NASA Astrophysics Data System (ADS)
Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul
2017-05-01
This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.
Candida, Thamyris; França, Jerônimo Pereira de; Chaves, Alba Lucilvânia Fonseca; Lopes, Fernanda Andrade Rodrigues; Gaiba, Silvana; Sacramento, Celio Kersul do; Ferreira, Lydia Masako; França, Lucimar Pereira de
2014-01-01
To evaluate the antitumor and antimicrobial activity of ethanolic extract of Morinda citrifolia L. fruit cultivated in southeastern Brazil. Preparation ethanolic extract of the fruit of Morinda citrifolia L. Culture of melanoma cells B16-F10 for treatment with ethanolic extract of Morinda citrifolia L. fruit to determine cell viability by MTT and determination temporal effect of ethanolic extract fruit on the cell growth B16-F10 for 8 days. Evaluation of antimicrobial activity of ethanolic extract fruit against Staphylococcus aureus and Escherichia coli by determination of Minimum Inhibitory Concentration (MIC). The ethanolic extract of Morinda citrifolia L. fruit (10mg/mL) decreased cellular activity and inhibited 45% the rate of cell proliferation of B16-F10 melanoma treated during period studied. The ethanolic extract of Morinda citrifolia L. fruit demonstrated antimicrobial activity inhibiting the growth of both microorganisms studied. Staphylococcus aureus was less resistant to ethanolic extract of Morinda citrifolia L. fruit than Escherichia coli, 1 mg/mL and 10 mg/mL, respectively. What these results indicate that the ethanolic extract of the fruit of Morinda citrifolia L. showed antitumor activity with inhibition of viability and growth of B16-F10 cells and also showed antibacterial activity as induced inhibition of growth of Staphylococcus aureus and Escherichia coli.
Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary.
Puangsombat, Kanithaporn; Smith, J Scott
2010-03-01
Heterocyclic amines (HCAs) are mutagenic compounds formed during cooking muscle foods at high temperature. Inhibition of HCAs by rosemary extracts were evaluated with beef patties cooked at 191 degrees C (375 degrees F) for 6 min each side and 204 degrees C (400 degrees F) for 5 min each side. Five rosemary extracts extracted with different solvents were used in this study: extract 100W (100% water), 10E (10% ethanol), 20E (20% ethanol), 30E (30% ethanol), and 40E (40% ethanol). The 5 extracts were directly added to beef patties at 3 levels (0.05%, 0.2%, and 0.5%) before cooking and HCA contents were extracted and quantified. All of the patties contained 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP). There was no statistical difference in the inhibition of HCAs in the 0.05%, 0.2%, and 0.5% rosemary extracts. All rosemary extracts significantly decreased the levels of MeIQx and PhIP at both cooking conditions. When cooking at 204 degrees C (400 degrees F) for 5 min each side, rosemary extracts 10E and 20E were superior to rosemary extracts 100W, 30E, and 40E in inhibiting HCA formation. Rosemary extract 20E showed the greatest inhibition of MeIQx (up to 91.7%) and PhIP (up to 85.3%). The inhibiting effect of rosemary extracts on HCA formation corresponded to their antioxidant activity based on a DPPH scavenging assay. Rosemary extract 10E and 20E contain a mixture of rosmarinic acid, carnosol, and carnosic acid. It is possible that these compounds might act synergistically in inhibiting the formation of HCAs.
Inhibition of urease by extracts derived from 15 Chinese medicinal herbs.
Shi, Da-Hua; Liu, Yu-Wei; Liu, Wei-Wei; Gu, Zhi-Feng
2011-07-01
Helicobacter pylori is a major causative factor in gastritis-like disorders, and urease plays a key role in Helicobacter pylori colonizing and persisting in the mucous layer of the human stomach. In China, a variety of Chinese medicinal herbs have been prescribed to attenuate or eradicate gastritis-like disorders. However, little is known about the urease inhibition of Chinese medicinal herbs. The present study was conducted to investigate the urease inhibition activities of the ethanol and water extracts of 15 Chinese medicinal herbs. The ethanol and water extracts derived from 15 medicinal herbs, traditionally used for the treatment of gastritis-like disorders in China, were tested for urease-inhibition activity using the phenol red method. Screened at 10 µg/mL, 14 ethanol extracts and 10 water extracts showed urease inhibition. The ethanol extracts of Magnolia officinalis Rehd. et Wils. (Magnoliaceae) and Cassia obtusifolia L. (Leguminosae) possessed inhibition rates higher than 50% with IC₅₀ values of 6.5 and 12.3 µg/mL, respectively. After fractionating successively, the petroleum ether fraction of the ethanol extracts of Magnolia officinalis showed the best activity with 90.8% urease inhibition at a concentration of 10 µg/mL. The bioautography of the petroleum ether fraction indicated the existence of the urease inhibitors in the herb. The present results indicated that some Chinese medicinal herbs might treat gastritis-like disorders via the inhibition of Helicobacter pylori urease and the further possibility for discovering useful novel urease inhibitors from the Chinese medicinal herbs.
Cytotoxic activity of ethanolic extract of the marine sponge Aaptos suberitoides against T47D cell
NASA Astrophysics Data System (ADS)
Nurhayati, Awik Puji Dyah; Prastiwi, Rarastoeti; Sukardiman, Wahyuningsih, Tri
2018-04-01
Aaptos suberitoides marine sponge produce many kinds of secondary metabolites. The purpose of this study were to examine the cytotoxic, proliferation inhibition and apoptosis induction of marine sponge A.suberitoides. The sponge was extracted with 96 % ethanol. Ethanol extract cytotoxicity assay were performed with MTT method (Microculture Tetrazolium) against to cell line of T47D. The proliferation inhibition were done by doubling time. The apoptosis induction by observing the treated cell morphology after staining with acrydine orange. The results show that cytotoxic activity of the ethanol extract was 153.109 µg/mL, inhibits cell proliferation cell lines of T47D at 24 hours of incubation and apoptosis induction.
Raymond Chia, Teck Wah; Dykes, Gary A
2010-07-01
The epicarp and seed of Persea Americana Mill. var. Hass (Lauraceae), Persea Americana Mill. var. Shepard, and Persea americana Mill. var Fuerte cultivars of mature avocados (n = 3) were ground separately and extracted with both absolute ethanol and distilled water. Extracts were analyzed for antimicrobial activity using the microtiter broth microdilution assay against four Gram-positive bacteria, six Gram-negative bacteria, and one yeast. Antimicrobial activity against two molds was determined by the hole plate method. The ethanol extracts showed antimicrobial activity (104.2-416.7 microg/mL) toward both Gram-positive and Gram-negative bacteria (except Escherichia coli), while inhibition of the water extracts was only observed for Listeria monocytogenes (93.8-375.0 microg/mL) and Staphylococcus epidermidis (354.2 microg/mL). The minimum concentration required to inhibit Zygosaccharomyces bailii was 500 microg/mL for the ethanol extracts, while no inhibition was observed for the water extracts. No inhibition by either ethanol or water extracts was observed against Penicillium spp. and Aspergillus flavus.
Wang, S; Fan, M; Bian, Z
2001-09-01
To screen some Chinese herbal medicines for their inhibitory activity on cariogenic bacteria, and investigate their active ingredients, and measure their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC). Active components were isolated from every tested Chinese herbal medicine by means of aqueous extraction and ethanolic extraction. Berberine was purified from Coptis chinensis Fra. Disk agar diffusion method was employed in screening herbs with inhibiting effect on cariogenic bacteria. MIC and MBC were determined by broth dilution method. Against Streptococcus mutans Ingbritt, MBCs of Magnolia officinalis ethanolic extract, Berberine, Coptis chinensis Fra aqueous extract and Coptis chinensis Fra ethanolic extract were 0.488, 0.625, 7.800 and 1.950 g/L respectively. Against Streptococcus sobrinus 6715, MBCs of Magnolia extract, Coptis chinensis Fra ethanolic extract, Rhus chinensis Mill ethanolic extract and Phellodendron chinen ethanolic extract were 0.488, 0.625, 1.950, 3.900, 3.900 and 3.900 g/L respectively. Against Actinomyces viscosus ATCC 19246, MBCs of Berberine, Coptis chinensis Fra aqueous extract, Coptis chinensis Fra ethanolic extract, Rheum palmatum L aqueous extract and Rheum palmatum L ethanolic extract were 1.250, 3.900, 3.900, 15.600 and 31.250 g/L respectively. Magnolia officinalis, Coptis chinensis Fran, Rheum palmatum L aqueous extracts exhibit strong inhibition on cariogenic bacteria. Magnolia officinalis ethanolic extract has the strongest bactericidal effects on Streptococcus mutans and Streptococcus sobrinus.
Lee, Shih-Chieh; Chen, Chun-Hao; Yu, Chih-Wen; Chen, Hsiao Ling; Huang, Wei-Tung; Chang, Yun-Shiang; Hung, Shu-Hsien; Lee, Tai-Lin
2016-09-01
Melanin contributes to skin color, and tyrosinase is the enzyme that catalyzes the initial steps of melanin formation. Therefore, tyrosinase inhibitors may contribute to the control of skin hyperpigmentation. The inhibition of tyrosinase activity by Cinnamomum zeylanicum extracts was previously reported. In this report, we test the hypothesis that Cinnamomum osmophloeum Kanehira, an endemic plant to Taiwan, contains compounds that inhibit tyrosinase activity, similar to C. zeylanicum. The cytotoxicity of three sources of C. osmophloeum Kanehira ethanol extracts was measured in B16-F10 cells using a methyl thiazolyl tetrazolium bromide (MTT) assay. At concentrations greater than 21.25 μg/mL, the ethanol extracts were toxic to the cells; therefore, 21.25 μg/mL was selected to test the tyrosinase activities. At this concentration, all three ethanol extracts decreased the melanin content by 50% in IBMX-induced B16-F10 cells. In addition to the melanin content, greater than 20% of the tyrosinase activity was inhibited by these ethanol extracts. The RT-PCR results showed that tyrosinase and transcription factor MITF mRNAs expression were down-regulated. Consistent with the mRNA results, greater than 40% of the human tyrosinase promoter activity was inhibited based on the reporter assay. Furthermore, our results demonstrate that the ethanol extracts protect cells from UV exposure. C. osmophloeum Kanehira neutralized the IBMX-induced increase in melanin content in B16-F10 cells by inhibiting tyrosinase gene expression at the level of transcription. Moreover, the ethanol extracts also partially inhibited UV-induced cell damage and prevented cell death. Taken together, we conclude that C. osmophloeum Kanehira is a potential skin-whitening and protective agent. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Maruyama, Hiroe; Sakamoto, Takashi; Araki, Yoko; Hara, Hideaki
2010-06-23
Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.
2010-01-01
Background Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. Methods The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. Results The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. Conclusions It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food. PMID:20573205
Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R
2018-01-01
The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.
Saw palmetto ethanol extract inhibits adipocyte differentiation.
Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro
2013-07-01
The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.
Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom.
Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo; Lee, Tae Soo
2007-12-01
Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi.
Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom
Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo
2007-01-01
Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi. PMID:24015099
NASA Astrophysics Data System (ADS)
Desrini, Sufi; Ghiffary, Hifzhan Maulana
2018-04-01
Muntingia calabura L., also known locally as Talok or Kersen, is a plant which has been widely used as traditional medicine in Indonesia. In this study, we evaluated the antibacterial activity of Muntingia calabura L. Leaves ethanolic and n-hexane extract extract on Propionibacterium acnes. Antibacterial activity was determined in the extracts using agar well diffusion method. The antibacterial activities of each extract (2 mg/mL, 8 mg/ml, 20 mg/mL 30 mg/mL, and 40 mg/mL) were tested against to Propionibacterium acnes. Zone of inhibition of ethanolic extract and n-hexane extract was measured, compared, and analyzed by using a statistical programme. The phytochemical analyses of the plants were carried out using thin chromatography layer (TLC). The average diameter zone of inhibition at the concentration of 2 mg/mL of the ethanolic extract is 9,97 mm while n-Hexane extract at the same concentration showed 0 mm. Statistical test used was non-parametric test using Kruskal Wallis test which was continued to the Mann-Whitney to see the magnitude of the difference between concentration among groups. Kruskal-Wallis test revealed a significant value 0,000. Based on the result of Post Hoc test using Mann - Whitney test, there is the statistically significant difference between each concentration of ethanolic extract and n-hexane as well as positive control group (p-value < 0,05). Both extracts have antibacterial activity on P.acne. However, ethanolic extract of Muntingia calabura L. is better in inhibiting Propionibacterium acnes growth than n-hexane extract.
[Study on antioxidative activities of Psidium guajava Linn leaves extracts].
Wang, Bo; Jiao, Shirong; Liu, Hengchuan; Hong, Junrong
2007-05-01
To study the antioxidative activities of the extracts from Psidium guajava Linn leaves (PGL). The PGL was submersed with distilled water, 65% ethanol and 95% ethanol respectively. The 3 extracts were obtained after the solutions were filtered, concentrated and dried. The scavenging rate to hydroxyl radicals and inhibiting rate to lipid peroxidation were analyzed for the 3 extracts. Their contents of total flavonoids were determined by ultraviolet spectrophotometry, and the components of total flavonoids were primarily identified by high performance liquid chromatography (HPLC) and ultraviolet-visible absorption spectrometry (UV). The extracts from distilled water, 65% ethanol and 95% ethanol respectively showed effects on scavenging hydroxyl radicals and inhibiting lipid peroxidation in the dose-dependent manner, had 50% effective concentration (EC50) on scavenging hydroxyl radicals of 0.63, 0.47 and 0.58g/L, had EC50 on inhibiting lipid peroxidation of 0.20, 0.035, 0.18g/L and had total flavonoids contents of 3.28, 30.71 and 55.98g/kg respectively. The aquatic and the ethanol extracts from PGL possess the potential antioxidative activities in the study. The flavonoids may be one of their antioxidative components.
Cheng, Dandan; Zhang, Yingying; Gao, Demin; Zhang, Hongmeng
2014-09-11
Pyrrosia petiolosa is commonly used as a traditional Chinese medicine for treatment of acute pyelonephritis, chronic bronchitis and bronchial asthma. This study aims to evaluate the antibacterial activity of the ethanol extract and its derived fractions of Pyrrosia petiolosa obtained with solvents of different polarities and to perform the anti-inflammatory screening. The powdered aerial parts of Pyrrosia petiolosa were used to extract various fractions with ethanol, petroleum ether, ethyl acetate, N-butanol and aqueous. Qualitative phytochemical screening was performed on the ethanol extract, petroleum ether fraction, ethyl acetate fraction, N-butanol fraction and aqueous fraction. The agar diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were employed to evaluate antibacterial activity of the ethanol extract and fractions. The in vitro cytotoxicity of ethanol extract and fractions was determined using MTT assay. The anti-inflammatory activity was analyzed using the mouse ear swelling induced by xylene. The phytochemical screening revealed the presence of anthraquinones, flavonoids, terpenoids, steroids, saponins, phenols and reducing sugars in the extract and fractions. Antibacterial results showed that petroleum ether fraction and N-butanol fraction inhibited all the tested microorganisms with the maximum inhibition zone of 15.25±0.35 mm. Ethyl acetate fraction also exhibited good antibacterial activity except Pseudomonas aeruginosa ATCC 27853, while extract and aqueous fraction inhibited 8 out of 13 (61.5%) of the tested microorganisms. The MIC values of ethanol extract and fractions ranged from 1.25 to 10.00 mg/mL and most of the MBC values were equal or twice as high as the corresponding MIC values. The in vitro cytotoxicity showed the ethanol extract and fractions exhibited non-toxic or low toxic activity against lung cancer cell lines A549 and mouse spleen cells. In anti-inflammatory experiment, ethanol extract at 5.0 and 10.0 mg/kg exhibited significant anti-inflammatory activity against the mouse ear swelling induced by xylene and the maximum inhibition rate reached as high as 67%. Pyrrosia petiolosa could be a potential candidate for future development of a novel antibacterial and anti-inflammatory agent. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Evaluation of anthelmintic activity of Iris hookeriana against gastrointestinal nematodes of sheep.
Tariq, K A; Chishti, M Z; Ahmad, F; Shawl, A S; Tantray, M A
2008-06-01
The objective of this study was to evaluate the anthelmintic efficacy of Iris hookeriana Linn. rhizome against gastrointestinal nematodes of sheep. A worm motility inhibition assay was used for in vitro study and a faecal egg count reduction assay was used for an in vivo study. The in vitro study revealed anthelmintic effects of crude aqueous extracts and crude ethanolic extracts on live Trichuris ovis worms (P < or = 0.05) as evident from their paralysis and/or death at 8 h after exposure. The aqueous extracts of I. hookeriana resulted in a mean worm motility inhibition of 54.0%, while ethanolic extracts resulted in a mean worm motility inhibition of 84.6%. The mean mortality index of aqueous extracts was 0.55, while for ethanolic extracts it was 0.85. The lethal concentration 50 for aqueous extracts was 0.45 mg ml- 1 and for ethanolic extracts it was 0.15 mg ml- 1. The in vivo anthelmintic activity of aqueous and ethanolic extracts of I. hookeriana in sheep naturally infected with mixed species of gastrointestinal nematodes demonstrated a maximum (45.62%) egg count reduction in sheep treated with ethanolic extracts at 2 g kg- 1 body weight on day 10 after treatment, closely followed by ethanolic extracts at 1 g kg- 1 body weight on day 10 after treatment (43.54% egg count reduction). The aqueous extracts resulted in a maximum of 31.53% reduction in faecal egg counts on day 10 after treatment with 1 g kg- 1 body weight. Thus ethanolic extracts exhibited greater anthelmintic activity under both in vitro and in vivo conditions; this could be due to the presence of alcohol-soluble active ingredients in I. hookeriana. From the present study it can be suggested that I. hookeriana rhizome exhibited significant anthelmintic activity against gastrointestinal nematodes of sheep and has the potential to contribute to the control of gastrointestinal nematode parasites of small ruminants.
NASA Astrophysics Data System (ADS)
Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.
2018-03-01
Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.
Antimicrobial activities of pomelo (Citrus maxima) seed and pulp ethanolic extract
NASA Astrophysics Data System (ADS)
Sahlan, Muhamad; Damayanti, Vina; Tristantini, Dewi; Hermansyah, Heri; Wijanarko, Anondho; Olivia, Yuko
2018-02-01
Grapefruit (Citrus paradisi) seed extract is generally used as naturopathic medications, supplements, antiseptic and disinfecting agents and also as preservatives in food and cosmetics products. In vitro studies have demonstrated that grapefruit seed extract has anti bacterial properties against a range of gram-positive and gram-negative organisms. Indonesian grapefruit, known as pomelo (C. maxima), has similar characteristics, contents and is under the same genus (Citrus) as grapefruit; however it has not been completely utilized as a preservative. In this work we analyze the antimicrobial activities of ethanolic extract of Indonesian pomelo (C. maxima) seeds and pulp compared to the grapefruit (C. paradisi) seeds and pulp ethanolic extract. Ethanolic extracts of pomelo and grapefruit seeds and pulp are investigated for activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans. The level of antimicrobial effects is established using agar diffusion method. Both of the ethanolic do not show any antimicrobial activities against C. albicans. The ethanolic extract of pomelo seeds and pulp used in this research give positive results with growth inhibition effect on B. subtilis, S. aureus and E. coli. The zones of inhibition ranges from 22 - 30 mm in diameter, which is higher to grapefruit seeds and pulp ethanolic extract (17 - 25 mm). Ethanolic extract of pomelo seeds and pulp has an antimicrobial effect, which makes it a natural preparation for use as an alternative preservative for food and cosmetic.
Arjoon, Amanda V; Saylor, Charlotte V; May, Meghan
2012-10-02
Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species.
2012-01-01
Background Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Methods Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Results Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. Conclusions The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species. PMID:23031072
Free radical-scavenging activities of Crataegus monogyna extracts.
Bernatoniene, Jurga; Masteikova, Rūta; Majiene, Daiva; Savickas, Arūnas; Kevelaitis, Egidijus; Bernatoniene, Rūta; Dvorácková, Katerina; Civinskiene, Genuvaite; Lekas, Raimundas; Vitkevicius, Konradas; Peciūra, Rimantas
2008-01-01
The aim of this study was to investigate antiradical activity of aqueous and ethanolic hawthorn fruit extracts, their flavonoids, and flavonoid combinations. Total amount of phenolic compounds and the constituents of flavonoids were determined using a high-performance liquid chromatography. The antioxidant activity of Crataegus monogyna extracts and flavonoids (chlorogenic acid, hyperoside, rutin, quercetin, vitexin-2O-rhamnoside, epicatechin, catechin, and procyanidin B(2)) quantitatively was determined using the method of spectrophotometry (diphenyl-1-picrylhydrazyl (DPPH.) radical scavenging assay and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)(ABTS.+) radical cation decolorization assay). The level of tyrosine nitration inhibition was determined using a high-performance liquid chromatography. Ethanolic hawthorn fruit extract contained 182+/-4 mg/100 mL phenolic compounds, i.e. threefold more, as compared to aqueous extract. The antioxidant activity according to DPPH. reduction in the ethanolic extracts was higher 2.3 times (P<0.05). The ABTS.+ technique showed that the effect of ethanolic extracts was by 2.5 times stronger than that of aqueous extracts. Tyrosine nitration inhibition test showed that the effect of ethanolic extracts was by 1.4 times stronger than that of aqueous extracts. The investigation of the antiradical activity of the active constituents in aqueous and ethanolic extracts revealed that epicatechin and catechin contribute to radical-scavenging properties more than other components. Procyanidin B(2) only insignificantly influenced the antiradical activity of the extracts. Both aqueous and ethanolic hawthorn extracts had antiradical activity, but ethanolic extract had stronger free radical-scavenging properties, compared to the aqueous extract. The antioxidant activity of the studied preparations was mostly conditioned by epicatechin and catechin. The individual constituents of both extracts had weaker free radical-scavenging properties than the combination of these substances did.
Godara, R; Katoch, R; Yadav, A; Ahanger, R R; Bhutyal, A D S; Verma, P K; Katoch, M; Dutta, S; Nisa, F; Singh, N K
2015-09-01
Detection of resistance levels against deltamethrin and cypermethrin in Rhipicephalus (Boophilus) microplus collected from Jammu (India) was carried out using larval packet test (LPT). The results showed the presence of resistance level II and I against deltamethrin and cypermethrin, respectively. Adult immersion test (AIT) and LPT were used to evaluate the in vitro efficacy of ethanolic and aqueous floral extracts of Calendula officinalis against synthetic pyrethroid resistant adults and larvae of R. (B.) microplus. Four concentrations (1.25, 2.5, 5 and 10 %) of each extract with four replications for each concentration were used in both the bioassays. A concentration dependent mortality was observed and it was more marked with ethanolic extract. In AIT, the LC50 values for ethanolic and aqueous extracts were calculated as 9.9 and 12.9 %, respectively. The egg weight of the live ticks treated with different concentrations of the ethanolic and aqueous extracts was significantly lower than that of control ticks; consequently, the reproductive index and the percent inhibition of oviposition values of the treated ticks were reduced. The complete inhibition of hatching was recorded at 10 % of ethanolic extract. The 10 % extracts caused 100 % mortality of larvae after 24 h. In LPT, the LC50 values for ethanolic and aqueous extracts were determined to be 2.6 and 3.2 %, respectively. It can be concluded that the ethanolic extract of C. officinalis had better acaricidal properties against adults and larvae of R. (B.) microplus than the aqueous extract.
Kang, Sun-Ae; Kim, Dong-Hee; Hong, Shin-Hyub; Park, Hye-Jin; Kim, Na-Hyun; Ahn, Dong-Hyun; An, Bong-Jeun; Kwon, Joong-Ho; Cho, Young-Je
2016-01-01
In this study, we compared the anti-inflammatory activity of Pinus koraiensis cone bark extracts prepared by conventional extraction and microwave-assisted extraction (MAE). Water extracts and 50% ethanol extracts prepared using MAE were applied to RAW 264.7 cell at 5, 10, 25, and 50 μg/mL of concentrations, and tested for cytoxicity. The group treated with 50 μg/mL of 50% ethanol extracts showed toxicity. In order to investigate the inhibition of nitric oxide (NO) production in RAW 264.7 cells, extracts of water and ethanol were treated with 5, 10, and 25 μg/mL concentrations. The inhibitory activity of water and 50% ethanol extracts groups were determined as 40% and 60% at 25 μg/mL concentration, respectively. We found concentration dependent decreases on inducible NO synthase. The inhibitory effect against forming inflammatory cytokines, prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, was also superior in the 25 μg/mL treated group than the control group. According to these results, the water extracts and 50% ethanol extracts both inhibited inflammatory mediators by reducing the inflammatory response. Therefore, The MAE extracts of P. koraiensis cone bark can be developed as a functional ingredient with anti-inflammatory activity. PMID:27752500
Anti-inflammatory activity of Lippia dulcis.
Pérez, S; Meckes, M; Pérez, C; Susunaga, A; Zavala, M A
2005-10-31
Lippia dulcis hexane and ethanol extracts were tested for its anti-inflammatory activity in several animal models. Hexane extract showed to be inactive, but the ethanol extract at doses of 400 mg/kg produced significant inhibition of carrageenan-induced paw oedema and reduced the weight of cotton pellet-induced granuloma, moreover, the topical application of 0.5 mg/ear of this extract inhibited the edema induced with TPA by 49.13%, an effect which is of less intensity than that produced by indomethacine at the same dose.
2012-01-01
Background In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities. Methods Bioactive flavonoid sinensetin was isolated from 50% ethanolic extract of Orthosiphon stamineus. The structure of this pure compound was determined on the NMR data and the α-glucosidase and α-amylase inhibitory activities of isolated sinensetin and 50% ethanolic extract of Orthosiphon stamineus were evaluated. Results In vitro studies of a 50% ethanolic extract of O. stamineus and the isolated sinensetin compound showed inhibitory activity on α-glucosidase (IC50: 4.63 and 0.66 mg/ml, respectively) and α-amylase (IC50: 36.70 mg/ml and 1.13 mg/ml, respectively). Inhibition of these enzymes provides a strong biochemical basis for the management of type 2 diabetes via the control of glucose absorption. Conclusion Alpha-glucosidase and α-amylase inhibition could the mechanisms through which the 50% ethanolic extract of O. stamineus and sinensetin exert their antidiabetic activity, indicating that it could have potential use in the management of non-insulin-dependent diabetes. PMID:23039079
Mohamed, Elsnoussi Ali Hussin; Siddiqui, Mohammad Jamshed Ahmad; Ang, Lee Fung; Sadikun, Amirin; Chan, Sue Hay; Tan, Soo Choon; Asmawi, Mohd Zaini; Yam, Mun Fei
2012-10-08
In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities. Bioactive flavonoid sinensetin was isolated from 50% ethanolic extract of Orthosiphon stamineus. The structure of this pure compound was determined on the NMR data and the α-glucosidase and α-amylase inhibitory activities of isolated sinensetin and 50% ethanolic extract of Orthosiphon stamineus were evaluated. In vitro studies of a 50% ethanolic extract of O. stamineus and the isolated sinensetin compound showed inhibitory activity on α-glucosidase (IC50: 4.63 and 0.66 mg/ml, respectively) and α-amylase (IC50: 36.70 mg/ml and 1.13 mg/ml, respectively). Inhibition of these enzymes provides a strong biochemical basis for the management of type 2 diabetes via the control of glucose absorption. Alpha-glucosidase and α-amylase inhibition could the mechanisms through which the 50% ethanolic extract of O. stamineus and sinensetin exert their antidiabetic activity, indicating that it could have potential use in the management of non-insulin-dependent diabetes.
Ribeiro, Ana Roseli S; Diniz, Polyana B F; Estevam, Charles S; Pinheiro, Malone S; Albuquerque-Júnior, Ricardo L C; Thomazzi, Sara M
2013-05-20
Caesalpinia pyramidalis Tul. (Fabaceae), known as "catingueira", has been used in folk medicine in the treatment of various disorders such as gastritis, heartburn, indigestion, and stomach ache. However, the gastroprotective properties of this species have not yet been studied. The ethanol extract of Caesalpinia pyramidalis inner bark was used in rats via oral route, at the doses of 30, 100, and 300 mg/kg. The antiulcer assays were performed using the ethanol- and nonsteroidal anti-inflammatory drug-induced ulcer models. Gastric secretion parameters (volume, pH, and total acidity) were also evaluated by the pylorus ligated model, and the mucus in the gastric content was determined. The anti-Helicobacter pylori activity of the ethanol extract of Caesalpinia pyramidalis was performed using the agar-well diffusion and broth microdilution methods. The ethanol extract (30, 100, and 300 mg/kg) produced dose dependent inhibition (P<0.01) on the ulcer lesion index, the total lesion area, and the percentage of lesion area in the ethanol-induced ulcer model. The ethanol extract (30, 100, and 300 mg/kg) also reduced (P<0.001) the ulcer index in the indomethacin-induced ulcer model. In the model ligature pylorus, the treatment with Caesalpinia pyramidalis ethanol extract failed to significantly change the gastric secretion parameters. However, after treatment with the ethanol extract of Caesalpinia pyramidalis (30, 100, and 300 mg/kg), there was a significant increase (P<0.05) in mucus production. The ethanol extract showed anti-Helicobacter pylori activity, with inhibition halos of 12.0 ± 1.7 mm at 10,000 μg/mL. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the ethanol extract were of 625 and 10,000 μg/mL, respectively. Collectively, the present results suggest that the ethanol extract of Caesalpinia pyramidalis displays gastroprotective actions, supporting the folkloric usage of the plant to treat various gastrointestinal disturbances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Elgamily, Hanaa; Moussa, Amani; Elboraey, Asmaa; EL-Sayed, Hoda; Al-Moghazy, Marwa; Abdalla, Aboelfetoh
2016-01-01
AIM: To assess the antibacterial and antifungal potentials of different parts of Moringa oleifera plant using different extraction methods in attempts to formulate natural dental remedies from this plant. MATERIAL AND METHODS: Three solvents extracts (Ethanol, acetone, and ethyl acetate) of different parts of Egyptian Moringa tree were prepared and tested against oral pathogens: Staphylococcus aureus, Streptococcus mutans, and Candida albicans using disc diffusion method; As well as to incorporate the plant extract to formulate experimental toothpaste and mouthwash. The two dental remedies were assessed against the same microbial strains. Statistical analysis was performed using One-Way ANOVA test to compare the inhibition zone diameter and t-test. RESULTS: Ethanol extracts as well as leaves extracts demonstrated the highest significant mean inhibition zone values (P ≤ 0.05) against Staphylococcus aureus and Streptococcus mutans growth. However, all extracts revealed no inhibition zone against Candida albicans. For dental remedies, experimental toothpaste exhibited higher mean inhibition than the mouthwash against Staphylococcus aureus, Streptococcus mutans and only the toothpaste revealed antifungal effect against Candida albicans. CONCLUSION: The different extracts of different parts of Moringa showed an antibacterial effect against Staphylococcus aureus and Streptococcus mutans growth. The novel toothpaste of ethanolic leaves extract has antimicrobial and antifungal potential effects all selected strains. PMID:28028395
Antioxidant and anticholinesterase activities of eleven edible plants.
