Data System (ADS)
Aktas, S.; Eyuboglu, C.; Morcali, M. H.; Özbey, S.; Sucuoglu, Y.
2015-05-01
In this study, the possibility of chromium extraction from Turkish chromite concentrate and the production of chromium oxide were investigated. For the conversion of chromium(III) into chromium(VI), NaOH was employed, as well as air with a rate of 20 L/min. The effects of the base amount, fusing temperature, and fusing time on the chromium conversion percentage were investigated in detail. The conversion kinetics of chromium(III) to chromium(VI) was also undertaken. Following the steps of dissolving the sodium chromate in water and filtering, aluminum hydroxide was precipitated by adjusting the pH level of the solution. The chromium(VI) solution was subsequently converted to Cr(III) by the combination of sulfuric acid and ethanol. Interestingly, it was observed that ethanol precipitated chromium as chromium(VI) at mildly acidic pH levels, although this effect is more pronounced for K2Cr2O7 than Na2Cr2O7. On the other hand, in the strongly acidic regime, ethanol acted as a reducing agent role in that chromium(VI) was converted into Cr(III) whereas ethanol itself was oxidized to carbon dioxide and water. Subsequently, chromium hydroxide was obtained by the help of sodium hydroxide and converted to chromium oxide by heating at 800 °C, as indicated in thermo gravimetric analysis (TGA).
Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate.
Wu, Fang-Chen; Huang, Shu-Sing; Shih, Ing-Lung
2014-09-01
A practical process was developed for production of a high quality hydrolysate of waste newspaper that ensured its complete fermentability to bioethanol. After pretreatment with 0.1N NaOH for 12h and sequential acid and enzyme hydrolysis, 10.1g/L of glucose (50.5%), 1.38 g/L of mannose (6.9%) and 0.28 g/L of galactose (1.4%), a total of 11.76 g/L of fermentable sugars was obtained, which accounts for 88.7% of saccharification efficiency. The Saccharomyces cerevisiae BCRC20271 showed excellent co-fermentability of glucose, mannose and galactose in hydrolysate of waste newspaper. After cultivation of the hydrolysate at 24°C in static culture for 48 h, the final ethanol concentration of 5.72 g/L (96% conversion efficiency) was produced. Overall, 1000 kg of waste newspaper will produce 286 kg (362 L) of ethanol by the process developed, which reveals that waste newspaper has higher potential than many other lignocellulosic and seaweed feedstocks for bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
McGee, Chandra; Chan Hilton, Amy B
2011-03-01
The purpose of this work was to investigate incentives and barriers to fuel ethanol production from biomass in the U.S. during the past decade (2000-2010). In particular, we examine the results of policies and economic conditions during this period by way of cellulosic ethanol activity in four selected states with the potential to produce different types of feedstocks (i.e., sugar, starch, and cellulosic crops) for ethanol production (Florida, California, Hawaii, and Iowa). Two of the four states, Iowa and California, currently have commercial ethanol production facilities in operation using corn feedstocks. While several companies have proposed commercial scale facilities in Florida and Hawaii, none are operating to date. Federal and state policies and incentives, potential for feedstock production and conversion to ethanol and associated potential environmental impacts, and environmental regulatory conditions among the states were investigated. Additionally, an analysis of proposed and operational ethanol production facilities provided evidence that a combination of these policies and incentives along with the ability to address environmental issues and regulatory environment and positive economic conditions all impact ethanol production. The 2000-2010 decade saw the rise of the promise of cellulosic ethanol. Federal and state policies were enacted to increase ethanol production. Since the initial push for development, expansion of cellulosic ethanol production has not happened as quickly as predicted. Government and private funding supported the development of ethanol production facilities, which peaked and then declined by the end of the decade. Although there are technical issues that remain to be solved to more efficiently convert cellulosic material to ethanol while reducing environmental impacts, the largest barriers to increasing ethanol production appear to be related to government policies, economics, and logistical issues. The numerous federal and state policies do not effectively give investors confidence to commit to the construction and long-term operation of facilities under current economic conditions. Additional changes in policy and breakthroughs in technology and logistics will be required to address these hurdles to increases in ethanol production in the U.S. in the next decade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, L.; Schell, D.; Davis, R.
2014-04-01
For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costsmore » only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.« less
What can be Learned from Silage Breeding Programs?
NASA Astrophysics Data System (ADS)
Lorenz, Aaron J.; Coors, James G.
Improving the quality of cellulosic ethanol feedstocks through breeding and genetic manipulation could significantly impact the economics of this industry. Attaining this will require comprehensive and rapid characterization of large numbers of samples. There are many similarities between improving corn silage quality for dairy production and improving feedstock quality for cellulosic ethanol. It was our objective to provide insight into what is needed for genetic improvement of cellulosic feedstocks by reviewing the development and operation of a corn silage breeding program. We discuss the evolving definition of silage quality and relate what we have learned about silage quality to what is needed for measuring and improving feedstock quality. In addition, repeatability estimates of corn stover traits are reported for a set of hybrids. Repeatability of theoretical ethanol potential measured by near-infrared spectroscopy is high, suggesting that this trait may be easily improved through breeding. Just as cell wall digestibility has been factored into the latest measurements of silage quality, conversion efficiency should be standardized and included in indices of feedstock quality to maximize overall, economical energy availability.
Udeh, Benard Anayo; Erkurt, Emrah Ahmet
2017-01-01
Two different plants namely Phoenix canariensis and Opuntia ficus-indica were used as substrate for reducing sugar generation and ethanol production. Dilute acid, alkaline and steam explosion were used as pretreatment methods in order to depolymerize lignin and/or hemicellulose and recover cellulose. By using alkaline pretreatment with 2.5% NaOH 71.08% for P. canariensis and 74.61% for O. ficus-indica lignin removal and 81.84% for P. canariensis and 72.66% for O. ficus-indica cellulose recovery yields were obtained. Pretreated materials were hydrolyzed by cellulase with high efficiency (87.0% and 84.5% cellulose conversion yields for P. canariensis and O. ficus-indica) and used as substrate for fermentation. Maximum ethanol production of 15.75g/L and 14.71g/L were achieved from P. canariensis and O. ficus-indica respectively. Structural differences were observed by XRD, FTIR and SEM for untreated, pretreated, hydrolyzed and fermented samples and were highly correlated with compositional analysis results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Production of bioethanol from multiple waste streams of rice milling.
Favaro, Lorenzo; Cagnin, Lorenzo; Basaglia, Marina; Pizzocchero, Valentino; van Zyl, Willem Heber; Casella, Sergio
2017-11-01
This work describes the feasibility of using rice milling by-products as feedstock for bioethanol. Starch-rich residues (rice bran, broken, unripe and discolored rice) were individually fermented (20%w/v) through Consolidated Bioprocessing by two industrial engineered yeast secreting fungal amylases. Rice husk (20%w/v), mainly composed by lignocellulose, was pre-treated at 55°C with alkaline peroxide, saccharified through optimized dosages of commercial enzymes (Cellic® CTec2) and fermented by the recombinant strains. Finally, a blend of all the rice by-products, formulated as a mixture (20%w/v) according to their proportions at milling plants, were co-processed to ethanol by optimized pre-treatment, saccharification and fermentation by amylolytic strains. Fermenting efficiency for each by-product was high (above 88% of the theoretical) and further confirmed on the blend of residues (nearly 52g/L ethanol). These results demonstrated for the first time that the co-conversion of multiple waste streams is a promising option for second generation ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo
2016-06-01
Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rao, Kripa; Chelikani, Silpa; Relue, Patricia; Varanasi, Sasidhar
Of the sugars recovered from lignocellulose, D-glucose can be readily converted into ethanol by baker's or brewer's yeast (Saccharomyces cerevisiae). However, xylose that is obtained by the hydrolysis of the hemicellulosic portion is not fermentable by the same species of yeasts. Xylose fermentation by native yeasts can be achieved via isomerization of xylose to its ketose isomer, xylulose. Isomerization with exogenous xylose isomerase (XI) occurs optimally at a pH of 7-8, whereas subsequent fermentation of xylulose to ethanol occurs at a pH of 4-5. We present a novel scheme for efficient isomerization of xylose to xylulose at conditions suitable for the fermentation by using an immobilized enzyme system capable of sustaining two different pH microenvironments in a single vessel. The proof-of-concept of the two-enzyme pellet is presented, showing conversion of xylose to xylulose even when the immobilized enzyme pellets are suspended in a bulk solution whose pH is sub-optimal for XI activity. The co-immobilized enzyme pellets may prove extremely valuable in effectively conducting "simultaneous isomerization and fermentation" (SIF) of xylose. To help further shift the equilibrium in favor of xylulose formation, sodium tetraborate (borax) was added to the isomerization solution. Binding of tetrahydroxyborate ions to xylulose effectively reduces the concentration of xylulose and leads to increased xylose isomerization. The formation of tetrahydroxyborate ions and the enhancement in xylulose production resulting from the complexation was studied at two different bulk pH values. The addition of 0.05 M borax to the isomerization solution containing our co-immobilized enzyme pellets resulted in xylose to xylulose conversion as high as 86% under pH conditions that are suboptimal for XI activity. These initial findings, which can be optimized for industrial conditions, have significant potential for increasing the yield of ethanol from xylose in an SIF approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Texeira, R.H.; Goodman, B.J.
This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.
Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng
2018-01-10
The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Nancy W. Y.; Adamec, Jiri; Mosier, Nathan, S.
2011-04-09
Since 1980, the PI’s laboratory at Purdue University has been at the forefront in developing recombinant Saccharomyces yeast for cellulosic ethanol production. Their innovation enabled them to successfully develop the recombinant Saccharomyces yeast strain 424A(LNH-ST) that has been validated by scientists in industry, universities, and National Laboratories. Strain 424A(LNH-ST) has also been used by a company to produce cellulosic ethanol since 2004. Nevertheless, this strain still needs improvement, particularly to achieve high ethanol titer when cellulosic biomass hydrolysates are used for ethanol production. In this project, we were able to carry out a total genetic overhaul of our yeast bymore » carrying out nine different tasks to improve our 424A(LNH-ST) strain. Through these tasks we enabled the yeast to co-ferment arabinose together with other four sugars generally present in all cellulosic biomass. Thus 424A(LNH-ST) can now ferment all five sugars, glucose, xylose, mannose, galactose and arabinose present in any cellulosic biomass. We also successfully used adaptation techniques and direct genetic improvements to develop improved 424A(LNH-ST) strains that are more resistant to acetic acid or ethanol. These are the most significant inhibitors of those commonly present in cellulosic hydrolysates that prevent 424A(LNH-ST) from producing high concentrations of cellulosic ethanol. The acetic acid resistant strain has 89% better xylose utilization in the presence of acetic acid and 25% better overall ethanol yield. The ethanol resistant strain has 250% better ethanol volumetric productivity. The three tasks for improving the main metabolic pathways have all been successfully completed but the impact of these improvements was less dramatic. This demonstrates our yeast already has effective metabolic systems for co-fermenting cellulosic sugars. However, our attempt to improve the yeast to transport xylose and arabinose more efficiently had only limited success. Thus improving yeast sugar transport system continues to be a significant challenge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Nancy, W. Y.; Adamec, Jiri; Mosier, Nathan, S.
2011-04-07
Since 1980, the PI's laboratory at Purdue University has been at the forefront in developing recombinant Saccharomyces yeast for cellulosic ethanol production. Their innovation enabled them to successfully develop the recombinant Saccharomyces yeast strain 424A(LNH-ST) that has been validated by scientists in industry, universities, and National Laboratories. Strain 424A(LNH-ST) has also been used by a company to produce cellulosic ethanol since 2004. Nevertheless, this strain still needs improvement, particularly to achieve high ethanol titer when cellulosic biomass hydrolysates are used for ethanol production. In this project, we were able to carry out a total genetic overhaul of our yeast bymore » carrying out nine different tasks to improve our 424A(LNH-ST) strain. Through these tasks we enabled the yeast to co-ferment arabinose together with other four sugars generally present in all cellulosic biomass. Thus 424A(LNH-ST) can now ferment all five sugars, glucose, xylose, mannose, galactose and arabinose present in any cellulosic biomass. We also successfully used adaptation techniques and direct genetic improvements to develop improved 424A(LNH-ST) strains that are more resistant to acetic acid or ethanol. These are the most significant inhibitors of those commonly present in cellulosic hydrolysates that prevent 424A(LNH-ST) from producing high concentrations of cellulosic ethanol. The acetic acid resistant strain has 89% better xylose utilization in the presence of acetic acid and 25% better overall ethanol yield. The ethanol resistant strain has 250% better ethanol volumetric productivity. The three tasks for improving the main metabolic pathways have all been successfully completed but the impact of these improvements was less dramatic. This demonstrates our yeast already has effective metabolic systems for co-fermenting cellulosic sugars. However, our attempt to improve the yeast to transport xylose and arabinose more efficiently had only limited success. Thus improving yeast sugar transport system continues to be a significant challenge.« less
Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.
Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José
2018-07-01
This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa; Flake, Matthew D.; Lemmon, Teresa
2018-05-18
A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.
A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less
Lignin blockers and uses thereof
Yang, Bin [West Lebanon, NH; Wyman, Charles E [Norwich, VT
2011-01-25
Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion and allows for the determination of optimized pretreatment conditions. Additionally, ethanol yields from a Simultaneous Saccharification and Fermentation process are improved 5-25% by treatment with a lignin-blocking polypeptide and/or protein. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.
de Barros Pita, Will; Leite, Fernanda Cristina Bezerra; de Souza Liberal, Anna Theresa; Simões, Diogo Ardaillon; de Morais, Marcos Antonio
2011-06-01
The yeast Dekkera bruxellensis has been regarded as a contamination problem in industrial ethanol production because it can replace the originally inoculated Saccharomyces cerevisiae strains. The present study deals with the influence of nitrate on the relative competitiveness of D. bruxellensis and S. cerevisiae in sugar cane ethanol fermentations. The industrial strain D. bruxellensis GDB 248 showed higher growth rates than S. cerevisiae JP1 strain in mixed ammonia/nitrate media, and nitrate assimilation genes were only slightly repressed by ammonia. These characteristics rendered D. bruxellensis cells with an ability to overcome S. cerevisiae populations in both synthetic medium and in sugar cane juice. The results were corroborated by data from industrial fermentations that showed a correlation between high nitrate concentrations and high D. bruxellensis cell counts. Moreover, the presence of nitrate increased fermentation efficiency of D. bruxellensis cells in anaerobic conditions, which may explain the maintenance of ethanol production in the presence of D. bruxellensis in industrial processes. The presence of high levels of nitrate in sugar cane juice may be due to its inefficient conversion by plant metabolism in certain soil types and could explain the periodical episodes of D. bruxellensis colonization of Brazilian ethanol plants.
USDA-ARS?s Scientific Manuscript database
Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...
Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,
Ethanol Use, Fuel Efficiency County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel , Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center
Outlook for Biomass Ethanol Production and Demand
2000-01-01
This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ro, Insoo; Liu, Yifei; Ball, Madelyn R.
Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less
Ro, Insoo; Liu, Yifei; Ball, Madelyn R.; ...
2016-09-06
Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less
Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.