Boğa, Mehmet; Hacıbekiroğlu, Işıl; Kolak, Ufuk
2011-03-01
Consumers have become more interested in beneficial effects of vegetables, fruits, and tea to protect their health. The antioxidant potential and anticholinesterase activity of eleven edible plants were investigated. The dichloromethane, ethanol and water extracts prepared from celery [Apium graveolens L. (Umbelliferae)], Jerusalem artichoke [Helianthus tuberosus L. (Compositae)], spinach [Spinacia oleracea L. (Chenopodiaceae)], chard [Beta vulgaris L. var. cicla (Chenopodiaceae)], purslane [Portulaca oleracea L. (Portulacaceae)], ispit, or borage [Trachystemon orientale (L.) G. Don (Boraginaceae)], garden rocket [Eruca sativa Mill. (Brassicaceae)], red cabbage [Brassica oleracea L. var. capitata f. rubra DC. (Cruciferae)], lime flower [Tilia tomentosa Moench (Tiliaceae)], cinnamon [Cinnamomum cassia Presl. (Lauraceae)], and rosehip [Rosa canina L. (Rosaceae)], were tested to determine their antioxidant and anticholinesterase activities by using CUPRAC (cupric reducing antioxidant capacity) and Ellman methods, respectively, for the first time. As a result, the dichloromethane, ethanol and water extracts of cinnamon showed the best antioxidant effect among the extracts of the tested plants. The ethanol extract of cinnamon exhibited 63.02% inhibition against acetylcholinesterase and 85.11% inhibition against butyrylcholinesterase (BChE) at 200 µg/mL concentration while the dichloromethane extract of garden rocket possessed the highest inhibition (91.27%) against BChE among all the tested extracts. This study indicated that the ethanol extract of cinnamon may be a new potential resource of natural antioxidant and anticholinesterase compounds.
Deethae, A; Peerapornpisal, Y; Pekkoh, J; Sangthong, P; Tragoolpua, Y
2018-06-01
To determine the antiviral activities of Spirogyra spp. algal extracts against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). Spirogyra spp. was extracted using water, ethanol and methanol. Aqueous extract of Spirogyra spp. had the lowest toxicity on Vero cells with the 50% cytotoxicity concentration (CC 50 ) of 4363·30 μg ml -1 . As for potent inhibitory effect, the ethanolic extract presented the highest inhibition of viral infection on HSV-1 in the treatment during viral attachment on Vero cells with 50% inhibitory concentration (IC 50 ) and selective index (SI) values of 164·20 and 2·17 μg ml -1 . However, the methanolic extract showed the highest inhibition of HSV-2 when treated during viral attachment with IC 50 and SI values of 75·03 and 3·34 μg ml -1 . The methanolic extract of Spirogyra spp. also demonstrated significant virucidal effects on viral particles. Therefore, anti-HSV activity at various stages of the viral multiplication cycle was shown. The main active compounds in the active fractions of Spirogyra spp. ethanolic extract against HSV were found to be alkaloids, essential oils and terpenoids. The highest anti-HSV activity was obtained from the ethanolic extract of Spirogyra spp. The extract inhibited the HSV viral particles and the inhibition was during the viral attachment and the viral multiplication. Anti-HSV activity of extract of freshwater green macroalga Spirogyra spp. in Thailand was demonstrated. Therefore, anti-HSV product containing the Spirogyra spp. extract should be developed for treatment of HSV infection. © 2018 The Society for Applied Microbiology.
Analgesic and antipyretic effects of Sansevieria trifasciata leaves.
Anbu, Jeba Sunilson J; Jayaraj, P; Varatharajan, R; Thomas, John; Jisha, James; Muthappan, M
2009-07-03
The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.
Batool, R; Salahuddin, H; Mahmood, T; Ismail, M
2017-09-30
High-throughput technologies, such as synthetic biology and genomics have paved new paths for discovery and utility of medicinally beneficial plants. Bioactive molecules isolated from different plants have significantly higher biological activities. The present study was done to analyze antibacterial potential of some medicinal plants against multi drug resistant (MDR) pathogens and anticancer effect against MCF-7 cell line. Methanolic and ethanolic extracts were tested for their antibacterial activity by disc diffusion method against six MDR bacterial strains and for cytotoxicity evaluation by MTT assay. Ethanolic extracts of the three tested plants exhibited growth inhibitory effect against Klebsiella pneumonia, Serratia marcescens and Methicillin-resistant S. aureus. Pseudomonas aeruginosa was more resistant to all extracts as its growth was least inhibited by the extracts of all tested plants. Ethanol extract of Foeniculum vulgare exhibited significant inhibition of cancer cells proliferation. Methanol extract of Justicia adhatoda also showed considerable inhibition of cancer cells. Future studies must converge on detailed investigation of modes of action of extracts of tested plants.
Hussain, Khaja Amjad; Tarakji, Bassel; Kandy, Binu Purushothaman Panar; John, Jacob; Mathews, Jacob; Ramphul, Vandana; Divakar, Darshan Devang
2015-01-01
Use of plant extracts and phytochemicals with known antimicrobial properties may have great significance in therapeutic treatments. To assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for periodontal pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. Confidence level and level of significance were set at 95% and 5% respectively. Prevotella intermedia and Porphyromonas gingivalis were resistant to aqueous extracts while Aggregatibacter actinomycetemcomitans was inhibited at very high cncentrations. Hot ethanolic extracts showed significantly higher zone of inhibition than cold ethanolic extract. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against all three periodontal pathogens. Both extracts were found sensitive and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.
Berger, I; Barrientos, A C; Cáceres, A; Hernández, M; Rastrelli, L; Passreiter, C M; Kubelka, W
1998-09-01
The activities of crude plant extracts of five plants popularly used in Guatemala against bacterial and protozoal infections and some of their fractions have been evaluated against the trypomastigote and epimastigote forms of Trypanosoma cruzi in vitro. The most active fraction of Neurolaena lobata has also been screened in vivo. Main in vitro activities against trypomastigotes have been observed for the hexane and ethanol extracts of N. lobata (Asteraceae). Both extracts were also active against epimastigotes, whereas all other extracts tested had no effect on epimastigotes. For the hexane extracts of Petiveria alliacea (Phytolaccaceae) and Tridax procumbens (Asteraceae) a marked inhibition of trypomastigotes has been found. Also the ethanol extracts of Byrsonima crassifolia (Malpighiaceae) leafs and Gliricidia sepium (Papilionaceae) bark showed some trypanocidal activity. Fraction 2 of the ethanol extract of N. lobata was highly active against T. cruzi as well in vitro as in vivo. The chloroforme fraction of P. alliacea showed a high inhibition of trypomastigotes in vitro. Also three fractions of the active extract of B. crassifolia inhibited T. cruzi trypomastigotes. No fraction of G. sepium bark extract showed a marked trypanocidal activity.
Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin
2015-01-01
The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory. PMID:26649059
Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol
NASA Astrophysics Data System (ADS)
Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.
2017-04-01
Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.
Scur, M C; Pinto, F G S; Pandini, J A; Costa, W F; Leite, C W; Temponi, L G
2016-02-01
The goals of the study were to determinethe antimicrobial and antioxidant activities of essential oil and plant extracts aqueous and ethanolic of Psidium cattleianum Sabine; the chemical composition of the essential oil of P. cattleianum; and the phytochemical screening of aqueous and ethanolic extracts of the same plant. Regarding the antimicrobial activity, the ethanolic extract exhibited moderate antimicrobial activity with respect to bacteria K. pneumoniae and S. epidermidis, whereas, regarding other microorganisms, it showed activity considered weak. The aqueous extract and the essential oil showed activity considered weak, although they inhibited the growth of microorganisms. About the antioxidant potential, the ethanolic and aqueous extracts exhibited a scavenging index exceeding 90%, while the essential oil didn´t show significant antioxidant activity. Regarding the phytochemical composition, the largest class of volatile compounds identified in the essential oil of P. cattleianum included the following terpenic hydrocarbons: α-copaene (22%); eucalyptol (15%), δ-cadinene (9.63%) and α-selinene (6.5%). The phytochemical screening of extracts showed the presence of tannins, flavonoids, and triterpenoids for aqueous and ethanolic extracts. The extracts and essential oils inhibit the growth of microrganisms and plant extracts showed significant antioxidant activity. Also, the phytochemical characterization of the essential oil showed the presence of compounds interest commercial, as well as extracts showed the presence of important classes and compounds with biological activities.
Antifungal activity of Curcuma longa grown in Thailand.
Wuthi-udomlert, M; Grisanapan, W; Luanratana, O; Caichompoo, W
2000-01-01
Curcuma longa Linn. or turmeric (Zingiberaceae) is a medicinal plant widely used and cultivated in tropical regions. According to Thai traditional texts, fresh and dried rhizomes are used as peptic ulcer treatment, carminatives, wound treatment and anti-inflammatory agent. Using hydro distillation, 1.88% and 7.02% (v/w) volatile oils were extracted from fresh and dried rhizomes, respectively, and 6.95% (w/w)crude curcuminoids were extracted from dried rhizomes. Dried powder was extracted with 95% ethanol and yielded 29.52% (w/w) crude ethanol extract composed of curcumin (11.6%), demethoxycurcumin (10.32%) and bisdemethoxycurcumin (10.77%). These extracts were tested for antifungal activity by agar disc diffusion method against 29 clinical strains of dermatophytes. It was found that crude ethanol extract exhibited an inhibition zone range of 6.1 to 26.0 mm. There was no inhibition activity from crude curcuminoids while curcumin, demethoxycurcumin and bisdemethoxycutcumin gave different inhibition zone diameters ranging from 6.1 to 16.0 mm. Although antifungal activity of undiluted freshly distilled oil and 18-month-old oil revealed some differences, the inhibition zone diameters for both extracts varied within 26.1 to 46.0 mm. With 200 mg/ml ketoconazole, the activities of the standard agent were similar to the oil, both freshly distilled and 18-month-old, but were significantly different from those of curcuminoid compounds and crude ethanol extracts (p < 0.01). Turmeric oil was also tested for its minimum inhibitory concentration (MIC) by broth dilution method. The MICs of freshly distilled and 18-month-old oils were 7.8 and 7.2 mg/ml respectively.
NASA Astrophysics Data System (ADS)
Waty, Syahdiana; Suryanto, Dwi; Yurnaliza
2018-03-01
Cinnamon bark has been commonly used as spicy and traditional medicine. It contains several antibacterial compounds such as flavonoids, saponins, and cinnamaldehyde. Several studies have been done to know the antibacterial effect on bacteria such as Streptococcus in vitro. This study aimed to examine the antibacterial activity of cinnamon ethanol extract against Streptococcus and its application as mouthwash to inhibit the bacteria. The cinnamon bark was macerated followed by extracted in 80% ethanol. Bacterial samples were isolated from dental plaque of patients visiting dental clinic drg. Syahdiana Waty in Medan, North Sumatra. The isolates were identified using Vitek 2 compact. Secondary metabolites were detected using previously described method. Antibacterial assay was done at extract concentration of 6.25%, 12.5%, and 25%. The result showed that alkaloids, flavonoids, saponins, and glycoside were detected in the extract. Nine bacterial species were identified as Streptococcus mitis, S. sanguinis, S. salivarius, S. pluranimalium, S. pneumoniae, S. alactolyticus, Kocuria rosea, Kocuria kristinae, and Spingomonas paucimolis. It showed that the extract of Cinnamon bark significantly inhibited Streptococcus growth, and it was effective as mouthwash.
NASA Astrophysics Data System (ADS)
Nuryanti, Siti; Puspitasari, Dwi Juli
2017-08-01
Moringa (Moringa oleifera Lamk) is a nutritious plant that can cure various diseases. Parts of this plant like leave, root, flower, and fruit can be used as a traditional medicine. The research about screening of secondary metabolites in moringa extracts and the determination of their inhibitory effect on growth of the fungus Candida albicans have been done. This research was conducted by extracting the moringa fruit with various solvent with different polarity namely hexane, distilled water and ethanol. The fungal inhibition test was done by well-difuse method. Suspensions of Candida albicans was standardized by 0.5 Mc Farland standard. The results showed that the extracts of Moringa with distilled water provided the greatest inhibition on the growth of the fungus Candida albicans compared to moringa fruit extracted by ethanol and hexane. The percentages inhibition of Moringa extracts on the growth of the Candida albicans with distilled water, ethanol and hexane solvents were 89.90%, 57.90% and 8.97% respectively. Phytochemical screening test showed that the moringa fruit contain alkaloids, flavonoids and steroids.
Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts
NASA Astrophysics Data System (ADS)
Akhir, Rabieatul Adawieah Md; Bakar, Mohd Fadzelly Abu; Sanusi, Shuaibu Babaji
2017-10-01
Bee bread and propolis are by-products of honey bee. The main objective of this research was to investigate the antioxidant and antimicrobial activity of stingless bee bread and propolis extracted using 70% ethanol and n-hexane. The antioxidant activity of the sample extracts were determined by spectrophotometry analysis while for the antimicrobial activity, the sample extracts were analyzed using disc diffusion and broth dilution assays. For DPPH and ABTS assays, the results showed that ethanolic extract of bee bread showed the highest free radical scavenging (%) as compared to other samples. However, FRAP values for both hexanic extracts are higher as compared to the ethanolic extracts. For disc diffusion assay, the results showed that the ethanolic extract of bee bread and propolis as well as hexanic extract of propolis were able to inhibit all tested bacteria. Meanwhile, broth dilution assay showed minimum inhibition zone (MIC) ranging from <6.67 to 33.33 µL/mL. As the conclusion, both bee bread and propolis produced by stingless bee in this study displayed antioxidant and antimicrobial effect but there are different in the degree of antioxidant and antimicrobial activity exhibited between each of the samples.
Rothan, H A; Zulqarnain, M; Ammar, Y A; Tan, E C; Rahman, N A; Yusof, R
2014-06-01
Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta
2012-01-01
Background Following claims that some plants have antimicrobial activities against infectious microbes, the in vitro antimicrobial activities of different solvent fractions of ethanolic extract of Cryptolepis sanguinolenta were evaluated against eight standard bacteria and clinical isolates. Methods The solvent partitioning protocol involving ethanol, petroleum ether, chloroform, ethyl acetate and water, was used to extract various fractions of dried pulverized Cryptolepis sanguinolenta roots. Qualitative phyto-constituents screening was performed on the ethanol extract, chloroform fraction and the water fraction. The Kirby Bauer disk diffusion method was employed to ascertain the antibiogram of the test organisms while the agar diffusion method was used to investigate the antimicrobial properties of the crude plant extracts. The microplate dilution method aided in finding the MICs while the MBCs were obtained by the method of Nester and friends. The SPSS 16.0 version was used to analyze the percentages of inhibitions and bactericidal activities. Results The phytochemical screening revealed the presence of alkaloids, reducing sugars, polyuronides, anthocyanosides and triterpenes. The ethanol extract inhibited 5 out of 8 (62.5%) of the standard organisms and 6 out of 8 (75%) clinical isolates. The petroleum ether fraction inhibited 4 out of 8 (50%) of the standard microbes and 1 out of 8 (12.5%) clinical isolates. It was also observed that the chloroform fraction inhibited the growth of all the organisms (100%). Average inhibition zones of 14.0 ± 1.0 mm to 24.67 ± 0.58 mm was seen in the ethyl acetate fraction which halted the growth of 3 (37.5%) of the standard organisms. Inhibition of 7 (87.5%) of standard strains and 6 (75%) of clinical isolates were observed in the water fraction. The chloroform fraction exhibited bactericidal activity against all the test organisms while the remaining fractions showed varying degrees of bacteriostatic activity. Conclusion The study confirmed that fractions of Cryptolepis sanguinolenta have antimicrobial activity. The chloroform fraction had the highest activity, followed by water, ethanol, petroleum ether and ethyl acetate respectively. Only the chloroform fraction exhibited bactericidal activity and further investigations are needed to ascertain its safety and prospects of drug development. PMID:22709723
NASA Astrophysics Data System (ADS)
Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien
2018-04-01
Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.
Kabir, Md Golam; Rahman, Md Monsor; Ahmed, Nazim Uddin; Fakruddin, Md; Islam, Saiful; Mazumdar, Reaz Mohammad
2014-08-19
This study was subjected to investigate different pharmacological properties of ethanol extract of Solena amplexicaulis root. The extract contains flavonoid, alkaloid, saponin and steroid compounds. The extract exhibited excellent antioxidant activity in DPPH radical scavenging activity. The extract also showed potent activity in brine shrimp lethality bioassay. The LC50 value was found to 44.677 μg/ml. The extract showed better anti-bacterial activity against gram-negative bacteria. In antifungal assay, the maximum 79.31% of anti-mycotic activity was observed against Aspergillus ochraceus while minimum 44.2% against Rhizopus oryzae. MIC value ranged between 1500-3000 μg/ml. The extract was found moderately toxic with a 24-hr LD50 value of 81.47 mg/kg in Swiss albino mice. The degree of inhibition by the ethanolic extract of the root was found less than that of standard analgesic drug diclofenac sodium. The extract also showed moderate anti-inflammatory and antinociceptive activity and anti-diabetic property. Reducing power of the extract was comparable with standard ascorbic acid. Moderate in vitro thrombolytic activity, lipid peroxidation inhibition property, metal chelating ability and stress-protective activity was also observed. Ethanol extract of Solena amplexicaulis root can be valuable for treatment of different diseases.
Shampoo of kesum (Polygonum minus) leaves ethanol extract as an anti-dandruff
NASA Astrophysics Data System (ADS)
Hadiarti, Dini
2017-03-01
Formulation of shampoo has done as anti dandruff extracts from ethanol leaf kesum (Polygonum minus) the most effective way of inhibiting the growth of Pityrosporum ovale. The community of West Kalimantan utilizing kesum as medicine anti dandruff but there has been no clinical research against such activities. Kesum have been cleaned, dried and crushed, then extracted by using maceration method of ethanol 50%. Furthermore, kesum leaves were divided into four of shampoo formula by varying concentrations of kesum leaves ethanol extract 0% (negative control), 5 % (the fisrt formula), 10 % (the second formula), and 15 % (the third formula). In the next step, each formula shampoo anti dandruff will betested by setting up the media in the form of SDB (Sabouraud Dextrose Broth) and SDA (Sabouraud Dextrose Agar) as well as the microbiological tests include: culture Pityrosporum ovale, calculation of yeast Pityrosporum ovale, and test of inhibition and release of active substances. Shampoo formula of kesum leaves ethanol extract showed that is has antifungal activity towards of the fungi caused by dandruff. The best inhibitor activity has been obtained from the third formula with diameter of clear zone at 2,61 cm.
Zhang, Ci-an; Wu, Feng; Mao, Zhu-jun; Wei, Zhen; Li, Yong-jin; Wei, Pin-kang
2011-08-01
To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.
NASA Astrophysics Data System (ADS)
Fachriyah, E.; Ghifari, M. A.; Anam, K.
2018-04-01
The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.
Kishore, V.; Yarla, N. S.; Zameer, F.; Nagendra Prasad, M. N.; Santosh, M. S.; More, S. S.; Rao, D. G.; Dhananjaya, Bhadrapura Lakkappa
2016-01-01
Andrographis paniculata Nees is an important medicinal plant found in the tropical regions of the world, which has been traditionally used in Indian and Chinese medicinal systems. It is also used as medicinal food. A. paniculata is found to exhibit anti-inflammatory activities; however, its inhibitory potential on inflammatory Group IIA phospholipases A2 (PLA2) and its associated inflammatory reactions are not clearly understood. The aim of the present study is to evaluate the inhibitory/neutralizing potential of ethanolic extract of A. paniculata on the isolated inflammatory PLA2 (VRV-PL-VIIIa) from Daboii rusellii pulchella (belonging to Group IIA inflammatory secretory PLA2 [sPLA2]) and its associated edema-induced activities in Swiss albino mice. A. paniculata extract dose dependently inhibited the Group IIA sPLA2 enzymatic activity with an IC50 value of 10.3 ± 0.5 μg/ml. Further, the extract dose dependently inhibited the edema formation, when co-injected with enzyme indicating that a strong correlation exists between lipolytic and pro-inflammatory activities of the enzyme. In conclusion, results of this study shows that the ethanolic extract of A. paniculata effectively inhibits Group IIA sPLA2 and its associated inflammatory activities, which substantiate its anti-inflammatory properties. The results of the present study warranted further studies to develop bioactive compound (s) in ethanolic extract of A. paniculata as potent therapeutic agent (s) for inflammatory diseases. SUMMARY This study emphasis the anti-inflammatory effect of A. paniculata by inhibiting the inflammatory Group IIA sPLA2 and its associated inflammatory activities such as edema. It was found that there is a strong correlation between lipolytic activity and pro-inflammatory activity inhibition. Therefore, the study suggests that the extract processes potent anti-inflammatory agents, which could be developed as a potential therapeutic agent against inflammatory and related diseases. PMID:27365993
In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey.
Yildirim, Arzu Birinci; Karakas, Fatma Pehlivan; Turker, Arzu Ucar
2013-08-01
To investigate antibacterial and antitumor activities of 51 different extracts prepared with 3 types of solvents (water, ethanol and methanol) of 16 different plant species (Ajuga reptans (A. reptans) L., Phlomis pungens (P. pungens) Willd., Marrubium astracanicum (M. astracanicum) Jacq., Nepeta nuda (N. nuda) L., Stachys annua (S. annua) L., Genista lydia (G. lydia) Boiss., Nuphar lutea (N. lutea) L., Nymphaea alba (N. alba) L., Vinca minor (V. minor) L., Stellaria media (S. media) L., Capsella bursa-pastoris (C. bursa-pastoris) L., Galium spurium (G. spurium) L., Onosma heterophyllum (O. heterophyllum) Griseb., Reseda luteola (R. luteola) L., Viburnum lantana (V. lantana) L. and Mercurialis annua (M. annua) L.) grown in Turkey was conducted. Antibacterial activity was evaluated with 10 bacteria including Streptococcus pyogenes (S. pyogenes), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Escheria coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), Serratia marcescens (S. marcescens), Proteus vulgaris (P. vulgaris), Enterobacter cloacae (E. cloacea), and Klebsiella pneumoniae (K. pneumoniae) by using disc diffusion method. Antitumor activity was evaluated with Agrobacterium tumefaciens (A. tumefaciens)-induced potato disc tumor assay. Best antibacterial activity was obtained with ethanolic extract of P. pungens against S. pyogenes. Ethanolic and methanolic extract of N. alba and ethanolic extract of G. lydia also showed strong antibacterial activities. Results indicated that alcoholic extracts especially ethanolic extracts exhibited strong antibacterial activity against both gram-positive and gram-negative bacteria. Best antitumor activity was obtained with methanolic extracts of N. alba and V. lantana (100% tumor inhibition). Ethanolic extract of N. alba, alcoholic extracts of N. lutea, A. reptans and V. minor flowers, methanolic extracts of G. lydia and O. heterophyllum and ethanolic extract of V. lantana and aqueous extract of V. minor leaves exhibited strong tumor inhibitions. In near future works, identification of active components can be studied for plant extracts having strong bioactivity. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Lu, Chia-Chen; Hsu, Ya-Jing; Chang, Chih-Jung; Lin, Chuan-Sheng; Martel, Jan; Ojcius, David M; Ko, Yun-Fei; Lai, Hsin-Chih; Young, John D
2016-10-01
Medicinal mushrooms have been used for centuries in Asian countries owing to their beneficial effects on health and longevity. Previous studies have reported that a single medicinal mushroom may produce both stimulatory and inhibitory effects on immune cells, depending on conditions, but the factors responsible for this apparent dichotomy remain obscure. We show here that water and ethanol extracts of cultured mycelium from various species (Agaricus blazei Murrill, Antrodia cinnamomea, Ganoderma lucidum and Hirsutella sinensis) produce opposite effects on NK cells. Water extracts enhance NK cell cytotoxic activity against cancer cells, whereas ethanol extracts inhibit cytotoxicity. Water extracts stimulate the expression and production of cytolytic proteins (perforin and granulysin) and NKG2D/NCR cell surface receptors, and activate intracellular signaling kinases (ERK, JNK and p38). In contrast, ethanol extracts inhibit expression of cytolytic and cell surface receptors. Our results suggest that the mode of extraction of medicinal mushrooms may determine the nature of the immunomodulatory effects produced on immune cells, presumably owing to the differential solubility of stimulatory and inhibitory mediators. These findings have important implications for the preparation of medicinal mushrooms to prevent and treat human diseases. © The Author(s) 2016.
Zhang, Shengjuan; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting
2016-05-01
To study the inhibition effect of Salvinia natans ( L. ) All. on harmful algae. With Microcystis aeruginosa as the subjects, deionized water, ethanol, acetone, ethyl acetate as solvent, four kinds of crude extracts from Salvinia natans (L.) All. were prepared, and their alga-inhibiting actions were verified, respectively. The crude extracts of Salvinia natans (L.) All. with better inhibition effect were selected. The components of algal inhibiting material through macroporous resin purification were obtained, and determined by gas chromatography-mass spectrometry (GC-MS). The algicidal effect as follows: ethyl acetate extract > acetone crude extract > ethanol crude extract > water crude extract. Meanwhile, the inhibitory substances of Salvinia natans (L.) All. may be: diacetone alcohol, methyl isobutenyl ketone, 5-methyl-2-(1-methylethyl)-1-hexanol, pentadecanal, 14-heptadecenal, cumene, butyl acetate, ascorbyl dipalmitate, 1, 2-benzenedicarboxylic acid, mono (2- ethylhexyl) ester, dibutyl phthalate and phthalic acid, butyl undecane ester. The algal inhibiting effect research of Salvinia natans (L.) All., as well as its separation and identification of allelochemicals supplys theoretical basis and practical evidence not only for algae control, but also exploitation of algal inhibiting agent.
Vasavi, H S; Arun, A B; Rekha, P D
2016-02-01
Inhibition of quorum sensing (QS), a cell-density dependent regulation of gene expression in bacteria by autoinducers is an attractive strategy for the development of antipathogenic agents. In this study, the anti-QS activity of the ethanolic extract of the traditional herb Centella asiatica was investigated by the biosensor bioassay using Chromobacterium violaceum CV026. The effect of ethyl acetate fraction (CEA) from the bioassay-guided fractionation of ethanol extract on QS-regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic and elastolytic activities, swarming motility, and biofilm formation in Pseudomonas aeruginosa PAO1 were evaluated. Possible mechanism of QS-inhibitory action on autoinducer activity was determined by measuring the acyl homoserine lactone using C. violaceum ATCC31532. Anti-QS compounds in the CEA fraction were identified using thin layer chromatography biosensor overlay assay. Ethanol extract of C. asiatica showed QS inhibition in C. violaceum CV026. Bioassay-guided fractionation of ethanol extract revealed that CEA was four times more active than the ethanol extract. CEA, at 400 μg/mL, completely inhibited violacein production in C. violaceum ATCC12472 without significantly affecting growth. CEA also showed inhibition of QS-regulated phenotypes, namely, pyocyanin production, elastolytic and proteolytic activities, swarming motility, and biofilm formation in P. aeruginosa PAO1 in a concentration-dependent manner. Thin layer chromatography of CEA with biosensor overlay showed anti-QS spot with an Rf value that corresponded with that of standard kaempferol. The anti-QS nature of C. asiatica herb can be further exploited for the formulation of drugs targeting bacterial infections where pathogenicity is mediated through QS. Copyright © 2014. Published by Elsevier B.V.
Wu, Ting-Feng; Chan, Yu-Yi; Shi, Wan-Yin; Jhong, Meng-Ting
2017-01-01
Cordyceps militaris has been widely used as an herbal drug and tonic food in East Asia and has also been recently studied in the West because of its various pharmacological activities such as antitumoral, anti-inflammatory and immunomodulatory effects. In this study, we examined the molecular mechanism underlying the anti-allergic activity of ethanol extract prepared from silkworm pupa-cultivated Cordyceps militaris fruit bodies in activated mast cells. Our results showed that ethanol extract treatment significantly inhibited the release of [Formula: see text]-hexosaminidase (a degranulation marker) and mRNA levels of tumor necrosis factor-[Formula: see text] as well as interleukin-4 in RBL-2H3 cells. The cells were sensitized with 2,4-dinitrophenol specific IgE and then stimulated with human serum albumin conjugated with 2,4-dinitrophenol. Oral administration of 300[Formula: see text]mg/kg ethanol extract significantly ameliorated IgE-induced allergic reaction in mice with passive cutaneous anaphylaxis. Western immunoblotting results demonstrated that ethanol extract incubation significantly inhibited Syk/PI3K/MEKK4/JNK/c-jun biochemical cascade in activated RBL-2H3 cells, which activated the expression of various allergic cytokines. In addition, it suppressed Erk activation and PLC[Formula: see text] evocation, which would respectively evoke the synthesis of lipid mediators and Ca[Formula: see text] mobilization to induce degranulation in stimulated RBL-2H3 cells. A compound, identified as [Formula: see text]-sitostenone, was shown to inhibit [Formula: see text]-hexosaminidase secretion from activated mast cells. Our study demonstrated that ethanol extract contained the ingredients, which could inhibit immediate degranulation and de novo synthesis of allergic lipid mediators and cytokines in activated mast cells.
2013-01-01
Background A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture. Methods Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes. Results Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities. Conclusions It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications. PMID:24330547
Gamboa, Fredy; Chaves, Margarita
2012-01-01
In recent years, the antimicrobial activity of Stevia rebaudiana Bertoni leaf extracts against a large number of microorganisms has been evaluated, but not its activity against microorganisms of importance in dental caries. The aim of this study was to evaluate the antibacterial activity of Stevia rebaudiana Bertoni leaf extracts against cariogenic bacteria. Extracts were obtained from the dried Stevia rebaudiana Bertoni leaves in hexane, methanol, ethanol, ethyl acetate and chloroform. The antimicrobial activity of the 5 extracts against 16 bacterial strains of the genera Streptococcus (n= 12) and Lactobacillus (n= 4) was evaluated by the well diffusion method. Minimal inhibitory concentrations (MIC) of the extracts in hexane, methanol, ethanol, ethyl acetate and chloroform on the 16 bacterial strains were respectively 30 mg/ml, 120 mg/ml, 120 mg/ml, 60 mg/ml and 60 mg/ml. The zones of inhibition present at the MIC were variable, ranging from 9 mm to 17.3 mm. Our results suggest that inhibition zones with a hexane extract are similar to those obtained with ethanol and methanol, but the minimal inhibitory concentration (30 mg/ml) is lower. For the four Lactobacillus species, the inhibition zones obtained between 12.3 and 17.3 mm were somewhat larger with ethyl acetate and chloroform extracts, suggesting they were the most susceptible microorganisms.
Kang, Sun-Young; Kim, Kang-Ju
2015-01-01
In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract. PMID:26247012
Choi, Na-Young; Kang, Sun-Young; Kim, Kang-Ju
2015-01-01
In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract.
Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom.
Soni, Pranay; Bodakhe, Surendra H
2014-05-01
To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.
Dhanabal, S P; Sureshkumar, M; Ramanathan, M; Suresh, B
2005-01-01
The antihyperglycemic effect of ethanolic extract of flowers of Musa sapientum (Musaceae), a herb (used in Indian folklore medicine for the treatment of diabetes mellitus) in alloxan induced diabetic rats. Oral administration of the ethanolic extract showed significant (p < 0.001) blood glucose lowering effect at 200 mg/kg in alloxan induced diabetic rats (120 mg/kg, i.p.) and the extract was also found to significantly (p < 0.001) scavenge oxygen free radicals, viz., superoxide dismutase (SOD), catalase (CAT) and also protein, malondialdehyde and ascorbic acid in vivo. Musa sapientum induced blood sugar reduction may be due to possible inhibition of free radicals and subsequent inhibition of tissue damage induced by alloxan. The antidiabetic activity observed in this plant may be attributed to the presence of flavonoids, alkaloids, steroid and glycoside principles.
Hafsa, Jawhar; Hammi, Khaoula Mkadmini; Khedher, Med Raâfet Ben; Smach, Med Ali; Charfeddine, Bassem; Limem, Khalifa; Majdoub, Hatem
2016-12-01
Carpobrotus edulis is an important South African medicinal plants used as a food and therapeutic agent in traditional medicine. The aim of this study was to determine the phytochemical content, antioxidant, antiglycation and cytotoxic effect against Human Colon Cancer Cell Line (HCT-116) of aqueous and ethanol-water (1:1v/v) extracts of Carpobrotus edulis.The content of total phenolics and flavonoids in aqueous and ethanol-water extract were 151.99μg and 66.35μg gallic acid equivalents/mg of dry extract, and 38.84μg and 21.96μg quercetin/mg of dry extract, respectively. Furthermore, phenolic compositions analysis indicated the presence of seven majority compounds including sinapic acid, ferulic acid, luteolin7-o-glucoside, hyperoside, isoquercitrin, ellagic acid and isorhamnetin 3-O-rutinoside. The ethanol-water extract (100-1000μg/mL) showed better antioxidant activity than aqueous extract. Furthermore, Carpobrotus edulis extracts, especially ethanol-water extract significantly inhibited the formation of fluorescent advanced glycation end products, prevented oxidation-induced protein damage and exhibited a cytotoxic effect against HCT116 cells, with a significant decrease in cell viability after 24h of incubation. The results obtained suggest that the Carpobrotus edulis extracts could be used as an easily accessible source of natural antioxidants and as potential phytochemicals against protein glycation and colon cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
[Inhibition effects of Houttuynia cordata Thunb. on Microcystis aeruginosa].
Liu, Lu; Li, Cheng; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting
2014-05-01
To research the inhibitory effect of Houttuynia cordata Thunb. on Microcystis aeruginosa. M. aeruginosat were treated respectively by H. cordata leaching solution or H. cordata extracts. H. cordata leaching solution extracted by water and the H. cordata extracts extracted by organic solvent (acetone, ethyl acetate, petroleum ether and ethanol, respectively). The inhibition ratios were calculated according to the M. aeruginosa densities, and the allelochemicals of the extract that had the best inhibitiory effect on M. aeruginosa were identified by GC-MS analysis. It was proved that leaching solution of H. cordata and four crude extracts had good inhibitory effect on M. aeruginosa. The inhibitory effects of the four crude extracts were the fraction extracted by ethyl acetate, the fraction extracted by ethanol, the fraction extracted by acetone and the fraction extracted by petroleum ether form strong to weak in turn. Then, the allelochemicals of the fraction extracted by ethyl acetate were indentified, mainly including acetonyldimethylcarbinol, 2,2-dimethyl-3-hexanone, 6-chlorohexanoic and 4-cyanophenyl ester. H. cordata has strong inhibitory effect on water-blooming cyanobacteria and the potential to develop into an ecological M. aeruginosa inhibiting agent.
Chou, C C; Yu, R C
1984-01-01
Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.
Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts.
Nastasijević, Branislav; Lazarević-Pašti, Tamara; Dimitrijević-Branković, Suzana; Pašti, Igor; Vujačić, Ana; Joksić, Gordana; Vasić, Vesna
2012-07-01
The aim of this study was to investigate the inhibitory activity of Gentiana lutea extracts on the enzyme myeloperoxidase (MPO), as well as the antioxidant activity of these extracts and their correlation with the total polyphenol content. Extracts were prepared using methanol (100%), water and ethanol aqueous solutions (96, 75, 50 and 25%v/v) as solvents for extraction. Also, isovitexin, amarogentin and gentiopicroside, pharmacologically active constituents of G. lutea were tested as potential inhibitors of MPO. Antioxidant activity of extracts was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test and also using cyclic voltammetry (CV). Among all extracts, the antioxidant capacity of 50% ethanol aqueous extract was the highest, both when measured using the DPPH test, with IC(50)=20.6 μg/ml, and when using CV. Also, 50% ethanol extract, showed the best inhibition of MPO activity in comparison with other extracts. In the group of the selected G. lutea constituents, gentiopicroside has proved to be the strongest inhibitor of MPO, with IC(50)=0.8 μg/ml. Also, the concentration of G. lutea constituents were determined in all extracts, using Ultra Performance Liquid Chromatography (UPLC). Copyright © 2012 Elsevier B.V. All rights reserved.
Al-Howiriny, Tawfeq; Al-Sohaibani, Mohammed; El-Tahir, Kamal; Rafatullah, Syed
2003-01-01
An ethanolic extract of Parsley, Petroselinum crispum (Mill.) Nym.ex A.W. Hill (Umbelliferae), was tested for its ability to inhibit gastric secretion and to protect gastric mucosa against the injuries caused by pyloric ligation, hypothermic restraint stress, indomethacin and cytodestructive agents (80% ethanol, 0.2 M NaOH and 25% NaCl) in rats. The extract in doses of 1 and 2 g/kg body weight had a significant antiulcerogenic activity on the models used. Besides, ethanol-induced depleted gastric wall mucus and non-protein sulfhydryl contents were replenished by pretreatment with Parsley extract. Acute toxicity tests showed a large margin of safety for the extract. The phytochemical screening of Parsley leaves revealed the presence of tannins, flavonoids, sterols and/or triterpenes.
Nguelefack, T B; Fotio, A L; Watcho, P; Wansi, S L; Dimo, T; Kamanyi, A
2004-05-01
The aqueous and ethanol extracts of the dry leaves of Kalanchoe crenata (300 and 600 mg/kg) were evaluated for their analgesic properties on the pain induced by acetic acid, formalin and heat in mice and by pressure on rats. The ethanol extract of K. crenata at a dose of 600 mg/kg produced an inhibition of 61.13% on pain induced by acetic acid and 50.13% for that induced by formalin. An inhibition of 67.18% was observed on pain induced by heat 45 min after the administration of the extract. The aqueous extract administered at a dose of 600 mg/kg produced a maximum effect of 25% on pain induced by pressure. These activities were similar to those produced by a paracetamol-codeine association, while indomethacin exhibited a protective effect only against the writhing test. Our results suggest that the leaves of K. crenata could be a source of analgesic compounds. Copyright 2004 John Wiley & Sons, Ltd.
Ben Othman, Mahmoud; Bel Hadj Salah-Fatnassi, Karima; Ncibi, Saida; Elaissi, Amer; Zourgui, Lazhar
2017-07-01
The antimicrobial effects of essential oil, ethanol and aqueous extracts of Teucrium polium L. were investigated against 13 microorganisms. Extracts and essential oil were obtained from maceration, decoction and hydrodistillation respectively. Samples were tested for their antimicrobial activity using the disk diffusion, the agar dilution and the agar incorporation method. Essential oil was analysed using GC/MS, results showed that β-pinene (35.97%) and α-pinene (13.32%) were the main components. Furthermore, essential oil exhibited the highest antimicrobial activity, it was most effective against Proteus mirabilis, Staphylococcus aureus and Citrobacter freundei where inhibition zone ranged between 15 and 25 mm, and with the microbial inhibitory concentration (MIC) values of 0.078-0.156 mg/ml. The oil and ethanol extract showed the best antifungal activity against Microsporum canis , Scopulariopsis brevicaulis , and Trichophyton rubrum with the inhibition percentage (I%) ranging from 18.94 to 100%. However, none of the samples exhibited antifungal activity against Aspergillus fumigatus . In this study, the obtained results showed significant effects of essential oils and ethanol extracts of T. polium which may used as a substitute to the synthetic drugs against certain microbial diseases.
Kapewangolo, Petrina; Knott, Michael; Shithigona, Regina E K; Uusiku, Sylvia L; Kandawa-Schulz, Martha
2016-10-24
Hoodia gordonii products are widely commercialized for anti-obesity purposes; however, minimal research is available on the other health properties demonstrated by this popular herbal plant. H. gordonii crude extracts (ethanol and ethyl acetate) were assayed for in vitro anti-HIV-1 protease (PR), reverse transcriptase (RT) and integrase activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing power assays were used for the antioxidant analysis. In addition, qualitative and quantitative phytochemical analyses of the extracts were determined using standard methods. H. gordonii extract demonstrated good inhibition against HIV RT with IC 50 values of 73.55 ± 0.04 and 69.81 ± 9.45 μg/mL for ethanol and ethyl acetate extracts, respectively. Both extracts also demonstrated inhibitory activity against HIV PR with IC 50 values of 97.29 ± 0.01 and 63.76 ± 9.01 μg/mL for ethanol and ethyl acetate extracts. In addition, H. gordonii also showed good antioxidant activity with IC 50 values of 124.6 ± 11.3 and 126.2 ± 3.15 μg/mL obtained for ethanol and ethyl acetate extracts, respectively. The reducing power of H. gordonii extracts increased as the concentration increased which confirmed the presence of antioxidants (reductants) in the extracts. Phytochemical screening of H. gordonii revealed the presence of phenolics, alkaloids, terpenes, steroids, cardiac glycosides and tannins in the ethanolic extract, while the ethyl acetate extract only showed the presence of phenolics, cardiac glycosides and steroids. The total phenolic content was 420 ± 0.17 and 319.9 ± 0.2 mg GAE/g for the ethanol and ethyl acetate extracts, respectively. The ethanol extract, which revealed the presence of tannins, had a tannin content of 330 ± 0.2 mg TAE/g extract. This data suggests that H. gordonii has good in vitro inhibition against selected HIV-1 enzymes as well as antioxidant properties, suggesting new potential uses for this commercial plant.
Chatatikun, Moragot; Chiabchalard, Anchalee
2017-11-09
Ultraviolet radiation from sunlight induces overproduction of reactive oxygen species (ROS) resulting in skin photoaging and hyperpigmentation disorders. Novel whitening and anti-wrinkle compounds from natural products have recently become of increasing interest. The purpose of this study was to find products that reduce ROS in 14 Thai plant extracts. To determine total phenolic and flavonoid content, antioxidant activity, anti-tyrosinase activity and anti-collagenase activity, we compared extracts of 14 Thai plants prepared using different solvents (petroleum ether, dichloromethane and ethanol). Antioxidant activities were determined by DPPH and ABTS assays. Total phenolic content of the 14 Thai plants extracts was found at the highest levels in ethanol followed by dichloromethane and petroleum ether extracts, respectively, while flavonoid content was normally found in the dichloromethane fraction. Scavenging activity ranged from 7 to 99% scavenging as assessed by DPPH and ABTS assays. The ethanol leaf extract of Ardisia elliptica Thunb. had the highest phenolic content, antioxidant activity and collagenase inhibition, while Cassia alata (L.) Roxb. extract had the richest flavonoid content. Interestingly, three plants extracts, which were the ethanolic fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb., had high antioxidant content and activity, and significantly inhibited both tyrosinase and collagenase. Our finding show that the ethanol fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb. show promise as potential ingredients for cosmetic products such as anti-wrinkle agents and skin whitening products.
Inhibition of microglial activation by elderberry extracts and its phenolic components
Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.
2015-01-01
Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406
Suzuki, Toshihiro; Seta, Kohei; Nishikawa, Chiaki; Hara, Eri; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki
2015-01-01
To improve the ethanol tolerance of the Klebsiella variicola strain TB-83, we obtained the streptomycin-resistant, ethanol-tolerant mutant strain TB-83D by a ribosome engineering approach. Strain TB-83D was able to grow in the presence of 7% (v/v) ethanol and it showed higher ethanol production than strain TB-83. Examination of various culture conditions revealed that yeast extract was essential for ethanol production and bacterial growth. In addition, ethanol production was elevated to 32g/L by the addition of yeast extract; however, ethanol production was inhibited by formate accumulation. With regard to cost reduction, the use of corn steep liquor (CSL) markedly decreased the formate concentration, and 34g/L ethanol was produced by combining yeast extract with CSL. Our study is the first to improve ethanol tolerance and productivity by a ribosome engineering approach, and we found that strain TB-83D is effective for ethanol production from glycerol. Copyright © 2014 Elsevier Ltd. All rights reserved.
Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom
Soni, Pranay; Bodakhe, Surendra H.
2014-01-01
Objective To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Methods Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. Results At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. Conclusions It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents. PMID:25183127
Wang, Wei; Zu, Yuangang; Fu, Yujie; Efferth, Thomas
2012-01-01
In this study, the aqueous and ethanolic extracts (leaves, stems and fruits) from Morus alba L., a traditional Chinese medicine, were evaluated for their antioxidant and antimicrobial properties. Ethanolic extracts showed higher contents of both total phenolics and flavonoids than aqueous extracts. The total phenolic content was in the order of: leaf extracts > fruit extracts > stem extracts, whereas the total flavonoids was: leaf extracts > stem extracts > fruit extracts. Using DPPH assays, the concentrations providing 50% inhibition (IC(50)) values of aqueous extracts from leaves, stems and fruits were 7.11 ± 1.45 mg/ml, 86.78 ± 3.21 mg/ml and 14.38 ± 2.83 mg/ml, respectively, whereas the IC(50) values of ethanolic extracts were 3.11 ± 0.86 mg/ml, 14.62 ± 2.45 mg/ml and 12.42 ± 2.76 mg/ml, respectively. In sum, the antioxidant activities of ethanolic extracts from M. alba L. were stronger than the aqueous extracts, and in the order of: leaf extracts > fruit extracts > stem extracts. The ethanolic extracts exhibited moderate antimicrobial activities, whereas the aqueous extracts showed poor antimicrobial properties in our test system. This study validated the medicinal potential of M. alba L.
Phytochemical contents and biological evaluation of Ruta chalepennsis L. growing in Saudi Arabia.
Alotaibi, Shorok M; Saleem, Monerah S; Al-Humaidi, Jehan G
2018-05-01
Phytochemical screening of Ruta chalepensis L. exhibited the presence of different chemical groups. The dried aerial parts of the plant was total extracted by ethanol and successively using chloroform, ethyl acetate and Butanol, out of the successive extracts four compounds namely, scopletin, kaempferol, quercetin, quercetin 3- O -α-L-rhamno glucopyranosyl (Rutin) were isolated and biological evaluations. Total ethanol and successive extracts; chloroform, ethyl acetate and Butanol were produced excellent antimicrobial activities against gram negative bacteria, gram positive bacteria and fungi. Ethyl acetate extract was the best for inhibition of the microorganism's growth. All extracts (total ethanol, and successive extracts) showed DPPH radical scavenging activity in a concentration-dependent manner. The best antioxidant activity was obtained by ethyl acetate & n -butanol extract (94.28%, IC 50 = 56.6 µg/ml). Also All extracts (total ethanol, and successive extracts) showed anticoagulant activity at higher concentration with prolonged clotting time 6:30 and 4:30 s at 10 mg/ml concentrations, respectively.
Bioactivity and Toxicity of Senna cana and Senna pendula Extracts
Ferreira Júnior, J. M.; Oliveira, I. R.; Batista, F. L. A.; Pinto, C. C. C.; Silva, A. A. S.; Silva, M. G. V.
2018-01-01
This work investigated the content of total polyphenolic compounds and flavonoids as well as their toxicity and larvicidal and acetylcholinesterase inhibitory activities. The antioxidant activities of two medicinal Senna species extracts (Senna cana and Senna pendula) were also investigated. The ethanol extract of the leaves of S. cana and the ethanol extract of the branches of S. pendula presented the best performance in the DPPH/FRAP and ABTS/ORAC assays, respectively. For the inhibition of acetylcholinesterase, the hexane extract of the flowers of S. pendula presented the lowest IC50 value among the ethanol extracts of the leaves of S. cana and showed the best performance in some assays. The hexane extract of the leaves of S. pendula and the hexane extract of the branches of S. cana were moderate to Artemia salina Leach. In the quantification of phenols and flavonoids, the ethanol extract of the leaves of S. cana presented the best results. The ethanol extracts of the leaves of S. cana were found to be rich in antioxidants, phenolic compounds, and flavonoids. These results indicate the antioxidant potential of the extracts of Senna species and can be responsible for some of the therapeutic uses of these plants. PMID:29808121
Bioactivity and Toxicity of Senna cana and Senna pendula Extracts.
Monteiro, J A; Ferreira Júnior, J M; Oliveira, I R; Batista, F L A; Pinto, C C C; Silva, A A S; Morais, S M; Silva, M G V
2018-01-01
This work investigated the content of total polyphenolic compounds and flavonoids as well as their toxicity and larvicidal and acetylcholinesterase inhibitory activities. The antioxidant activities of two medicinal Senna species extracts ( Senna cana and Senna pendula ) were also investigated. The ethanol extract of the leaves of S. cana and the ethanol extract of the branches of S. pendula presented the best performance in the DPPH/FRAP and ABTS/ORAC assays, respectively. For the inhibition of acetylcholinesterase, the hexane extract of the flowers of S. pendula presented the lowest IC 50 value among the ethanol extracts of the leaves of S. cana and showed the best performance in some assays. The hexane extract of the leaves of S. pendula and the hexane extract of the branches of S. cana were moderate to Artemia salina Leach. In the quantification of phenols and flavonoids, the ethanol extract of the leaves of S. cana presented the best results. The ethanol extracts of the leaves of S. cana were found to be rich in antioxidants, phenolic compounds, and flavonoids. These results indicate the antioxidant potential of the extracts of Senna species and can be responsible for some of the therapeutic uses of these plants.
NASA Astrophysics Data System (ADS)
Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun; Jo, Cheorun; Woo Byun, Myung; Jeun An, Bong
2007-11-01
Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.
Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn.
Kader, Golam; Nikkon, Farjana; Rashid, Mohammad Abdur; Yeasmin, Tanzima
2011-10-01
To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi. The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control. At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL). It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L).
Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand
2013-01-01
Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039
Gondi, Mahendranath; Prasada Rao, U J S
2015-12-01
Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.
Cardoso, Nathalia N R; Alviano, Celuta S; Blank, Arie F; Arrigoni-Blank, Maria de Fátima; Romanos, Maria Teresa V; Cunha, Marcel M L; da Silva, Antonio Jorge R; Alviano, Daniela S
2017-12-01
Ocimum basilicum L. (Lamiaceae) has been used in folk medicine to treat headaches, kidney disorders, and intestinal worms. This study evaluates the anti-cryptococcal activity of ethanol crude extract and hexane fraction obtained from O. basilicum var. Maria Bonita leaves. The MIC values for Cryptococcus sp. were obtained according to Clinical and Laboratory Standards Institute in a range of 0.3-2500 μg/mL. The checkerboard assay evaluated the association of the substances tested (in a range of 0.099-2500 μg/mL) with amphotericin B and O. basilicum essential oil for 48 h. The ethanol extract, hexane fraction and associations in a range of 0.3-2500 μg/mL were tested for pigmentation inhibition after 7 days of treatment. The inhibition of ergosterol synthesis and reduction of capsule size were evaluated after the treatment with ethanol extract (312 μg/mL), hexane fraction (78 μg/mL) and the combinations of essential oil + ethanol extract (78 μg/mL + 19.5 μg/mL, respectively) and essential oil + hexane fraction (39.36 μg/mL + 10 μg/mL, respectively) for 24 and 48 h, respectively. The hexane fraction presented better results than the ethanol extract, with a low MIC (156 μg/mL against C. neoformans T 444 and 312 μg/mL against C. neoformans H99 serotype A and C. gattii WM779 serotype C). The combination of the ethanol extract and hexane fraction with amphotericin B and essential oil enhanced their antifungal activity, reducing the concentration of each substance needed to kill 100% of the inoculum. The substances tested were able to reduce the pigmentation, capsule size and ergosterol synthesis, which suggest they have important mechanisms of action. These results provide further support for the use of ethanol extracts of O. basilicum as a potential source of antifungal agents.
Jiang, Shengjuan; Wang, Yuliang; Zhang, Xiaolong
2016-07-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention.
JIANG, SHENGJUAN; WANG, YULIANG; ZHANG, XIAOLONG
2016-01-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention. PMID:27347087
The cytotoxic effect of Elephantopus scaber Linn extract against breast cancer (T47D) cells
NASA Astrophysics Data System (ADS)
Sulistyani, N.; Nurkhasanah
2017-11-01
Breast cancer is one of the main cause of death. Elephantopus scaber Linn (ES) which has been used as a traditional medicine contains an antitumor compounds. This study aimed to explore the active fraction from ethanolic extract of ES as anticancer and to determine its inhibition effect on the cell proliferation cycle of breast cancer (T47D) cells. The ES leaf was macerated with ethanol and then evaporated to get the concentrated extract. The extract was fractionated using petroleum ether, chloroform, and methanol respectively. The cytotoxic activity of each fraction was carried out with MTT method, and the inhibition of cell cycle test were observed by flowcytometry method. The result showed that ES and the fractions have cytotoxic activity against T47D cell lines with IC50 values of extract, petroleum ether, chloroform, and methanol fractions were 58.36±2.38, 132.17±9.69, 7.08±2.11, and 572.89±69.23 µg/mL. The inhibition effect of ethanol extract on the lifecycle of cells was occured in sub G1 phase. There was no prolonging of G1, S, G2/M and polyploidy phase of T47D cell lines. The chloroform fraction of ES is the most cytotoxic fraction against T47D cells without prolonging the cell lifecycle.
USDA-ARS?s Scientific Manuscript database
We investigated the anti-metastatic activity of four Hericium erinaceus edible mushroom extracts using CT-26 murine colon carcinoma cells as an indicator of inhibition of cell migration to the lung. Hot water (HWE) and microwaved 50% ethanol (MWE) extracts of Hericium erinaceus strongly elicited ca...
Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka
2002-11-01
It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (p<0,001) while aqueous extract (50 microg/ml) by 43% (p<0,01). The ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production in monocytes by 76% (p<0,01). Effective concentrations (25-100 microg/ml) were well below the cytotoxic levels of the extracts which started at 1 mg/ml as assessed by LDH leakage and trypan blue exclusion. Penetration of some active substances into the cells was necessary for inhibition to take place as juged from the effect of preincubation time. These results demonstrate that artichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.
Granados-Echegoyen, Carlos; Pérez-Pacheco, Rafael; Soto-Hernández, Marcos; Ruiz-Vega, Jaime; Lagunez-Rivera, Luicita; Alonso-Hernandez, Nancy; Gato-Armas, Rene
2014-08-01
To determine larvicidal activity of the essential oil, hydrolat and botanical extracts derived from leaves of Pseudocalymma alliaceum on mosquito larvae of Culex quinquefasciatus. Groups of twenty larvae were used in the larvicidal assays. The mortality, relative growth rate, the larval and pupal duration and viability was estimated. The essential oil was analyzed by solid phase microextraction using gas chromatography coupled to mass spectrometry. Essential oil at 800 ppm showed larvicidal activity at 24 h with lethal values of LC50 and LC90 of 267.33 and 493.63 ppm. The hydrolat at 20% and 10% on 2nd stage larvae showed 100% effectiveness after 24 h. The aqueous extract at 10% had a relative growth index of 0.58, while the ethanolic and methanolic extract obtained values of 0.76 and 0.70 and control reached 0.99. Larvae treated with 10% of methanol, ethanol and aqueous extract showed a reduction in larval duration of 5.00, 2.20 and 4.35 days; ethanol extract at 1% provoke decrease of 2.40 days in the development and exhibited an increment of 3.30 days when treated with 0.01%. Aqueous, ethanol and methanol extracts at 10% reduced in 6.15, 3.42 and 5.57 days pupal development. The main compounds were diallyl disulfide (50.05%), diallyl sulfide (11.77%) and trisulfide di-2-propenyl (10.37%). The study demonstrated for the first time, the larvicidal activity of the essential oil and hydrolat of Pseudocalymma alliaceum; aqueous, ethanol and methanol extracts inhibited the normal growth and development of mosquito larvae, prolonging and delaying larval and pupal duration. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Dhiman, Romika; Aggarwal, Neeraj; Aneja, Kamal Rai; Kaur, Manpreet
2016-01-01
In the present investigation, comparison of antimicrobial activities of different spices, Curcuma longa, Zingiber officinale, and Mentha arvensis, and medicinal herbs, such as Withania somnifera, Rauvolfia serpentina, Emblica officinalis, Terminalia arjuna, and Centella asiatica, was evaluated. Different extraction solvents (acetone, methanol, ethanol, and water) were used and extracts were examined against Bacillus cereus, Serratia sp., Rhodotorula mucilaginosa, Aspergillus flavus, and Penicillium citrinum isolated from juices. Extracts from the medicinal herb and spices have significant activity. B. cereus was the most sensitive and R. mucilaginosa was the most resistant among the microorganisms tested. Ethanolic and methanolic extract of C. asiatica displayed maximum diameter of inhibition zone against bacteria and yeast and percentage mycelial inhibition against moulds. This study confirmed the potential of selected extracts of spices as effective natural food preservative in juices. PMID:26880927
Anti-lipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México.
Villa-Ruano, Nemesio; Zurita-Vásquez, Guilibaldo G; Pacheco-Hernández, Yesenia; Betancourt-Jiménez, Martha G; Cruz-Durán, Ramiro; Duque-Bautista, Horacio
2013-01-01
We report the results of in vitro anti-lipase and antioxidant assays using crude ethanolic extracts from 30 plants grown in Oaxaca, México. Anti-lipase tests were performed by using porcine pancreatic lipase (PPL) [EC 3.1.1.3] from Affymetrix/USB. The extracts of Solanum erianthum, Salvia microphylla, Brungmansia suaveolens and Cuphea aequipetala showed up to 60% PPL inhibition. The effect of these extracts on the kinetic parameters of PPL (Km= 0.36 mM, and Vmax=0.085 mM min -1) revealed that the alcoholic preparations of S. erianthum and C. aequipetala engendered a non-competitive inhibition (Vmax=0.055 mM min -1; Vmax= 0.053 mM min -1), whereas those of S. microphylla and B. suaveolens produced a mixed inhibition (Km= 0.567 mM, Vmax=0.051 mM min _1; Km=0.643 mM, Vmax= 0.042 mM min ¹). In addition to these findings, seven extracts from different plants were able to inhibit PPL in the range of 30-50%. Antioxidant tests against 2,2-Diphenyl-1-picryl hydrazyl (DPPH) confirmed that Arctostaphylos pungens, Gnaphalium roseum, Crotalaria pumila, Cuphea aequipetala, Rhus chondroloma, and Satureja laevigata possess relevant antioxidant activity (IC(5)0=50-80 μg mL¹). The general composition of the most effective ethanolic extracts was obtained in order to confirm their known chemistry reported by previous works. Comprehensive chemical analysis of the ethanolic extracts and their poisoning effects suggests that S. microphylla, C. aequipetala and A. pungens could be considered as the best sources with both desired properties.
Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A
2015-08-01
The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. © The Author(s) 2013.