2013-01-01
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331
2012-01-01
Background A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF) with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP) and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50 g/L Avicel. Factors responsible for this inaccuracy were investigated in this study. Results Ethanol dramatically reduced cellulase activity in tSSF. At an Avicel concentration of 20 g/L, the addition of ethanol decreased conversion at 96 hours, from 75% in the absence of added ethanol down to 32% with the addition of 34 g/L initial ethanol. This decrease is much greater than expected based on hydrolysis inhibition results in the absence of a fermenting organism. The enhanced effects of ethanol were attributed to the reduced, anaerobic conditions of tSSF, which were shown to inhibit cellulase activity relative to hydrolysis under aerobic conditions. Cellulose hydrolysis in anaerobic conditions was roughly 30% slower than in the presence of air. However, this anaerobic inhibition was reversed by exposing the cellulase enzymes to air. Conclusion This work demonstrates a previously unrecognized incompatibility of enzymes secreted by an aerobic fungus with the fermentation conditions of an anaerobic bacterium and suggests that enzymes better suited to industrially relevant fermentation conditions would be valuable. The effects observed may be due to inactivation or starvation of oxygen dependent GH61 activity, and manipulation or replacement of this activity may provide an opportunity to improve biomass to fuel process efficiency. PMID:22703989
El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M
2012-10-01
This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained.
El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.
2012-01-01
This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984
DOE Office of Scientific and Technical Information (OSTI.GOV)
House, R.; Peters, M.; Baumes, H.
1993-05-01
Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline.
Process for producing ethanol from plant biomass using the fungus paecilomyces sp.
Wu, Jung Fu
1989-01-01
A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.
Process for producing ethanol from plant biomass using the fungus Paecilomyces sp
Wu, J.F.
1985-08-08
A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.
Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu
2010-10-25
Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.
Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua
2013-05-01
Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.
Krutpijit, Chadaporn; Jongsomjit, Bunjerd
2017-01-01
Montmorillonite clay (MMT) is one of materials that can be "green material" due to its environmental safety. In this work, acid-activated MMT catalysts were prepared for the dehydration reaction of ethanol. To be the green process, the reaction with bioethanol was also studied. Ethanol concentrations in feed were varied in the range of 10-99.95 wt%. Moreover, the concentrations of hydrochloric acid activated MMT were investigated in range of 0.05-4 M. From the experiment, it reveals that different acid concentrations to activate MMT affect the catalytic activity of catalysts. The 0.3 M of HCl activated MMT exhibits the highest activity (under the best condition of 30 ml HCl aging for 1 h) with the Si/Al ratio of 7.4. It can reach the ethanol conversion and ethylene selectivity up to 95% and 98% at reaction temperature of 400°C, respectively. For the several ethanol feed concentrations, it does not remarkably affect in ethanol conversion. However, it has some different effect on ethylene selectivity between lower and higher reaction temperatures. It was found that at lower temperature reaction, ethylene selectivity is high due to the behavior of water in feed. In addition, the 0.3 M-MMT can be carried out under the hydrothermal effect.
Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.
Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D
2011-08-22
The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539
On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass
Umesh Agarwal; Sally Ralph
2014-01-01
In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...
Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.
Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N
2018-08-01
Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek
2013-01-01
A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved.
Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks
NASA Astrophysics Data System (ADS)
Choi, Youn-Sang
This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy-wide impacts of the current ethanol production with a government subsidy and the LCF-to-ethanol production using TVA's dilute acid hydrolysis process. The model is innovative in three ways. First, a production subsidy is explicitly included in the model. Second, co-products are explicitly accounted for in ethanol production. Third, ethanol and gasoline are treated as perfect demand substitutes, as are the co-products and the manufacturing sector's output. The CGE model shows that current ethanol production expands grain crop production by creating an additional demand. In contrast, LCF-to-ethanol production has adverse impacts on grain crop production because Biomass feedstocks substitute for grain in the production of ethanol. The LCF-to-ethanol production also discourages the manufacturing industry because co-products displace a part of intermediate input demand for manufacturing outputs. It is also found that, even though ethanol production using TVA's conversion technology with MSW is economically viable, it is not favorable to the economy. Finally, the results suggest that ethanol production from Biomass feedstocks using TVA's dilute acid hydrolysis process is beneficial to the U.S. economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurti, R.
The objective of this investigation was to recover the major components of whey and to develop food applications for their incorporation/conversion into acceptable products of commercial value. Reconstituted dried sweet whey with 36% solids was ultrafiltered to yield a protein concentrate (WPC) and a permeate containing 24% lactose and 3.7% ash. Orange juice fortified up to 2.07% and chocolate milks fortified up to 5.88% total protein levels with WPC containing 45% total protein were acceptable to about 90% of a panel of 24 individuals. Fermentation of demineralized permeate at 30/sup 0/C with Kluyveromyces fragilis NRRL Y 2415 adapted to 24%more » lactose levels, led to 13.7% (v/v) ethanol in the medium at the end of 34 hours. Batch productivity was 3.2 gms. ethanol per liter per hour and conversion efficiency was 84.26% of the theoretical maximum. Alcoholic fermentation of permeate and subsequent distillation produced compounds with desirable aroma characters in such products. This study suggests that there is potential for the production of protein fortified non-alcoholic products and alcoholic beverages of commercial value from whey, thus providing a cost effective solution to the whey utilization problem.« less
Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases
2013-01-01
Background Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol. Results The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1). Conclusions In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases. PMID:24286270
Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases.
Viktor, Marko J; Rose, Shaunita H; van Zyl, Willem H; Viljoen-Bloom, Marinda
2013-11-29
Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol. The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110-150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1). In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.
Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
Gaddy, J.L.; Clausen, E.C.
1992-12-22
A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.
Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
Gaddy, James L.; Clausen, Edgar C.
1992-01-01
A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.
Melero, Juan A; Vicente, Gemma; Paniagua, Marta; Morales, Gabriel; Muñoz, Patricia
2012-01-01
The present study is focused on the etherification of biodiesel-derived glycerol with anhydrous ethanol over arenesulfonic acid-functionalized mesostructured silicas to produce ethyl ethers of glycerol that can be used as gasoline or diesel fuel biocomponents. Within the studied range, the best conditions to maximize glycerol conversion and yield towards ethyl-glycerols are: T=200 °C, ethanol/glycerol molar ratio=15/1, and catalyst loading=19 wt%. Under these reaction conditions, 74% glycerol conversion and 42% yield to ethyl ethers have been achieved after 4 h of reaction but with a significant presence of glycerol by-products. In contrast, lower reaction temperatures (T=160 °C) and moderate catalyst loading (14 wt%) in presence of a high ethanol concentration (ethanol/glycerol molar ratio=15/1) are necessary to avoid the formation of glycerol by-products and maximize ethyl-glycerols selectivity. Interestingly, a close catalytic performance to that achieved using high purity glycerol has been obtained with low-grade water-containing glycerol. Copyright © 2011 Elsevier Ltd. All rights reserved.
Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W
2012-01-01
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
NASA Astrophysics Data System (ADS)
Alexiades, Anthy Maria
The life cycle assessment of a proposed beet-to-ethanol pathway demonstrates how agricultural management and industrial ecology principles can be applied to reduce greenhouse gas emissions, minimize agrochemical inputs and waste, provide ecosystem services and yield a lower-carbon fuel from a highly land-use efficient, first-generation feedstock cultivated in California. Beets grown in California have unique potential as a biofuel feedstock. A mature agricultural product with well-developed supply chains, beet-sugar production in California has contracted over recent decades, leaving idle production capacity and forcing growers to seek other crops for use in rotation or find a new market for beets. California's Low Carbon Fuel Standard (LCFS) faces risk of steeply-rising compliance costs, as greenhouse gas reduction targets in the transportation sector were established assuming commercial volumes of lower-carbon fuels from second-generation feedstocks -- such as residues, waste, algae and cellulosic crops -- would be available by 2020. The expected shortfall of cellulosic ethanol has created an immediate need to develop lower-carbon fuels from readily available feedstocks using conventional conversion technologies. The life cycle carbon intensity of this ethanol pathway is less than 28 gCO2e/MJEthanol: a 72% reduction compared to gasoline and 19% lower than the most efficient corn ethanol pathway (34 gCO2e/MJ not including indirect land use change) approved under LCFS. The system relies primarily on waste-to-energy resources; nearly 18 gCO2e/MJ are avoided by using renewable heat and power generated from anaerobic digestion of fermentation stillage and gasification of orchard residues to meet 88% of the facility's steam demand. Co-products displace 2 gCO2e/MJ. Beet cultivation is the largest source of emissions, contributing 15 gCO 2e/MJ. The goal of the study is to explore opportunities to minimize carbon intensity of beet-ethanol and investigate the potential contribution of this pathway toward meeting the near-term objectives of California's climate change policy.
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...
2016-09-27
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
Direct bioethanol production by amylolytic yeast Candida albicans.
Aruna, A; Nagavalli, M; Girijashankar, V; Ponamgi, S P D; Swathisree, V; Rao, L Venkateswar
2015-03-01
An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.5 times more bioethanol production via direct conversion of starch. Enhanced hydrolysis of insoluble starch (72%) and potato starch (70%) was achieved with glucoamylase enzyme preparation from mutant C. albicans. In fermentation medium, the use of maltose, corn steep liquor, NaH2 PO4 , NaCl + MgSO4 and Triton X-100 has increased the glucoamylase production by the microbe. Under optimized conditions, C. albicans eventually produced 437 g ethanol kg(-1) potatoes. Earlier reports mentioned the use of thrice the quantity of starch as reported by us followed by more fermentation period (3-4 days) and demanded pretreatment of starch sources with alpha-amylase as well. Here, we simplified these three steps and obtained 73% conversion of insoluble starch into ethanol via direct conversion method in a period of 2 days without the involvement of cell immobilizations or enzyme pretreatment steps. Due to fast depletion of fossil fuels in the modern world, bioethanol usage as an alternate energy source is the need of the hour. For the first time, we report bioethanol production by Candida albicans via direct conversion of starchy biomass into ethanol along with enhanced starch-hydrolysing capacity and ethanol conversion ratio. So far, C. albicans was dealt in the field of clinical pathology, but here we successfully employed this organism to produce bioethanol from starchy agri-substrates. Optimizing fermentation parameters and improving the microbial strains through successive mutagenesis can improve the end product yield. © 2014 The Society for Applied Microbiology.
Lignocellulosic feedstock resource assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, T.
This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.
Selective ethanol production from reducing sugars in a saccharide mixture.
Ohara, Satoshi; Kato, Taku; Fukushima, Yasuhiro; Sakoda, Akiyoshi
2013-05-01
Fermentation profiles of four different yeasts reportedly defective in sucrose utilization indicate that all strains tested removed particular sugar via selective conversion to ethanol in a saccharide mixture. At the temperature of pressed sugarcane juice, Saccharomyces dairenensis and Saccharomyces transvaalensis performed better in ethanol production rate and yield, respectively. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng
2018-01-01
The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems. PMID:29622818
Effect of corn stover compositional variability on minimum ethanol selling price (MESP).
Tao, Ling; Templeton, David W; Humbird, David; Aden, Andy
2013-07-01
A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP), ethanol yield (gallons per dry ton biomass feedstock), ethanol annual production, as well as total installed project cost for each composition. From this study, the calculated MESP is $2.20 ± 0.21 (average ± 3 SD) per gallon ethanol. Copyright © 2013. Published by Elsevier Ltd.
Vapochromic behavior of MOF for selective sensing of ethanol
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Chen, Qianwang
2018-04-01
A MOF material, Co3[Co(CN)6]2 nanoparticles has been prepared for the effective detection of ethanol in vapor phase. When exposed to ethanol vapor, the material was changed from pink to purple, which is easily observed by naked eyes directly. We propose that the ethanol response is due to ethanol molecules entering the pores of the solid, where they alter the coordination geometry, leading to conversion of their Co centers from octahedral to tetrahedral coordination. Significantly, the change is reversible, which make the material reusable without subjecting to dynamic vacuum or slightly warming.
Dereli, Recep Kaan; van der Zee, Frank P; Heffernan, Barry; Grelot, Aurelie; van Lier, Jules B
2014-02-01
The potential of anaerobic membrane bioreactors (AnMBRs) for the treatment of lipid rich corn-to-ethanol thin stillage was investigated at three different sludge retention times (SRT), i.e. 20, 30 and 50 days. The membrane assisted biomass retention in AnMBRs provided an excellent solution to sludge washout problems reported for the treatment of lipid rich wastewaters by granular sludge bed reactors. The AnMBRs achieved high COD removal efficiencies up to 99% and excellent effluent quality. Although higher organic loading rates (OLRs) up to 8.0 kg COD m(-3) d(-1) could be applied to the reactors operated at shorter SRTs, better biological degradation efficiencies, i.e. up to 83%, was achieved at increased SRTs. Severe long chain fatty acid (LCFA) inhibition was observed at 50 days SRT, possibly caused by the extensive dissolution of LCFA in the reactor broth, inhibiting the methanogenic biomass. Physicochemical mechanisms such as precipitation with divalent cations and adsorption on the sludge played an important role in the occurrence of LCFA removal, conversion, and inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah
2017-09-01
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.
Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard
2013-01-01
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660
Vapor-fed bio-hybrid fuel cell.
Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M
2017-01-01
Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small operations and should be generalizable to other biofuels and waste-to-energy systems.
Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun
2011-06-01
A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.
Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol.
Xia, Ao; Jacob, Amita; Herrmann, Christiane; Tabassum, Muhammad Rizwan; Murphy, Jerry D
2015-10-01
Fermentative hydrogen from seaweed is a potential biofuel of the future. Mannitol, which is a typical carbohydrate component of seaweed, was used as a substrate for hydrogen fermentation. The theoretical specific hydrogen yield (SHY) of mannitol was calculated as 5 mol H2/mol mannitol (615.4 mL H2/g mannitol) for acetic acid pathway, 3 mol H2/mol mannitol (369.2 mL H2/g mannitol) for butyric acid pathway and 1 mol H2/mol mannitol (123.1 mL H2/g mannitol) for lactic acid and ethanol pathways. An optimal SHY of 1.82 mol H2/mol mannitol (224.2 mL H2/g mannitol) was obtained by heat pre-treated anaerobic digestion sludge under an initial pH of 8.0, NH4Cl concentration of 25 mM, NaCl concentration of 50mM and mannitol concentration of 10 g/L. The overall energy conversion efficiency achieved was 96.1%. The energy was contained in the end products, hydrogen (17.2%), butyric acid (38.3%) and ethanol (34.2%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Tolerant yeast in situ detoxifies major class of toxic chemicals while producing ethanol
USDA-ARS?s Scientific Manuscript database
Renewable lignocellulosic materials contain abundant sugar source and biofuels conversion including cellulosic ethanol production from lignocellulosic biomass provides a sustainable alternative energy resource for a cleaner environment. In order to release the biomass sugars from the complex cellulo...
Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential (in MIXED)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woick, B.; Friedrich, R.
1981-09-01
Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.
Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.
2014-01-01
Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J
Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupoi, Jason; Smith, Emily
2011-12-01
Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification productsmore » and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.« less
Qin, Zhangcai; Zhuang, Qianlai; Cai, Ximing
2014-06-16
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop–vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that,more » cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO 2eq l –1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO 2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. Furthermore, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop–specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.« less
The influence of different cultivation conditions on the metabolome of Fusarium oxysporum.
Panagiotou, Gianni; Christakopoulos, Paul; Olsson, Lisbeth
2005-08-22
The two most widespread pentose sugars found in the biosphere are d-xylose and l-arabinose. They are both potential substrates for ethanol production. The purpose of this study was to better understand the redox constraints imposed to Fusarium oxysporum during utilization of pentoses. In order to increase ethanol yield and decrease by-product formation, nitrate was used as nitrogen source. The use of NADH, the cofactor in denitrification process when using nitrate as a nitrogen source, improved the ethanol yield on xylose to 0.89 mol mol(-1) compared to the ethanol yield achieved using ammonium as nitrogen source 0.44 mol mol(-1). The improved ethanol yield was followed by a 28% decrease in yield of the by-product xylitol. In order to investigate the metabolic pathway of arabinose and the metabolic limitations for the efficient ethanol production from this sugar, the extracellular and intracellular metabolite profiles were determined under aerobic and anaerobic cultivation conditions. The results of this study clearly show difficulties in channelling of glucose-1-P (G1P) to pentose phosphate pathway (PPP) and reduced NADPH regeneration, suggesting that NADPH becomes a limiting factor for arabinose conversion, resulting in excessive acetate production. Variations of the fungus intracellular amino and non-amino acid pool, under different culture conditions, were evaluated using principal component analysis (PCA). PCA projection of the metabolome data collected from F. oxysporum subjected to environmental perturbations succeeded to visualize different physiological states and the conclusions of this study were that the metabolite profile is unique according to: (1) the carbon source and (2) the oxygen supply, and to a lesser extent to the cultivation phase.
Performance of dairy cows fed high levels of acetic acid or ethanol.
Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G
2013-01-01
Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be considered when calculating energy content of fermented feedstuffs. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Form and Function of Clostridium thermocellum Biofilms
Dumitrache, Alexandru; Allen, Grant; Liss, Steven N.; Lynd, Lee R.
2013-01-01
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion. PMID:23087042
Form and function of Clostridium thermocellum biofilms.
Dumitrache, Alexandru; Wolfaardt, Gideon; Allen, Grant; Liss, Steven N; Lynd, Lee R
2013-01-01
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h(-1)) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.
Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M
2013-06-04
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Erosion analysis related to corn-based ethanol production in the US
Since the Renewable Fuel Standard has encouraged the development of biofuels, the US has seen an increase in corn production for conversion to ethanol. In many of these agricultural regions, increased corn production is accompanied with increased erosion. An erosion analysis w...
Alternative Fuels Data Center: Ethanol Vehicle Emissions
Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline emissions of regulated pollutants, toxic chemicals, and greenhouse gases (GHGs). The use of high-level extraction, processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a
Hector, Ronald E; Dien, Bruce S; Cotta, Michael A; Qureshi, Nasib
2011-09-01
Saccharomyces' physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04-0.17 h(-1). Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17-0.31 g/l/h, with ethanol yields 0.18-0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13-17% more ethanol than the parental control strains because of their ability to ferment xylose.
2011-01-01
Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629
Maas, Ronald HW; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans
2008-01-01
Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis). PMID:18699996
Efficiency of a solid polymer fuel cell operating on ethanol
NASA Astrophysics Data System (ADS)
Ioannides, Theophilos; Neophytides, Stylianos
The efficiency of a solid polymer fuel cell (SPFC) system operating on ethanol fuel has been analyzed as a function of operating parameters focusing on vehicle and stationary applications. Two types of ethanol processors — employing either steam reforming or partial oxidation (POX) steps — have been considered and their performance has been investigated by thermodynamic analysis. SPFC operation has been analyzed by an available parametric model. It has been found that dilute ethanol-water mixtures (˜55% v/v EtOH) are the most suitable for stationary applications with a steam reformer (SR)-SPFC system. Regarding vehicle applications, pure ethanol (˜95% v/v EtOH) appears to be the best fuel with a POX-SPFC system. Efficiencies in the case of an ideal ethanol processor can be of the order of 60% under low load conditions and 30-35% at peak power, while efficiencies with an actual processor are 80-85% of the above values.
Biorefinery of instant noodle waste to biofuels.
Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook
2014-05-01
Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-24
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Tao, Ling; Wang, Michael
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. Here, this study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2more » options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2, and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.« less
Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.
Han, Jeongwoo; Tao, Ling; Wang, Michael
2017-01-01
To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock.
Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon
2012-09-01
A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowe, N.
2014-05-01
This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scalemore » the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.« less
Development of a more efficient process for production of fuel ethanol from bamboo.
Sun, Zhao-Yong; Wang, Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji
2015-06-01
A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid-sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid-sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid-sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.
Determination of the efficiency of ethanol oxidation in a proton exchange membrane electrolysis cell
NASA Astrophysics Data System (ADS)
Altarawneh, Rakan M.; Majidi, Pasha; Pickup, Peter G.
2017-05-01
Products and residual ethanol in the anode and cathode exhausts of an ethanol electrolysis cell (EEC) have been analyzed by proton NMR and infrared spectrometry under a variety of operating conditions. This provides a full accounting of the fate of ethanol entering the cell, including the stoichiometry of the ethanol oxidation reaction (i.e. the average number of electrons transferred per ethanol molecule), product distribution and the crossover of ethanol and products through the membrane. The reaction stoichiometry (nav) is the key parameter that determines the faradaic efficiency of both EECs and direct ethanol fuel cells. Values determined independently from the product distribution, amount of ethanol consumed, and a simple electrochemical method based on the dependence of the current on the flow rate of the ethanol solution are compared. It is shown that the electrochemical method yields results that are consistent with those based on the product distribution, and based on the consumption of ethanol when crossover is accounted for. Since quantitative analysis of the cathode exhaust is challenging, the electrochemical method provides a valuable alternative for routine determination of nav, and hence the faradaic efficiency of the cell.
Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.
Krutpijit, Chadaporn; Jongsomjit, Bunjerd
2016-01-01
In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.
One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jian; Konda, N. V. S. N. Murthy; Parthasarathi, Ramakrishnan
The transformation of biomass into liquid fuels is of great importance. Previous work has demonstrated the capability of specific ionic liquids (ILs), such as 1-ethyl-3-methylimidazolium acetate ([C(2)C(1)Im][OAc]) and cholinium lysinate ([Ch][Lys]), to be effective biomass pretreatment solvents. Using these ILs for an integrated biomass-to-biofuel configuration is still challenging due to a significant water-wash related to the high toxicity of [C(2)C(1)Im][OAc] and pH adjustment prior to saccharification for the highly basic [Ch][Lys]. In this work, we demonstrate, for the first time, that a one-pot integrated biofuel production is enabled by a low cost (similar to$1 per kg) and biocompatible protic ILmore » (PIL), ethanolamine acetate, without pH adjustments, water-wash and solid-liquid separations. After pretreatment, the whole slurry is directly used for simultaneous saccharification and fermentation (SSF) with commercial enzyme cocktails and wild type yeast strains, generating 70% of the theoretical ethanol yield (based on switchgrass). The structure-performance relationships of PILs in terms of lignin removal, net basicity, and pH value are systematically studied. A technoeconomic analysis (TEA) revealed that an integrated biorefinery concept based on this PIL process could potentially reduce the minimum ethanol selling price by more than 40% compared to scenarios that require pH adjustment prior to SSF. Improvement of the economic performance will be made by reducing the dilution and enzyme loading during SSF as identified by TEA. This study demonstrates the impact of a biocompatible IL in terms of process optimization and conversion efficiency, and opens up avenues for realizing an IL based efficiently integrated biomass conversion technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Wang, Yong
2014-11-17
The Conversion of ethanol to hydrocarbon over HZSM-5 zeolite with different Si/Al ratios was investigated under various reaction conditions. The catalyst with a higher Si/Al ratio (low acid density) deactivated faster and generated more unsaturated compounds at a similar time-on-stream. Temperature affects the catalytic activity with respect to liquid hydrocarbon generation and the hydrocarbon product composition. At lower temperatures (~300°C), the catalyst deactivated faster with respect to the liquid hydrocarbon formation. Higher temperatures (~400°C) reduced the formation of liquid range hydrocarbons and formed more gaseous fractions. Weight hourly space velocity was also found to affect product selectivity with higher weightmore » hourly space velocity leading to a higher extent of ethylene formation. The experimental results were analyzed in terms of the product composition and the coke content with respect to catalyst time-on-stream and compared with the catalyst lifetime with respect to the variables tested on the conversion of ethanol to hydrocarbon.« less
NASA Astrophysics Data System (ADS)
Giordano, Raquel L. C.; Trovati, Joubert; Schmidell, Willibaldo
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silicaenzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/1 of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/1 of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/1/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10-4 cm/s.
Giordano, Raquel L C; Trovati, Joubert; Schmidell, Willibaldo
2008-03-01
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica-enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 x 10(-4) cm/s.
Kumar, Satyendra; Pahujani, Shweta; Ola, R P; Kanwar, S S; Gupta, Reena
2006-06-01
A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.
Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J
2011-09-01
Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Karel, M.; Nakhost, Z.
1986-01-01
Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.
Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua
2010-01-01
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.
Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol
USDA-ARS?s Scientific Manuscript database
The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...
USDA-ARS?s Scientific Manuscript database
Conventional cellulose-to-ethanol conversion requires cellulose degradation in order to be utilized for growth and fermentation by common ethanologenic yeast. Cellulose is commonly enzymatically degraded into cellobiose by cellulase and subsequently cellobiose broken down into glucose by beta-glucos...
Carbon membranes for efficient water-ethanol separation.
Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric
2016-09-28
We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.
Carbon membranes for efficient water-ethanol separation
NASA Astrophysics Data System (ADS)
Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric
2016-09-01
We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.
Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A
2016-08-01
Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Agricultural policies and biomass fuels
NASA Astrophysics Data System (ADS)
Flaim, S.; Hertzmark, D.
The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.
NASA Astrophysics Data System (ADS)
Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer
2017-02-01
Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.
Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria
Flynn, Jeffrey M.; Ross, Daniel E.; Hunt, Kristopher A.; Bond, Daniel R.; Gralnick, Jeffrey A.
2010-01-01
Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies. PMID:21060736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Jianle, E-mail: zhuangjianle@126.com; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275; Yang, Xianfeng
Both cubic and hexagonal NaYF{sub 4} were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF{sub 4} have been studied in detail. It has been shown that phase transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H{sub 2}O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF{sub 4} but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF{sub 4}. The up-conversionmore » emission properties of Yb/Er co-doped NaYF{sub 4} have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF{sub 4}, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF{sub 4} was studied in detail. • Ethanol can facilitate the formation of H-NaYF{sub 4} while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.« less
Jain, Abhiney; Morlok, Charles K; Henson, J Michael
2013-01-01
The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.
USDA-ARS?s Scientific Manuscript database
Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...
Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang
2015-12-01
This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.
NASA Astrophysics Data System (ADS)
Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.
Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.
Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.
1992-01-01
A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.
Hirota, Shun; Ueda, Mariko; Hayashi, Yugo; Nagao, Satoshi; Kamikubo, Hironari; Kataoka, Mikio
2012-12-01
We have previously shown that polymerization of cytochrome c (cyt c) occurs by successively domain swapping its C-terminal α-helix in the presence of ethanol. However, the factors that govern the conversion process of monomers to domain-swapped oligomers remain unknown. We found that oligomeric cyt c is produced in the presence of ethanol and the oligomers precipitate due to low solubility. The optical absorption spectra revealed that in the presence of 30-40% ethanol, the Met-heme coordination in cyt c is dissociated. However, according to circular dichroism and small-angle X-ray scattering measurements, the α-helical structure of cyt c is maintained in solution with a little perturbation and the radius of gyration increases slightly but without dissociation of the C-terminal α-helix from the rest of the protein by the addition of ethanol. Solid-state nuclear magnetic resonance spectra showed that oligomeric cyt c in the precipitate also retains most of its α-helical structure. In the transmission electron microscopic image of the precipitate obtained by the addition of ethanol to cyt c, spherical particles with diameters of about 3 nm were detected. These results indicate that oligomeric cyt c forms through a state with the Met80 region locally unfolded, while maintaining the secondary structure, possibly an open monomer.
Optimizing fermentation process miscanthus-to-ethanol biorefinery scale under uncertain conditions
NASA Astrophysics Data System (ADS)
Bomberg, Matthew; Sanchez, Daniel L.; Lipman, Timothy E.
2014-05-01
Ethanol produced from cellulosic feedstocks has garnered significant interest for greenhouse gas abatement and energy security promotion. One outstanding question in the development of a mature cellulosic ethanol industry is the optimal scale of biorefining activities. This question is important for companies and entrepreneurs seeking to construct and operate cellulosic ethanol biorefineries as it determines the size of investment needed and the amount of feedstock for which they must contract. The question also has important implications for the nature and location of lifecycle environmental impacts from cellulosic ethanol. We use an optimization framework similar to previous studies, but add richer details by treating many of these critical parameters as random variables and incorporating a stochastic sub-model for land conversion. We then use Monte Carlo simulation to obtain a probability distribution for the optimal scale of a biorefinery using a fermentation process and miscanthus feedstock. We find a bimodal distribution with a high peak at around 10-30 MMgal yr-1 (representing circumstances where a relatively low percentage of farmers elect to participate in miscanthus cultivation) and a lower and flatter peak between 150 and 250 MMgal yr-1 (representing more typically assumed land-conversion conditions). This distribution leads to useful insights; in particular, the asymmetry of the distribution—with significantly more mass on the low side—indicates that developers of cellulosic ethanol biorefineries may wish to exercise caution in scale-up.
Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.
Yokoyama, Chiaki; Takei, Mami; Kouzuma, Yoshiaki; Nagata, Shinji; Suzuki, Yoshihito
2017-08-01
In the course of our study of the biosynthetic pathway of auxin, a class of phytohormones, in insects, we proposed the biosynthetic pathway tryptophan (Trp)→indole-3-acetaldoxime (IAOx)→indole-3-acetadehyde (IAAld)→indole-3-acetic acid (IAA). In this study, we identified two branches in the metabolic pathways in the silkworm, possibly affecting the efficiency of IAA production: Trp→indole-3-pyruvic acid→indole-3-lactic acid and IAAld→indole-3-ethanol. We also determined the apparent conversion activities (2.05×10 -7 UmL -1 for Trp→IAA, 1.30×10 -5 UmL -1 for IAOx→IAA, and 3.91×10 -1 UmL -1 for IAAld→IAA), which explain why IAOx and IAAld are barely detectable as either endogenous compounds or metabolites of their precursors. The failure to detect IAAld, even in the presence of an inhibitor of the conversion IAAld→IAA, is explained by a switch in the conversion from IAAld→IAA to IAAld→IEtOH. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael
This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less
The impact of biotechnological advances on the future of US bioenergy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davison, Brian H.; Brandt, Craig C.; Guss, Adam M.
Modern biotechnology has the potential to substantially advance the feasibility, structure, and efficiency of future biofuel supply chains. Advances might be direct or indirect. A direct advance would be improving the efficiency of biochemical conversion processes and feedstock production. Direct advances in processing may involve developing improved enzymes and bacteria to convert lignocellulosic feedstocks to ethanol. Progress in feedstock production could include enhancing crop yields via genetic modification or the selection of specific natural variants and breeds. Other direct results of biotechnology might increase the production of fungible biofuels and bioproducts, which would impact the supply chain. Indirect advances mightmore » include modifications to dedicated bioenergy crops that enable them to grow on marginal lands rather than land needed for food production. This study assesses the feasibility and advantages of near-future (10-year) biotechnological developments for a US biomass-based supply chain for bioenergy production. We assume a simplified supply chain of feedstock, logistics and land use, conversion, and products and utilization. The primary focus is how likely developments in feedstock production and conversion technologies will impact bioenergy and biofuels in the USA; a secondary focus is other innovative uses of biotechnologies in the energy arenas. The assessment addresses near-term biofuels based on starch, sugar, and cellulosic feedstocks and considers some longer-term options, such as oil-crop and algal technologies.« less
The impact of biotechnological advances on the future of US bioenergy
Davison, Brian H.; Brandt, Craig C.; Guss, Adam M.; ...