Wang, Sheng; Zhao, Yang; Zhang, Junqing; Huang, Xiaoxing; Wang, Yifei; Xu, Xiaotao; Zheng, Bin; Zhou, Xue; Tian, Huajie; Liu, Li; Mei, Qibing
2015-06-20
The fructus Alpinia oxyphylla Miq. (AOM) has been used for treating diarrhea with spleen deficiency and gastralgia for thousands of years. A number of traditional Chinese medicine formulae provide AOM as an alternative herbal treatment for diarrhea, but the scientific basis for this usage has not been well defined. In this study, we tried to investigate the antidiarrheal activity and possible mechanisms of Fructus AOM, aiming to enrich our understanding to the scientific meanings and theoretical significance of Fructus AOM in clinical practice. The fructus of AOM collected from Hainan province in China were macerated in the 95% ethanol to obtain the crude 95% ethanol extract, followed by subjected to chromatographic separation over a Diaion HP20 column to obtain 90% and 50% ethanol eluted fractions. The activities of the crude extract and fractions on castor oil induced acute diarrhea, rhubarb induced chronic diarrhea, gastrointestinal transit (GIT) in mice, and contractions of isolated guinea-pig ileum were evaluated. Additionally, nitric oxide (NO), gastrointestinal peptides gastrin (GAS), motilin (MTL) and somatostatin (SS) levels that related to gastrointestinal motilities were detected to demonstrate the potential mechanisms. Ultimately, LC-MS/MS method was utilized to ensure the chemical consistency. The 95% ethanol extract and 90% ethanol eluted fraction significantly delayed the onset time and decreased the wet faeces proportion compared with control group in the castor oil induced acute diarrhea mice. In terms of further evaluation of antidiarrheal activity, the 95% ethanol extract and 90% ethanol elution displayed significant inhibition of the intestinal propulsion at the two highest oral doses of 20 g crude drug/kg and 1g/kg. Moreover the 95% ethanol extract (10 and 20 g crude drug/kg) and 90% ethanol elution (0.5 and 1g/kg) could significantly inhibit the GIT, which was partially attributed to the increase in NO and SS levels, and the decreased MTL. In vitro spontaneous contractions of the isolated guinea pig ileum induced by carbachol, neostigmine and histamine were attenuated by both the extract and elution. Phytochemical analysis of 95% ethanol extract and its fractions identified the presence of diphenylheptanes, sesquiterpenes, and flavones as the major components. Our in vivo and in vitro data could partly support and justify the traditional usage of Fructus AOM on the treatment of diarrhea in traditional medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chen, Yali; Lv, Jing; Li, Kun; Xu, Jing; Li, Mingyan; Zhang, Wen; Pang, Xiufeng
2016-10-01
The sporoderm-broken spores of Ganoderma lucidum (SBGS) and their extracts exhibited a wide range of biological activities. In the present study, we prepare ethanol/ethanol extract (E/E-SBGS) and ethanol/aqueous extract (E/A-SBGS) from SBGS and examine their antitumor activities against human lung cancer. Our results showed that E/E-SBGS, not E/A-SBGS, inhibited the survival and migration of lung cancer cells in a dose-dependent manner. E/E-SBGS arrested cell cycle at G2/M phase and triggered apoptosis by decreasing the expression and activity of cell cycle regulators, cyclin B1 and cdc2, as well as anti-apoptotic proteins, Bcl-2 and Bcl-xl. Consequently, colony formation of lung cancer cells was markedly blocked by E/E-SBGS at subtoxic concentrations. Oral administration of both E/E-SBGS and SBGS significantly suppressed tumor volume and tumor weight without gross toxicity in mice. Mechanism study showed that E/E-SBGS dose-dependently suppressed the activation of Akt, the mammalian target of rapamycin (mTOR) and their downstream molecules S6 kinase and 4E-BP1 in treated tumor cells. Taken together, these results indicate that the ethanol extract of sporoderm-broken spores of G. lucidum suppresses the growth of human lung cancer, at least in part, through inhibition of the Akt/mTOR signaling pathway, suggesting its potential role in cancer treatments.
Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus
Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross
2009-01-01
The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...
Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; Aguirre, C.; Chan, R.; Meyer, K.; Kuhlman, A.; Townesmith, A.; Effio-Carbajal, J.; Frías-Fernandez, F.; Benito, M.
2010-01-01
Aim The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as “inflammation”. The aim of this study was to evaluate the Minimum Inhibitory Concentration (MIC) of their antibacterial properties against Gram-positive and Gram-negative bacteria. Materials and methods The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. Results The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against E. coli and 38 extracts against S. aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256mg/ml, with only 36 species showing inhibitory concentrations of <4mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. Conclusions The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. PMID:20678568
Bussmann, R W; Malca-García, G; Glenn, A; Sharon, D; Chait, G; Díaz, D; Pourmand, K; Jonat, B; Somogy, S; Guardado, G; Aguirre, C; Chan, R; Meyer, K; Kuhlman, A; Townesmith, A; Effio-Carbajal, J; Frías-Fernandez, F; Benito, M
2010-10-28
The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as "inflammation". The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of their antibacterial properties against gram-positive and gram-negative bacteria. The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against Escherichia coli and 38 extracts against Staphylococcus aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256 mg/ml, with only 36 species showing inhibitory concentrations of <4 mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Wigati, Dyan; Anwar, Khoerul; Sudarsono; Nugroho, Agung Endro
2017-01-01
The effect of ethanolic extract of Morinda citrifolia leaves and fruit on blood pressure in dexamethasone-induced hypertension rat was evaluated. Total phenolic content of Morinda citrifolia leaves ethanolic extract (MCLEE) and Morinda citrifolia leaves ethanolic extract (MCFEE) was 1.789 ± 0.116 and 1.677 ± 0.051 mg of gallic acid equivalents per gram sample, respectively. Rutin level in MCLEE was 0.92 ± 0.19%, and scopoletin level in MCFEE was 0.46 ± 0.05%. MCLEE, MCFEE, and its extract combination significantly decreased the blood pressure of hypertensive rats. The combination group showed highest hypotensive activity by lowering systolic blood pressure by 16.71 ± 3.95%, diastolic blood pressure by 21.49 ± 7.90%, and mean arterial blood pressure by 19.58% ± 6.35. All extract treatments have not been able to repair or inhibit renal damage caused by dexamethasone induction. © The Author(s) 2016.
Wigati, Dyan; Anwar, Khoerul; Sudarsono; Nugroho, Agung Endro
2016-01-01
The effect of ethanolic extract of Morinda citrifolia leaves and fruit on blood pressure in dexamethasone-induced hypertension rat was evaluated. Total phenolic content of Morinda citrifolia leaves ethanolic extract (MCLEE) and Morinda citrifolia leaves ethanolic extract (MCFEE) was 1.789 ± 0.116 and 1.677 ± 0.051 mg of gallic acid equivalents per gram sample, respectively. Rutin level in MCLEE was 0.92 ± 0.19%, and scopoletin level in MCFEE was 0.46 ± 0.05%. MCLEE, MCFEE, and its extract combination significantly decreased the blood pressure of hypertensive rats. The combination group showed highest hypotensive activity by lowering systolic blood pressure by 16.71 ± 3.95%, diastolic blood pressure by 21.49 ± 7.90%, and mean arterial blood pressure by 19.58% ± 6.35. All extract treatments have not been able to repair or inhibit renal damage caused by dexamethasone induction. PMID:27313228
Shukla, Shruti; Mehta, Archana; John, Jinu; Singh, Siddharth; Mehta, Pradeep; Vyas, Suresh Prasad
2009-08-01
The aim of this study was to assess the in vitro potential of ethanolic extract of Caesalpinia bonducella seeds as a natural antioxidant. The DPPH activity of the extract (20, 40, 50, 100 and 200 microg/ml) was increased in a dose dependent manner, which was found in the range of 38.93-74.77% as compared to ascorbic acid (64.26-82.58%). The IC(50) values of ethanolic extract and ascorbic acid in DPPH radical scavenging assay were obtained to be 74.73 and 26.68 microg/ml, respectively. The ethanolic extract was also found to scavenge the superoxide generated by EDTA/NBT system. Measurement of total phenolic content of the ethanolic extract of C. bonducella was achieved using Folin-Ciocalteau reagent containing 62.50mg/g of phenolic content, which was found significantly higher when compared to reference standard gallic acid. The ethanolic extract also inhibited the hydroxyl radical, nitric oxide, superoxide anions with IC(50) values of 109.85, 102.65 and 89.84 microg/ml, respectively. However, the IC(50) values for the standard ascorbic acid were noted to be 70.79, 65.98 and 36.68 microg/ml respectively. The results obtained in this study clearly indicate that C. bonducella has a significant potential to use as a natural antioxidant agent.
Ben Salem, Maryem; Ben Abdallah Kolsi, Rihab; Dhouibi, Raouia; Ksouda, Kamilia; Charfi, Slim; Yaich, Mahdi; Hammami, Serria; Sahnoun, Zouheir; Zeghal, Khaled Mounir; Jamoussi, Kamel; Affes, Hanen
2017-06-19
Diabetes mellitus (DM) is associated with hyperglycemia, inflammatory disorders and abnormal lipid profiles, currently the extracts from leaves of cynara scolymus has been discovered to treat metabolic disorders and has been stated by multitudinous scientists according to a good source of polyphenols compounds. The present study aimed to evaluate the protective effect of the ethanol leaves extract of C. scolymus in alloxan induced stress oxidant, hepatic-kidney dysfunction and histological changes in liver, kidney and pancreas of different experimental groups of rats. We determinate the antioxidant activity by ABTS .+ and antioxidant total capacity (TAC) of all extracts of C. scolymus leaves, the inhibition of α-amylase activity in vitro was also investigated. Forty male Wistar rats were induced to diabetes with a single dose intraperitoneal injection (i.p.) of alloxan (150 mg/kg body weight (b.w.)). Diabetic rats were orally and daily administrated of ethanol extract from C. scolymus at two doses (200-400 mg/kg, b.w) or (12 mg/kg, b.w) with anti-diabetic reference drug, Acarbose for one month. Ethanol extract of C. scolymus effect was confirmed by biochemical analysis, antioxidant activity and histological study. The results indicated that the ethanol extract from leaves of C. scolymus showed the highest antioxidant activity by ABTS .+ (499.43g± 39.72 Trolox/g dry extract) and (128.75 ± 8.45 mg VC /g dry extract) for TAC and endowed the powerful inhibition in vitro of α-amylase activity with IC50=72,22 ug/uL. In vivo, the results showed that ethanol extract from the leaves of C. scolymus (200-400 mg/kg) decreased significantly (p < 0.001) the α-amylase levels in serum of diabetic rats, respectively associated with significant reduction (p < 0.001) in blood glucose rate of 42,84% and 37,91% compared to diabetic groups after 28 days of treatment, a significant lowered of plasma total cholesterol (T-Ch) by 18,11% and triglyceride (TG) by 60,47%, significantly and low-density lipoproteins (LDL-C) by 37,77%, compared to diabetic rats, moreover, the administration of ethanol extract appears to exert anti-oxidative activity demonstrated by the increase of CAT, SOD and GSH activities in liver, kidney and pancreas of diabetic rats. This positive effect of the ethanol extract from C. scolymus was confirmed by histological study. These observed strongly suggest that ethanol extract from the leaves of C. scolymus has anti-hyperglycemic properties, at least partly mediated by antioxidant and hypolipidemic effects.
Mogana, R; Teng-Jin, K; Wiart, C
2013-01-01
The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.
Protective effects of Ginkgo biloba extract on the ethanol-induced gastric ulcer in rats
Chen, Sheng-Hsuan; Liang, Yu-Chih; Chao, Jane CJ; Tsai, Li-Hsueh; Chang, Chun-Chao; Wang, Chia-Chi; Pan, Shiann
2005-01-01
AIM: To evaluate the preventive effect of Ginkgo biloba extract (GbE) on ethanol-induced gastric mucosal injuries in rats. METHODS: Female Wistar albino rats were used for the studies. We randomly divided the rats for each study into five subgroups: normal control, experimental control, and three experimental groups. The gastric ulcers were induced by instilling 1 mL 50% ethanol into the stomach. We gave GbE 8.75, 17.5, 26.25 mg/kg intravenously to the experimental groups respectively 30 min prior to the ulcerative challenge. We removed the stomachs 45 min later. The gastric ulcers, gastric mucus and the content of non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), c-Jun kinase (JNK) activity in gastric mucosa were evaluated. The amount of gastric juice and its acidity were also measured. RESULTS: The findings of our study are as follows: (1) GbE pretreatment was found to provide a dose-dependent protection against the ethanol-induced gastric ulcers in rats; (2) the GbE pretreatment afforded a dose-dependent inhibition of ethanol-induced depletion of stomach wall mucus, NP-SH contents and increase in the lipid peroxidation (increase MDA) in gastric tissue; (3) gastric ulcer induced by ethanol produced an increase in JNK activity in gastric mucosa which also significantly inhibited by pretreatment with GbE; and (4) GbE alone had no inhibitory effect on gastric secretion in pylorus-ligated rats. CONCLUSION: The finding of this study showed that GbE significantly inhibited the ethanol-induced gastric lesions in rats. We suggest that the preventive effect of GbE may be mediated through: (1) inhibition of lipid peroxidation; (2) preservation of gastric mucus and NP-SH; and (3) blockade of cell apoptosis. PMID:15968732
Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D
2013-05-20
Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chakravarti, Bandana; Maurya, Ranjani; Siddiqui, Jawed Akhtar; Bid, Hemant Kumar; Rajendran, S M; Yadav, Prem P; Konwar, Rituraj
2012-06-26
Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc. However, the anti-cancer activity of this plant or its constituents has never been studied systematically in any cancer types so far. To evaluate the anti-cancer activities of the ethanolic extract of W. tomentosa and identified constituent active molecule(s) against breast cancer. Powdered leaves of W. tomentosa were extracted with ethanol. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa were tested for its anti-proliferative and pro-apoptotic effects in breast cancer cells MCF-7 and MDA-MB-231. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa inhibited the proliferation of human breast cancer cell lines, MCF-7 and MDA-MB-231. The fraction F-4 obtained from hexane fraction inhibited proliferation of MCF-7 and MDA-MB-231 cells in concentration and time dependent manner with IC₅₀ of 50 μg/ml and 30 μg/ml for 24 h, 28 μg/ml and 22 μg/ml for 48 h and 25 μg/ml and 20 μg/ml for 72 h respectively. The fraction F-4 induced G1 cell cycle arrest, reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and subsequent apoptosis. Apoptosis is indicated in terms of increased Bax/Bcl-2 ratio, enhanced Annexin-V positivity, caspase 8 activation and DNA fragmentation. The active molecule isolated from fraction F-4, oleanolic acid and urosolic acid inhibited cell proliferation of MCF-7 and MDA-MB-231 cells at IC₅₀ value of 7.5 μM and 7.0 μM respectively, whereas there is devoid of significant cell inhibiting activity in non-cancer originated cells, HEK-293. In both MCF-7 and MDA-MB-231, oleanolic acid and urosolic acid induced cell cycle arrest and apoptosis as indicated by significant increase in Annexin-V positive apoptotic cell counts. Our results suggest that W. tomentosa extracts has significant anti-cancer activity against breast cancer cells due to induction of apoptosis pathway. Olenolic and urosolic acid are important constituent molecules in the extract responsible for anti-cancer activity of W. tomentosa.
Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad
2014-05-01
Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP-ribose) polymerase was also found in the ethanolic extract of A. paniculata in the first true leaf stage treatment. This study suggests that A. paniculata could be a promising herbal plant for the alternative treatment of intrahepatic cholangiocarcinoma. Georg Thieme Verlag KG Stuttgart · New York.
Inhibition of Lactobacillus biofilm growth by Bacillus extracts
USDA-ARS?s Scientific Manuscript database
Industrial ethanol fermentations are not pure cultures, and are expected to contain contaminant bacteria and fungi. These additional organisms deplete the feedstock and lower overall ethanol yield. Severe contamination can lead to “stuck” fermentations, requiring costly shutdowns for cleaning. As La...
2012-01-01
Background There is wide spread interest in drugs derived from plants as green medicine is believed to be safe and dependable, compared with costly synthetic drugs that have adverse effects. Methods We have attempted to evaluate the antioxidant, In vitro thrombolytic, antibacterial, antifungal and cytotoxic effects of Clausena heptaphylla (Rutaceae) stem bark extract ethanol extract. Results Ethanolic stem bark extract of Clausena heptaphylla (CHET) contains flavonoids, alkaloids, saponins and steroids but it lacks tannins, anthraquinones and resins. Phenol content of the extract was 13.42 mg/g and flavonoid content was 68.9 mg/g. CHET exhibited significant DPPH free radical scavenging activity with IC50 value of 3.11 μg/ml. Reducing power of CHET was also moderately stronger. In the cytotoxicity assay, LC50 and Chi-square value of the ethanolic extract against brine shrimp nauplii were 144.1461 μg/ml and 0.8533 demonstrating potent cytotoxic effect of the extract. In vitro thrombolytic activity of CHET is significant with 45.38% clot lysis capability compared to that of Streptokinase (65.78%). In antibacterial screening, moderate zone of inhibition (6.5-9.0 mm in diameter) was observed against gram-positive Bacillus subtilis ATCC 11774, Bacillus cereus ATCC 10876, Staphylococcus aureus ATCC 25923, Bacillus polymyxa ATCC 842 and Bacillus megaterium ATCC 13578 and less promising zone of inhibition (3.0-4.5 mm in diameter) against gram-negative Salmonella typhi ATCC 65154, Shigella flexneri ATCC 12022, Proteus vulgaris ATCC 13315 and Escherichia coli ATCC 25922. Shigella sonnei ATCC 8992 did not show any sensitivity. The MIC values against these bacteria were ranged from 2,000 to 3,500 μg/ml. The extract showed significant zone of inhibition against Rhizopus oryzae DSM 2200, Aspergillus niger DSM 737 and Aspergillus ochraceus DSM 824 in antifungal assay. Conclusions Further advanced research is necessary to isolate and characterize the chemical components responsible for the therapeutic properties of the plant. PMID:23181593
The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds.
Gülçin, Ilhami
2005-11-01
Water and ethanol crude extracts from black pepper (Piper nigrum) were investigated for their antioxidant and radical scavenging activities in six different assay, namely, total antioxidant activity, reducing power, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, and metal chelating activities. Both water extract (WEBP) and ethanol extract (EEBP) of black pepper exhibited strong total antioxidant activity. The 75 microg/ml concentration of WEBP and EEBP showed 95.5% and 93.3% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, at the same concentration, standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol exhibited 92.1%, 95.0%, and 70.4% inhibition on peroxidation of linoleic acid emulsion, respectively. Also, total phenolic content in both WEBP and EEBP were determined as gallic acid equivalents. The total phenolics content of water and ethanol extracts were determined by the Folin-Ciocalteu procedure and 54.3 and 42.8 microg gallic acid equivalent of phenols was detected in 1 mg WEBP and EEBP.
Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong
2012-06-01
Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.
Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, OK-Hwan; Jeon, You-Jin; Lee, Boo-Yong
2012-01-01
Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans. PMID:24471073
Rodeiro, Idania; Olguín, Sitlali; Santes, Rebeca; Herrera, José A.; Mangas, Raisa; Hernández, Yasnay; Fernández, Gisselle; Hernández, Ivones; Hernández-Ojeda, Sandra; Valencia-Olvera, Ana
2015-01-01
The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1–500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25–50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent. PMID:26612994
Antioxidant activities of Physalis peruviana.
Wu, Sue-Jing; Ng, Lean-Teik; Huang, Yuan-Man; Lin, Doung-Liang; Wang, Shyh-Shyan; Huang, Shan-Ney; Lin, Chun-Ching
2005-06-01
Physalis peruviana (PP) is a widely used medicinal herb for treating cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. In this study, the hot water extract (HWEPP) and extracts prepared from different concentrations of ethanol (20, 40, 60, 80 and 95% EtOH) from the whole plant were evaluated for antioxidant activities. Results displayed that at 100 mug/ml, the extract prepared from 95% EtOH exhibited the most potent inhibition rate (82.3%) on FeCl2-ascorbic acid induced lipid peroxidation in rat liver homogenate. At concentrations 10-100 microg/ml, this extract also demonstrated the strongest superoxide anion scavenging and inhibitory effect on xanthine oxidase activities. In general, the ethanol extracts revealed a stronger antioxidant activity than alpha-tocopherol and HWEPP. Compared to alpha-tocopherol, the IC50 value of 95% EtOH PP extract was lower in thiobarbituric acid test (IC50=23.74 microg/ml vs. 26.71 microg/ml), in cytochrome c test (IC50=10.40 microg/ml vs. 13.39 microg/ml) and in xanthine oxidase inhibition test (IC50=8.97 microg/ml vs. 20.68 microg/ml). The present study concludes that ethanol extracts of PP possess good antioxidant activities, and the highest antioxidant properties were obtained from the 95% EtOH PP.
Mehmood, Basharat; Dar, Kamran Khurshid; Ali, Shaukat; Awan, Uzma Azeem; Nayyer, Abdul Qayyum; Ghous, Tahseen; Andleeb, Saiqa
2015-01-01
Antibacterial effect of Citrus sinensis peel extracts was evaluated against several pathogenic bacteria associated with human and fish infections viz., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, Serratia marcesnces, Shigella flexneri, Enterobacter amnigenus, Salmonella Typhimurium and Serratia odorifera. Methanol, ethanol, chloroform and diethyl ether solvents were used for extraction. In vitro antibacterial activity was analyzed by agar well and agar disc diffusion methods. It was found that ethanol extract showed highly significant inhibition of E. coli and K. pneumonia (12.6±0.94 mm and 11.6±1.2 mm) whereas methanol extract of C. sinensis also showed high zone of inhibition of S. odorifera (10.0±2.16 mm). The potential activity of active extracts was assessed and also compared with standard antibiotics through activity index formulation. The order of antioxidant activity through ABTS·+ and DPPH free radical scavenging activity was ethanol>methanol>chloroform>diethyl ether. Phytochemical screening of all solvents had determined the presence of terpenoids, alkaloids, steroids, glycosides and flavonoids. It was also found that Chloroform/Methanol (5:5) and Butanol/Ethanol/Water (4:1:2.2) solvent systems showed significant separation of active phytochemical constituents. These findings reveal the potential use of C. sinensis peel to treat infectious diseases, which are being caused by microorganisms.
Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi
2016-01-01
Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC 50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC 50 values ranging between 9.59-22.76 μg/mL and 110.71-526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC 50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC 50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used : BSA: Bovine serum albumin, CAM: Complementary and alternative medicine, cDNA: Complementary deoxyribonucleic acid, CDNB: 1-Chloro-2,4-dinitrobenzene, CuSO4.5H2O: Copper(II) sulfate pentahydrate, CXEE: Curcuma xanthorrhiza ethanol extract, CXAE: Curcuma xanthorrhiza aqueous extract, GC-MS: Gas chromatography-mass spectroscopy, GSH: Glutathione, GST: Glutathione S-transferase, KCl: Potassium chloride, min: Minutes, MgCl 2 : Magnesium chloride, mg/mL: Concentration (weight of test substance in milligrams per volume of test concentration), mM: Milimolar, Na 2 CO 3 : Sodium carbonate, NaOH: Sodium hydroxide, nmol: nanomol, NSAIDs: Non-steroidal antiinflammatory drug, p-NP: para-nitrophenol, RLU: Relative light unit, SEM: Standard error of mean, UDPGA: UDP-glucuronic acid, UGT: UDP-glucuronosyltransferase.
Orhan, Ilkay Erdogan; Gulyurdu, Fulya; Kupeli Akkol, Esra; Senol, Fatma Sezer; Arabaci Anul, Serap; Tatli, Iffet Irem
2016-11-01
Xeranthemum annuum L. (Asteraceae) (XA) is an ornamental and medicinal species with limited bioactivity and phytochemical data. Identification of anticholinesterase, antioxidant, anti-inflammatory and analgesic effects of the flower and root-stem (R-S) extracts of XA. Anticholinesterase (at 100 μg mL -1 ) and antioxidant (at 1000 μg mL -1 ) effects of various extracts were evaluated via microtiter assays, while anti-inflammatory and analgesic effects of the R-S extracts were tested using carrageenan-induced hind paw oedema (100 and 200 mg kg -1 ) and p-benzoquinone (PBQ) writhing models (200 mg kg -1 ) in male Swiss albino mice. The R-S ethanol extract of XA was subjected to isolation studies using conventional chromatographic methods. Most of the extracts showed inhibition over 85% against butyrylcholinesterase and no inhibition towards acetylcholinesterase. The flower chloroform and the R-S ethyl acetate extracts were most effective (97.85 ± 0.94% and 96.89 ± 1.09%, respectively). The R-S ethanol extract displayed a remarkable scavenging activity against DPPH (77.33 ± 1.99%) and in FRAP assay, while the hexane extract of the R-S parts possessed the highest metal-chelating capacity (72.79 ± 0.33%). The chloroform extract of the R-S caused a significant analgesic effect (24.4%) in PBQ writhing model. No anti-inflammatory effect was observed. Isolation of zierin and zierin xyloside, which were inactive in anticholinesterase assays, was achieved from the R-S ethanol extract. This is the first report of anticholinesterase, antioxidant, analgesic and anti-inflammatory activities and isolation of zierin and zierin xyloside from XA. Therefore, XA seems to contain antioxidant and BChE-inhibiting compounds.
Johnson, Showande Segun; Oyelola, Fakeye Titilayo; Ari, Tolonen; Juho, Hokkanen
2013-01-01
Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was conducted to investigate the cytochrome P450 (CYP) isoforms that are inhibited by the extract of Hibiscus sabdariffa L. in vitro. The inhibition towards the major drug metabolizing CYP isoforms by the plant extract were estimated in human liver microsomal incubations, by monitoring the CYP-specific model reactions through previously validated N-in-one assay method. The ethanolic extract of Hibiscus sabdariffa showed inhibitory activities against nine selected CYP isoforms: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. The concentrations of the extract which produced 50% inhibition of the CYP isoforms ranged from 306 µg/ml to 1660 µg/ml, and the degree of inhibition based on the IC50 values for each CYP isoform was in the following order: CYP1A2 > CYP2C8 > CYP2D6 > CYP2B6 > CYP2E1 > CYP2C19 > CYP3A4 > CYP2C9 > CYP2A6. Ethanolic extract of Hibiscus sabdariffa caused inhibition of CYP isoforms in vitro. These observed inhibitions may not cause clinically significant herb-drug interactions; however, caution may need to be taken in co-administering the water extract of Hibiscus sabdariffa with other drugs until clinical studies are available to further clarify these findings.
Kunyanga, Catherine N; Imungi, Jasper K; Okoth, Michael W; Biesalski, Hans K; Vadivel, Vellingiri
2011-08-01
The present study evaluated the flavonoid content, antioxidant as well as type II diabetes-related enzyme inhibition activities of ethanolic extract of certain raw and traditionally processed indigenous food ingredients including cereals, legumes, oil seeds, tubers, vegetables and leafy vegetables, which are commonly consumed by vulnerable groups in Kenya. The vegetables exhibited higher flavonoid content (50-703 mg/100 g) when compared with the grains (47-343 mg/100 g). The ethanolic extract of presently studied food ingredients revealed 33-93% DPPH radical scavenging capacity, 486-6,389 mmol Fe(II)/g reducing power, 19-43% α-amylase inhibition activity and 14-68% α-glucosidase inhibition activity. Among the different food-stuffs, the drumstick and amaranth leaves exhibited significantly higher flavonoid content with excellent functional properties. Roasting of grains and cooking of vegetables were found to be suitable processing methods in preserving the functional properties. Hence, such viable processing techniques for respective food samples will be considered in the formulation of functional supplementary foods for vulnerable groups in Kenya.
Study on antibacterial effect of medlar and hawthorn compound extract in vitro.
Niu, Yang; Nan, Yi; Yuan, Ling; Wang, Rong
2013-01-01
This paper evaluated the antibacterial effect of medlar and hawthorn compound extract in vitro. Water extract method and ethanol extraction method was adopted to prepare the compound extracts, and disc diffusion method and improved test tube doubling dilution method were used to conduct the antibacterial test on the two common pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumonia, in vitro. The results showed that medlar and hawthorn compound extract was moderately sensitive to Staphylococcus aureus, while its inhibiting effect on Klebsiella pneumoniae was particularly significant, moreover, the antibacterial effect of ethanol extract was better than water extract. Medlar and hawthorn compounds had good antibacterial effect on the two pathogenic bacteria.
Inhibition of gluconeogenesis by Malmea depressa root.
Andrade-Cetto, Adolfo
2011-09-01
Malmea depressa is traditionally used in the Mayan communities of southeastern Mexico to treat type 2 diabetes. A root bark infusion is being taken throughout the day, between meals. The aim of this study was to determine whether an ethanolic extract of Malmea depressa would reduce hepatic glucose production by targeting gluconeogenesis. The effects of the plant extract on gluconeogenesis (in vivo) and the activity of GL-6-P (in vitro) were examined. The plant extract was analyzed by HPLC to confirm its phytochemical composition. The inhibition of gluconeogenesis was tested in vivo by performing a pyruvate tolerance test in n5-STZ after an 18-h fasting period. The extracts effect on glucose-6-phosphatase activity were assayed in vitro with intact rat liver microsomes. Using HPLC-DAD we confirmed that the phytochemical compositions of the tested extract were similar to those previously reported. We proved that the ethanolic extract of the root bark of Malmea depressa dose-dependently inhibits a glucose peak. Furthermore, the gluconeogenesis inhibition was confirmed in vitro using a pyruvate test. The results suggest that administration of Malmea depressa can improve glycemic control by blocking hepatic glucose production, especially in the fasting state. These data support its traditional use as an infusion consumed continually throughout the day. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wisutthathum, Sutthinee; Chootip, Krongkarn; Martin, Hélène; Ingkaninan, Kornkanok; Temkitthawon, Prapapan; Totoson, Perle; Demougeot, Céline
2018-01-01
Background: Ethnopharmacological studies demonstrated the potential for Eulophia species to treat inflammation, cancer, and cardio-metabolic diseases. The aim of the study was to investigate the vasorelaxant effect of ethanolic Eulophia macrobulbon (EM) extract and its main phenanthrene on rat isolated mesenteric artery and to investigate the hypotensive effect of EM. Methods: The vasorelaxant effects of EM extract or phenanthrene and the underlying mechanisms were evaluated on second-order mesenteric arteries from Sprague Dawley rats. In addition, the acute hypotensive effect was evaluated in anesthetized rats infused with cumulative concentrations of the EM extract. Results: Both EM extract (10-4–1 mg/ml) and phenanthrene (10-7–10-4 M) relaxed endothelium-intact arteries, an effect that was partly reduced by endothelium removal (p < 0.001). A significant decrease in the relaxant effect of the extract and the phenanthrene was observed with L-NAME and apamin/charybdotoxin in endothelium-intact vessels, and with iberiotoxin in denuded vessels. SNP (sodium nitroprusside)-induced relaxation was significantly enhanced by EM extract and phenanthrene. By contrast, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one), 4-aminopyridine and glibenclamide (endothelium-denuded vessels) and indomethacin (endothelium-intact vessels) had no effect. In calcium-free solution, both the EM extract and phenanthrene inhibited extracellular Ca2+-induced contraction in high KCl and phenylephrine (PE) pre-contracted rings. They also inhibited the intracellular Ca2+ release sensitive to PE. The acute infusion of EM extract (20 and 70 mg/kg) induced an immediate and transient dose-dependent hypotensive effect. Conclusion: The ethanolic extract of EM tubers and its main active compound, 1-(4′-hydroxybenzyl)-4,8-dimethoxyphenanthrene-2,7-diol (phenanthrene) induced vasorelaxant effects on rat resistance vessels, through pleiotropic effects including endothelium-dependent effects (NOS activation, enhanced EDH production) and endothelium-independent effects (opening of KCa channels, inhibition of Ca2+ channels, inhibition of intracellular Ca2+ release and PDE inhibition). PMID:29872393
Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.
Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C
2013-05-01
Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG sample by sentinel bacteria suggests that antibiotic residues in DG were inactivated during the production process or are present in sublethal concentrations.
Mohamed, Elsnoussi Ali; Ang, Lee Fung; Asmawi, Mohd. Zaini
2015-01-01
In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3′hydroxy-5,6,7,4′-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus. PMID:26649063
Mohamed, Elsnoussi Ali; Ahmad, Mariam; Ang, Lee Fung; Asmawi, Mohd Zaini; Yam, Mun Fei
2015-01-01
In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3'hydroxy-5,6,7,4'-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus.
Antioxidant Activity of Brown Soybean Ethanolic Extracts and Application to Cooked Pork Patties.
Lee, Choong-Hee; Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Choi, Yun-Sang; Jang, Sung-Jin; Jeong, Tae-Jun; Kim, Cheon-Jei
2016-01-01
The brown soybean extract (BE, extracted by distilled water, 50%, 75%, and 95% ethanol) were analyzed for their total phenol, flavonoid, anthocyanin content, and DPPH radical-scavenging activity to determine antioxidant activities. Brown soybean extract with 75% ethanol showed significantly higher DPPH radical scavenging activity, total phenol and anthocyanin content compared to the other treatments (p<0.05). Then, brown soybean extract with 75% ethanol was applied to pork patties at different concentration (0.05%, 0.1%, and 0.2%) and lipid oxidation was evaluated during 15 d of refrigerated storage. Addition of BE significantly increased redness and pH values, respectively (p<0.05). Moreover, TBARS value of pork patties decreased significantly (p<0.05) as BE concentration increased. In sensory evaluation, pork patties with 0.1% BE had significantly higher score than other treatments in flavor and overall acceptability (p<0.05). Consequently, these results indicate that 0.1% BE could be an effective natural antioxidant to inhibit lipid oxidation in pork patties.
Sithisarn, Patchima; Nantateerapong, Petcharat; Rojsanga, Piyanuch; Sithisarn, Pongtip
2016-04-07
Oroxylum indicum, which is called Pheka in Thai, is a traditional Thai plant in the Bignoniaceae family with various ethnomedical uses such as as an astringent, an anti-inflammatory agent, an anti-bronchitic agent, an anti-helminthic agent and an anti-microbial agent. The young fruits of this plant have also been consumed as vegetables. However, there has been no report concerning its antibacterial activities, especially activities related to clinically isolated pathogenic bacteria and the in vitro antioxidant effects of this plant. Therefore, the extracts from O. indicum fruits and seeds collected from different provinces in Thailand were prepared by decoction and maceration with ethanol and determined for their in vitro antibacterial effects on two clinically isolated bacteria, Streptococcus suis and Staphylococcus intermedius, using disc diffusion assay. Ethanol extracts from O. indicum fruits collected from Nakorn Pathom province at the concentration of 1000 mg/mL exhibited intermediate antibacterial activity against S. intermedius with an inhibition zone of 15.11 mm. Moreover, it promoted moderate inhibitory effects on S. suis with an inhibition zone of 14.39 mm. The extracts prepared by maceration with ethanol promoted higher antibacterial activities than those prepared with water. The ethanol extract from the seeds of this plant, purchased in Bangkok, showed stronger in vitro antioxidant activities than the other extracts, with an EC50 value of 26.33 µg/mL. Phytochemical analysis suggested that the seed ethanol extract contained the highest total phenolic and flavonoid contents (10.66 g% gallic acid equivalent and 7.16 g% quercetin equivalent, respectively) by a significant amount. Thin layer chromatographic analysis of the extracts showed the chromatographic band that could correspond to a flavonoid baicalein. From the results, extracts from O. indicum fruits have an in vitro antioxidant effect, with antibacterial potential, on clinically pathologic bacteria and they contain an antioxidant flavonoid which could be developed for medicinal and pharmaceutical purposes in the future.
Widiyanti, Prihartini; Prajogo, Bambang; Widodo, Agustinus
2018-01-01
Justicia gendarussa Burm.f. has an anti-HIV activity. This study was conducted to evaluate the effects of incubation periods on the cytotoxicity and virucidal activities of the J. gendarussa leaves extract on MOLT-4 cells. The cytotoxicity assay was evaluated by using the WST-1 test with incubation periods of 3 days and 5 days. The virucidal activity test was determined by measuring the inhibitory activities on the syncytium formation. The cytotoxicity assay showed the value of CC 50 on MOLT-4 cell culture with the test material of 70% ethanol extract of J. gendarussa leaves as much as 3928.620 µg /mL and 3176.581 µg /mL (incubation day 3 and day 5, respectively); fractionated-70% ethanol extract = 81782.428 µg /mL and 12175.870 µg/mL; and water extract = 16372.689 µg/mL and 2946.117 µg/mL. The test results of the virucidal activities (inhibit ≥ 90% the formation of syncytium) of 70% ethanol extract of J. gendarussa leaves is at a concentration 250 µg/mL, 500 µg/mL and 1000 µg/mL (3-day incubation) and 250 µg/mL (5-day incubation); and fractionated-70% ethanol extract at a concentration 250 µg /mL, 500 µg/mL and 1000 µg/mL (3-day incubation) and 1000 µg/mL (5-day incubation). 70% ethanol extract, fractionated-70% ethanol extract, and water extract of J. gendarussa leaves were relatively nontoxic toward MOLT-4 cells, and fractionated-70% ethanol extract had better potentials in virucidal activities.
Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.
2016-01-01
Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration. Conclusion Out of the 900 plant extracts screened, Terminalia chebula ethanol extract was found to be the most potent lactate efflux inhibitor with the ability to inhibit chaperone CD147 expression and impact the function of monocarboxylate transporters. Furthermore, TCE was found to have growth inhibition and apoptotic effects. The results obtained indicate that Terminalia chebula constituent(s) may contain promising compounds that can be useful in the management of neuroblastoma cancer. PMID:27158628
Amadi, E S; Oyeka, A; Onyeagba, R A; Okoli, I; Ugbogu, O C
2007-02-01
The antimicrobial effect of cold water, hot water and ethanolic extracts of Spondias mombin and Baphia nittida on cariogenic streptococci isolated from dental caries patients attending the Ebonyi State University Teaching hospital dental clinic Abakaliki was investigated using the agar well diffusion technique. The cold water and ethanolic extracts of Baphia nittida showed inhibition zone diameter (IZD) of 10 and 12 mm respectively at 400 mg mL(-1), while the hot water showed no inhibitory effect. All extracts of Spondias mombin did not inhibit the test organism. The cold water and ethanolic extracts of Baphia nittida showed Minimum Inhibitory Concentration (MIC) of 100 and 50 mg mL(-1) respectively. The combination of the cold water extracts of the two herbs showed enhanced activity of 13 mm. Phytochemical analysis of Baphia nittida revealed the presence of flavonoids, glycosides, proteins saponins, tannins, carbohydrate and steroidal aglycone. Acute toxicity testing of Baphia nittida at a range of 250-5000 mg kg(-1) bw using mice showed no clinical signs of acute toxicity. No chemical toxicity was observed amongst rats given Baphia nittida extracts 500 and 1000 mg kg(-1) bw after 30 days. Baphia nittida may be a potential source of an antimicrobial agent for the treatment and management of dental caries.
Meera, M; Ruckmani, A; Saravanan, R; Lakshmipathy Prabhu, R
2017-10-09
The present study was conducted to identify the chemical constituents and evaluate the anti-inflammatory activity of crude ethanolic extracts of spine, skin and rind of jack fruit (Artocarpus heterophyllus) peel. Polyphenol and flavonoid contents were assessed using Folin's Ciocalteu reagent and aluminium chloride methods which revealed 316, 355 and 382 mg tannic acid equivalent/g of polyphenol and 96.7, 131.6 and 164.6 mg quercetin equivalent/g of flavonoid in spine, skin and rind, respectively. Anti-inflammatory activity of all three extracts was comparable to diclofenac in vitro and in vivo studies. Skin exhibited maximum anti-inflammatory activity, rind had preferential inhibition on Cyclooxygenase-2 and spine and skin inhibited both Cyclooxygenase-1 and 2 in vitro.
Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors.
Duncan, A C; Jäger, A K; van Staden, J
1999-12-15
Twenty plants used by traditional healers in South Africa for the treatment of high blood pressure were investigated for their anti-hypertensive properties, utilizing the angiotensin converting enzyme assay. A hit rate of 65% was achieved, with the highest inhibition (97%) obtained by Adenopodia spicata leaves. A further seven plants exhibited an inhibition greater than 70% and five more over 50%. The leaves of the plants showed the greatest levels of inhibition. There was little difference in the overall hit rate between ethanolic and aqueous extracts, although in most cases there was a marked difference in activity between aqueous and ethanolic extracts from the same species. Plants exhibiting inhibition levels greater than 50% were further tested for the presence of tannins in order to eliminate possible false positives. Active plants that did not contain tannins were Agapanthus africanus, Agave americana, Clausena anisata, Dietes iridioides, Mesembruanthemum spp., Stangeria eriopus and Tulbaghia violacea.
Du, Yong; Zhao, Weichun; Lu, Leilei; Zheng, Jiayan; Hu, Xishi; Yu, Zhehan; Zhu, Lixin
2013-12-01
To assess whether Veronicastrum axillare (V. axillare) can ameliorate ethanol-induced gastric mucosal lesions in rats, reduce the production of pro-inflammatory cytokines, suppress apoptosis and improve local microcirculation disturbances. Totally 48 male Sprague-Dawley rats were randomly divided into six groups, eight rats in each group. Rats in the normal group and the model group were administered with 0.9% normal saline respectively. Rats in the positive group and ranitidine group were administered with 0.18% ranitidine suspension by intragastric administration respectively. Those in the high dose V. axillare group, the medium dose V. axillare group and the low dose V. axillare group were administrated with V. axillare at the daily dose of 2.8 g/kg, 1.4 g/kg and 0.7 g/kg by intragastric administration. Gastric mucosal lesions were produced by intragastric administration of absolute ethanol. Water extract of V. axillare was successively injected for 14 d and last day was injected 1 h before ethanol administration. Gastric mucosal ulcer index and ulcer inhibitory rate were counted by improved Guth methods. The tissue sections were made for pathological histology analysis. Also, we measured the concentrations of tumor necrosis factor-α (TNF-α) and endothelin-1 (ET-1) in gastric mucosal, as an index of the pro-inflammatory cytokines, apoptosis and local microcirculation. Besides, the mRNA contents of TNF-α and ET-1 were measured to verify effects on gene expression by real-time fluorescent quantitative PCR. Water extract of V. axillare significantly ameliorated the gastric mucosal lesions induced by ethanol administration (P<0.01). Pro-inflammatory cytokines, TNF-α and ET-1 were increased after ethanol administration and significantly reduced by water extract of V. axillare. The expressions of TNF-α and ET-1 mRNA were also be inhibited by water extract of V. axillare. Current evidences show water extract of V. axillare is effective for defending against ethanol-induced gastric mucosal lesions, significantly inhibiting the production of pro-inflammatory cytokines and the expressions of TNF-α and ET-1 mRNA, which may be useful for inhibiting apoptosis and improving local microcirculation. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
Dorta, Eva; Lobo, M Gloria; Gonzalez, Monica
2012-01-01
Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent. There are many antioxidant compounds in mango peel and seed, and they could be used as a natural and very inexpensive alternative to synthetic food additives. However, the conditions in which the antioxidants are extracted must be optimized. This work proves that conditions such as extraction solvent or temperature have a crucial impact on obtaining extracts rich in antioxidants from mango biowastes. © 2011 Institute of Food Technologists®
Antioxidant Activity of Pistacia vera Fruits, Leaves and Gum Extracts
Hosseinzadeh, Hossein; Sajadi Tabassi, Sayyed Abolghasem; Milani Moghadam, Negar; Rashedinia, Marzieh; Mehri, Soghra
2012-01-01
The side effects of synthetic antioxidants have been considered in different studies. Accordingly, there is an increasing interest toward the use of natural substances instead of the synthetic ones. In this study, the aqueous and ethanolic extracts of Pistacia vera leaves and fruits as well as hydroalcoholic extract of gum were tested for a possible antioxidant activity using in vitro methods. Deoxyribose assay, erythrocyte membrane lipid peroxidation and liver misrosomal non- enzymatic lipid peroxidation tests were used as an in-vitro model for determination antioxidant activity. The extract were evaluated at different concentratios: 25,100, 250, 500 and 1000 μg/mL. In all procedures, all extracts showed free radical scavenging activity. The effect of ethanolic extract of P. vera fruit at 1000 μg/mL was quite similar to positive control (DMSO 20 mM) in deoxyribose method. In two other tests, the ethanolic extracts of fruits and leaves were more effective than the aqueous extracts to inhibit malondialdehyde generation. Phytochemical tests showed the presence of flavonoids and tannins in Pistocia vera extracts. The present study showed that extracts of different part of P. vera have antioxidant activity in different in vitro methods. The ethanolic extracts of leaves and fruits showed more roles for antioxidant properties and gum hydroalcoholic extract demonstrated less antioxidant effect. PMID:24250515
Anti-gastric ulcer effect of Kaempferia parviflora.
Rujjanawate, C; Kanjanapothi, D; Amornlerdpison, D; Pojanagaroon, S
2005-10-31
Kaempferia parviflora is a Zingiberaceous plant, which has been reputed for its beneficial medicinal effects. The present study was undertaken to evaluate the Kaempferia parviflora ethanolic extract (KPE) for its anti-gastric ulcer activity by experimental models. Oral administration of the KPE at 30, 60 and 120 mg/kg significantly inhibited gastric ulcer formation induced by indomethacin, HCl/EtOH and water immersion restraint-stress in rats. In pylorus-ligated rats, pretreatment with the KPE had no effect on gastric volume, pH and acidity output. In ethanol-induced ulcerated rats, gastric wall mucus was significantly preserved by the KPE pretreatment at doses of 60 and 120 but not at 30 mg/kg. The findings indicate that the ethanolic extract of Kaempferia parviflora possesses gastroprotective potential which is related partly to preservation of gastric mucus secretion and unrelated to the inhibition of gastric acid secretion.
Agbonon, A; Aklikokou, K; Kwashie, E-G; Gbéassor, M
2004-09-01
Ethanolic extract of Pluchea ovalis roots inhibit acetylcholine-induced bronchoconstriction observed in asthma. To understand the mechanism of P. ovalis root extract on airway smooth muscle contraction, we investigated the anti-cholinergic effect of the ethanolic extract on isolated isolated tracheae of the Wistar rat. For this purpose, three experimental conditions of incubation were used: idomethacin, indomethacin+propranolol or indomethacin+propranolo+ promethazine. The extract was applied in all three conditions at 0.25 mg/ml for 10 minutes prior to cumulative doses of acetylcholine (10(-8) to 5.10(-4) g/ml). The extract reduced acetylcholine-induced contraction and could have an antagonistic effect on muscarinic receptors of the rat trachea.
Chusri, S; Sompetch, K; Mukdee, S; Jansrisewangwong, S; Srichai, T; Maneenoon, K; Limsuwan, S; Voravuthikunchai, S P
2012-01-01
Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63-5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm.
The anti-allergic activity of polyphenol extracted from five marine algae
NASA Astrophysics Data System (ADS)
Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui
2015-08-01
Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.
NASA Astrophysics Data System (ADS)
Wicaksono, D. A.; Rosamah, E.; Kusuma, I. W.
2018-04-01
The aims of the research was to analyze the content of phytochemicals, to examine the antioxidant and antidiabeticpotentials of n-hexane, chloroform, ethyl acetate, and ethanol extracts of Caesalpinia sumatrana. Method to measure antioxidant capacity of sample involves the use of the free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH) which is widely used to test the ability of compounds to act as free radical. Analysis the potential of antidiabeticactivity of the extracts was determined by α-glucosidase and α-amylase inhibitory assay. Of all extracts obtained by successive maceration, ethanol maceration gave the highest extract by 2.63% of extract on the dry weigh basis. The result of phytochemicals showed that all extracts contain alkaloid and flavonoid. The highest antioxidant activity was 82.32% with IC50 value of 5.00 µg/ml obtained by ethanol extract. The results of enzyme inhibitory assay of α-glucosidase showed that ethanol extract of C. sumatrana had IC50 value 17.16 µg/mL to inhibit ɑ-glucosidase activity and IC50 value 16.78 µg/mL for ɑ-amylase. The present result displayed potential of the plant to be developed as natural antidiabetic and antioxidant agents.
Upadhyay, Richa; Chaurasia, Jitendra Kumar; Tiwari, Kavindra Nath; Singh, Karuna
2014-01-01
In present study free radical scavenging potential of aerial parts and root of Phyllanthus fraternus was investigated. Extraction was done in water and ethanol. Total antioxidant capacity was measured by DPPH free radical scavenging method; ethanolic extract of aerial part was most potent in activity with 50% inhibition at 258 μg/mL concentration. Lipid peroxidation (LPO) was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg-yolk homogenates as lipid-rich media with EC₅₀ of aerial part (ethanolic) 1522 μg/mL which was found to be most active. Superoxide (SO) radical scavenging activity was measured using riboflavin-light-nitroblue tetrazolium assay. Ethanolic and aqueous extract of both aerial part and root was almost similar in superoxide radical scavenging activity. Reducing power was determined on the basis of Fe³⁺-Fe⁺ transformation in the presence of extract. Total phenolic and flavonoid contents were also measured by spectroscopic method. Results showed that the ethanolic fraction of aerial part is most active towards antioxidant potential and this activity is related to its polyphenolic content and reducing potential. Thus, P. fraternus extract can be used as potent natural antioxidant.
Jin, Chang Hyun; Park, Han Chul; So, Yangkang; Nam, Bomi; Han, Sung Nim; Kim, Jin-Baek
2017-02-17
In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method. We measured the IK concentration using HPLC and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells from the extracts. The IK concentration was 10-fold higher in perilla leaf extracts by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 μg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleutkin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered the optimal process for obtaining high IK content and anti-inflammatory activities in leaf extracts from the P. frutescens Britt. radiation mutant.
Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S
2016-07-08
Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.
Bali, Elif Burcu; Ergin, Volkan; Rackova, Lucia; Bayraktar, Oğuz; Küçükboyaci, Nurgün; Karasu, Çimen
2014-08-01
Olive (Olea europaea) leaf, an important traditional herbal medicine, displays cardioprotection that may be related to the cellular redox modulating effects of its polyphenolic constituents. This study was undertaken to investigate the protective effect of the ethanolic and methanolic extracts of olive leaves compared to the effects of oleuropein, hydroxytyrosol, and quercetin as a positive standard in a carbonyl compound (4-hydroxynonenal)-induced model of oxidative damage to rat cardiomyocytes (H9c2). Cell viability was detected by the MTT assay; reactive oxygen species production was assessed by the 2',7'-dichlorodihydrofluorescein diacetate method, and the mitochondrial membrane potential was determined using a JC-1 dye kit. Phospho-Hsp27 (Ser82), phospho-MAPKAPK-2 (Thr334), phospho-c-Jun (Ser73), cleaved-caspase-3 (cl-CASP3) (Asp175), and phospho-SAPK/JNK (Thr183/Tyr185) were measured by Western blotting. The ethanolic and methanolic extracts of olive leaves inhibited 4-hydroxynonenal-induced apoptosis, characterized by increased reactive oxygen species production, impaired viability (LD50: 25 µM), mitochondrial dysfunction, and activation of pro-apoptotic cl-CASP3. The ethanolic and methanolic extracts of olive leaves also inhibited 4-hydroxynonenal-induced phosphorylation of stress-activated transcription factors, and the effects of extracts on p-SAPK/JNK, p-Hsp27, and p-MAPKAPK-2 were found to be concentration-dependent and comparable with oleuropein, hydroxytyrosol, and quercetin. While the methanolic extract downregulated 4-hydroxynonenal-induced p-MAPKAPK-2 and p-c-Jun more than the ethanolic extract, it exerted a less inhibitory effect than the ethanolic extract on 4-hydroxynonenal-induced p-SAPK/JNK and p-Hsp27. cl-CASP3 and p-Hsp27 were attenuated, especially by quercetin. Experiments showed a predominant reactive oxygen species inhibitory and mitochondrial protecting ability at a concentration of 1-10 µg/mL of each extract, oleuropein, hydroxytyrosol, and quercetin. The ethanolic extract of olive leaves, which contains larger amounts of oleuropein, hydroxytyrosol, verbascoside, luteolin, and quercetin (by HPLC) than the methanolic one, has more protecting ability on cardiomyocyte viability than the methanolic extract or each phenolic compound against 4-hydroxynonenal-induced carbonyl stress and toxicity. Georg Thieme Verlag KG Stuttgart · New York.
Antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit.
Noreen, Shabana; Shaheen, Ghazala; Akram, Muhammad; Rashid, Abid; Shah, Syed Muhammad Ali
2016-07-01
The objective of present study was to evaluate the antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit. The parent extract was ethanolic extract while its sub fractions were prepared in n-hexane, chloroform and n-butanol. The method based on scavenging activity and reduction capability of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH). N-butanol fraction was the most effective antioxidant with 87.0±1.15 activity but the activity was less than ascorbic acid i.e. 93.74±0.12. Highly significant urease inhibition was shown by crude ethanolic extract (71.00±0.2a) with IC50 (392.66±2.1) followed by aqueous fraction (68.00±0.5e) with IC50 (159.83±2.8). The results of crude ethanolic extract and aqueous extracts were highly significant (p<0.05) than standard Thiourea. Present study showed that Vaccinium macrocarpon exhibits potent antiurease and antioxidant activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-05-01
Candida psuedotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4}, dipotassium hydrogen phosphate K{sub 2}HPO{sub 4}, yeast extract, and combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growthmore » rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth rate of the yeast. The highest ethanol (21.7% g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study. 60 refs., 9 figs., 3 tabs.« less
Petchi, Ramesh R; Parasuraman, S; Vijaya, C
2013-09-01
To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats.
Petchi, Ramesh R.; Parasuraman, S.; Vijaya, C.
2013-01-01
Objective: To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. Materials and Methods: The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. Results: The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. Conclusion: The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats. PMID:24808679
Dzib-Guerra, Wendy del C.; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Derbré, Séverine; Blanchard, Patricia; Richomme, Pascal; Peña-Rodríguez, Luis M.
2016-01-01
Background: Formation and accumulation of advanced glycation end-products (AGE) is recognized as a major pathogenic process in diabetic complications, atherosclerosis and cardiovascular diseases. In addition, reactive oxygen species and free radicals have also been reported to participate in AGE formation and in cell damage. Natural products with antioxidant and antiAGE activity have great therapeutic potential in the treatment of diabetes, hypertension and related complications. Objective: to test ethanolic extracts and aqueous-traditional preparations of plants used to treat diabetes, hypertension and obesity in Yucatecan traditional medicine for their anti-AGE and free radical scavenging activities. Materials and Methods: ethanolic extracts of leaves, stems and roots of nine medicinal plants, together with their traditional preparations, were prepared and tested for their anti-AGE and antioxidant activities using the inhibition of advanced glycation end products and DPPH radical scavenging assays, respectively. Results: the root extract of C. fistula (IC50= 0.1 mg/mL) and the leaf extract of P. auritum (IC50= 0.35 mg/mL) presented significant activity against vesperlysine and pentosidine-like AGE. Although none of the aqueous traditional preparations showed significant activity in the anti-AGE assay, both the traditional preparations and the ethanolic extracts of E. tinifolia, M. zapota, O. campechianum and P. auritum showed significant activity in the DPPH reduction assay. Conclusions: the results suggest that the metabolites responsible for the detected radical-scavenging activity are different to those involved in inhibiting AGE formation; however, the extracts with antioxidant activity may contain other metabolites which are able to prevent AGE formation through a different mechanism. SUMMARY Ethanolic extracts from nine plants used to treat diabetes, hypertension and obesity in Yucatecan traditional medicine were tested for their anti-AGE and free radical scavenging activities.Significant activity against vesperlysine and pentosidine-like AGE was detected in the root extract of Cassia fistula and the leaf extract of Piper auritum.Traditional preparations and the ethanolic extracts of Ehretia tinifolia, Manilkara zapota, Ocimum campechianum and Piper auritum showed significant activity in the DPPH reduction assay.Results suggest that the metabolites responsible for the detected radical-scavenging activity are different to those involved in inhibiting AGE formation. Abbreviations Used: AGE: Advanced glycation end-product; DPPH: 2,2-Diphenyl-1-picrylhydrazyl; DM: Diabetes mellitus; ROS: Reactive oxygen species; BSA: Bovine serum albumin; EtOH: Ethanol; EtOAc: Ethyl acetate; ANOVA: Analysis of variance; BA: Brosimum alicastrum; BS: Bunchosia swartziana; CF: Cassia fistula; CN: Cocos nucifera; ET: Ehretia tinifolia; MZ: Manilkara zapota; OC: Ocimum campechianum; PA: Piper auritum; RM: Rhizophora mangle; L: Leaves; S: Stems; R: Roots; T: traditional preparation; I: Inflorescences; W: Water PMID:27695268
Dzib-Guerra, Wendy Del C; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Derbré, Séverine; Blanchard, Patricia; Richomme, Pascal; Peña-Rodríguez, Luis M
2016-01-01
Formation and accumulation of advanced glycation end-products (AGE) is recognized as a major pathogenic process in diabetic complications, atherosclerosis and cardiovascular diseases. In addition, reactive oxygen species and free radicals have also been reported to participate in AGE formation and in cell damage. Natural products with antioxidant and antiAGE activity have great therapeutic potential in the treatment of diabetes, hypertension and related complications. Objective: to test ethanolic extracts and aqueous-traditional preparations of plants used to treat diabetes, hypertension and obesity in Yucatecan traditional medicine for their anti-AGE and free radical scavenging activities. ethanolic extracts of leaves, stems and roots of nine medicinal plants, together with their traditional preparations, were prepared and tested for their anti-AGE and antioxidant activities using the inhibition of advanced glycation end products and DPPH radical scavenging assays, respectively. the root extract of C. fistula (IC 50 = 0.1 mg/mL) and the leaf extract of P. auritum (IC 50 = 0.35 mg/mL) presented significant activity against vesperlysine and pentosidine-like AGE. Although none of the aqueous traditional preparations showed significant activity in the anti-AGE assay, both the traditional preparations and the ethanolic extracts of E. tinifolia, M. zapota, O. campechianum and P. auritum showed significant activity in the DPPH reduction assay. the results suggest that the metabolites responsible for the detected radical-scavenging activity are different to those involved in inhibiting AGE formation; however, the extracts with antioxidant activity may contain other metabolites which are able to prevent AGE formation through a different mechanism. Ethanolic extracts from nine plants used to treat diabetes, hypertension and obesity in Yucatecan traditional medicine were tested for their anti-AGE and free radical scavenging activities.Significant activity against vesperlysine and pentosidine-like AGE was detected in the root extract of Cassia fistula and the leaf extract of Piper auritum .Traditional preparations and the ethanolic extracts of Ehretia tinifolia, Manilkara zapota, Ocimum campechianum and Piper auritum showed significant activity in the DPPH reduction assay.Results suggest that the metabolites responsible for the detected radical-scavenging activity are different to those involved in inhibiting AGE formation. Abbreviations Used : AGE: Advanced glycation end-product; DPPH: 2,2-Diphenyl-1-picrylhydrazyl; DM: Diabetes mellitus; ROS: Reactive oxygen species; BSA: Bovine serum albumin; EtOH: Ethanol; EtOAc: Ethyl acetate; ANOVA: Analysis of variance; BA: Brosimum alicastrum ; BS: Bunchosia swartziana ; CF: Cassia fistula ; CN: Cocos nucifera ; ET: Ehretia tinifolia ; MZ: Manilkara zapota ; OC: Ocimum campechianum ; PA: Piper auritum ; RM: Rhizophora mangle ; L: Leaves; S: Stems; R: Roots; T: traditional preparation; I: Inflorescences; W: Water.
Evaluation of Antioxidant Activity of Tetracarpidium conophorum (Müll. Arg) Hutch & Dalziel Leaves
Amaeze, O. U.; Ayoola, G. A.; Sofidiya, M. O.; Adepoju-Bello, A. A.; Adegoke, A. O.; Coker, H. A. B.
2011-01-01
This study evaluated the antioxidant activity as well as bioflavonoid content of the methanol and ethanol-water extracts of the fresh and dried leaves of Tetracarpidium conophorum. Antioxidant activity was determined by spectrophotometric methods using DPPH free radical, nitric oxide radical inhibition and ferric reducing antioxidant power assays. In addition, total phenolics, flavonoids and proanthocyanidin content were also determined. The ethanol: water extract of the dried leaves had the highest antioxidant activity with a 50% inhibition of DPPH at a concentration of 0.017 mg/mL compared to the standards, Vitamin C and Vitamin E with inhibition of 0.019 and 0.011 mg/mL, respectively. This extract also showed nitric oxide radical inhibition activity comparable to that of rutin, 54.45% and 55.03% for extract and rutin, respectively, at 0.1 mg/mL. Ferric reducing power was also comparable to that of ascorbic acid (281 and 287 μM Fe (11)/g, resp.) at a concentration of 1 mg/mL. The methanol extract of both the dried and the fresh leaves had higher phenolic, flavonoids and proanthocyanidin content than the ethanol : water extract. The study reveals that T. conophorum can be an interesting source of antioxidants with their potential use in different fields namely food, cosmetics and pharmaceuticals. PMID:21912723
Cytotoxic activity of four Mexican medicinal plants.
Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo
2009-01-01
Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.
Babu, N Prakash; Pandikumar, P; Ignacimuthu, S
2009-09-07
Albizia lebbeck Benth. is used both in Indian traditional system and folk medicine to treat several inflammatory pathologies such as asthma, arthritis and burns. The aim of the present study was to evaluate the scientific basis of anti-inflammatory activity of different organic solvent extracts of Albizia lebbeck. The anti-inflammatory activity of Albizia lebbeck was studied using the carrageenan, dextran, cotton pellet and Freund's complete adjuvant induced rat models. The extracts obtained using petroleum ether, chloroform and ethanol were administered at the concentrations of 100, 200 and 400mg/kg body weight. The petroleum ether and ethanol extracts at 400mg/kg, showed maximum inhibition of inflammation induced by carrageenan (petroleum ether-48.6%; ethanol-59.57%), dextran (petroleum ether-45.99%; ethanol-52.93%), cotton pellet (petroleum ether-34.46%; ethanol-53.57%) and Freund's adjuvant (petroleum ether-64.97%; ethanol-68.57%). The marked inhibitory effect on paw edema shows that Albizia lebbeck possesses remarkable anti-inflammatory activity, supporting the folkloric usage of the plant to treat various inflammatory diseases.
Trinh, Binh T D; Staerk, Dan; Jäger, Anna K
2016-06-20
The 18 plant species investigated in this study have been used as herbal antidiabetic remedies in Vietnamese traditional medicines. This study aimed to evaluate their ability to inhibit α-glucosidase and α-amylase, two key enzymes involved in serum glucose regulation. Chloroform, ethanol and water extracts of 18 plants were screened for α-glucosidase and α-amylase inhibitory activity. Analytical-scale HPLC was subsequently used to investigate the most active extracts, where samples with low level of tannins were identified and fractionated into 96-well microplates, followed by α-glucosidase and α-amylase assessment of each well. High-resolution α-glucosidase and α-amylase inhibition profiles constructed from these assays allowed identification of HPLC peaks correlated with α-glucosidase and α-amylase inhibitory activity. The active constituents were subsequently isolated using preparative-scale HPLC and their structure was elucidated by HR-ESIMS and NMR. Ethanol extracts of Nepenthes mirabilis, Phyllanthus urinaria, and Kandelia candel significantly inhibited α-glucosidase with IC50 values of 32.7±6.3, 39.7±9.7, and 35.4±13.9μg/mL, respectively. Water extracts of N. mirabilis, Phyllanthus amarus, P. urinaria, Lagerstroemia speciosa, Syzygium cumini, Rhizophora mucronata, and K. candel showed IC50 values of 3.3±0.8, 34.9±1.5, 14.6±4.6, 5.4±0.5, 20.9±1.8, 3.3±0.6, and 4.0±0.8μg/mL, respectively. In the α-amylase inhibition assay, ethanol extracts of K. candel and Ficus racemosa showed IC50 of 7.6±0.9 and 46.7±23.6μg/mL, respectively. Showing low tannin constituents as seen from HPLC profiles, P. amarus and P. urinaria water extracts and F. racemosa ethanol extract were subjected to microfractionation. Only high-resolution α-glucosidase inhibition profiles of P. amarus and P. urinaria water extracts showed several active compounds, which were isolated and identified as corilagin (1), repandusinic acid A (2), and mallotinin (3). IC50 of these compounds were 1.70±0.03, 6.10±0.10, and 3.76±0.15μM, respectively. Kinetics analysis revealed that 1 displayed a mixed type mode of inhibition with Ki and Ki' values of 2.37±0.90 and 2.61±0.61μM, respectively, whereas 2 and 3 competitively inhibited α-glucosidase with Ki values of 4.01±0.47 and 0.65±0.11μM, respectively. Corilagin (1), repandusinic acid A (2), and mallotinin (3) were potent α-glucosidase inhibitors contributing significantly to the inhibitory effect observed for the water extracts of P. amarus and P. urinaria. Copyright © 2016. Published by Elsevier Ireland Ltd.
Antioxidant and hepatoprotective activity of Cordia macleodii leaves
Qureshi, Naseem N.; Kuchekar, Bhanudansh S.; Logade, Nadeem A.; Haleem, Majid A.
2009-01-01
This investigation was undertaken to evaluate ethanolic extract of Cordia macleodii leaves for possible antioxidant and hepatoprotective potential. Antioxidant activity of the extracts was evaluated by four established, in vitro methods viz. 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging method, nitric oxide (NO) radical scavenging method, iron chelation method and reducing power method. The extract demonstrated a significant dose dependent antioxidant activity comparable with ascorbic acid. The extract was also evaluated for hepatoprotective activity by carbon tetrachloride (CCl4) induced liver damage model in rats. CCl4 produced a significant increase in levels of serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT), Alkaline Phosphatase (ALP) and total bilirubin. Pretreatment of the rats with ethanolic extract of C. macleodii (100, 200 and 400 mg/kg po) inhibited the increase in levels of GPT, GOT, ALP and total bilirubin and the inhibition was comparable with Silymarin (100 mg/kg po). The present study revealed that C. macleodii leaves have significant radical scavenging and hepatoprotective activities. PMID:23960714
Al-Azzawi, Amad; Alguboori, Alyaa; Hachim, Mahmoud Y; Najat, M; Al Shaimaa, A; Sad, Maryam
2012-10-01
The present study describes the phytochemical profile and antimicrobial activity of Sesuvium portulacastrum. Three extracts of S. portulacastrum obtained by extraction in aqueous, ethanolic and dichloromethane solvents, respectively, were compared for their antimicrobial activity and ethanolic extract further subjected to gas chromatography-mass spectrometry (GC-MS) analysis to find out the nature of the compounds responsible for the antimicrobial activity. The antibacterial activities were assessed by measuring the diameter of the inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. Compared to the aqueous and dichloromethane extract, the ethanolic extract showed better antimicrobial activity against Staphylococcus aureus and E. coli, indicating its potential application related to noscomial infections. GC-MS results revealed 22, 23-Dihydrostigmasterol, Benzoic acid, 3,4,5-trihydroxy-(Gallic acid), (2R,3R)-(-)-Epicatechin and Capsaicin in the ethanolic extract to be the molecules responsible for the antimicrobial activity of S. portulacastrum. To the best of our knowledge, this is the first report on analysis of antimicrobial components from S. portulacastrum in United Arab Emirates (UAE), and our results confer the utility of this plant extract in developing a novel broad spectrum antimicrobial agent.
Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models.
Hu, Fuliang; Hepburn, H R; Li, Yinghua; Chen, M; Radloff, S E; Daya, S
2005-09-14
The anti-inflammatory effects of ethanol (EEP) and water (WSD) extracts in ICR mice and Wistar rats were analyzed. Both WSD and EEP exhibited significant anti-inflammatory effects in animal models with respect to thoracic capillary vessel leakage in mice, carrageenan-induced oedema, carrageenan-induced pleurisy, acute lung damage in rats. The mechanisms for the anti-inflammatory effects probably involve decreasing prostaglandin-E(2) (PGE(2)) and nitric oxide (NO) levels. In rats with Freund's complete adjuvant (FCA) induced arthritis, propolis extracts significantly inhibited the increase of interleukin-6 (IL-6) in inflamed tissues, but had no significant effect on levels of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). The results are consistent with the interpretation that EEP and WSD may exert these effects by inhibiting the activation and differentiation of mononuclear macrophages.
NASA Astrophysics Data System (ADS)
Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.
2018-03-01
The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.
NASA Astrophysics Data System (ADS)
Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.
2018-06-01
The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.
Effect of aqueous and ethanolic extracts of Lippia citriodora on candida albicans
Ghasempour, Maryam; Omran, Saeid Mahdavi; Moghadamnia, Ali Akbar; Shafiee, Faranak
2016-01-01
Introduction Because of resistance and side effects to common antifungal drugs activity, the research on herbal substances with antifungal activity is frequent. Lemon verbena (Lippia citriodora) is a member of Verbenaceae family. The aim of this study was to determine the anti-candida activities of the ethanolic and aqueous extracts of the lemon verbena leaves and compare them with nystatin and fluconazole. Methods In this 2015 study, 15 clinical isolates and standard strain of candida albicans PTCC 5027 were used, and the inhibitory effects of the ethanolic and aqueous extracts, Nystatin and Fluconazole, were evaluated using disk and well diffusion methods. Also, the minimal inhibitory concentration (MIC) was determined. Five concentrations of aqueous and ethanolic extracts (156–2500 μg/ml), Nystatin (8–128 μg/ml) and Fluconazole (4–64 μg/ml) were used in disk and well diffusion methods, and nine concentrations of aqueous and ethanolic extracts (19–5000 μg/ml), Nystatin (0.5–128 μg/ml), and Fluconazole (0.25–64 μg/ml) were applied for MIC. Data were analyzed using Tukey’s post-hoc and one-way ANOVA tests. The significant level was considered p < 0.05 in the current study. Results In the well and disk diffusion techniques, limited growth inhibition halos were produced around some clinical isolates at different concentrations of ethanolic extract; however, no growth inhibitory halo was observed with any concentrations of the aqueous extract. The MIC values of ethanolic extract, aqueous extract, Nystatin and Fluconazole for clinical isolated and standard strain were 833 ± 78.5and 625μg/ml; 4156 ± 67.4 and 2500 μg/ml; 10.13 ± 1.91 and 4 μg/ml; and 1.97 ± 0.25 and 1 μg/ml, respectively. Conclusion The results showed that the ethanolic extract was stronger than the aqueous extract of this plant, which can be used as an alternative for drugs. It is recommended that the ethanolic extract of this plant be investigated in vivo for better evaluation of its efficacy and properties. PMID:27757185
Andhare, Rohan N; Raut, Mayuresh K; Naik, Suresh R
2012-08-01
The leaves and rhizomes of Sansevieria trifasciata are used in folk medicine for treating bronchitis, asthma, cough, snake bite and insect bite etc. The ethanolic extract elicited analgesic, anti-inflammatory and antipyretic activity. Hence, it was decided to study the antiallergic activity of ethanolic extract of S. trifasciata (EEST) on various animal models as well as in vitro conditions, and also to understand possible mechanism of action. Ethanolic extract of S. trifasciata leaves (EEST) were prepared by cold maceration followed by concentration and evaporation under reduced pressure on a rotary evaporator to obtain semisolid mass. The various phytoconstituents were analyzed. The acute toxicity study of EEST was carried out in mice. The antiallergic and anaphylactic activities were evaluated using animal models viz. milk induced eosinophilia and leukocytosis, compound 48/80 induced mast cell degranulation, active and passive cutaneous anaphylaxis and histamine induced pedal edema. In addition, EEST effect on Shultz-Dale reaction in sensitized guinea pig ileum in ex vivo and antioxidant activity by free radical scavenging by DPPH method (in vitro) were also studied. EEST treatment at 100mg/kg and 200mg/kg p.o inhibited (a) milk-induced increased eosinophilia, leukocytosis, monocytes and neutrophils. (b) Prevented passive cutaneous and active anaphylactoid reactions. (c) Prevented compound 48/80 induced degranulation of sensitized mesenteric mast cells. (d) Inhibited histamine induced pedal edema formation significantly. EEST pretreatment inhibited Shultz-Dale reaction in guinea pig ileum and also elicited potent antioxidant activity. Experimental findings demonstrate promising antiallergic and anti-anaphylactic activity of EEST and also elicited potent antioxidant activity. The antiallergic and anti-anphylactic activity might be due to inhibition of release of chemical mediators from mast cells largely by phytoconstituents like steroidal saponins, triterpenoids and flavonoids present in EEST. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kusuma, I. W.; Rahmini; Ramadhan, R.; Rahmawati, N.; Suwasono, R. A.; Sari, NM
2018-04-01
Eusideroxylon zwagery (Lauraceae), a tropical tree species known as ulin or borneo iron wood and traditionally used for the treatment of diabetes in the Ethnic of Kutai. Plant extract was prepared by maceration using ethanol. The plant extract was evaluated its DPPH and superoxide radicals scavenging activity, the inhibition on α-glucosidase and α-amylase activity as antidiabetic potential and the analysis of the total phenolic, total flavonoids and proanthocyanidin contents. The ethanolic extract of the stem bark was 8.62% on the dry weight basis. The IC50 values of antioxidant activity of the extract in DPPH and superoxide radical scavenging mechanisms were 44.90 µg/ml and 30.47 µg/ml. In antidiabetic assay, the E. zwageri stem bark extract showed IC50 value 58.45µg/ml in ɑ-glucosidase inhibition, and 9.04 µg/ml in ɑ-amylase inhibition. Quercetin, an antidiabetic activity-having flavonoid, displayed IC50 values 2.00 µg/ml and 4.04 µg/ml in ɑ-glucosidase and ɑ-amylase inhibitory assays. In phytochemical assay, the extract had 31.28 GAE/g extract (mg), 30.48 CE/g extract (mg) and 183.3 PE/g extract (mg) for the total phenolic, total flavonoid and total proanthocyanidin contents. The limited reports of E. zwageri indicated the needs to search the active compounds from plant as potential antidiabetic agents by considering plant conservation status.
Cai, Wujie; Yu, Lijing; Zhang, Yu; Feng, Li; Kong, Siyuan; Tan, Hongsheng; Xu, Hongxi; Huang, Cheng
2016-01-01
The aim of this study was to assay the effects of Coreopsis tinctoria Nutt. flower extracts on hyperglycemia of diet-induced obese mice and the underlying mechanisms. Coreopsis tinctoria flower was extracted with ethanol and water, respectively. The total phenol, flavonoid levels, and the constituents of the extracts were measured. For the animal experiments, C57BL/6 mice were fed with a chow diet, high-fat diet, or high-fat diet mixed with 0.4% (w/w) water and ethanol extracts of Coreopsis tinctoria flower for 8 weeks. The inhibitory effects of the extracts on α-glucosidase activity and the antioxidant properties were assayed in vitro. We found that the extracts blocked the increase of fasting blood glucose, serum triglyceride (TG), insulin, leptin, and liver lipid levels and prevented the development of glucose tolerance impairment and insulin resistance in the C57BL/6 mice induced by a high-fat diet. The extracts inhibited α-glycosidase activity and increased oxidant activity in vitro. In conclusion, Coreopsis tinctoria flower extracts may ameliorate high-fat diet-induced hyperglycemia and insulin resistance. The underling mechanism may be via the inhibition of α-glucosidase activity. Our data indicate that Coreopsis tinctoria flower could be used as a beverage supplement and a potential source of drugs for treatment of diabetics.
Zhou, Jing; Yuan, Xiurong; Li, Ling; Zhang, Tong; Wang, Bing
2017-12-01
Hydrodistillation (HD), supercritical fluid extraction (SFE) and reflux extraction (RE) were applied to obtain Cinnamomi ramulus extracts. The yields, chemical compositions and antiviral activities of the extracts were investigated. Extracts were analysed using gas chromatography-mass spectrometry and the antiviral activities were evaluated using cytopathic effect inhibition assay. HD, SFE and RE afforded 0.376, 1.227 and 5.914% yields, respectively. Cinnamaldehyde (CA), SFE and ethanol extracts exhibited antiviral activities against herpes simplex virus type 1. Moreover, CA and other three extracts had inhibition efficacy against respiratory syncytial virus. The most efficient antiviral activities were obtained with SFE.
[Studies on antimicrobial activity of extracts from thyme].
Fan, M; Chen, J
2001-08-01
The extracts from thyme by water and ethanol, thyme essential oil, thymol and carvacrol were used as antimicrobial agents in this paper. The results show that all antimicrobial agents used have strong inhibition activity against Staphalococcus aureus, Bacillus subtilis, Escherichia coli.
Lii, Chong-Kuei; Chen, Haw-Wen; Yun, Wen-Tzu; Liu, Kai-Li
2009-03-18
Bitter gourd (Momordica charantia) is used to treat various diseases including inflammation. A wild species of bitter gourd, Momordica charantia Linn. var. abbreviata ser. (WBG), is considered to be more potent in disease prevention than is bitter gourd; however, little is known about the biological and physiological characteristics of WBG. The present study investigated the anti-inflammatory effect of WBG on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Among the hot water, 95% ethanol, and ethyl acetate extracts of WBG, the ethanol extract showed the greatest reduction of LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and inducible nitric oxide synthase (iNOS) and pro-interleukin-1beta expression. LPS-induced cyclooxygenase-2 expression was not affected byWBGextracts. Compared with WBG, extracts from bitter gourd showed a lesser inhibition of LPS-induced events. Electrophoretic mobility shift assay further showed that both the hot water and the ethanol extracts of WBG inhibited NF-kappaB activation. Although information is lacking on the bioactive components of WBG, the phenolic compound contents of each extract significantly paralleled its anti-inflammatory ability (r = 0.74, 0.88 and 0.65 for NO, PGE2 and iNOS expression, respectively, P < 0.05). These results suggest that WBG is beneficial for reducing LPS-induced inflammatory responses by modulating NF-kappaB activation.
Dada, E. O.; Ekundayo, F. O.; Makanjuola, O. O.
2014-01-01
This study investigated the antibacterial activities of hot water, ethanol and acetone extracts of Jatropha curcas (LINN) leaves on coliforms isolated from surface waters using growth inhibition indices based on agar plate technique. The percentage recovery of the extracts was 19.17%, 18.10% and 18.80% for hot water, ethanol and acetone respectively. Phytochemical screening of the extracts was also determined. Qualitative phytochemical screening showed that the plant extracts contained steroids, tannins, flavonoids and cardiac glycosides, while alkaloids, phlobatannin, terpenoids and anthraquinones were absent. Only ethanolic extract did not possess saponins. Aqueous extracts of J. curcas compared most favourably with the standard antibiotics (gentamycin) on all the coliform bacteria except on K. pneumoniae and E. coli likely due to a measurably higher antibacterial activity compared to the organic extracts. The minimum inhibitory concentration of the aqueous extract ranged from 3.00 to 7.00 mg/L while minimum bactericidal concentration ranged from 4.00 to 10.00 mg/L. Aqueous extract of J. curcas could be used as antibacterial agents against diseases caused by coliforms. PMID:24711746
de Souza Grinevicius, Valdelúcia Maria Alves; Kviecinski, Maicon Roberto; Santos Mota, Nádia Sandrini Ramos; Ourique, Fabiana; Porfirio Will Castro, Luiza Sheyla Evenni; Andreguetti, Rafaela Rafognato; Gomes Correia, João Francisco; Filho, Danilo Wilhem; Pich, Claus Tröger; Pedrosa, Rozangela Curi
2016-08-02
Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction that induced oxidative stress affecting key proteins involved in cell cycle arrest at G1/S and triggering apoptosis. Finally, the overall data from this study are well in line with the traditional claims for the antitumor effect of Piper nigrum fruits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rita, Wiwik Susanah; Swantara, I. Made Dira; Asih, I. A. Raka Astiti; Sinarsih, Ni Ketut; Suteja, I. Kadek Pater
2016-03-01
Total flavonoid and phenolic contents in some natural products was suspected of having a positive correlation to its activity in inhibiting the growth of bacteria. The aim of this study was to determine the total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf, and to evaluate the antibacterial activity towards Escherechia coli and Staphylococcus aureus. Extraction of compounds was done by ethanol 96%, followed by fractionation into n-hexane, ethyl acetate, and n-butanol. Determination of total flavonoid and phenolic contents was done by UV-Vis Spectrophotometer using standard of quersetin and galic acid respectively. In addition, antibacterial activity was evaluated by agar disc diffusion method. Extraction of 1000 g of Samanea saman leaf was obtained 80 g of ethanol extracts, fractionation of the extract was obtained 8.02 g of n-hexane extracts, 7.11 g of ethyl acetate extracts, 13.5 g of n-butanol extracts, and 14.16 g of aqueous extracts. Phytochemical screening of the n-butanol extracts revealed the presence of flavonoid and phenolic compounds. Total flavonoid and phenolic contents were successively 43.5798 mg QE/100g and 34.0180 mg GAE/100g. The butanol extracts inhibited the growth of S.aureus higher than the growth of E.coli. At the concentration of 2, 4, 6, 8 % (b/v), and positive control (meropenem μg/disc), inhibition zone towards S. aureus was successively 5.67, 9.33, 10.33, 12.00, and 32.33 mm, while the inhibition zone towards E. coli was1.33, 3.33, 4.33, 5.43, and 34.00 mm.
Vinholes, Juliana; Vizzotto, Márcia
2017-01-01
Background: Camellia sinensis, the most consumed and popular beverages worldwide, and Eugenia uniflora, a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. Objective: The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and peroxyl radicals was also assayed. Materials and Methods: Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. Results: E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH•, in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Conclusion: Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. SUMMARY Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed synergistic effect over alpha-glucosidase and peroxyl radicals.Total phenolic, carotenoids and chlorophylls A and B can be responsible by the observed activities.Extracts could be used as alternative to control postprandial hyperglycemia.Extracts could increase antioxidant defenses to patients with T2DM. Abbreviations Used: T2DM: Type 2 diabetes mellitus; DPPH: 2,2-diphenyl-1-picrylhydrazyl radical; PNPG: 4-Nitrophenyl β-D-glucuronide; LOO: Lipid peroxidation; SEM: Standard error of the mean; CAE: Chlorogenic acid equivalent PMID:28250662
Inhibition of Aldose Reductase by Gentiana lutea Extracts
Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J. Mark; Reddy, Geereddy Bhanuprakash
2012-01-01
Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications. PMID:22844269
Inhibition of aldose reductase by Gentiana lutea extracts.
Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J Mark; Reddy, Geereddy Bhanuprakash
2012-01-01
Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications.
In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Sulistiyani; Purwakusumah, E. P.; Andrianto, D.
2017-03-01
This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.
Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H; Almajano, María Pilar
2014-05-06
Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50-90 °C, 0%-30%-60% ethanol (v/v), and 10-15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.
de Albuquerque Ugoline, Bruno César; de Souza, Jacqueline; Ferrari, Fernanda Cristina; Ferraz-Filha, Zilma Schimith; Coelho, Grazielle Brandão; Saúde-Guimarães, Dênia Antunes
2017-02-23
Lychnophora passerina (Mart ex DC) Gardn (Asteraceae), popularly known as Brazilian arnica, is used in Brazilian folk medicine to treat pain, rheumatism, bruises, inflammatory diseases and insect bites. Investigate the influence of the seasons on the anti-inflammatory and anti-hyperuricemic activities of ethanolic extract of L. passerina and the ratio of the goyazensolide content, main chemical constituent of the ethanolic extract, with these activities. Ethanolic extracts of aerial parts of L. passerina were obtained from seasons: summer (ES), autumn (EA), winter (EW) and spring (EP). The sesquiterpene lactone goyazensolide, major metabolite, was quantified in ES, EA, EW and EP by a developed and validated HPLC-DAD method. The in vivo anti-hyperuricemic and anti-inflammatory effects of the ethanolic extracts from L. passerina and goyazensolide were assayed on experimental model of oxonate-induced hyperuricemia in mice, liver xanthine oxidase (XOD) inhibition and on carrageenan-induced paw edema in mice. HPLC method using aqueous solution of acetic acid 0.01% (v/v) and acetonitrile with acetic acid 0.01% (v/v) as a mobile phase in a gradient system, with coumarin as an internal standard and DAD detection at 270nm was developed. The validation parameters showed linearity in a range within 10.0-150.0µg/ml, with intraday and interday precisions a range of 0.61-3.82. The accuracy values of intraday and interday analysis within 87.58-100.95%. EA showed the highest goyazensolide content. From the third to the sixth hour after injection of carrageenan, treatments with all extracts at the dose of 125mg/kg were able to reduce edema. Goyazensolide (10mg/kg) showed significant reduction of paw swelling from the second hour assay. This sesquiterpene lactone was more active than extracts and presented similar effect to indomethacin. Treatments with ES, EA and EP (125mg/kg) and goyazensolide (10mg/kg) reduced serum urate levels compared to hyperuricemic control group and were able to inhibit liver XOD activity. One of the mechanisms by which ES, EA, EP and goyazensolide exercise their anti-hyperuricemic effect is by the inhibition of liver XOD activity. Goyazensolide was identified as the main compound present in ES, EA, EW and EP and it is shown to be one of the chemical constituents responsible for the anti-inflammatory and anti-hyperuricemic effects of the ethanolic extracts. The anti-inflammatory and anti-hyperuricemic activities of the ethanolic extracts from L. passerina were not proportionally influenced by the variation of goyazensolide content throughout the seasons. The involvement of goyazensolide on in vivo anti-inflammatory and anti-hyperuricemic activities of L.passerina extracts was confirmed, as well as the possibility of participation of other constituents on these effects. This study demonstrated that the aerial parts of L. passerina may be collected in any season for use as anti-inflammatory agent. For use in hyperuricemia, the best seasons for the collection are summer, autumn and spring. The ethanolic extract of L. passerina and goyazensolide can be considered promising agents in the therapeutic of inflammation, hyperuricemia and gout. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber
2017-01-01
By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p < 0.05) for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 with R 2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α -glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
Chusri, S.; Sompetch, K.; Mukdee, S.; Jansrisewangwong, S.; Srichai, T.; Maneenoon, K.; Limsuwan, S.; Voravuthikunchai, S. P.
2012-01-01
Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63–5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm. PMID:22919409
Antimicrobial potential of Australian macrofungi extracts against foodborne and other pathogens.
Bala, Neeraj; Aitken, Elizabeth A B; Cusack, Andrew; Steadman, Kathryn J
2012-03-01
Basidiomycetous macrofungi have therapeutic potential due to antimicrobial activity but little information is available for Australian macrofungi. Therefore, the present study investigated 12 Australian basidiomycetous macrofungi, previously shown to have promising activity against Staphylococcus aureus and Escherichia coli, for their antimicrobial potential against a range of other clinically relevant micro-organisms. Fruiting bodies were collected from across Queensland, Australia, freeze-dried and sequentially extracted with water and ethanol. The crude extracts were tested at 10 mg/mL and 1 mg/mL against six pathogens including two Gram-positive and two Gram-negative bacteria along with two fungi using a high throughput 96-well microplate bioassay. A degree of specificity in activity was exhibited by the water extract of Ramaria sp. (Gomphaceae) and the ethanol extracts of Psathyrella sp. (Psathyrellaceae) and Hohenbuehelia sp., which inhibited the growth of the two fungal pathogens used in the assay. Similarly, the ethanol extract of Fomitopsis lilacinogilva (Fomitopsidaceae) was active against the Gram-positive bacteria B. cereus only. Activity against a wider range of the microorganisms used in the assay was exhibited by the ethanol extract of Ramaria sp. and the water extract of Hohenbuehelia sp. (Pleurotaceae). These macrofungi can serve as new sources for the discovery and development of much needed new antimicrobials. Copyright © 2011 John Wiley & Sons, Ltd.
Stojković, Dejan; Reis, Filipa S; Glamočlija, Jasmina; Ćirić, Ana; Barros, Lillian; Van Griensven, Leo J L D; Ferreira, Isabel C F R; Soković, Marina
2014-07-25
Agaricus bisporus (J. E. Lange) Emil J. Imbach and Agaricus brasiliensis Wasser, M. Didukh, Amazonas & Stamets are edible mushrooms. We chemically characterized these mushrooms for nutritional value, hydrophilic and lipophilic compounds. The antioxidant and antimicrobial activities of methanolic and ethanolic extracts were assessed. Hepatotoxicity was also evaluated. The ethanolic extract of both species was tested for inhibition of Listeria monocytogenes growth in yoghurt. Both species proved to be a good source of bioactive compounds. A. brasiliensis was richer in polyunsaturated fatty acids and revealed the highest concentration of phenolic acids, and tocopherols. A. bisporus showed the highest monounsaturated fatty acids and ergosterol contents. A. brasiliensis revealed the highest antioxidant potential, and its ethanolic extract displayed the highest antibacterial potential; the methanolic extract of A. bisporus revealed the highest antifungal activity. A. brasiliensis possessed better preserving properties in yoghurt.
Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.
Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn
2017-01-01
The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.
Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen
2014-01-01
Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.
NASA Astrophysics Data System (ADS)
Trianto, Agus; Andriyas, Yogi; Ridlo, Ali; Sedjati, Sri; Susilaningsih, Neni; Murwani, Retno
2018-02-01
The gorgonian Isis hippuris contains secondary metabolites gorgosterol and hippuristanol which are capable of inhibiting cancer cells. However, in vivo test of the gorgonian Isis hippuris extract as the anticancer drug has not been conducted. The research to study of the effect of ethanolic extract of the gorgonian on the induced tumor growth in C3H mice. The I. hippuris was obtained from Karimunjawa water in Jepara. The extract was prepared by maceration using ethanol. A total 20, 8-10 moths old of C3H mice with an initial weight of 20-25 gram were assigned into control, Ih-1, Ih-2, and Ih-3 groups. Control, Ih-1, Ih-2, and Ih-3 groups each received 0, 0.15, 1.5, and 15 mg extract per mouse per day respectively for two weeks. Cancer cells were introduced to all groups from a donor cancer mouse by injection via left or right axilla and allowed to grow. The cancer mass was removed and processed for histological examination, and cancer growth was determined according to Elston and Ellis criteria. The result showed that histological grade of cancer mass from the control group was in grade 2 or differentiated moderately. The histological grade of cancer mass from Ih-1, Ih-2, and Ih-3 groups were in grade 1 (low grade) or similar to a normal cell. Statistical analysis by Kruskal-Wallis test showed a significant difference (p<0,05) between control and treated mice. Mann-Whitney test found no significant differences among Ih-1, Ih-2, and Ih-3 treated mice. The results indicated the potential of active substances in the ethanol extract of I. hippuris as an anti-cancer drug.