2015-05-14
Modern biotechnology has the potential to substantially advance the feasibility, structure, and efficiency of future biofuel supply chains. Advances might be direct or indirect. A direct advance would be improving the efficiency of biochemical conversion processes and feedstock production. Direct advances in processing may involve developing improved enzymes and bacteria to convert lignocellulosic feedstocks to ethanol. Progress in feedstock production could include enhancing crop yields via genetic modification or the selection of specific natural variants and breeds. Other direct results of biotechnology might increase the production of fungible biofuels and bioproducts, which would impact the supply chain. Indirect advances mightmore » include modifications to dedicated bioenergy crops that enable them to grow on marginal lands rather than land needed for food production. This study assesses the feasibility and advantages of near-future (10-year) biotechnological developments for a US biomass-based supply chain for bioenergy production. We assume a simplified supply chain of feedstock, logistics and land use, conversion, and products and utilization. The primary focus is how likely developments in feedstock production and conversion technologies will impact bioenergy and biofuels in the USA; a secondary focus is other innovative uses of biotechnologies in the energy arenas. The assessment addresses near-term biofuels based on starch, sugar, and cellulosic feedstocks and considers some longer-term options, such as oil-crop and algal technologies.« less
Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
Madhavan, Anjali; Srivastava, Aradhana; Kondo, Akihiko; Bisaria, Virendra S
2012-03-01
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.
The Status of and key barriers in lignocellulosic ethanol production : a technological perspective
J.Y. Zhu; G.S. Wang; X.J. Pan; R. Gleisner
2008-01-01
The development of biorefineries to produce fuel ethanol and commodity chemicals from lignocellulosic biomass is a potential alternative to current reliance on non-renewable resources. However, many technological barriers remain despite research progress in the past several decades. This article examines the major process barriers in biochemical conversion of biomass...
USDA-ARS?s Scientific Manuscript database
Conventional cellulose-to-ethanol conversion by simultaneous saccharification and fermentation (SSF)requires enzymatic saccharification using both cellulase and ß-glucosidase allowing cellulose utilization by common ethanologenic yeast. Here we report a new yeast strain of Clavispora NRRL Y-50464 th...
NASA Astrophysics Data System (ADS)
Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua
2018-05-01
The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.
Li, Jing; Shi, Suan; Tu, Maobing; Via, Brain; Sun, Fubao Fuelbio; Adhikari, Sushil
2018-05-02
Bioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study. Six detoxification approaches were studied and compared, including overliming, anion exchange resin, nonionic resin, laccase, activated carbon, and cysteine. It was observed that detoxification by anion exchange resin was the most effective method. The final butanol yield after anion exchange resin treatment was comparable to the control group, but the fermentation was delayed for 72 h. The addition of Ca(OH) 2 was found to alleviate this delay and improve the fermentation efficiency. The combination of Ca(OH) 2 and anion exchange resin resulted in completion of fermentation within 72 h and acetone-butanol-ethanol (ABE) production of 11.11 g/L, corresponding to a yield of 0.21 g/g sugar. The cysteine detoxification also resulted in good detoxification performance, but promoted fermentation towards acid production (8.90 g/L). The effect of salt on ABE fermentation was assessed and the possible role of Ca(OH) 2 was to remove the salts in the prehydrolysates by precipitation.
Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng
2018-06-14
Biological conversion of CO 2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO 2 -to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L -1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m -2 d -1 , respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO 2 capture and electrosynthesis of valuable chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Agricultural production and nutrient runoff in the Corn Belt ...
Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in response to ethanol policy incentives in recent years is well documented and may worsen this effect. We develop a spatially distributed dynamic environmental performance index (EPI), accounting for both desirable agricultural outputs and undesirable nonpoint source emissions from farm production, to examine the corresponding changes in environmental performance within the UMRB between 2002 and 2007, which is characterized by increasing policy incentives for ethanol production. County-level production data from the USDA agricultural census are aggregated to hydrologic unit code (HUC8) boundaries using a geographic information system (GIS), and a previously developed statistical model, which includes net anthropogenic nitrogen inputs (NANI) as well as precipitation and land use characteristics as inputs, is used to estimate annual nitrogen loadings delivered to streams from HUC8 watersheds. The EPI allows us to decompose performance of each HUC8 region over time into changes in productive efficiency and emissions efficiency. To our knowledge, this is the first study to examine the corresponding changes in environmental performance for producers in this region at the watershed scale. The resu
Potential feedstock sources for ethanol production in Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmani, Mohammad; Hodges, Alan
This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production.more » However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.« less
Rizo, Rubén; Arán-Ais, Rosa M; Padgett, Elliot; Muller, David A; Lázaro, Ma Jesús; Solla-Gullón, José; Feliu, Juan M; Pastor, Elena; Abruña, Héctor D
2018-03-14
Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt-Sn nanoparticles. The electrochemical activity of the cubic Pt-Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt-Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.
Mechanistic Investigation of Ethanol SCR of NOx over Ag/Al2O3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, William L; Fisher, Galen; Toops, Todd J
2012-01-01
A 2 wt.% Ag/{gamma}-Al{sub 2}O{sub 3} catalyst was studied for the ethanol selective catalytic reduction of NO{sub x} from 200 to 550 C and space velocities between 30,000 h{sup -1} and 140,000 h{sup -1}. Peak NO{sub x} conversions reached 85% at 400 C, and an activation energy was determined to be 57 kJ/mol with a feed of ethanol to NO{sub x} or HC{sub 1}/NO{sub x} = 3. Up to 80% of the NO is oxidized to NO{sub 2} at 250 C, but overall NO{sub x} conversion is only 15%. Interestingly, ethanol oxidation occurs at much lower temperatures than NO{sub x}more » reduction; at 250 C, ethanol oxidation is 80% when flowing ethanol + NO + O{sub 2}. This increased reactivity, compared to only 15% when flowing only ethanol + O{sub 2}, combined with the observation that NO is not oxidized to NO{sub 2} in the absence of ethanol illustrates a synergistic relationship between the reactants. To further investigate this chemistry, a series of DRIFTS experiments were performed. To form nitrates/nitrites on the catalysts it was necessary to include ethanol in the feed with NO. These nitrates/nitrites were readily formed when flowing NO{sub 2} over the catalyst. It is proposed that ethanol adsorbs through an ethoxy-intermediate that results in atomic hydrogen on the surface. This hydrogen aids the release of NO{sub 2} from Ag to the gas-phase which, can be subsequently adsorbed at {gamma}-Al{sub 2}O{sub 3} sites away from Ag. The disappearance of these nitrates/nitrites at higher temperatures proceeds in parallel with the increase in NO{sub x} reduction reactivity between 300 and 350 C observed in the kinetic study. It is therefore proposed that the consumption of nitrates is involved in the rate determining step for this reaction.« less
Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China.
Gnansounou, E; Dauriat, A; Wyman, C E
2005-06-01
Reducing the use of non-renewable fossil energy reserves together with improving the environment are two important reasons that drive interest in the use of bioethanol as an automotive fuel. Conversion of sugar and starch to ethanol has been proven at an industrial scale in Brazil and the United States, respectively, and this alcohol has been able to compete with conventional gasoline due to various incentives. In this paper, we examined making ethanol from the sugar extracted from the juice of sweet sorghum and/or from the hemicellulose and cellulose in the residual sorghum bagasse versus selling the sugar from the juice or burning the bagasse to make electricity in four scenarios in the context of North China. In general terms, the production of ethanol from the hemicellulose and cellulose in bagasse was more favorable than burning it to make power, but the relative merits of making ethanol or sugar from the juice was very sensitive to the price of sugar in China. This result was confirmed by both process economics and analysis of opportunity costs. Thus, a flexible plant capable of making both sugar and fuel-ethanol from the juice is recommended. Overall, ethanol production from sorghum bagasse appears very favorable, but other agricultural residues such as corn stover and rice hulls would likely provide a more attractive feedstock for making ethanol in the medium and long term due to their extensive availability in North China and their independence from other markets. Furthermore, the process for residue conversion was based on particular design assumptions, and other technologies could enhance competitiveness while considerations such as perceived risk could impede applications.
Enabling High Efficiency Ethanol Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, J.; Confer, K.
2011-03-01
Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, D.D.; Grohmann, K.; Wyman, C.E.
1991-01-16
A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.
Spindler, D.D.; Grohmann, K.; Wyman, C.E.
1992-03-31
A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. 2 figs.
Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M
2016-10-01
Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops ledmore » to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.« less
Autthanit, Chaowat; Jongsomjit, Bunjerd
2018-02-01
The present work deals with the catalytic performance of SBA-15 supported catalysts in the gas phase catalytic dehydration of ethanol in the temperature range of 200 to 400°C. The SBA-15 support was incorporated on a zirconium (Zr) and bimetal of zirconium and lanthanum (Zr-La) prepared by sol-gel (SG) and hydrothermal (HT) methods. The catalysts were characterized by means of N 2 physisorption, SEM/EDX, and NH 3 -TPD. The experimental results demonstrated that the Zr-La/SBA-15-HT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. The best catalytic results were achieved for Zr-La/SBA-15-HT indicating values of ethanol conversion and ethylene yield of ca. 84% and 80%, respectively at 400°C. The most important parameter influencing their catalytic properties appears to be the interaction between metal and support depending on different methods. The metal dispersion inside the siliceous matrix of SBA-15 has a direct influence on their surface acidity. Meanwhile, the performance of these SBA-15 supported catalysts in ethanol dehydration is also related with the alteration of surface acidity caused by the introduction of Zr and Zr-La.
Moriya, Hyuga; Tanaka, Sohei; Iida, Yukari; Kitagawa, Satomi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Yamamoto, Atsushi; Kodama, Shuji
2018-05-16
Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop, and hop pellet samples were analyzed by HPLC using InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using Chiralcel OD-H column with a mobile phase composed of hexane/ethanol (90/10, v/v) and Chiralpak AD-RH column with a mobile phase composed of methanol/2-propanol/water (40/20/40, v/v/v), respectively. Both of isoxanthohumol and 8-prenylnaringenin from beer, hop, and hop pellet samples were found to be a racemic mixture. This can be explained that the two analytes were produced by non-enzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol more than 50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling. This article is protected by copyright. All rights reserved.
Yuan, Shuo-Fu; Guo, Gia-Luen; Hwang, Wen-Song
2017-11-01
Renewable and low-cost lignocellulosic wastes have attractive applications in bioethanol production. The yeast Saccharomyces cerevisiae is the most widely used ethanol-producing microbe; however, its fermentation temperature (30-35°C) is not optimum (40-50°C) for enzymatic hydrolysis in the simultaneous saccharification and fermentation (SSF) process. In this study, we successfully performed an SSF process at 42°C from a high solid loading of 20% (w/v) acid-impregnated steam explosion (AISE)-treated rice straw with low inhibitor concentrations (furfural 0.19 g l -1 and acetic acid 0.95 g l -1 ) using an isolate Pichia kudriavzevii SI, where the ethanol titre obtained (33.4 g p l -1 ) was nearly 39% greater than that produced by conventional S. cerevisiae BCRC20270 at 30°C (24.1 g p l -1 ). In addition, P. kudriavzevii SI exhibited a high conversion efficiency of > 91% from enzyme-saccharified hydrolysates of AISE-treated plywood chips and sugarcane bagasse, although high concentrations of furaldehydes, such as furfural 1.07-1.21 g l -1 , 5-hydroxymethyl furfural 0.20-0.72 g l -1 and acetic acid 4.80-7.65 g l -1 , were present. This is the first report of ethanol fermentation by P. kudriavzevii using various acid-treated lignocellulosic feedstocks without detoxification or added nutrients. The multistress-tolerant strain SI has greater potential than the conventional S. cerevisiae for use in the cellulosic ethanol industry. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Vincent, Micky; Pometto, Anthony L; van Leeuwen, J Hans
2011-07-01
Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.
Metabolic engineering of Escherichia coli for ethanol production without foreign genes
NASA Astrophysics Data System (ADS)
Kim, Youngnyun
Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E. coli provides a potential biocatalyst for conversion of pentoses derived from cellulosic biomass to biobased products without the introduction of new genes.
Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish
2017-01-01
Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
USDA-ARS?s Scientific Manuscript database
Economical and environmentally friendly pretreatment technologies are required for commercial conversion of lignocellulosic feedstocks to fermentable sugars for fermentation to biofuels. In this paper, a novel pretreatment technology was developed for conversion of sugarcane bagasse into ethanol usi...
Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio
2016-03-01
Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.
Conversion of Methanol, Ethanol and Propanol over Zeolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Wang, Yong
2013-06-04
Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcoholsmore » over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, Yimin; Joshi, Satish; MacLean, Heather L.
2010-01-01
The feasibility of meeting California's low carbon fuel standard (LCFS) using ethanol from various feedstocks is assessed. Lifecycle greenhouse gas (GHG) emissions, direct agricultural land use, petroleum displacement directly due to ethanol blending, and production costs for a number of conventional and lignocellulosic ethanol pathways are estimated under various supply scenarios. The results indicate that after considering indirect land use effects, all sources of ethanol examined, except Midwest corn ethanol, are viable options to meet the LCFS. However, the required ethanol quantity depends on the GHG emissions performance and ethanol availability. The quantity of ethanol that can be produced from lignocellulosic biomass resources within California is insufficient to meet the year 2020 LCFS target. Utilizing lignocellulosic ethanol to meet the LCFS is more attractive than utilizing Brazilian sugarcane ethanol due to projected lower direct agricultural land use, dependence on imported energy, ethanol cost, required refueling infrastructure modifications and penetration of flexible fuel E85 vehicles. However, advances in cellulosic ethanol technology and commercial production capacity are required to support moderate- to large-scale introduction of low carbon intensity cellulosic ethanol. Current cellulosic ethanol production cost estimates suffer from relatively high uncertainty and need to be refined based on commercial scale production data when available.
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.
2007-12-01
In this study, a nested global-through-urban air pollution/weather forecast model is combined with high- resolution future emission inventories, population data, and health effects data to examine the effect of converting from gasoline to a high-ethanol blend (E85) on cancer, mortality, and hospitalization in the U.S. as a whole and Los Angeles in particular. The effects of both are then compared with those from converting to wind-powered battery-electric vehicles (WBEVs). Under the base-case emission scenario, which accounted for projected improvements in gasoline and E85 vehicle emission controls, complete conversion to E85, which is unlikely due to land-use constraints, was found to increase ozone-related mortality, hospitalization, and asthma by about 9 percent in Los Angeles and 4 percent in the U.S. as a whole relative to 100 percent gasoline. Ozone increases in Los Angeles and the northeast U.S. were partially offset by decreases in the southeast. E85 also increased PAN in the U.S. but was estimated to cause little change in cancer risk relative to gasoline. Both gasoline and ethanol are anticipated to cause at least 10,000-20,000 premature deaths in the U.S. in 2020, which would be eliminated upon conversion to WBEVs. WBEVs require 30 times less land area than corn ethanol and 20 times less land area than cellulosic ethanol for powering the same vehicle fleet. About 70,000-120,000 5 MW wind turbines in average wind speeds exceeding 8 m/s could power all U.S. onroad vehicles, eliminating up to 26 percent of U.S. carbon, compared with a best-case carbon reduction of 0.2 percent for corn-ethanol and 4 percent for cellulosic ethanol, based on recent lifecycle emission data and landuse constraints. In sum, both gasoline and E85 pose public health risks, with E85 causing equal or possibly more damage. The conversion to battery-electric vehicles or hydrogen fuel cell vehicles powered by wind or another clean renewable, is a significantly superior solution to ethanol or gasoline in terms of human health, climate-relevant emissions, and landuse requirements.