The potency of plant extracts as antimicrobials for the skin or hide preservation
NASA Astrophysics Data System (ADS)
Suparno, Ono; Afifah, Amalia; Panandita, Tania; Marimin, Purnawati, Rini
2017-03-01
Preservation of skin or hide uses antimicrobial that will be disposed in wastewater in the skin or hide processing resulting in the environmental pollution. Extracts of some types of plants contain some antimicrobial substances which are potential to be used as biocides for the preservation of skin or hide and are more environmentally friendly. The objectives of this study were to determine the phytochemical contents of moringa, cucumber tree or wuluh starfruit, cherry, and white leadtree or lamtoro leaves and to analyse the antibacterial activities of the plant extracts against microorganisms that cause spoilage of skin or hide. Phytochemical constituents of the dried plant leaves were extracted by 70% ethanol. The resulting extracts were analysed their phytochemical contents and antimicrobial activities against gram negative and gram positive bacteria (inhibition zone test) by well diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical test showed that the four leaf extracts contained alkaloids, saponins, tannins, flavonoids, steroids, and glycosides. The inhibition zones of the extracts against Escherichia coli were 5 mm for moringa leaf, 6 mm for cucumber tree leaf, 12 mm for cherry leaf, and 17 mm for white leadtree leaf. Inhibition zone of the extracts against Staphylococcus aureus were 2.5 mm for moringa leaf, 7 mm for cucumber tree leaf, 7.3 mm for cherry leaf, and 13 mm for white leadtree leaf. Inhibition zones of the extracts against Bacillus subtilis were 8 mm for moringa leaf, 9 mm for cucumber tree starfruit leaf, 14 mm for cherry leaf, and 15 mm for white leadtree leaf. The best MIC and MBC tests were demonstrated by white leadtree leaf extract against E. coli found at concentration of 1500 µg/ml, against S. aureus at concentration of 3000 µg/ml, and against B. subtilis at concentration of 3000 µg/ml. The ethanol extract of white leadtree leaf had the best antibacterial activity and antimicrobial potency compared to the extracts of moringa, cucumber tree starfruit, and cherry leaves. Therefore, the ethanol extract of white leadtree leaf had a potency as a preservative of animal skin or hide and might be able to substitute the biocides used in the skin or hide preservation.
Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P
2014-12-01
We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.
Activity antifungal of the essential oils; aqueous and ethanol extracts from Citrus aurantium L.
Metoui, N; Gargouri, S; Amri, I; Fezzani, T; Jamoussi, B; Hamrouni, L
2015-01-01
Our study is about the essential oil of Citrus aurantium L. in Tunisia and its plant extract. The yield of this essential oil is 0, 56% but the yield of the extract of plant was 17.1% for the aqueous extract ant 18.3% for the ethanolic extract. The analysis of chemical composition by using GC and GC/MS showed the essential oil of C. aurantium L. species to be rich in monoterpenes such as α-terpineol, lianolyl acetate, linalool and limonene. The antifungal activity of this oil showed us an inhibition of the germination of mushrooms, in the same way we could note that the biologic activities are generally assigned to the chemotypes high content in oxygenated monoterpene.
Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob
2017-06-01
Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.
Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation.
Sekhon-Loodu, Satvir; Warnakulasuriya, Sumudu N; Rupasinghe, H P Vasantha; Shahidi, Fereidoon
2013-09-01
Polyphenols isolated from frozen and dried apple peels were studied as potential natural antioxidants to stabilize omega-3 polyunsaturated fatty acid (ω3 PUFA) enriched fish oil. The ethanolic extracts of apple peels were fractionated by reversed phase chromatography using gradient elution of 20-100% aqueous ethanol. The collected fractions were analyzed by ultra pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The total phenolic content and antioxidant capacity of each fraction were evaluated by Folin-Ciocalteu (FC), ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assays. Inhibition of fish oil oxidation was studied using the thiobarbituric acid reactive substances (TBARS) assay. Polyphenols fractionated using frozen apple peel extract had significantly higher FC, FRAP and DPPH(·) scavenging values than those of dried apple peel (p<0.05). The flavonol-rich fractions inhibited fish oil oxidation by 40-62% at a total phenolic concentration of 200 μg/ml. The fractionated polyphenols from both dried and frozen apple peel showed higher inhibition of lipid oxidation compared to α-tocopherol, butylated hydroxytoluene and crude apple peel extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gadelhaq, Sahar M; Arafa, Waleed M; Abolhadid, Shawky M
2018-02-15
This study was designed to investigate the ability of two herbal extracts and different chemical substances to inhibit or disrupt sporulation of Eimeria species oocysts of the chickens. The two herbal extracts were Allium sativum (garlic) and Moringa olifiera while the chemical substances included commercial disinfectants and diclazuril. Field isolates of Eimeria oocysts were propagated in chickens to obtain a continuous source of oocysts. The collected unsporulated oocysts (10 5 oocysts/5 ml) were dispensed into 5 cm Petri dish. Three replicates were used for each treatment. The treated oocysts were incubated for 48 h at 25-29 °C and 80% relative humidity. The results showed that herbal extracts, the commercial recommended dose of Dettol, TH4, Phenol, Virkon ® S, and Diclazuril 20% have no effect on the sporulation. While Sodium hypochlorite showed a significant degree of sporulation inhibition reached to 49.67%. Moreover, 70% ethanol, and 10% formalin showed 100% sporulation inhibition. It was concluded that 70% ethanol and 10% formalin are the most effective methods to inhibit Eimeria species sporulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Dahiya, Praveen; Purkayastha, Sharmishtha
2012-01-01
The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873
Eidenberger, Thomas; Selg, Manuel; Krennhuber, Klaus
2013-09-01
Based on the traditional use in popular medicine, the effect of extracts from Psidium guajava L. leaves and of the main flavonol-glycoside components on dipeptidyl-peptidase IV (DP-IV), a key enzyme of blood glucose homoeostasis, has been investigated in-vitro. An ethanolic extract was prepared from dried, powdered leaves of guava and was found to contain seven main flavonol-glycosides, which were isolated by semipreparative HPLC and tested individually. The ethanolic guava leave extract was shown to exert a dose-dependent inhibition of DP-IV, with an IC50 of 380 μg/ml test assay solution. Also the individual flavonol-glycosides inhibited DP-IV dose-dependently, with variations of the effects by a factor of 10, and an overall effect accounting for 100% of that observed for the total guava extract. The recovery of individual flavonol-glycosides in CaCo-2 epithelial cells, a model of gastrointestinal tract absorption, amounted to 2.3-5.3% of the amount available for absorption over 60 min at 37°C. Copyright © 2013 Elsevier B.V. All rights reserved.
Armillaria mellea: phenolic content, in vitro antioxidant and antihyperglycemic effects.
Zavastin, Daniela Elena; Mircea, Cornelia; Aprotosoaie, Ana Clara; Gherman, Simona; Hancianu, Monica; Miron, Anca
2015-01-01
Armillaria mellea, known as honey mushroom, has been used both as food and medicine. In this work, the ethanolic and hydromethanolic extracts from Armillaria mellea fruiting bodies were investigated for their phenolic content, antioxidant and antihyperglycemic effects (in vitro studies). The total phenolics were quantified using Folin-Ciocalteu assay. The antioxidant activity was evaluated by testing the free radical scavenging capacity, reducing power and ferrous ion chelating ability; in addition, the capacity to inhibit 15-lipoxygenase was also assessed. The antihyperglycemic activity was investigated by α-glucosidase assay. Total phenolic contents of 21.68 ± 0.06 and 5.70 ± 0.28 mg/g were determined in the hydromethanolic and ethanolic extracts, respectively. The hydromethanolic extract showed higher free radical scavenging and reducing abilities (EC50 = 452.6 ± 2.7, 140.57 ± 1.45 and 129.45 ± 0.98 μg/mL in DPPH, ABTS and reducing power assays, respectively). The ethanolic extract proved to be more efficient in the ferrous ion chelation, 15-lipoxygenase and α-glucosidase inhibition assays (EC55 = 67.93 ± 0.35, 290.93 ± 2.05 and 8.54 ± 0.06 μg/mL, respectively). Armillaria mellea extracts showed antioxidant and antihyperglycemic potential in in vitro models and therefore they are promising candidates for the development of dietary supplements and pharmaceutical products.
Kasture, V S; Chopde, C T; Deshmukh, V K
2000-07-01
The ethanolic extracts of leaves of Albizzia lebbeck and flowers of Hibiscus rosa sinesis and the petroleum ether extract of flowers of Butea monosperma exhibited anticonvulsant activity. The bioassay guided fractionation indicated that the anticonvulsant activity lies in the methanolic fraction of chloroform soluble part of ethanolic extract of the leaves of A. lebbeck, acetone soluble part of ethanolic extract of H. rosa sinesis flowers and acetone soluble part of petroleum ether extract of B. monosperma flowers. The fractions protected animals from maximum electro shock, electrical kindling and pentylenetetrazole-induced convulsions in mice. The fractions also inhibited convulsions induced by lithium-pilocarpine and electrical kindling. However, they failed to protect animals from strychnine-induced convulsions. The fractions antagonised the behavioral effects of D-amphetamine and potentiated the pentobarbitone-induced sleep. The fractions raised brain contents of gamma-aminobutyric acid (GABA) and serotonin. These fractions were found to be anxiogenic and general depressant of central nervous system.
Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity.
Hsu, Cheng-Kuang; Chou, Su-Tze; Huang, Pai-Jane; Mong, Mei-Chin; Wang, Chien-Kuo; Hsueh, Yu-Pin; Jhan, Jyun-Kai
2012-01-01
This study aimed to evaluate the anti-tyrosinase activities of ethanol extracts from the peels and the seeds of Kyoho grapes and Red Globe grapes (KG-PEE, KG-SEE, RGG-PEE, and RGG-SEE). The total phenolic content in KG-SEE and RGG-SEE was 400 +/- 11 and 339 +/- 7 mg gallic acid equivalent/g, respectively, about 22 times and 13 times that in KG-PEE and RGG-PEE, respectively. Both seed extracts showed significantly higher anti-tyrosinase activity than the peel extracts due to their high total phenolic content. The gallic acid content in RGG-SEE was twice that in KG-SEE, and gallic acid showed high anti-tyrosinase activity; thus, RGG-SEE had higher anti-tyrosinase activity than KG-SEE. Lineweaver-Burk plots revealed that the inhibitory mechanism of the ethanol extracts from the grapes was a mix-type inhibition. Grape seed has a greater total phenolic content and has potential as a skin-lighting agent.
Shen, Rui; Li, Hong-Qiang; Zhang, Jie; Xu, Jian
2016-07-01
As the second abundant natural carbohydrate, xylan is normally prepared through alkaline extraction and then used for xylo-oligosaccharides (XOS) production. However, the extracted xylan inevitably contains salt, ethanol, and pigment. In order to investigate the effects of these impurities on XOS production, the alkaline-extracted xylan with different kinds and concentrations of impurities was made and then hydrolyzed using alkaline xylanase (EC 3.2.1.8) to produce XOS. The results showed that a certain concentration of salt (NaCl) promoted the XOS production, while ethanol and pigment inhibited the enzymatic hydrolysis process significantly. The color value mainly ascribed to the phenolic compounds binding to xylan was a key restriction factor in the enzymatic hydrolysis later stage. Using optimal xylan sample (with 10 mg/mL NaCl, color value of 4.6 × 10(5), without ethanol) as substrate, the highest XOS yield of 58.58 % was obtained. As the substrate of XOS production, prepared xylan should contain colored materials and ethanol as less as possible, however, retains appropriate salt.
Liu, Jing; Li, Dengwu; Wang, Dongmei; Liu, Yu; Song, Huiying
2017-08-01
The allelopathic effects of Juniperus rigida litter aqueous extract (LE) on wheat and Pinus tabuliformis were studied, as well as the physiological responses to the extract. High concentration LE (0.10 g Dw/ml) significantly inhibited the seed germination and seedling growth in receptor plants. The chlorophyll content and root activity in the wheat seedlings were reduced significantly across all treatments; however, those were more prominently reduced at high concentration (0.10 g Dw/ml) but received little stimulation at low concentration (0.025 g Dw/ml) in P. tabuliformis. The content of malonaldehyde (MDA) increased with increasing concentrations of LE, except at 0.025 g Dw/ml. Activities of antioxidant enzymes (POD, CAT and SOD) in receptor plants were all significantly inhibited at high concentrations but stimulated at low concentrations. These results demonstrate that the aqueous extract from J. rigida litter has allelopathic potential. Various phenolic compounds were identified in litter aqueous extract and litter ethanol extract by HPLC. The phenolic compound content in the aqueous extract was significantly lower than that in the ethanol extract. Chlorogenic acid and podophyllotoxin were the predominant phenolic compounds in both types of litter extracts. These findings suggest that the seed germination and seedling growth of P. tabuliformis and wheat would be inhibited when planted near large amounts J. rigida litter. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Antiprotozoal and antimycobacterial activities of Persea americana seeds.
Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Ruiz-Nicolás, Ricardo; Cornejo-Garrido, Jorge; Tapia, Amparo; Yépez-Mulia, Lilián
2013-05-16
Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml.
Bhatter, Purva D.; Gupta, Pooja D.; Birdi, Tannaz J.
2016-01-01
Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797
Fagundes, Leopoldina Leonor; Vieira, Glauciemar Del-Vechio; de Pinho, José de Jesus R. G.; Yamamoto, Célia Hitomi; Alves, Maria Silvana; Stringheta, Paulo César; de Sousa, Orlando Vieira
2010-01-01
Antinociceptive and anti-inflammatory activities of the Muehlenbeckia platyclada leaves’ ethanol extract were investigated in animal models. The extract (p.o.) reduced the number of abdominal contortions induced by acetic acid by 21.57% (400 mg/kg). After intraplantar injection of formalin, a dose of 400 mg/kg (p.o.) inhibited the time spent paw licking in the first phase (26.43%), while the second phase was inhibited by 10.90 and 36.65% at the doses of 200 and 400 mg/kg, respectively. The extract (p.o.) increased the reaction time on a hot plate at a dose of 400 mg/kg (32.68 and 40.30%) after 60 and 90 minutes of treatment, respectively. The paw edema was reduced by extract (p.o.) at doses of 100 (15.46 and 16.67%), 200 (22.68 and 25.64%) and 400 mg/kg (29.50 and 37.33%) after 3 to 4 h of carrageenan application, respectively. Doses of 100, 200 and 400 mg/kg (p.o.), administered 4 h after the carrageenan injection, reduced the exudate volume (11.28, 21.54 and 45.13%), while leukocyte migration was reduced by 21.21 and 29.70% at the doses of 200 and 400 mg/kg, respectively. These results indicate that the ethanol extract from M. platyclada may constitute a potential target for the discovery of new molecules with antinociceptive and anti-inflammatory activities that can be explored for their therapeutic use. PMID:21152311
NASA Astrophysics Data System (ADS)
Lebosada, Richemae Grace R.; Librando, Ivy L.
2017-01-01
The study was conducted to determine the anti-hyperglycemic property in terms of α-glucosidase inhibitory activity of the various parts (corm, leaf and petiole) of Colocasia esculenta (L.) Schott var. PSB-VG #9. Each of the plant parts were extracted with 95% ethanol and concentrated using a rotary evaporator at 40 °C. The crude extracts were screened for the presence of alkaloids, flavonoids, glycosides and saponins using Thin Layer Chromatography. The α-glucosidase inhibitory activity of the crude extracts (50 mg/L) were assayed spectrophotometrically using a microplate reader. The results of the phytochemical screening revealed the presence of alkaloids, flavonoids, and saponins in the leaf part while flavonoids and saponins were detected in the petiole and only saponins were present in the corm. The assay showed that the percentage α-glucosidase inhibition of the 50 mg/L ethanolic crude extract of the corm, leaves and petiole of C. esculenta are 68.03, 71.64 and 71.39%, respectively. Statistical analysis shows significant differences in the α-glucosidase inhibition among the various plant parts. It can be concluded that the ethanolic crude extracts of the different parts of C. esculenta (L.) Schott var. PSB-VG #9 exhibited inhibitory activity against α-glucosidase and the presence of phytochemicals like alkaloids, flavonoids and saponins may have contributed greatly to the inhibitory activity of the plant extract and can be further subjected for isolation of the therapeutically active compounds with antidiabetes potency.
Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo
Zhang, Jian; Kang, Min-Jung; Kim, Myung-Jin; Kim, Mi-Eun; Song, Ji-Hyun; Lee, Young-Min
2008-01-01
Obesity has become a worldwide health problem. Orlistat, an inhibitor of pancreatic lipase, is currently approved as an anti-obesity drug. However, gastrointestinal side effects caused by Orlistat may limit its use. In this study the inhibitory activities of dandelion (Taraxacum officinale) against pancreatic lipase in vitro and in vivo were measured to determine its possible use as a natural anti-obesity agent. The inhibitory activities of the 95% ethanol extract of T. officinale and Orlistat were measured using 4-methylumbelliferyl oleate (4-MU oleate) as a substrate at concentrations of 250, 125, 100, 25, 12.5 and 4 µg/ml. To determine pancreatic lipase inhibitory activity in vivo, mice (n=16) were orally administered with corn oil emulsion (5 ml/kg) alone or with the 95% ethanol extract of T. officinale (400 mg/kg) following an overnight fast. Plasma triglyceride levels were measured at 0, 90, 180, and 240 min after treatment and incremental areas under the response curves (AUC) were calculated. The 95% ethanol extract of T. officinale and Orlistat, inhibited, porcine pancreatic lipase activity by 86.3% and 95.7% at a concentration of 250 µg/ml, respectively. T. officinale extract showed dose-dependent inhibition with the IC50 of 78.2 µg/ml. A single oral dose of the extract significantly inhibited increases in plasma triglyceride levels at 90 and 180 min and reduced AUC of plasma triglyceride response curve (p<0.05). The results indicate that T. officinale exhibits inhibitory activities against pancreatic lipase in vitro and in vivo. Further studies to elucidate anti-obesity effects of chronic consumption of T. officinale and to identify the active components responsible for inhibitory activity against pancreatic lipase are necessary. PMID:20016719
Effect of Benincasa hispida fruits on testosterone-induced prostatic hypertrophy in albino rats
Nandecha, Chetan; Nahata, Alok; Dixit, Vinod Kumar
2010-01-01
Background: Benincasa hispida Cogn. has been used traditionally in India for the management of urinary disorders. The fruit of B hispida is used as a diuretic and the seeds have been reported to possess antiangiogenic effects in prostate cells. Objective: The aim of the present study was to examine the effect of petroleum ether extract, ethanolic extract, and B hispida seed oil on hyperplasia of the prostate induced by the subcutaneous administration of testosterone in rats. Methods: In vitro studies were performed to determine the 5α-reductase inhibitory potential of the extracts. The results of those studies paved the way for the pharmacologic screening of the extracts to assess their potential against testosterone-induced hyperplasia in rats. Nine groups containing 10 rats per group were created for this study. Hyperplasia was induced by administration of testosterone (3 mg/kg SC) for 14 days in all the groups except the vehicle-treated group. Simultaneous administration of petroleum ether extract (100 or 200 mg/kg PO), ethanolic extract (100 or 200 mg/kg PO), and B hispida seed oil (20 or 40 mg/kg PO) was conducted. A standard 5α-reductase inhibitor (ie, finasteride) was used as a positive control. The weight of the rats was recorded on day 0 (ie, day 1 of the study) and on day 14, and the influence of testosterone and test extracts on the weight of the rats was determined. On day 14, rats were euthanized; prostates were dissected out, and weighed. The rats' prostate/body weight (P/BW) ratio was then determined. Histologic examinations were performed on prostates from each group. Results: The petroleum ether extract as well as B hispida seed oil exhibited inhibition of 5α-reductase activity in in vitro studies. Ethanolic extract did not exhibit significant inhibitory potential in vitro. Further in vivo study found that testosterone treatment significantly increased the rats' P/BW ratio in all the groups except the vehicle-treated rats, and this increase in weight was significantly inhibited in rats administered petroleum ether extract (100 and 200 mg/kg PO) and B hispida seed oil (20 and 40 mg/kg PO). Ethanolic extract did not exhibit any significant activity. Conclusions: Petroleum ether extract and B hispida seed oil inhibited testosterone-induced hyperplasia of the prostate in these rats. Further studies are needed to evaluate its effect in humans with benign prostatic hyperplasia. PMID:24688153
Antiplasmodial activity of plant extracts used in west African traditional medicine.
Mustofa; Valentin, A; Benoit-Vical, F; Pélissier, Y; Koné-Bamba, D; Mallié, M
2000-11-01
Five plants originating from Ivory Coast were selected after an ethnobotanical survey, Alchornea cordifolia, Mitragyna inermis, Nauclea diderrichii, Pterocarpus santalinoides, and Terminalia glaucescens. Traditional healers for the treatment of malaria commonly used these plants. Extracts of these plants were tested on three strains of Plasmodium falciparum, FcB1-Colombia and FcM29-Cameroon (chloroquine-resistant strains) and a Nigerian chloroquine-sensitive strain. Extracts were obtained by preparing decoction in water of the powdered plant, the technique used by most of the traditional healers. A radioactive micromethod allowed the evaluation of the in vitro activity of the extracts on P. falciparum. Concentrations inhibiting 50% of the parasite growth (IC(50)) ranged from 2.34 to more than 500 microg/ml according to the plant. For the most active plants (A. cordifolia and T. glaucescens) ethanol and pentane extracts were made and tested. The IC(50) values obtained for these extracts ranged from 0.35 to 43.40 microg/ml. The stage specificity of the ethanol extracts of A. cordifolia and T. glaucescens and pentane extract of T. glaucescens on the parasite erythrocytic cycle were determined. The ethanol extract of T. glaucescens showed its highest activity at the transition from the trophozoite to the schizont stages. Cytotoxicity was estimated on human fibroblasts (HeLa) cells and a cytotoxicity/antiplasmodial index was calculated, it ranged between 5 and 21, and the best antiplasmodial extract (T. glaucescens ethanol extract) had the higher index (>20).
Park, Jong-Min; Han, Young-Min; Lee, Jin-Seok; Ko, Kwang Hyun; Hong, Sung-Pyo; Kim, Eun-Hee; Hahm, Ki-Baik
2015-01-01
The aim of this study was to compare biological actions between isopropanol and ethanol extracts of Artemisia including antioxidant, anti-inflammatory, and cytoprotective actions. Antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and confocal microscopy on lipopolysaccharide-induced RGM1 cells, cytoprotection effects evaluated by detecting heme oxygenase-1 (HO-1), Nf-E2 related factor2 (Nrf2) and heat shock protein 70 (HSP70), and anti-inflammatory effects investigated by measuring inflammatory mediators. Water immersion restraint stress was imposed to provoke stress related mucosal damages (SRMD) in rats. Isopropanol extracts of Artemisia showed the higher DPPH radical scavenging activity and lesser LPS-induced reactive oxygen species productions and increased HO-1 expression through increased nuclear translocation of Nrf2 transcription factor compared to ethanol extracts. The increased expression of HSP70 and decreased expression of endothelin-1 were only increased with isopropanol extracts. A concentration-dependent inhibition of LPS-induced COX-2 and iNOS even at a rather lower concentration than ethanol extract was achieved with isopropanol extracts. Cytokine protein array revealed Artemisia extracts significantly attenuated the levels of CXCL-1, CXCL-16, and MCP-1. These orchestrated actions led to significant rescue from SRMD. Conclusively, Artemisia extracts imposed significant antioxidant and anti-inflammatory activity against SRMD and isopropanol extracts were superior to ethanol extracts in these beneficiary actions of Artemisia. PMID:25759519
Ambi, Ashwin; Bryan, Julia; Borbon, Katherine; Centeno, Daniel; Liu, Tianchi; Chen, Tung Po; Cattabiani, Thomas; Traba, Christian
2017-07-01
Most studies reveal that the mechanism of action of propolis against bacteria is functional rather than structural and is attributed to a synergism between the compounds in the extracts. Propolis is said to inhibit bacterial adherence, division, inhibition of water-insoluble glucan formation, and protein synthesis. However, it has been shown that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional and may be attributed to the metals found in propolis. If the metals found in propolis are removed, cell lysis still occurs and these modified extracts may be used in the prevention of medical and biomedical implant contaminations. The antibacterial activity of metal-free Russian propolis ethanol extracts (MFRPEE) on two biofilm forming bacteria: penicillin-resistant Staphylococcus aureus and Escherichia coli was evaluated using MTT and a Live/Dead staining technique. Toxicity studies were conducted on mouse osteoblast (MC-3T3) cells using the same viability assays. In the MTT assay, biofilms were incubated with MTT at 37°C for 30min. After washing, the purple formazan formed inside the bacterial cells was dissolved by SDS and then measured using a microplate reader by setting the detecting and reference wavelengths at 570nm and 630nm, respectively. Live and dead distributions of cells were studied by confocal laser scanning microscopy. Complete biofilm inactivation was observed when biofilms were treated for 40h with 2µg/ml of MFRPEE. Results indicate that the metals present in propolis possess antibacterial activity, but do not have an essential role in the antibacterial mechanism of action. Additionally, the same concentration of metals found in propolis samples, were toxic to tissue cells. Comparable to samples with metals, metal free samples caused damage to the cell membrane structures of both bacterial species, resulting in cell lysis. Results suggest that the structural mechanism of action of Russian propolis ethanol extracts stem predominate from the organic compounds. Further studies revealed drastically reduced toxicity to mammalian cells when metals were removed from Russian propolis ethanol extracts, suggesting a potential for medical and biomedical applications. Published by Elsevier GmbH.
Wang, Hai-Yan; Wang, Yuan-Jing; Zhou, Li-Xia; Zhu, Lin; Zhang, Yu-Qing
2012-02-01
The cocoon shell of the silkworm Bombyx mori consists of silk fibroin fiber (70%) surrounded by a sericin layer made up of sericin (25%) and non-sericin (5%) components. The non-sericin component which consists of carbohydrate, salt, wax, flavonoids and derivatives is often overlooked in applied research into sericin and its hydrolysate. Here, sericin and non-sericin compounds were obtained from the sericin layer of five types of cocoon shell by means of degumming in water followed by extraction and separation in ethanol. These ethanol extracts were found to mainly contain flavonoids and free amino acids possessing scavenging activities of the 2,2-diphenyl -1-picrylhydrazyl (DPPH) free radical and inhibiting activities of tyrosinase, which were much greater than the corresponding activities of the purified sericin proteins. The extracts also strongly inhibited α-glucosidase while the sericins had no such activity. In particular, the inhibitory activities of the ethanol extract of Daizo cocoons were much greater than those of the other cocoons. The IC(50) values of the Daizo cocoons for DPPH free radicals, tyrosinase, and α-glucosidase were 170, 27, and 110 μg mL(-1), respectively. The bioactivities of the non-sericin component were much higher than the activity of sericin alone. In addition, the in vivo test showed preliminarily that the administration of the non-sericin component had effectively resistant activity against streptozocin (STZ) oxidation and that of the purified sericin could also evidently decrease the induction ratio of diabetic mice induced by STZ. Therefore, ethanol extract protocols of the sericin layer of cocoon shells provide a novel stock which, together with sericin protein, has potential uses in functional food, biotechnological and medical applications.
Oyeleke, Sabitiu A; Ajayi, Abayomi M; Umukoro, Solomon; Aderibigbe, A O; Ademowo, Olusegun George
2018-08-10
The stem bark of Theobroma cacao L. have been used for the treatment of inflammation, toothache, measles and malaria in ethnomedicine. However, the anti-inflammatory activity of Theobroma cacao stem bark has not been fully elucidated. The anti-inflammatory activity of Theobroma cacao stem bark ethanol extract and its fractions was investigated in this study. The anti-inflammatory effect of ethanol extract of Theobroma cacao stem bark (EETc) and its dichloromethane (DCMF), ethylacetate (EAF) and aqueous (AQF) fractions was investigated in erythrocytes membrane stabilizing assay and carrageenan-induced paw oedema. The anti-inflammatory activity of the EAF and EETc was investigated in carrageenan induced-granuloma air pouch models. The extract and fractions showed significant membrane stabilizing action on rat erythrocytes cell membrane. The oral administration of DCMF, EAF and AQF (250 mg/kg) significantly inhibited paw oedema induced by carrageenan (41.3%, 55.0% and 45.0%, respectively) compared to control group. The EAF (62.5, 125 and 250 mg/kg) and EETc (250 mg/kg) significantly inhibited exudates formation in carrageenan air pouch by (63.8, 71.5, 74.5, 64.3%) at 24 h and by (69.4%, 75.7%, 77.1% and 68.4%) at 72 h respectively. The EETc and EAF significantly reduced neutrophil counts, protein, nitrite, Tumor necrosis factor (TNF-α) and malondialdehyde (MDA) but increased reduced glutathione (GSH) levels compared to control in pouch exudates. The HPLC fingerprint of EAF revealed presence of caffeic acid, rutin, ferulic acid and morin. Ethanol extract of Theobroma cacao and its ethylacetate fraction demonstrated anti-inflammatory activity partly by reducing neutrophil migration and inflammatory mediator production. Copyright © 2018 Elsevier B.V. All rights reserved.
Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.
Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar
2013-01-01
The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. Copyright © 2011 Elsevier GmbH. All rights reserved.
Yang, Woong-Suk; Yang, Seung-Hoon; Lee, Jae-Yong; Jang, Seong-Ho; Kim, Cheorl-Ho; Hwnag, Cher-Won
2017-01-01
Persicaria is a genus of flowering plants generally used for traditional medicine and nutritional supplements in tropical and subtropical East Asian countries. Previous studies have shown that Persicaria extracts alleviate lipid peroxidation, hypertension, and inflammation. We investigated the anti-oxidative and anti-microbial effects of ethanol extracts of Persicaria nepalensis (Meisn.) Miyabe, and isolated and identified an active compound, MPN-1-1 from the ethanol extracts. Anti-oxidative values, as indicated by the Oxygen Radical Absorbance Capacity (ORAC) assay, were enhanced by treatment with Persicaria nepalensis (Meisn.) Miyabe ethanol extracts, and bacterial growth was inhibited. The active compound (MPN-1-1), which was further isolated and purified from a Persicaria nepalensis (Meisn.) Miyabe ethanol extract by medium pressure liquid chromatography (MPLC), also had strong anti-oxidative and anti-microbial activity. 1H-NMR spectroscopy identified MPN-1-1 as a 1-ethenyl-4,8-dimethoxy-9H-pyrido(3,4-β) indole compound, which is an alkaloid. Our results provide evidence that Persicaria nepalensis (Meisn.) Miyabe extract has strong physiological activity without any toxic effects, and furthermore, MPN-1-1 can be potentially utilized as a natural dietary supplement as well as an anti-oxidant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M
2012-05-01
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.