USDA-ARS?s Scientific Manuscript database
A Lactobacillus buchneri strain NRRL B-30929 can convert xylose and glucose into ethanol and chemicals. In this paper, L. buchneri NRRL B-30929 was initially compared with the type strains L. buchneri NRRL 1837 and DSM 5987 for growth and fermentation using single substrate derived from plant mater...
Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Instructor's Guide.
ERIC Educational Resources Information Center
Mishler, Glenn; Spignesi, Bill
This instructor's guide contains materials that are intended for use as part of the regular auto mechanics curriculum and that provide information necessary to convert a gasoline engine with a niminum of modifications to successfully be operated on ethanol alcohol. It accompanies a student guide that is available separately. Contents include a…
Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Student Guide.
ERIC Educational Resources Information Center
Mishler, Glenn; Spignesi, Bill
This student guide is a learning packet that is intended for use as part of the regular auto mechanics curriculum and that provides the information necessary to convert a gasoline engine with a minimum of modifications to successfully be operated on ethanol alcohol. Contents include an introduction, objectives, procedures, list of tasks to be…
USDA-ARS?s Scientific Manuscript database
Dilute H3PO4 (0.0 - 2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using a central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzym...
USDA-ARS?s Scientific Manuscript database
Widespread epidemics of Stenocarpella ear rot (formerly Diplodia ear rot) have occurred throughout the central U.S. Corn Belt in recent years, but the influence of S. maydis infected grain on corn ethanol production is unknown. In this study, S. maydis infected ears of variety 'Heritage 4646' were h...
Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries
2010-01-01
High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...
Materials for Energy Conversion: Materials for Energy Conversion and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanassov, Plamen
2017-03-30
The main objective of this collaborative research project was to identify a formulation and develop a catalyst for electro-oxidation of ethanol. Ethanol is one of the most mass-produced biofuels, and such catalysts will enable the development of Direct Ethanol Fuel Cell technology and through it, will interconnect fuel cells with biofuels. Several catalysts for direct electrochemical oxidation of ethanol have been selected on the principles of rational desig from the knowledge build in studying aqueous oxidation of ethanol. The program involved fundamental study of ethanol oxidation in liquid media, and particularly in alakine solutions. The lessons learned from the heterogeneousmore » catalysis of ethanol thermal oxidation have been applied to the design of an electrocatalyst for direct ethanol fuel cells. The successful chemical compositions are based on PdZn and NiZn allows. The studies reveled the role of the transition metal oxide phase as a co-catalyst and the role of the active support material. To complete the set of materials for ethanol fuel cell, this program also invested n the development of ctalysts for oxygen reduction that are selective against alcohol oxidation. Non-platinum ctalysts based on pyrolyzed macrocycles or similar composites have been studied. This program included also the development of stuctured supports as an integral part of the catalyst development. A new family of materials has been designed based on mesoporous silica templating with synthetic carbon resulting in hierarchicaly porous structure. Structure-to-property relationship of catalysis and catalysts has been the center of this program. This have been engaged in both surface and bulk level and pursued with the tools avialble at the academic institutions and at LANSCE at LANL. The structural studies have been built in interaction with a computational effort on the basis of DFT approach to materials structure and reactivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Guo, Zhiguang, E-mail: zguo@licp.cas.cn
Hierarchical TiO{sub 2} submicron-sized sphere scattering layer, with relatively large surface area and effective light scattering, shows enhanced power conversion efficiency in dye-sensitized solar cells. - Highlights: • Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized. • The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. • DSC exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS (2.00%) photoanodes. - Abstract: Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized by amore » facile one-step solvothermal method in ethanol solvent. The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. When applied as the scattering overlayer in dye-sensitized solar cells (DSCs), such TiO{sub 2} HSSs effectively improved light harvesting and led to the increase of photocurrent in DSCs. Furthermore, bilayer-structured photoanode also provided fast electron transportation and long electron lifetime as confirmed by electrochemical impedance spectra. As a result, DSC based on P25 nanoparticle underlayer and HSS-2 overlayer exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS-2 (2.00%) photoanodes.« less
2014-01-01
Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations. PMID:24670111
Western Kentucky University Research Foundation Biodiesel Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wei-Ping; Cao, Yan
2013-03-15
Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the nextmore » 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less air pollutants per net energy gain than ethanol. Bio-diesel has advantages over ethanol due to its lower agricultural inputs and more efficient conversion. Thus, to be a viable alternative, a bio-fuel firstly should be producible in large quantities without reducing food supplies. In this aspect, larger quantity supplies of cellulose biomass are likely viable alternatives. U. S. Congress has introduced an initiative and subsequently rolled into the basic energy package, which encourages the production of fuel from purely renewable resources, biomass. Secondly, a bio-fuel should also provide a net energy gain, have environmental benefits and be economically competitive. In this aspect, bio-diesel has advantages over ethanol. The commonwealth of Kentucky is fortunate to have a diverse and abundant supply of renewable energy resources. Both Kentucky Governor Beshear in the energy plan for Kentucky "Intelligent Energy Choices for Kentucky's Future", and Kentucky Renewable Energy Consortium, outlined strategies on developing energy in renewable, sustainable and efficient ways. Smart utilization of diversified renewable energy resources using advanced technologies developed by Kentucky public universities, and promotion of these technologies to the market place by collaboration between universities and private industry, are specially encouraged. Thus, the initially question answering Governor's strategic plan is if there is any economical way to make utilization of larger quantities of cellulose and hemicellulose for production of bio-fuels, especially bio-diesel. There are some possible options of commercially available technologies to convert cellulose based biomass energy to bio-fuels. Cellulose based biomass can be firstly gasified to obtain synthesis gas (a mixture of CO and H{sub 2}), which is followed up by being converted into liquid hydrocarbon fuels or oxygenate hydrocarbon fuel through Fischer-Tropsch (F-T) synthesis. Methanol production is regarded to be the most economic starting step in many-year practices of the development of F-T synthesis technology since only C{sub 1} synthesis through F-T process can potentially achieve 100% conversion efficiency. Mobil's F-T synthesis process is based on this understanding. Considering the economical advantages of bio-diesel production over ethanol and necessary supply of methanol during bio-diesel production, a new opportunity for bio-diesel production with total supplies of biomass-based raw materials through more economic reaction pathways is likely identified in this proposal. The bio-oil part of biomass can be transesterified under available methanol (or mixed alcohols), which can be synthesized in the most easy part of F-T synthesis process using synthesis gas from gasification of cellulose fractions of biomass. We propose a novel concept to make sense of bio-diesel production economically though a coupling reaction of bio-oil transesterification and methanol synthesis. It will overcome problems of current bio-diesel producing process based on separated handling of methanol and bio-oil.« less
USDA-ARS?s Scientific Manuscript database
Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...
Dellomonaco, Clementina; Rivera, Carlos; Campbell, Paul; Gonzalez, Ramon
2010-01-01
Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products. PMID:20525863
Biomass conversion processes for energy and fuels
NASA Astrophysics Data System (ADS)
Sofer, S. S.; Zaborsky, O. R.
The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.
Regional Climate Implications of Large-scale Cultivation of Biofuel Crops
NASA Astrophysics Data System (ADS)
Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.
2008-12-01
Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.
Parreiras, Lucas S.; Breuer, Rebecca J.; Avanasi Narasimhan, Ragothaman; Higbee, Alan J.; La Reau, Alex; Tremaine, Mary; Qin, Li; Willis, Laura B.; Bice, Benjamin D.; Bonfert, Brandi L.; Pinhancos, Rebeca C.; Balloon, Allison J.; Uppugundla, Nirmal; Liu, Tongjun; Li, Chenlin; Tanjore, Deepti; Ong, Irene M.; Li, Haibo; Pohlmann, Edward L.; Serate, Jose; Withers, Sydnor T.; Simmons, Blake A.; Hodge, David B.; Westphall, Michael S.; Coon, Joshua J.; Dale, Bruce E.; Balan, Venkatesh; Keating, David H.; Zhang, Yaoping; Landick, Robert; Gasch, Audrey P.; Sato, Trey K.
2014-01-01
The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. PMID:25222864
Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals
Lanxing Du; Jinwu Wang; Yang Zhang; Chusheng Qi; Michael Wolcott; Zhiming Yu
2017-01-01
This study was to explore the conversion of low-cost bio-residuals into high value-added cellulose nanocrystals. Two enzymatic hydrolyzed residuals (i.e., HRMMW and HRSPW) were collected from two different bio-ethanol producing processesâhydrolyzing medium-milled wood (MMW) and hydrolyzing acid sulfite pretreated wood (SPW), respectively. The results showed that both...
Effects of metal salt catalysts on yeast cell growth in ethanol conversion
Chung-Yun Hse; Yin Lin
2009-01-01
The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...
Li, Jihong; Li, Shizhong; Han, Bing; Yu, Menghui; Li, Guangming; Jiang, Yan
2013-11-29
Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.
2013-01-01
Background Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. Results An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. Conclusions A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions. PMID:24286508
Nucleic acids, compositions and uses thereof
Preston, III, James F.; Chow, Virginia [Gainesville, FL; Nong, Guang [Gainesville, FL; Rice, John D [Gainesville, FL; John, Franz J [Baltimore, MD
2012-02-21
The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.
Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor.
Lahoz, F; Martín, I R; Gil-Rostra, J; Oliva-Ramirez, M; Yubero, F; Gonzalez-Elipe, A R
2016-06-27
A compact and portable optofluidic microresonator has been fabricated and characterized. It is based on a Fabry-Perot microcavity consisting essentially of two tailored dichroic Bragg mirrors prepared by reactive magnetron sputtering deposition. The microresonator has been filled with an ethanol solution of Nile-Blue dye. Infrared laser emission has been measured with a pump threshold as low as 0.12 MW/cm2 and an external energy conversion efficiency of 41%. The application of the device as a temperature and a chemical sensor is demonstrated. Small temperature variations as well as small amount of water concentrations in the liquid laser medium are detected as a shift of the resonant laser modes.
Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production.
Digman, Matthew F; Shinners, Kevin J; Casler, Michael D; Dien, Bruce S; Hatfield, Ronald D; Jung, Hans-Joachim G; Muck, Richard E; Weimer, Paul J
2010-07-01
Switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated under ambient temperature and pressure with sulfuric acid and calcium hydroxide in separate experiments. Chemical loadings from 0 to 100g (kg DM)(-1) and durations of anaerobic storage from 0 to 180days were investigated by way of a central composite design at two moisture contents (40% or 60% w.b.). Pretreated and untreated samples were fermented to ethanol by Saccharomyces cerevisiae D5A in the presence of a commercially available cellulase (Celluclast 1.5L) and beta-glucosidase (Novozyme 188). Xylose levels were also measured following fermentation because xylose is not metabolized by S. cerevisiae. After sulfuric acid pretreatment and anaerobic storage, conversion of cell wall glucose to ethanol for reed canarygrass ranged from 22% to 83% whereas switchgrass conversions ranged from 16% to 46%. Pretreatment duration had a positive effect on conversion but was mitigated with increased chemical loadings. Conversions after calcium hydroxide pretreatment and anaerobic storage ranged from 21% to 55% and 18% to 54% for reed canarygrass and switchgrass, respectively. The efficacy of lime pretreatment was found to be highly dependent on moisture content. Moreover, pretreatment duration was only found to be significant for reed canarygrass. Although significant levels of acetate and lactate were observed in the biomass after storage, S. cerevisiae was not found to be inhibited at a 10% solids loading. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2016-08-01
Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (ATRP) of hydrophilic monomers in heptane/ethanol latent-biphasic system for copper catalyst separation and recycling have been realized for the first time at room temperature with different wavelengths of visible light LED (green, blue, purple, and white LED) as external stimulus, using 2-bromophenylacetate as the ATRP initiator and camphorquinone/triethylamine as the photoinitiator. In this system, hybrid catalyst complex (HCc) is synthesized as a novel nonpolar catalyst, which is preferentially dissolved in heptane. The hydrophilic polymers obtained catalyzed by HCc in heptane/ethanol mixture solvent show typical "living" features, for example, the values of Mn,GPC increase linearly with monomer conversion up to quantitative level (>96%) and the molecular weight distributions were kept narrow (Mw /Mn < 1.20) throughout the polymerization process. It should be noted that the excellent controllability of this novel polymerization system can be achieved even after 5 catalyst recycling experiments under LED irradiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol
2015-09-01
The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati
2011-07-01
Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.
Gill, Iqbal; Patel, Ramesh
2006-02-01
An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.
The fragmentation of ethanol cation under an electric field: An ab initio/RRKM study
NASA Astrophysics Data System (ADS)
Lu, Hsiu-Feng; Li, F.-Y.; Lin, Chun-Chin; Nagaya, K.; Chao, Ito; Lin, S. H.
2007-08-01
We present a theoretical study of ethanol cation under an electric field due to the existence of laser field in order to understand the influence of electric field on the mass spectrum of ethanol. The electric field was applied to the four major reaction channels of an ethanol cation, such as the conversion between C 2H 5OH + and c-C 2H 5OH +, CH 3-elimination and two α-H-eliminations, respectively. The correlation between product distribution and field strength is quite complex due to the different responses of the reactants and transition states toward the external electric field. This makes the product distribution change as field strength varies.
A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.
2010-09-01
Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can bemore » produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.« less
Hydrothermal Gasification for Waste to Energy
NASA Astrophysics Data System (ADS)
Epps, Brenden; Laser, Mark; Choo, Yeunun
2014-11-01
Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.
Building carbon–carbon bonds using a biocatalytic methanol condensation cycle
Bogorad, Igor W.; Chen, Chang-Ting; Theisen, Matthew K.; Wu, Tung-Yun; Schlenz, Alicia R.; Lam, Albert T.; Liao, James C.
2014-01-01
Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C–C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through 13C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907
Duan, Yan-Xin; Meng, Fan-Lu; Liu, Kai-Hua; Yi, Sha-Sha; Li, Si-Jia; Yan, Jun-Min; Jiang, Qing
2018-04-01
Conversion of carbon dioxide (CO 2 ) into valuable chemicals, especially liquid fuels, through electrochemical reduction driven by sustainable energy sources, is a promising way to get rid of dependence on fossil fuels, wherein developing of highly efficient catalyst is still of paramount importance. In this study, as a proof-of-concept experiment, first a facile while very effective protocol is proposed to synthesize amorphous Cu NPs. Unexpectedly, superior electrochemical performances, including high catalytic activity and selectivity of CO 2 reduction to liquid fuels are achieved, that is, a total Faradaic efficiency of liquid fuels can sum up to the maximum value of 59% at -1.4 V, with formic acid (HCOOH) and ethanol (C 2 H 6 O) account for 37% and 22%, respectively, as well as a desirable long-term stability even up to 12 h. More importantly, this work opens a new avenue for improved electroreduction of CO 2 based on amorphous metal catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ectopic expression of bacterial amylopullulanase enhances bioethanol production from maize grain.
Nahampun, Hartinio N; Lee, Chang Joo; Jane, Jay-Lin; Wang, Kan
2013-09-01
Heterologous expression of amylopullulanase in maize seeds leads to partial starch degradation into fermentable sugars, which enhances direct bioethanol production from maize grain. Utilization of maize in bioethanol industry in the United States reached ±13.3 billion gallons in 2012, most of which was derived from maize grain. Starch hydrolysis for bioethanol industry requires the addition of thermostable alpha amylase and amyloglucosidase (AMG) enzymes to break down the α-1,4 and α-1,6 glucosidic bonds of starch that limits the cost effectiveness of the process on an industrial scale due to its high cost. Transgenic plants expressing a thermostable starch-degrading enzyme can overcome this problem by omitting the addition of exogenous enzymes during the starch hydrolysis process. In this study, we generated transgenic maize plants expressing an amylopullulanase (APU) enzyme from the bacterium Thermoanaerobacter thermohydrosulfuricus. A truncated version of the dual functional APU (TrAPU) that possesses both alpha amylase and pullulanase activities was produced in maize endosperm tissue using a seed-specific promoter of 27-kD gamma zein. A number of analyses were performed at 85 °C, a temperature typically used for starch processing. Firstly, enzymatic assay and thin layer chromatography analysis showed direct starch hydrolysis into glucose. In addition, scanning electron microscopy illustrated porous and broken granules, suggesting starch autohydrolysis. Finally, bioethanol assay demonstrated that a 40.2 ± 2.63 % (14.7 ± 0.90 g ethanol per 100 g seed) maize starch to ethanol conversion was achieved from the TrAPU seeds. Conversion efficiency was improved to reach 90.5 % (33.1 ± 0.66 g ethanol per 100 g seed) when commercial amyloglucosidase was added after direct hydrolysis of TrAPU maize seeds. Our results provide evidence that enzymes for starch hydrolysis can be produced in maize seeds to enhance bioethanol production.
Ma, Menggen; Song, Mingzhou
2010-01-01
Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)+ for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under the inhibitor stress. PMID:19517136
Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.
Parmar, Indu; Rupasinghe, H P Vasantha
2013-02-01
Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bermuda grass as feedstock for biofuel production: a review.
Xu, Jiele; Wang, Ziyu; Cheng, Jay J
2011-09-01
Bermuda grass is a promising feedstock for the production of fuel ethanol in the Southern United States. This paper presents a review of the significant amount of research on the conversion of Bermuda grass to ethanol and a brief discussion on the factors affecting the biomass production in the field. The biggest challenge of biomass conversion comes from the recalcitrance of lignocellulose. A variety of chemical, physico-chemical, and biological pretreatment methods have been investigated to improve the digestibility of Bermuda grass with encouraging results reported. The subsequent enzymatic hydrolysis and fermentation steps have also been extensively studied and effectively optimized. It is expected that the development of genetic engineering technologies for the grass and fermenting organisms has the potential to greatly improve the economic viability of Bermuda grass-based fuel ethanol production systems. Other energy applications of Bermuda grass include anaerobic digestion for biogas generation and pyrolysis for syngas production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Díaz-Montaño, Dulce M; Favela-Torres, Ernesto; Córdova, Jesus
2010-01-30
The aim of this work was to improve the productivity and yield of tequila fermentation and to propose the use of a recently isolated non-Saccharomyces yeast in order to obtain a greater diversity of flavour and aroma of the beverage. For that, the effects of the addition of different nitrogen (N) sources to Agave tequilana juice on the growth, fermentative capacity and ethanol tolerance of Kloeckera africana and Saccharomyces cerevisiae were studied and compared. Kloeckera africana K1 and S. cerevisiae S1 were cultured in A. tequilana juice supplemented with ammonium sulfate, diammonium phosphate or yeast extract. Kloeckera africana did not assimilate inorganic N sources, while S. cerevisiae utilised any N source. Yeast extract stimulated the growth, fermentative capacity and alcohol tolerance of K. africana, giving kinetic parameter values similar to those calculated for S. cerevisiae. This study revealed the importance of supplementing A. tequilana juice with a convenient N source to achieve fast and complete conversion of sugars in ethanol, particularly in the case of K. africana. This yeast exhibited similar growth and fermentative capacity to S. cerevisiae. The utilisation of K. africana in the tequila industry is promising because of its variety of synthesised aromatic compounds, which would enrich the attributes of this beverage. (c) 2009 Society of Chemical Industry.
Grzybowski, Adelia; Tiboni, Marcela; Silva, Mário A N; Chitolina, Rodrigo F; Passos, Maurício; Fontana, José D
2013-05-01
Phytopesticide combinations of different botanical sources are seldom reported. Annona muricata seed and Piper nigrum fruit ethanolic extracts enriched in acetogenins and piperamides, respectively, were synergistically used as larvicides against the dengue fever vector Aedes aegypti. Individual bioassays of A. muricata and P. nigrum indicated respective LC50 values of 93.48 and 1.84 µg mL(-1) against third-instar larvae. Five combinations of different proportions of plant extracts pointed to synergism between the extracts. The best A. muricata:P. nigrum extract combination was 90:10, which showed 5.12 times the amount of synergism, as confirmed by statistical equations and total concentration log versus combination proportions. Concerning the morphology, A. muricata caused larvae body elongation, mainly in the abdomen, along with the appearance of a cervix. Conversely, P. nigrum induced abdomen and whole body shortening. The morphological effects of A. muricata were prevalent in all of the combinations tested, irrespective of its proportion in the combination. It is suggested that the different mechanisms of action of the larvicidal actives A. muricata acetogenins and P. nigrum piperamides explain the observed synergism. The combination of inexpensive botanicals and a low-cost organosolvent such as ethanol leads to a simple and efficient phytolarvicidal formulation. © 2012 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
One of the most critical stages of conversion of agricultural waste biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Despite ...
Calero, Juan; Verdugo, Cristóbal; Luna, Diego; Sancho, Enrique D; Luna, Carlos; Posadillo, Alejandro; Bautista, Felipa M; Romero, Antonio A
2014-12-25
The obtaining of Ecodiesel, a biofuel applicable to diesel engines which keeps the glycerin as monoglyceride (MG), was achieved through a selective ethanolysis process of sunflower oil, by application of Lipozyme RM IM, a Rhizomucor miehei lipase immobilized on macroporous anion exchange resins. This biocatalyst that was already described in the synthesis of conventional biodiesel has also shown its efficiency in the present selective enzymatic process, after optimization of the influence of various reaction parameters. Thus, an adequate activity is obtained that is maintained throughout five successive reuses. Quantitative conversions of triglycerides (TG) with high yields to fatty acid ethyl esters (FAEE) were obtained under mild reaction conditions that correspond to the transformation of TG in a mixture of two moles of FAEE and a mole of MG, thus avoiding the glycerol production. Thus, the selective transesterification reaction of sunflower oil with absolute ethanol can be carried out under standard conditions with oil/ethanol volume ratio 12/3.5 (mL), at constant pH obtained by the addition of 50 μl of aqueous solution of 10 N NaOH, reaction temperature of 40 °C and 40 mg of Lipozyme RM IM. Under these experimental conditions six successive reactions can be efficiently carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
Neves, P V; Pitarelo, A P; Ramos, L P
2016-05-01
The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jian; Fang, Zhenhong; Deng, Hongbo; Zhang, Xiaoxi; Bao, Jie
2013-04-01
Cassava cellulose accounts for one quarter of cassava residues and its utilization is important for improving the efficiency and profit in commercial scale cassava ethanol industry. In this study, three scenarios of cassava cellulose utilization for ethanol production were experimentally tested under same conditions and equipment. Based on the experimental results, a rigorous flowsheet simulation model was established on Aspen plus platform and the cost of cellulase enzyme and steam energy in the three cases was calculated. The results show that the simultaneous co-saccharification of cassava starch/cellulose and ethanol fermentation process (Co-SSF) provided a cost effective option of cassava cellulose utilization for ethanol production, while the utilization of cassava cellulose from cassava ethanol fermentation residues was not economically sound. Comparing to the current fuel ethanol selling price, the Co-SSF process may provide an important choice for enhancing cassava ethanol production efficiency and profit in commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.
Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc
2015-03-03
Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Charles; Beery, Kyle; Orth, Rick
2007-09-28
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50%more » of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.« less
Barta, Zsolt; Reczey, Kati; Zacchi, Guido
2010-09-15
Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
2010-01-01
Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330
Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R
2015-02-01
Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang
2016-01-01
Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid-steam-exploded corn stover, and consequently significantly improve the conversion of cellulose through enzymatic hydrolysis for biofuel production. The lignin fractions obtained as byproducts could be applied in high performance LPF resin preparation. The proposed model for the integral valorization of corn stover in this study is worth of popularization.
Development of efficient, integrated cellulosic biorefineries : LDRD final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.
2010-09-01
Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material inmore » thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.« less
Hydrogen-based power generation from bioethanol steam reforming
NASA Astrophysics Data System (ADS)
Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.
2015-12-01
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.
Hydrogen-based power generation from bioethanol steam reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less
Spatially-explicit life cycle assessment of sun-to-wheels transportation pathways in the U.S.
Geyer, Roland; Stoms, David; Kallaos, James
2013-01-15
Growth in biofuel production, which is meant to reduce greenhouse gas (GHG) emissions and fossil energy demand, is increasingly seen as a threat to food supply and natural habitats. Using photovoltaics (PV) to directly convert solar radiation into electricity for battery electric vehicles (BEVs) is an alternative to photosynthesis, which suffers from a very low energy conversion efficiency. Assessments need to be spatially explicit, since solar insolation and crop yields vary widely between locations. This paper therefore compares direct land use, life cycle GHG emissions and fossil fuel requirements of five different sun-to-wheels conversion pathways for every county in the contiguous U.S.: Ethanol from corn or switchgrass for internal combustion vehicles (ICVs), electricity from corn or switchgrass for BEVs, and PV electricity for BEVs. Even the most land-use efficient biomass-based pathway (i.e., switchgrass bioelectricity in U.S. counties with hypothetical crop yields of over 24 tonnes/ha) requires 29 times more land than the PV-based alternative in the same locations. PV BEV systems also have the lowest life cycle GHG emissions throughout the U.S. and the lowest fossil fuel inputs, except for locations with hypothetical switchgrass yields of 16 or more tonnes/ha. Including indirect land use effects further strengthens the case for PV.
Lawford, Hugh G; Rousseau, Joyce D
2002-01-01
IOGEN Corporation of Ottawa, Canada, has recently built a 40t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. It has partnered with the University of Toronto to test the C6/C5 cofermenta-tion performance characteristics of the National Renewable Energy Labora-tory's metabolically engineered Zymomonas mobilis using various biomass hydrolysates. IOGEN's feedstocks are primarily agricultural wastes such as corn stover and wheat straw. Integrated recombinant Z. mobilis strain AX101 grows on D-xylose and/or L-arabinose as the sole carbon/energy sources and ferments these pentose sugars to ethanol in high yield. Strain AX101 lacks the tetracycline resistance gene that was a common feature of other recombinant Zm constructs. Genomic integration provides reliable cofermentation performance in the absence of antibiotics, another characteristic making strain AX101 attractive for industrial cellulosic ethanol production. In this work, IOGEN's biomass hydrolysate was simulated by a pure sugar medium containing 6% (w/v) glucose, 3% xylose, and 0.35% arabinose. At a level of 3 g/L (dry solids), corn steep liquor with inorganic nitrogen (0.8 g/L of ammonium chloride or 1.2 g/L of diammonium phosphate) was a cost-effective nutritional supplement. In the absence of acetic acid, the maximum volumetric ethanol productivity of a continuous fermentation at pH 5.0 was 3.54 g/L x h. During prolonged continuous fermentation, the efficiency of sugar-to-ethanol conversion (based on total sugar load) was maintained at >85%. At a level of 0.25% (w/v) acetic acid, the productivity decreased to 1.17 g/L x h at pH 5.5. Unlike integrated, xylose-utilizing rec Zm strain C25, strain AX101 produces less lactic acid as byproduct, owing to the fact that the Escherichia coli arabinose genes are inserted into a region of the host chromosome tentatively assigned to the gene for D-lactic acid dehydrogenase. In pH-controlled batch fermentations with sugar mixtures, the order of sugar exhaustion from the medium was glucose followed by xylose and arabinose. Both the total sugar load and the sugar ratio were shown to be important determinants for efficient cofermentation. Ethanol at a level of 3% (w/v) was implicated as both inhibitory to pentose fermentation and as a potentiator of acetic acid inhibition of pentose fermentation at pH 5.5. The effect of ethanol may have been underestimated in other assessments of acetic acid sensitivity. This work underscores the importance of employing similar assay conditions in making comparative assessments of biocatalyst fermentation performance.
NASA Astrophysics Data System (ADS)
Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto
2017-11-01
The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.
Amylolysis of raw corn by Aspergillus niger for simultaneous ethanol fermentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, I.Y.; Steinberg, M.P.
The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a nonsterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventingmore » fermentation was estimated to be 8.3% by weight. (Refs. 96).« less
Biodiesel production by direct transesterification of microalgal biomass with co-solvent.
Zhang, Yan; Li, Ya; Zhang, Xu; Tan, Tianwei
2015-11-01
In this study, a direct transesterification process using 75% ethanol and co-solvent was studied to reduce the energy consumption of lipid extraction process and improve the conversion yield of the microalgae biodiesel. The addition of a certain amount of co-solvent (n-hexane is most preferable) was required for the direct transesterification of microalgae biomass. With the optimal reaction condition of n-hexane to 75% ethanol volume ratio 1:2, mixed solvent dosage 6.0mL, reaction temperature 90°C, reaction time 2.0h and catalyst volume 0.6mL, the direct transesterification process of microalgal biomass resulted in a high conversion yield up to 90.02±0.55wt.%. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turhollow Jr, Anthony F
2016-01-01
Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in themore » forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.« less
Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing; ...
2017-12-27
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing
The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less
Wooley; Ruth; Glassner; Sheehan
1999-10-01
Bioethanol is a fuel-grade ethanol made from trees, grasses, and waste materials. It represents a sustainable substitute for gasoline in today's passenger cars. Modeling and design of processes for making bioethanol are critical tools used in the U.S. Department of Energy's bioethanol research and development program. We use such analysis to guide new directions for research and to help us understand the level at which and the time when bioethanol will achieve commercial success. This paper provides an update on our latest estimates for current and projected costs of bioethanol. These estimates are the result of very sophisticated modeling and costing efforts undertaken in the program over the past few years. Bioethanol could cost anywhere from $1.16 to $1.44 per gallon, depending on the technology and the availability of low cost feedstocks for conversion to ethanol. While this cost range opens the door to fuel blending opportunities, in which ethanol can be used, for example, to improve the octane rating of gasoline, it is not currently competitive with gasoline as a bulk fuel. Research strategies and goals described in this paper have been translated into cost savings for ethanol. Our analysis of these goals shows that the cost of ethanol could drop by 40 cents per gallon over the next ten years by taking advantage of exciting new tools in biotechnology that will improve yield and performance in the conversion process.
USDA-ARS?s Scientific Manuscript database
One of the most critical stages of conversion of plant biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Important benefits of...
Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa
van Zyl, W. H.; Chimphango, A. F. A.; den Haan, R.; Görgens, J. F.; Chirwa, P. W. C.
2011-01-01
The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027
Chemiluminescent imaging of transpired ethanol from the palm for evaluation of alcohol metabolism.
Arakawa, Takahiro; Kita, Kazutaka; Wang, Xin; Miyajima, Kumiko; Toma, Koji; Mitsubayashi, Kohji
2015-05-15
A 2-dimensional imaging system was constructed and applied in measurements of gaseous ethanol emissions from the human palm. This imaging system measures gaseous ethanol concentrations as intensities of chemiluminescence by luminol reaction induced by alcohol oxidase and luminol-hydrogen peroxide-horseradish peroxidase system. Conversions of ethanol distributions and concentrations to 2-dimensional chemiluminescence were conducted on an enzyme-immobilized mesh substrate in a dark box, which contained a luminol solution. In order to visualize ethanol emissions from human palm skin, we developed highly sensitive and selective imaging system for transpired gaseous ethanol at sub ppm-levels. Thus, a mixture of a high-purity luminol solution of luminol sodium salt HG solution instead of standard luminol solution and an enhancer of eosin Y solution was adapted to refine the chemiluminescent intensity of the imaging system, and improved the detection limit to 3 ppm gaseous ethanol. The highly sensitive imaging allows us to successfully visualize the emissions dynamics of transdermal gaseous ethanol. The intensity of each site on the palm shows the reflection of ethanol concentrations distributions corresponding to the amount of alcohol metabolized upon consumption. This imaging system is significant and useful for the assessment of ethanol measurement of the palmar skin. Copyright © 2014 Elsevier B.V. All rights reserved.
Lundgaard, Iben; Wang, Wei; Eberhardt, Allison; Vinitsky, Hanna Sophia; Reeves, Benjamin Cameron; Peng, Sisi; Lou, Nanhong; Hussain, Rashad; Nedergaard, Maiken
2018-02-02
Prolonged intake of excessive amounts of ethanol is known to have adverse effects on the central nervous system (CNS). Here we investigated the effects of acute and chronic ethanol exposure and withdrawal from chronic ethanol exposure on glymphatic function, which is a brain-wide metabolite clearance system connected to the peripheral lymphatic system. Acute and chronic exposure to 1.5 g/kg (binge level) ethanol dramatically suppressed glymphatic function in awake mice. Chronic exposure to 1.5 g/kg ethanol increased GFAP expression and induced mislocation of the astrocyte-specific water channel aquaporin 4 (AQP4), but decreased the levels of several cytokines. Surprisingly, glymphatic function increased in mice treated with 0.5 g/kg (low dose) ethanol following acute exposure, as well as after one month of chronic exposure. Low doses of chronic ethanol intake were associated with a significant decrease in GFAP expression, with little change in the cytokine profile compared with the saline group. These observations suggest that ethanol has a J-shaped effect on the glymphatic system whereby low doses of ethanol increase glymphatic function. Conversely, chronic 1.5 g/kg ethanol intake induced reactive gliosis and perturbed glymphatic function, which possibly may contribute to the higher risk of dementia observed in heavy drinkers.
Comparative behaviour of yeast strains for ethanolic fermentation of culled apple juice.
Modi, D R; Garg, S K; Johri, B N
1998-07-01
The culled apple juice contained (% w/v): nitrogen, 0.036; total sugars, 11.6 and was of pH 3.9. Saccharomyces cerevisiae NCIM 3284, Pichia kluyeri and Candida krusei produced more ethanol from culled apple juice at its optimum initial pH 4.5, whereas S. cerevisiae NCIM 3316 did so at pH 5.0. An increase in sugar concentration of apple juice from natural 11.6% to 20% exhibited enhanced ethanol production and improved fermentation efficiency of both the S. cerevisiae strains, whereas P. kluyveri and C. krusei produced high ethanol at 11.6% and 16.0% sugar levels, respectively. Urea was stimulatory for ethanol production as well as fermentation efficiency of the yeast strains under study.
Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts
Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.; ...
2015-12-01
Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less
Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.
Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less
Meinander, N Q; Hahn-Hägerdal, B
1997-01-01
Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess. PMID:9143128
Gubicza, Krisztina; Nieves, Ismael U; Sagues, William J; Barta, Zsolt; Shanmugam, K T; Ingram, Lonnie O
2016-05-01
A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72 US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tabah, Betina; Pulidindi, Indra Neel; Chitturi, Venkateswara Rao; Arava, Leela Mohana Reddy; Gedanken, Aharon
2015-10-26
A solar reactor was designed to perform the conversion of starch to ethanol in a single step. An aqueous starch solution (5 wt %) was fed into the reactor bed charged with Baker's yeast (Saccharomyces cerevisiae) and amylase, resulting in approximately 2.5 wt % ethanol collected daily (ca. 25 mL day(-1) ). A significant amount of ethanol (38 g) was collected over 63 days, corresponding to 84 % of the theoretical yield. The production of ethanol without additional energy input highlights the significance of this new process. The ethanol produced was also demonstrated as a potential fuel for direct ethanol fuel cells. Additionally, the secondary metabolite glycerol was fully reduced to a value-added product 1,3-propanediol, which is the first example of a fungal strain (Baker's yeast) converting glycerol in situ to 1,3-propanediol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies.
Spatari, Sabrina; Bagley, David M; MacLean, Heather L
2010-01-01
Lignocellulosic ethanol holds promise for addressing climate change and energy security issues associated with personal transportation through lowering the fuel mixes' carbon intensity and petroleum demand. We compare the technological features and life cycle environmental impacts of near- and mid-term ethanol bioconversion technologies in the United States. Key uncertainties in the major processes: pre-treatment, hydrolysis, and fermentation are evaluated. The potential to reduce fossil energy use and greenhouse gas (GHG) emissions varies among bioconversion processes, although all options studied are considerably more attractive than gasoline. Anticipated future performance is found to be considerably more attractive than that published in the literature as being achieved to date. Electricity co-product credits are important in characterizing the GHG impacts of different ethanol production pathways; however, in the absence of near-term liquid transportation fuel alternatives to gasoline, optimizing ethanol facilities to produce ethanol (as opposed to co-products) is important for reducing the carbon intensity of the road transportation sector and for energy security.
2012-01-01
Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and if the cost of enzymes continues to fall. PMID:22502801
Nucleic acid compositions and the encoding proteins
Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.
2014-09-02
The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.
Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator
NASA Astrophysics Data System (ADS)
Vasei, Maryam; Tajabadi, Fariba; Jabbari, Ali; Taghavinia, Nima
2015-09-01
A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation at 55 °C.
Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco
2016-10-01
Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1).
Canilha, Larissa; Chandel, Anuj Kumar; Suzane dos Santos Milessi, Thais; Antunes, Felipe Antônio Fernandes; Luiz da Costa Freitas, Wagner; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério
2012-01-01
Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086
Rodriguez-Caballero, A; Ramond, J-B; Welz, P J; Cowan, D A; Odlare, M; Burton, S G
2012-10-30
Winery wastewater is characterized by its high chemical oxygen demand (COD), seasonal occurrence and variable composition, including periodic high ethanol concentrations. In addition, winery wastewater may contain insufficient inorganic nutrients for optimal biodegradation of organic constituents. Two pilot-scale biological sand filters (BSFs) were used to treat artificial wastewater: the first was amended with ethanol and the second with ethanol, inorganic nitrogen (N) and phosphorus (P). A number of biochemical parameters involved in the removal of pollutants through BSF systems were monitored, including effluent chemistry and bacterial community structures. The nutrient supplemented BSF showed efficient COD, N and P removal. Comparison of the COD removal efficiencies of the two BSFs showed that N and P addition enhanced COD removal efficiency by up to 16%. Molecular fingerprinting of BSF sediment samples using denaturing gradient gel electrophoresis (DGGE) showed that amendment with high concentrations of ethanol destabilized the microbial community structure, but that nutrient supplementation countered this effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis
Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G.; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc
2015-01-01
Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways. PMID:25730876
From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite.
Teixeira, Ivo F; Lo, Benedict T W; Kostetskyy, Pavlo; Stamatakis, Michail; Ye, Lin; Tang, Chiu C; Mpourmpakis, Giannis; Tsang, Shik Chi Edman
2016-10-10
We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Scown, Corinne D; Kim, Daeyoup; Ho, Christopher R; Bell, Alexis T
2016-06-22
1,3-Butadiene (1,3-BD) is a high-value chemical intermediate used mainly as a monomer for the production of synthetic rubbers. The ability to source 1,3-BD from biomass is of considerable current interest because it offers the potential to reduce the life-cycle greenhouse gas (GHG) impact associated with 1,3-BD production from petroleum-derived naphtha. Herein, we report the development and investigation of a new catalyst and process for the one-step conversion of ethanol to 1,3-BD. The catalyst is prepared by the incipient impregnation of magnesium oxide onto a silica support followed by the deposition of Au nanoparticles by deposition-precipitation. The resulting Au/MgO-SiO2 catalyst exhibits a high activity and selectivity to 1,3-BD and low selectivities to diethyl ether, ethylene, and butenes. Detailed characterization of the catalyst shows that the desirable activity and selectivity of Au/MgO-SiO2 are a consequence of a critical balance between the acidic-basic sites associated with a magnesium silicate hydrate phase and the redox properties of the Au nanoparticles. A process for the conversion of ethanol to 1,3-BD, which uses our catalyst, is proposed and analyzed to determine the life-cycle GHG impact of the production of this product from biomass-derived ethanol. We show that 1,3-BD produced by our process can reduce GHG emissions by as much as 155 % relative to the conventional petroleum-based production of 1,3-BD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Octane Mid-Level Ethanol Blend Market Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Caley; Newes, Emily; Brooker, Aaron
2015-12-01
The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research tomore » increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and policies--to curtail these barriers. These curtailment strategies are grouped into scenarios that are then modeled to investigate their feasibility and explore the dynamics involved in HOF deployment. This report does not advocate for or against incentives or policies, but presents simulations of their effects.« less
Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko
2017-06-01
In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gomes, Daniel; Gama, Miguel; Domingues, Lucília
2018-01-01
In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. Cellulase recycling was analyzed on recycled paper sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 °C), nevertheless its performance at moderate temperatures (40 °C) was slightly superior to other cocktails (ACCELLERASE ® 1500 and Cellic ® CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88% of final activity at the end of the process. A central composite design studied the influence of solid concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/g cellulose had no significant effect on sugars production, suggesting that 22% solids and 20 FPU/g cellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain the steady levels of enzyme activity with only 50% of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81%) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4- and 3.8-fold, respectively). Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.
Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy
NASA Astrophysics Data System (ADS)
Campiche, Jody L.; Bryant, Henry L.; Richardson, James W.
2010-01-01
Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. In the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.
González-Navarrete, Patricio; Schlangen, Maria; Wu, Xiao-Nan; Schwarz, Helmut
2016-02-24
The ion/molecule reactions of molybdenum and tungsten dioxide cations with ethanol have been studied by Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS) and density functional theory (DFT) calculations. Dehydration of ethanol has been found as the dominant reaction channel, while generation of the ethyl cation corresponds to a minor product. Cleary, the reactions are mainly governed by the Lewis acidity of the metal center. Computational results, together with isotopic labeling experiments, show that the dehydration of ethanol can proceed either through a conventional concerted [1,2]-elimination mechanism or a step-wise process; the latter occurs via a hydroxyethoxy intermediate. Formation of C2 H5 (+) takes place by transfer of OH(-) from ethanol to the metal center of MO2 (+) . The molybdenum and tungsten dioxide cations exhibit comparable reactivities toward ethanol, and this is reflected in similar reaction rate constants and branching ratios. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia
2011-03-01
The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, David H.; Zhang, Yaoping; Ong, Irene M.
2014-08-13
Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and proteinmore » levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guangxing; Namin, Lida M.; Aaron Deskins, N.
Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of electricity via the direct conversion of ethanol into CO2, showing higher thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. However, implementation of DEFCs is hampered by the low CO2 selectivity during the ethanol oxidation reaction (EOR). Comprehensive understanding of the electro-kinetics and reaction pathways of CO2 generation via CC bond-breaking is not only a fundamental question for electro-catalysis, but also a key technological challenge since practical implementation of DEFC technology is contingent on its ability to selectively oxidize ethanol into CO2 to achieve exceptional energymore » density through 12-electron transfer reaction. Here, we present comprehensive in situ potentiodynamics studies of CO2 generation during the EOR on Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts using a house-made electrochemical cell equipped with a CO2 microelectrode. Highly sensitive CO2 measurements enable the real time detection of the partial pressure of CO2 during linear sweep voltammetry measurements, through which electro-kinetics details of CO2 generation can be obtained. In situ CO2 measurements provide the mechanistic understanding of potentiodynamics of the EOR, particularly the influence of *OH adsorbates on CO2 generation rate and selectivity. Density functional theory (DFT) simulations of Pt, Pt/SnO2, and Pt/Rh/SnO2 surfaces clarify reaction details over these catalysts. Our results show that at low potentials, inadequate *OH adsorbates impair the removal of reaction intermediates, and thus Pt/Rh/SnO2 exhibited the best performance toward CO2 generation, while at high potentials, Rh sites were overwhelmingly occupied (poisoned) by *OH adsorbates, and thus Pt/SnO2 exhibited the best performance toward CO2 generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guangxing; Namin, Lida M.; Aaron Deskins, N.
Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of electricity via the direct conversion of ethanol into CO 2, showing higher thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. However, implementation of DEFCs is hampered by the low CO 2 selectivity during the ethanol oxidation reaction (EOR). Comprehensive understanding of the electro-kinetics and reaction pathways of CO 2 generation via CC bond-breaking is not only a fundamental question for electro-catalysis, but also a key technological challenge since practical implementation of DEFC technology is contingent on its ability to selectively oxidize ethanol into CO 2more » to achieve exceptional energy density through 12-electron transfer reaction. Here, we present comprehensive in situ potentiodynamics studies of CO 2 generation during the EOR on Pt, Pt/SnO 2 and Pt/Rh/SnO 2 catalysts using a house-made electrochemical cell equipped with a CO 2 microelectrode. Highly sensitive CO 2 measurements enable the real time detection of the partial pressure of CO 2 during linear sweep voltammetry measurements, through which electro-kinetics details of CO 2 generation can be obtained. In situ CO 2 measurements provide the mechanistic understanding of potentiodynamics of the EOR, particularly the influence of *OH adsorbates on CO 2 generation rate and selectivity. Density functional theory (DFT) simulations of Pt, Pt/SnO 2, and Pt/Rh/SnO 2 surfaces clarify reaction details over these catalysts. Our results show that at low potentials, inadequate *OH adsorbates impair the removal of reaction intermediates, and thus Pt/Rh/SnO 2 exhibited the best performance toward CO 2 generation, while at high potentials, Rh sites were overwhelmingly occupied (poisoned) by *OH adsorbates, and thus Pt/SnO 2 exhibited the best performance toward CO 2 generation.« less
Energy Efficient Hybrid Vapor Stripping-Vapor Permeation Process for Ethanol Recovery ad Dehydration
Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, Merry; Wall, Judy D.
2006-10-01
The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array ofmore » potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and natural gas from the subsurface. The participants discussed--key microbial conversion paths; overarching research issues; current funding models and microbial energy research; education, training, interdisciplinary cooperation and communication. Their recommendations are--Cellulose and lignocellulose are the preferred substrates for producing liquid transportation fuels, of which ethanol is the most commonly considered example. Generating fuels from these materials is still difficult and costly. A number of challenges need to be met in order to make the conversion of cellulose and lignocellulose to transportation fuels more cost-competitive. The design of hydrogen-producing bioreactors must be improved in order to more effectively manage hydrogen removal, oxygen exclusion, and, in the case of photobioreactors, to capture light energy more efficiently. Methane production may be optimized by fine-tuning methanogenic microbial communities. The ability to transfer electrons to an anode in a microbial fuel cell is probably very broadly distributed in the bacterial world. The scientific community needs a larger inventory of cultivated microorganisms from which to draw for energy conversion development. New and unusual organisms for manufacturing fuels and for use in fuel cells can be discovered using bioprospecting techniques. Particular emphasis should be placed on finding microbes, microbial communities, and enzymes that can enhance the conversion of lignocellulosic biomass to usable sugars. Many of the microbial processes critical to energy conversion are carried out by complex communities of organisms, and there is a need to better understand the community interactions that make these transformations possible. Better understanding of microbial community structure, robustness, networks, homeostasis, and cell-to-cell signaling is also needed. A better understanding of the basic enzymology of microorganisms is needed in order to move forward more quickly with microbial energy production. Research should focus on the actions of enzymes and enzyme complexes within the context of the whole cell, how they’re regulated, where they’re placed, and what they interact with. Better modeling tools are needed to facilitate progress in microbial energy transformations. Models of metabolic dynamics, including levels of reductants and regulation of electron flow need to be improved. Global techno-economic models of microbial energy conversion systems, which seek to simultaneously describe the resource flows into and out of a system as well as its economics, are needed and should be made publicly available on the internet. Finally, more emphasis needs to be placed on multidisciplinary education and training and on cooperation between disciplines in order to make the most of microbial energy conversion technologies and to meet the research needs of the future.« less
Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji
2011-12-01
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.
Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.
Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru
2016-02-01
Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.
2013-01-01
Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min) and temperature (190–210°C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the pretreatment was divided into a solid fraction and a liquid fraction. The solid fraction was subjected to SSF, while the liquid fraction, together with the filtered residual from SSF, was used in AD. Using sulphuric acid in AD did not inhibit the reaction, which may be due to the low concentration of sulphuric acid used. In contrast, a pretreatment step without sulphuric acid resulted not only in higher concentrations of inhibitors, which affected the ethanol yield, but also in lower methane production. PMID:23356481
Catalytic Combustion of Ethanol and Butanol
2009-09-01
demonstrated 75% conversion of ethanol. I then selected a more active rhodium -coated alumina foam with a larger surface area and attained 100...catalysts composed of thermally stabilized, ion-exchanged zeolite, palladium on stabilized alumina, and catalysts doped with cerium (Ce) and nickel...platinum mesh weighed about 0.50 g and was roughly 0.5 mm thick. The rhodium (Rh)/aluminum oxide (Al2O3) foam contained 0.061 g of Rh and was prepared
Investigation of Municipal Solid Waste to Alcohol Conversion for Army Use
1992-03-01
fuel ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...of the cellulosic fraction to produce fermentable sugars. The first process, developed by the Tennessee Valley Authority (TVA), employs a single
Prospects for Irradiation in Cellulosic Ethanol Production
Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita
2015-01-01
Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707
Lignocellulosic ethanol production at high-gravity: challenges and perspectives.
Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth
2014-01-01
In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gombert, Andreas K; van Maris, Antonius J A
2015-06-01
Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower ...
Vaz, Sílvio
2017-03-17
Concepts such as biorefinery and green chemistry focus on the usage of biomass, as with the oil value chain. However, it can cause less negative impact on the environment. A biorefinery based on sugarcane (Saccharum spp.) as feedstock is an example, because it can integrate into the same physical space, of processes for obtaining biofuels (ethanol), chemicals (from sugars or ethanol), electricity, and heat.The use of sugarcane as feedstock for biorefineries is dictated by its potential to supply sugars, ethanol, natural polymers or macromolecules, organic matter, and other compounds and materials. By means of conversion processes (chemical, biochemical, and thermochemical), sugarcane biomass can be transformed into high-value bioproducts to replace petrochemicals, as a bioeconomy model.
vehicles altered to operate on propane, natural gas, methane gas, ethanol, or electricity are classified as information about vehicle conversion certification requirements, see the Alternative Fuels Data Center's
Conversion NREL Overcomes Obstacles in Lignin Valorization Novel Combination of Enzyme Systems Could Lower Cellulosic Ethanol Can Be Cost Competitive Reducing Enzyme Costs Increases the Market Potential of Biofuels
Nishimura, Hiroto; Tan, Li; Kira, Noriko; Tomiyama, Shigeo; Yamada, Kazuo; Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji
2017-09-01
Efficient ethanol production from waste paper requires the addition of expensive nutrients. To reduce the production cost of ethanol from waste paper, a study on how to produce ethanol efficiently by adding kitchen waste (potentially as a carbon source, nutrient source, and acidity regulator) to waste paper was performed and a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation (L+PSSF) was developed. The individual saccharification performances of waste paper and kitchen waste were not influenced by their mixture. Liquefaction of kitchen waste at 90°C prior to presaccharification and simultaneous saccharification and fermentation (PSSF) was essential for efficient ethanol fermentation. Ethanol at concentrations of 46.6 or 43.6g/l was obtained at the laboratory scale after fermentation for 96h, even without pH adjustment and/or the addition of extra nutrients. Similarly, ethanol at a concentration of 45.5g/l was obtained at the pilot scale after fermentation for 48h. The ethanol concentration of L+PSSF of the mixture of waste paper and kitchen waste was comparable to that of PSSF of waste paper with added nutrients (yeast extract and peptone) and pH adjustment using H 2 SO 4 , indicating that kitchen waste is not only a carbon source but also an excellent nutrient source and acidity regulator for fermentation of the mixture of waste paper and kitchen waste. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Montalbo-Lomboy, Melissa T.
The 21st Century human lifestyle has become heavily dependent on hydrocarbon inputs. Energy demand and the global warming effects due to the burning of fossil fuels have continued to increase. Rising awareness of the negative environmental and economic impacts of hydrocarbon dependence has led to a resurgence of interest in renewable energy sources such as ethanol. Fuel ethanol is known to be a cleaner and renewable source of energy relative to gasoline. Many studies have agreed that fuel ethanol has reduced greenhouse gas (GHG) emissions and has larger overall energy benefits compared to gasoline. Currently, the majority of the fuel ethanol in the United States is produced from corn using dry-grind milling process. The typical dry-grind ethanol plant incorporates jet cooking using steam to cook the corn slurry as pretreatment for saccharification; an energy intensive step. In aiming to reduce energy usage, this study evaluated the use of ultrasonics as an alternative to jet cooking. Ultrasonic batch experiments were conducted using a Branson 2000 Series bench-scale ultrasonic unit operating at a frequency of 20 kHz and a maximum output of 2.2 kW. Corn slurry was sonicated at varying amplitudes from 192 to 320 mumpeak-to-peak(p-p) for 0-40 seconds. Enzyme stability was investigated by adding enzyme (STARGEN(TM)001) before and after sonication. Scanning electron micrograph (SEM) images and particle size distribution analysis showed a nearly 20-fold size reduction by disintegration of corn particles due to ultrasonication. The results also showed a 30% improvement in sugar release of sonicated samples relative to the control group (untreated). The efficiency exceeded 100% in terms of relative energy gain from the additional sugar released due to ultrasonication compared to the ultrasonic energy applied. Interestingly, enzymatic activity was enhanced when sonicated at low and medium power. This result suggested that ultrasonic energy did not denature the enzymes during pretreatment. Ultrasonication of sugary-2 corn was also investigated in the study. Results similar to those for commodity corn (dent corn) were found, in terms of glucose yield and starch conversion. SEM and polarized-light microscope pictures showed the partial gelatinization of corn slurry due to ultrasound. In the 96-h saccharification time, a model was formulated to fit the sugar release curve. The results have shown 17-21% increase in the extent of sugar production from sonicated samples relative to the control group. Additionally, the reaction rates of the sonicated samples were 2- to 10-fold higher than the reaction rates for the control group. In comparing sugary-2 corn with commodity corn, it was found that sonicated sugary-2 corn saccharified faster than sonicated commodity corn. It is important to note, without ultrasonic treatment, sugary-2 corn released more reducing sugar than commodity corn during saccharification. To further investigate the potential of ultrasonics for scale-up, a continuous flow system was studied. An ultrasonic continuous flow system was tested using Branson's flow-through "donut" horn. The donut horn, which vibrates radially, was placed inside a 5.5 L stainless steel reactor. The amplitude was maintained at 12 mumpp and the feed flow rate was varied from 8-27 L/min (2-7 gal/min) with reactor retention times varying from 12-40 seconds. Samples sonicated in continuous flow system showed lower reducing sugar yield than batch ultrasonication. However, considering the ultrasonic energy density of batch and continuous systems, the continuous systems proved to be more energy efficient in terms of glucose production compared with the batch system. It was also seen that particle size disintegration was proportional to energy density regardless of the type of ultrasonic system used. To compare ultrasonics with jet cooking, fermentation experiments were conducted. There were only marginal differences between jet cooked samples and the sonicated samples in terms of ethanol conversion based on theoretical yield. Furthermore, statistical analysis confirmed that there was no significant difference (p<0.05) in the ethanol yields of the two pretreatment methods. Economic analysis indicated that the capital cost of installing ultrasonics was higher compared to jet cooker equipment. However, due to the energy needs of jet cooking, a typical 189 million liters (50 million gallon) per year ethanol plant ethanol plant would save about 16% in pretreatment cost by using ultrasonics. Based on these results, ultrasonication is a promising pretreatment method in corn ethanol production, as an alternative to jet cooking.
Yeast metabolic engineering for hemicellulosic ethanol production
Jennifer Van Vleet; Thomas W. Jeffries
2009-01-01
Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...
Cathodic electrodeposition of p-CuSCN nanorod and its dye-sensitized photocathodic property
NASA Astrophysics Data System (ADS)
Sun, Lina; Ichinose, Keigo; Sekiya, Tomohiro; Sugiura, Takashi; Yoshida, Tsukasa
Mechanism of cathodic electrodeposition of CuSCN from ethanolic solutions containing Cu2+ and SCN- was studied in detail. Job's plot for the absorption spectra of mixed solution in various Cu2+: SCN- ratios have revealed the presence of [Cu(SCN)2]0 as a soluble species responsible to the electrode process in SCN- rich solutions. From Levich analysis of diffusion limited current employing a rotating disc electrode (RDE), diffusion coefficients of 5.2 × 10-6 cm2 s-1 and 3.0 × 10-6 cm2 s-1 in ethanol at 298 K were determined for [Cu(SCN)2]0 and [Cu(SCN)]+, respectively. Morphology as well as crystallographic orientation of the product films significantly changed by the composition of the electrolytic baths. When the bath contains excess of Cu2+ and mixed solvent up to 50% ethanol content to water was used, strong anisotropic crystal growth along the c-axis was observed. When electrolysis was carried out under stationary conditions, the nanorod structures in high aspect ratios could be obtained, due to the limited transport of the active species to the tip of the rods. When rhodamine B was adsorbed onto such CuSCN as a sensitizer, dye-sensitized photocathodic current was observed with an incident photon to current conversion efficiency (IPCE) of 4.4% at the absorption maximum, suggesting its usefulness as the hole conducting electrode in construction of nanostructured solar cells.
Liquid fuel reforming using microwave plasma at atmospheric pressure
NASA Astrophysics Data System (ADS)
Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy
2016-06-01
Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.
Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.
Makshina, Ekaterina V; Dusselier, Michiel; Janssens, Wout; Degrève, Jan; Jacobs, Pierre A; Sels, Bert F
2014-11-21
Increasing demand for renewable feedstock-based chemicals is driving the interest of both academic and industrial research to substitute petrochemicals with renewable chemicals from biomass-derived resources. The search towards novel platform chemicals is challenging and rewarding, but the main research activities are concentrated on finding efficient pathways to produce familiar drop-in chemicals and polymer building blocks. A diversity of industrially important monomers like alkenes, conjugated dienes, unsaturated carboxylic acids and aromatic compounds are thus targeted from renewable feedstock. In this context, on-purpose production of 1,3-butadiene from biomass-derived feedstock is an interesting example as its production is under pressure by uncertainty of the conventional fossil feedstock. Ethanol, obtained via fermentation or (biomass-generated) syngas, can be converted to butadiene, although there is no large commercial activity today. Though practised on a large scale in the beginning of the 20th century, there is a growing worldwide renewed interest in the butadiene-from-ethanol route. An alternative route to produce butadiene from biomass is through direct carbohydrate and gas fermentation or indirectly via the dehydration of butanediols. This review starts with a brief discussion on the different feedstock possibilities to produce butadiene, followed by a comprehensive summary of the current state of knowledge regarding advances and achievements in the field of the chemocatalytic conversion of ethanol and butanediols to butadiene, including thermodynamics and kinetic aspects of the reactions with discussions on the reaction pathways and the type of catalysts developed.
Role of Interleukin-1 Receptor Signaling in the Behavioral Effects of Ethanol and Benzodiazepines
Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Mayfield, Jody; Harris, R. Adron
2015-01-01
Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. PMID:25839897
Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.
Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Mayfield, Jody; Harris, R Adron
2015-08-01
Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.
Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda
2003-01-01
Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.
Production of ethanol from thin stillage by metabolically engineered Escherichia coli.
Gonzalez, Ramon; Campbell, Paul; Wong, Matthew
2010-03-01
Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.
Bottcher, Alexandra; Cesarino, Igor; Brombini dos Santos, Adriana; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Antonio dos Anjos, Ivan; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo
2013-01-01
Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790
de Souza, Wagner Rodrigo; Maitan-Alfenas, Gabriela Piccolo; de Gouvêa, Paula Fagundes; Brown, Neil Andrew; Savoldi, Marcela; Battaglia, Evy; Goldman, Maria Helena S; de Vries, Ronald P; Goldman, Gustavo Henrique
2013-11-01
The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production. Copyright © 2013 Elsevier Inc. All rights reserved.
Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric
2013-01-18
Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao
2018-05-01
ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.
Organic solar cells with graded absorber layers processed from nanoparticle dispersions.
Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander
2016-03-28
The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.
Two-Organism Concept for the Conversion of Cellulosic Feedstocks to Fuel
2010-08-01
economic importance as fully 1 % of the world’s energy supplies are consumed in the industrial fixation of nitrogen ( Haber - Bosch process), mostly to...mmol of non-cellular organic ammonia (most of the ammonia was presumably incorporated into cells for growth). The production of ethanol, expected to...Oxygen Gas Output from C. vulgaris Monitoring 10 2.1.6 Quantification of Organic Ammonia Produced by Cpnit-1 1 2.1.7 Quantification of Ethanol
Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A
2011-01-01
GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.
Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.
2011-01-01
GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231
NASA Astrophysics Data System (ADS)
Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam
2011-05-01
We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.
Lionetti, Vincenzo; Francocci, Fedra; Ferrari, Simone; Volpi, Chiara; Bellincampi, Daniela; Galletti, Roberta; D'Ovidio, Renato; De Lorenzo, Giulia; Cervone, Felice
2010-01-12
Plant cell walls represent an abundant, renewable source of biofuel and other useful products. The major bottleneck for the industrial scale-up of their conversion to simple sugars (saccharification), to be subsequently converted by microorganisms into ethanol or other products, is their recalcitrance to enzymatic saccharification. We investigated whether the structure of pectin that embeds the cellulose-hemicellulose network affects the exposure of cellulose to enzymes and consequently the process of saccharification. Reduction of de-methyl-esterified homogalacturonan (HGA) in Arabidopsis plants through the expression of a fungal polygalacturonase (PG) or an inhibitor of pectin methylesterase (PMEI) increased the efficiency of enzymatic saccharification. The improved enzymatic saccharification efficiency observed in transformed plants could also reduce the need for acid pretreatment. Similar results were obtained in PG-expressing tobacco plants and in PMEI-expressing wheat plants, indicating that reduction of de-methyl-esterified HGA may be used in crop species to facilitate the process of biomass saccharification.