Karuppiah, Ponmurugan; Rajaram, Shyamkumar
2012-08-01
To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.
Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus.
Liu, Jian-Hui; Li, Liang; Shang, Xiao-Dong; Zhang, Jun-Ling; Tan, Qi
2016-05-13
The fungus Hericium erinaceus (Bull.) Pers is used in Chinese traditional medicine to treat symptoms related to gastric ulcers. Different extracts from the fungus were assessed for anti-Helicobacter pylori activity to investigate the antibacterial activity of the ethanol extracts from H. erinaceus and verify the traditional indication of use. The fruiting bodies of H. erinaceus were concentrated with ethanol by HPD-100 macroporous resin and the whole extract was partitioned by petroleum ether and chloroform to afford fractions with using a silica gel column. Several pure compounds of petroleum ether extracts were obtained and analyzed using nuclear magnetic resonance (NMR). The activity of the extracts and fractions towards H. pylori was assessed by the microdilution assay and by the disk diffusion assay in vitro. From the most active fraction, two pure compounds were isolated and identified as the main components with anti-H. pylori activity from the fungus H. erinaceus. The cytotoxicity of these two compounds against the human erythroleu-kemia cell line K562 was also evaluated. The crude ethanol extracts from the fungus H. erinaceus were inhibitory to H. pylori. The petroleum ether extracts (PE1s, PE2s) and the chloroform extracts (TEs) demonstrated strong inhibition to H. pylori. The inhibition of H. pylori was observed through an agar dilution test with minimal inhibition concentration (MIC) values from 400μg/mL to 12.5µg/mL. Two pure compounds, 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone and 2,5-bis(methoxycarbonyl)terephthalic acid were isolated from the petroleum ether fractions and identified using (1)H NMR and (13)C NMR spectra analysis. The MIC value for 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone was 12.5-50µg/mL and the MIC value for 2,5-bis(methoxycarbonyl)terephthalic acid was 6.25-25µg/mL. Both two compounds showed weak cytotoxicity against K562 with IC50<200mM. This study revealed that the extracts from petroleum ether contribute to the anti-H. pylori activity. The compounds obtained from petroleum ether extracts, 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone and 2,5-bis(methoxycarbonyl)terephthalic acid, inhibit the growth of H. pylori. Copyright © 2016. Published by Elsevier Ireland Ltd.
Immunosuppressive phenolic compounds from Hydnora abyssinica A. Braun.
Koko, Waleed S; Mesaik, Mohamed A; Ranjitt, Rosa; Galal, Mohamed; Choudhary, Muhammad I
2015-11-09
Hydnora abyssinica (HA) A. Braun is an endemic Sudanese medicinal plant traditionally used as anti-inflammatory and against many infectious diseases. However, it proved to be very rich in phenols and tannins, so the present study was undertaken to investigate the immunomodulatory potential of the whole plant ethanolic extract and its isolated compounds. Lymphocyte proliferation, chemiluminescence and superoxide reduction assays were used for immunomodulatory evaluation. While, MTT (3-(4, 5-dimethylthazol-2-yl)-2, 5-diphenyl tetrazonium bromide) test was performed on 3 T3 cell line clone in order to evaluate the cytoxicity effect of the extracts and isolated compounds of phenolic derivatives which were carried out by chromotographic techniques. Catechin, (1), tyrosol (2) and benzoic acid, 3, 4, dihydroxy-, ethyl ester (3) compounds were isolated from HA ethanolic extract which revealed potent immunosuppressive activity against reactive oxygen species from both polymorph nuclear cells (PMNs) (45-90 % inhibition) and mononuclear cells (MNCs) (30 -65 % inhibition), T lymphocyte proliferation assay (70-93 % inhibition) as well as potent inhibitory effect against superoxide production (42-71 % inhibition) at concentrations of 6.25-100 μg/mL. Catechin (1) was found the most potent immunosuppressive agent among all constituents examined. These results can support the traditional uses of H. abyssinica extracts as anti-inflammatory and immunosuppressive and further investigations of the mode of action and other pharmacological studies are highly desirable.
Kleber, E; Schneider, W; Schäfer, H L; Elstner, E F
1995-02-01
Aqueous-alcoholic extracts from Eschscholtzia californica inhibit the enzymatic degradation of catecholamines as well as the synthesis of adrenaline, whereas aqueous-ethanolic extracts from Corydalis cava enhance the chemical oxidation of adrenaline and the synthesis of melanine from dihydroxyphenylalanine (DOPA). Both extracts dramatically shorten the lag phase in the catalysis of phenolase probably due to their o-diphenol content, where the Corydalis extracts are 10 times more active than the Eschscholtzia preparations. Dopamine beta-hydroxylase and monoamine oxidase (MAO-B) are especially inhibited by Eschscholtzia extracts. Diamine oxidases are inhibited by both preparations to a similar extent. The results of this study may be interpreted as a cooperative function of the two preparations in establishing and preserving high catecholamine levels thus explaining their sedative, antidepressive and hypnotic activities.
Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon
2016-01-01
Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329
Phytopharmacological evaluation of ethanol extract of Sida cordifolia L. roots.
Momin, Mohammad Abdul Motalib; Bellah, Sm Faysal; Rahman, Sarder Mohammad Raussel; Rahman, Ahmed Ayedur; Murshid, Gazi Mohammad Monjur; Emran, Talha Bin
2014-01-01
To investigate the phytochemical screening (group determination) and selected pharmacological activities (antioxidant, antimicrobial and analgesic activity) of the plant Sida cordifolia Linn (S. cordifolia). Eighty percent concentrated ethanol extract of the roots was used. To identify the chemical constituents of plant extract standard procedures were followed. In phytochemical screening the crude extract was tested for the presence of different chemical groups like reducing sugar, tannins, saponins, steroids, flavonoids, gums, alkaloids and glycosides. The antioxidant property of ethanolic extract of S. cordifolia was assessed by DPPH free radical scavenging activity. Analgesic activity of the extract was tested using the model of acetic acid induced writhing in mice. Diclofenac sodium is used as reference standard drug for the analgesic activity test. Antibacterial activity of plant extract was carried out using disc diffusion method with five pathogenic bacteria comparison with kanamycin as a standard. Phytochemical analysis of the ethanolic extract of the roots of S. cordifolia indicated the presence of reducing sugar, alkaloids, steroids and saponins. In DPPH scavenging assay the IC50 value was found to be 50 μg/mL which was not comparable to the standard ascorbic acid. The crude extract produced 44.30% inhibition of writhing at the dose of 500 mg/kg body weight which is statistically significant (P>0.001). The in vitro antimicrobial activity of the ethanol extract of the roots of S. cordifolia showed no antimicrobial activity against five types of microorganisms. The experiment was conducted only with five species of bacteria as test species, which do not at all indicate the total inactivity against micro-organisms. The obtained results provide a support for the use of this plant in traditional medicine but further pharmacological studies are required. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
Phytopharmacological evaluation of ethanol extract of Sida cordifolia L. roots
Momin, Mohammad Abdul Motalib; Bellah, Sm Faysal; Rahman, Sarder Mohammad Raussel; Rahman, Ahmed Ayedur; Murshid, Gazi Mohammad Monjur; Emran, Talha Bin
2014-01-01
Objective To investigate the phytochemical screening (group determination) and selected pharmacological activities (antioxidant, antimicrobial and analgesic activity) of the plant Sida cordifolia Linn (S. cordifolia). Methods Eighty percent concentrated ethanol extract of the roots was used. To identify the chemical constituents of plant extract standard procedures were followed. In phytochemical screening the crude extract was tested for the presence of different chemical groups like reducing sugar, tannins, saponins, steroids, flavonoids, gums, alkaloids and glycosides. The antioxidant property of ethanolic extract of S. cordifolia was assessed by DPPH free radical scavenging activity. Analgesic activity of the extract was tested using the model of acetic acid induced writhing in mice. Diclofenac sodium is used as reference standard drug for the analgesic activity test. Antibacterial activity of plant extract was carried out using disc diffusion method with five pathogenic bacteria comparison with kanamycin as a standard. Results Phytochemical analysis of the ethanolic extract of the roots of S. cordifolia indicated the presence of reducing sugar, alkaloids, steroids and saponins. In DPPH scavenging assay the IC50 value was found to be 50 µg/mL which was not comparable to the standard ascorbic acid. The crude extract produced 44.30% inhibition of writhing at the dose of 500 mg/kg body weight which is statistically significant (P>0.001). The in vitro antimicrobial activity of the ethanol extract of the roots of S. cordifolia showed no antimicrobial activity against five types of microorganisms. The experiment was conducted only with five species of bacteria as test species, which do not at all indicate the total inactivity against micro-organisms. Conclusions The obtained results provide a support for the use of this plant in traditional medicine but further pharmacological studies are required. PMID:24144125
Shetty, Sapna B.; Mahin-Syed-Ismail, Prabu; Varghese, Shaji; Thomas-George, Bibin; Kandathil- Thajuraj, Pathinettam; Baby, Deepak; Haleem, Shaista; Sreedhar, Sreeja
2016-01-01
Background Ethnomedicine is gaining admiration since years but still there is abundant medicinal flora which is unrevealed through research. The study was conducted to assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for dental caries pathogens. Material and Methods Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. One way ANOVA with Post Hoc Bonferroni test was applied for statistical analysis. Confidence level and level of significance were set at 95% and 5% respectively. Results Dental caries pathogens were inhibited most by hot ethanolic extract of Citrus sinensispeel followed by cold ethanolic extract. Aqueous extracts were effective at very high concentrations. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against both the dental caries pathogens. Conclusions Citrus sinensispeels extract was found to be effective against dental caries pathogens and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy. Key words:Agar well diffusion, antimicrobial activity, dental caries, Streptococcus mutans, Lactobacillus acidophilus. PMID:26855710
Anti-Proliferative Effect and Phytochemical Analysis of Cymbopogon citratus Extract
Halabi, Mohammed F.; Sheikh, Bassem Y.
2014-01-01
The antiproliferative and antioxidant potential of Cymbopogon citratus (Lemon grass) extracts were investigated. The extracts were isolated by solvent maceration method and thereafter subjected to antiproliferative activity test on five different cancer cells: human colon carcinoma (HCT-116), breast carcinoma (MCF-7 and MDA-MB 231), ovarian carcinoma (SKOV-3 and COAV), and a normal liver cell line (WRL 68). The cell viability was determined using MTT assay. The DPPH radical scavenging assay revealed a concentration dependent trend. A maximum percentage inhibition of 45% and an IC50 of 278 μg/mL were observed when aqueous extract was evaluated. In contrast, 48.3% and IC50 of 258.9 μg/mL were observed when 50% ethanolic extract was evaluated. Both extracts at concentration of 50 to 800 μg/mL showed appreciative metal chelating activity with IC50 value of 172.2 ± 31 μg/mL to 456.5 ± 30 μg/mL. Depending on extraction solvent content, extract obtained from 50% ethanolic solvent proved to be more potent on breast cancer MCF-7 cell line (IC50 = 68 μg/mL). On the other hand, 90% ethanolic extract showed a moderate potency on the ovarian cancer (COAV) and MCF-7 cells having an IC50 of 104.6 μg/mL each. These results suggested antiproliferative efficacy of C. citratus ethanolic extract against human cancer cell lines. PMID:24791006
Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho
2015-01-01
This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.
Antiproliferative Activity of Cyanophora paradoxa Pigments in Melanoma, Breast and Lung Cancer Cells
Baudelet, Paul-Hubert; Gagez, Anne-Laure; Bérard, Jean-Baptiste; Juin, Camille; Bridiau, Nicolas; Kaas, Raymond; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent
2013-01-01
The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells. PMID:24189278
In vitro anticancer properties of selected Eucalyptus species.
Bhuyan, Deep Jyoti; Sakoff, Jennette; Bond, Danielle R; Predebon, Melanie; Vuong, Quan V; Chalmers, Anita C; van Altena, Ian A; Bowyer, Michael C; Scarlett, Christopher J
2017-08-01
In spite of the recent advancements in oncology, the overall survival rate for pancreatic cancer has not improved over the last five decades. Eucalypts have been linked with cytotoxic and anticancer properties in various studies; however, there is very little scientific evidence that supports the direct role of eucalypts in the treatment of pancreatic cancer. This study assessed the anticancer properties of aqueous and ethanolic extracts of four Eucalyptus species using an MTT assay. The most promising extracts were further evaluated using a CCK-8 assay. Apoptotic studies were performed using a caspase 3/7 assay in MIA PaCa-2 cells. The aqueous extract of Eucalyptus microcorys leaf and the ethanolic extract of Eucalyptus microcorys fruit inhibited the growth of glioblastoma, neuroblastoma, lung and pancreatic cancer cells by more than 80% at 100 μg/mL. The E. microcorys and Eucalyptus saligna extracts showed lower GI 50 values than the ethanolic Eucalyptus robusta extract in MIA PaCa-2 cells. Aqueous E. microcorys leaf and fruit extracts at 100 μg/mL exerted significantly higher cell growth inhibition in MIA PaCa-2 cells than other extracts (p < 0.05). Statistically similar IC 50 values (p > 0.05) were observed in aqueous E. microcorys leaf (86.05 ± 4.75 μg/mL) and fruit (64.66 ± 15.97 μg/mL) and ethanolic E. microcorys leaf (79.30 ± 29.45 μg/mL) extracts in MIA PaCa-2 cells using the CCK-8 assay. Caspase 3/7-mediated apoptosis and morphological changes of cells were also witnessed in MIA PaCa-2 cells after 24 h of treatment with the extracts. This study highlighted the significance of E. microcorys as an important source of phytochemicals with efficacy against pancreatic cancer cells. Further studies are warranted to purify and structurally identify individual compounds and elucidate their mechanisms of action for the development of more potent and specific chemotherapeutic agents for pancreatic cancer.
Ham, Sun Ah; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Lim, Hyun Ho; Lee, Won Jin; Paek, Kyung Shin; Seo, Han Geuk
2015-01-01
Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells. EEDO significantly inhibited UVB-induced senescence of human keratinocytes in a concentration-dependent manner, concomitant with inhibition of reactive oxygen species (ROS) generation. UVB-induced increases in the levels of p53 and p21, biomarkers of cellular senescence, were almost completely abolished in the presence of EEDO. Sativanone, a major constituent of EEDO, also attenuated UVB-induced senescence and ROS generation in keratinocytes, indicating that sativanone is an indexing (marker) molecule for the anti-senescence properties of EEDO. Finally, treatment of EEDO to mice exposed to UVB significantly reduced ROS levels and the number of senescent cells in the skin. Thus, EEDO confers resistance to UVB-induced cellular senescence by inhibiting ROS generation in skin cells.
Xu, Xue-qing; Yu, Le; Liu, Shu-wen
2011-06-01
To examine the protective effects of wasp (Vespa magnifica) honeycomb extract (WCE) against gastric lesions in rats induced by 60% acidified ethanol, and evaluate its capacity to suppress oxidative stress in the gastric tissue. Wistar rats were subjected to intragastric administration of 60% acidified ethanol to induce gastric lesions following an 8-day oral pretreatment with WCE at 0, 25, 100 and 150 mg/kg or with saline. The levels of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, myeloperoxidase (MPO) activity and total antioxidant capacity in the gastric tissues were determined. Oral administration of 25, 100 and 150 mg/kg WCE prior to 60% acidified ethanol administration significantly inhibited the formation of gastric lesions (with a reduction by 44.2%-87.1%), decreased the mucosal MPO activity (by 16.4%-56.6%) and increased the total antioxidant capacity of the gastric tissue (by 0.5, 1.47 and 1.83 folds, respectively) in a dose-dependent manner. At a high concentration (above 1 mg/ml), WCE also exhibited a stronger DPPH radical scavenging activity than butylated hydroxytoluene (BHT). The ethanol extract of wasp honeycombs can suppress the formation of acidified ethanol-induced gastric lesions by reducing free radical oxidation and neutrophils infiltration in the gastric tissue in rats.
Antiprotozoal and antimycobacterial activities of Persea americana seeds
2013-01-01
Background Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. Methods The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. Results The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). Conclusions The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml. PMID:23680126
Anuthakoengkun, Areeya; Itharat, Arunporn
2014-08-01
Thai medicine plants used for Osteoarthritis of knee (OA) treatment consist of twelve plants such as Crinumn asiaticum, Cleome viscosa, Drypetes roxburghii, Piper longum, Piper nigrum, Plumbago indica, Alpinia galanga, Curcuma aromatica, Globba malaccensis, Zingiber montanum, Zingiber officinale andZingiberzerumbet. They showedhighfrequency in OA formula. To investigate inhibitory effect on LPS-induced nitric oxide (NO) release from RAW264. 7 cell and free radical scavenging activity usingDPPH assay of these ethanolic plant extracts. Plant materials were extracted by maceration in 95% ethanol. Anti-inflammatory activity were tested on LPS-induced NO production. Free radical scavenging activity was performed by DPPH assay. All of ethanolic extracts exhibited potent inhibitory effect on NO release. The ethanolic extract of Z. zerumbet exhibited the highest inhibitory effect followed by Z. montanum and G. malaccensis, respectively. Except A. galanga and C. viscosa, all extracts possessed more influential than indomethacin (IC50 = 20.32±3.23 μLg/ml), a positive control. The investigation on antioxidant activity suggested that the ethanolic extracts of D. roxburghii, Z. officinale, Z. montanum, C. aromatic, A. galanga, P indica, G malaccensis, P nigrum exhibited antioxidant activity. By means ofD. roxburghii had the highest electron donating activity,followed by Z. officinale. Moreover both extracts were more effective than BHT apositive control (EC50 = 14.04±1.95 μg/ml). Thai medicinal plants had anti-inflammatory activity and could inhibit destruction of articular cartilage that corresponded to the traditional medicine and supported using these medicinal plants for OA treatment.
NASA Astrophysics Data System (ADS)
Sari, N. M.; Kuspradini, H.; Amirta, R.; Kusuma, I. W.
2018-04-01
East Kalimantan possesses abundant biodiversity of tropical medicinal plant. Melastoma malabathricum (known locally as karamunting, senduduk) is an invasive plant along with other species in the family of Melastomataceae with traditional medicinal purposes. This research explored the potential of Karamunting (M. malabathricum) plant for its antioxidant activity and the potential as a material for herbal tea product. The plant was macerated to yield ethanolic extract, and at the same time plant powder was packed into tea bags and extracted with hot water to obtain the infused water. Antioxidant activity was evaluated by DPPH radical scavenging assay. The results showed that the ethanol extracts of plant samples displayed ability to inhibit DPPH free radical formation by 82% at 50 ppm concentration. Evaluation of the tea water extract showed that the highest inhibition obtained by leaves powder by 90% and fruit 88% at 1 minutes immersion time. This finding suggest that leaves and fruit of M. malabathricum plants display potential as herbal tea material having antioxidant activity if the safety aspect can be assured.
ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2017-01-01
Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.
El Abed, Hanen; Chakroun, Mouna; Fendri, Imen; Makni, Mohamed; Bouaziz, Mohamed; Drira, Noureddine; Mejdoub, Hafedh; Khemakhem, Bassem
2017-04-01
Phoenix dactylifera L. plays an important role in social, economic, and ecological Tunisian sectors. Some date palms produce parthenocarpic fruit named Sish. The aqueous ethanolic extract from P. dactylifera parthenocarpic dates demonstrated a potent inhibition of the enzymes related to type II diabetes. In this work, extraction optimization of amylase inhibitors was carried out using Box-Behnken Design. Bioactivity-guided fractionation of the 70% aqueous ethanol extract was performed to identify the active compounds. The physicochemical results by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed the presence of 13 phenolic compounds. The in vitro study showed that the extract exhibited a more specific inhibitor of α-glucosidase than α-amylase with an IC 50 value of 0.6 and 2.5mg/mL, respectively. The in vivo study of this extract effect on the postprandial hyperglycemia activity showed a decrease in plasma glucose levels after 30min stronger than the Acarbose effect. These results confirmed the anti-postprandial hyperglycemia activity of the aqueous ethanolic extract from P. dactylifera parthenocarpic dates, which could lend support for its pharmaceutical use. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Phytochemical evaluation of Lythrum salicaria extracts and their effects on guinea-pig ileum.
Bencsik, Tímea; Barthó, Loránd; Sándor, Viktor; Papp, Nóra; Benkó, Rita; Felinger, Attila; Kilár, Ferenc; Horváth, Györgyi
2013-09-01
n-Hexane, chloroform, ethyl acetate and 50% ethanol in water extracts prepared from the air-dried flowering parts of Lythrum salicaria L. were tested for in vitro pharmacological properties on Guinea-pig ileum, which is suitable for detecting a whole range of neuronal and smooth muscle effects. UHPLC-MS was used to evaluate polyphenol components of the extracts. In the ileum, the most prominent response (46.4% related to 0.5 microM histamine) of the extracts causing smooth muscle contractions were triggered by the 50% ethanol in water extract in a concentration-dependent manner. Atropine, indomethacin and PPADS plus suramin significantly reduced the contractile response caused by this extract. The strongest inhibition was due to atropine. The results suggest that L. salicaria extracts have a moderate muscarinic receptor agonist effect in Guinea-pig ileum and that prostanoids and purinoceptor mechanisms are involved to some extent. Therefore diluted extracts of L. salicaria p.o. could be used as a mild stimulant of gastrointestinal motility. The 50% ethanol in water extract was rich in polyphenols. n-Hexane, chloroform and ethyl acetate extracts failed to contain catechin, caffeic acid, quercetin-3-D-galactoside and rutin, but they all showed spasmogenic effects, and, therefore we do not think that these compounds could be involved in the spasmogenic activity.
Screening of Bauhinia purpurea Linn. for analgesic and anti-inflammatory activities
Shreedhara, C.S.; Vaidya, V.P.; Vagdevi, H.M.; Latha, K.P.; Muralikrishna, K.S.; Krupanidhi, A.M.
2009-01-01
Objectives: Ethanol extract of the stem of Bauhinia purpurea Linn. was subjected to analgesic and anti-inflammatory activities in animal models. Materials and Methods: Albino Wistar rats and mice were the experimental animals respectively. Different CNS depressant paradigms like analgesic activity (determined by Eddy's hot plate method and acetic acid writhing method) and anti-inflammatory activity determined by carrageenan induced paw edema using plethysmometer in albino rats) were carried out, following the intra-peritoneal administration of ethanol extract of Bauhinia purpurea Linn. (BP) at the dose level of 50 mg/kg and 100 mg/kg. Results: The analgesic and anti-inflammatory activities of ethanol extracts of BP were significant (P < 0.001). The maximum analgesic effect was observed at 120 min at the dose of 100 mg/kg (i.p.) and was comparable to that of standard analgin (150 mg/kg) and the percentage of edema inhibition effect was 46.4% and 77% for 50 mg/kg and 100 mg/kg (i.p) respectively. Anti-inflammatory activity was compared with standard Diclofenac sodium (5 mg/kg). Conclusion: Ethanol extract of Bauhinia purpurea has shown significant analgesic and anti-inflammatory activities at the dose of 100 mg/kg and was comparable with corresponding standard drugs. The activity was attributed to the presence of phytoconstituents in the tested extract. PMID:20336222
Senol, Fatma Sezer; Ankli, Anita; Reich, Eike
2016-01-01
Summary Inhibitory activity of thirty-one ethanol extracts obtained from albedo, flavedo, seed and leaf parts of 17 cultivars of Citrus species from Turkey, the bark and leaves of Olea europaea L. from two locations (Turkey and Cyprus) as well as caffeic acid and hesperidin was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), related to the pathogenesis of Alzheimer’s disease, using ELISA microtiter assays at 500 µg/mL. Metal-chelating capacity of the extracts was also determined. BChE inhibitory effect of the Citrus sp. extracts was from (7.7±0.7) to (70.3±1.1) %, whereas they did not show any inhibition against AChE. Cholinesterase inhibitory activity of the leaf and bark ethanol extracts of O. europaea was very weak ((10.2±3.1) to (15.0±2.3) %). The extracts had either no or low metal-chelating capacity at 500 µg/mL. HPTLC fingerprinting of the extracts, which indicated a similar phytochemical pattern, was also done using the standards of caffeic acid and hesperidin with weak cholinesterase inhibition. Among the screened extracts, the albedo extract of C. limon ‘Interdonato’, the flavedo extracts of ‘Kara Limon’ and ‘Cyprus’ cultivars and the seed extract of C. maxima appear to be promising as natural BChE inhibitors. PMID:27956858
Anti-quorum sensing potential of Adenanthera pavonina
Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchappady-Devasya
2015-01-01
Background: Quorum sensing (QS) in Pseudomonas aeruginosa plays a key role in virulence factor production, biofilm formation and antimicrobial resistance. Because of emerging antimicrobial resistance in P. aeruginosa, there is a need to find an alternate nonantibiotic agent for the control of infections caused by this organism. Objective: To evaluate anti-QS activity of Adenanthera pavonina L., a medicinal plant used in traditional medicine. Materials and Methods: Preliminary screening for anti-QS activity of ethanol extract of A. pavonina was carried out using Chromobacterium violaceum CV026 biosensor strain and inhibition of QS-regulated violacein production was quantified using C. violaceum ATCC12472. Bioassay guided fractionation of ethanol extract resulted in ethyl acetate fraction (AEF) with strong anti-QS activity and AEF was evaluated for inhibition of QS-regulated pyocyanin production, proteolytic, elastolytic activity, swarming motility and biofilm formation in P. aeruginosa PAO1. Results: AEF, at 0.5 mg/ml, inhibited pyocyanin production completely and at 1 mg/ml of AEF, complete inhibition of proteolytic and elastolytic activities were observed. However, viability of P. aeruginosa PAO1 was not affected at the tested concentrations of AEF as observed by cell count. Swarming motility was inhibited at the concentration of 0.1 mg/ml of AEF. Thin layer chromatography and biosensor overlay of AEF showed violacein inhibition zone at Rf value 0.63. Conclusion: From the results of this study, it can be concluded that A. pavonina extracts can be used as effective anti-QS agents. PMID:25598643
Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.).
Jung, EunKyung; Kim, YoungJun; Joo, Nami
2013-12-01
The therapeutic action of a plant depends on its chemical constituents. In this study, experiments were carried out in order to evaluate the effect of extraction conditions on the antioxidative and antimicrobial activities of Roselle (Hibiscus sabdariffa L.). Roselle was found to be rich in malic acid, anthocyanins, ascorbic acid and minerals, especially Ca and Fe, but low in glucose. More than 18 volatile compounds were identified by gas chromatography and gas chromatography-mass spectrometry. This herb, which is rich in phenolic compounds and displays DPPH radical scavenging activity, could be a good source of natural antioxidants. The antimicrobial activity of the Roselle water and ethanol extracts was tested with Bacillus subtilis (ATCC6633), Staphylococcus aureus (ATCC6538) and Escherichia coli (ATCC 8739). The inhibition of the Roselle ethanol extract against B. subtilis and S. aureus was slightly higher than that of water extract but this difference was not significant. However, E. coli was strongly inhibited by the Roselle water extract at concentrations of 25 and 50 mg mL(-1) as determined by a paper disc method. The obtained results indicated that antioxidant and antimicrobial activity was related to different methods of extraction and Roselle extracts could be a source of therapeutically useful products. © 2013 Society of Chemical Industry.
López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga
2016-04-01
Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.
Ben Ghnaya, Asma; Hamrouni, Lamia; Amri, Ismail; Ahoues, Haifa; Hanana, Mohsen; Romane, Abderrahmane
2016-09-01
Allelopathic materials inside a tree can produce positive or negative change in the survival, growth, reproduction and behaviour of other organisms if they escape into the environment. To assess these effects, this work was carried out to evaluate the allelopathic impact of Eucalyptus erythrocorys L. on seed germination and seedling growth of two weeds: Sinapis arvensis L. and Phalaris canariensis L.; on one cultivated crop: Triticum durum L. Aqueous; and on ethanolic leaf extracts of E. erythrocorys L. The study was effected using four concentrations (10, 20, 25 and 30 μL/mL) while distilled water was used as a control. The results showed that the E. erythrocorys L. crude extracts had an inhibitory effect on seed germination and seedling growth of both studied weeds and wheat. The inhibition rate was increased by the increase in extract concentration. Only ethanolic extracts of E. erythrocorys L. induced a significant inhibition of seed germination of durum wheat. The effect of E. erythrocorys L. crude extracts was more severe on weeds than on durum wheat. These results indicate that the seedling growth, especially radicle elongation, was the more sensitive indicator to evaluate the effects of extracts than was the seed germination.
Antipyretic and analgesic activities of Caesalpinia bonducella seed kernel extract.
Archana, P; Tandan, S K; Chandra, S; Lal, J
2005-05-01
Ethanolic extract (70%) of Caesalpinia bonducella seed kernel has been subjected for its antipyretic and antinociceptive activities in adult albino rats or mice of either sex at 30, 100 and 300 mg/kg orally. The extract demonstrated marked antipyretic activity against Brewer's yeast-induced pyrexia in rats. The extract had significant central analgesic activity in hot plate and tail flick methods. It also exhibited marked peripheral analgesic effect in both acetic acid-induced writhing test in mice and Randall-Selitto assay in rats. It also significantly inhibited the formalin-induced hind paw licking in mice. In conclusion, the present study suggests that the ethanolic extract of Caesalpinia bonducella seed kernel possesses potent antipyretic and antinociceptive activities and thus, validates its use in the treatment of pain and pyretic disorders. Copyright (c) 2005 John Wiley & Sons, Ltd.
Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach.
Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel
2017-12-01
The squid ink extract is well known for its biomedical properties. In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. Squid ink is very high in a number of important nutrients. It's particularly high in antioxidants for instance, which as well all know help to protect the cells and the heart against damage from free radicals. In the present study, the squid ink have antioxidant, anti-inflammatory and cytotoxic properties and can be considered as promising the developing the drugs. Abbreviations Used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, FTIR: Fourier-transform infrared spectroscopy, BSA: Bovine Serum Albumin.
Therapeutic Significance of Loligo vulgaris (Lamarck, 1798) ink Extract: A Biomedical Approach
Nadarajah, Sri Kumaran; Vijayaraj, Radha; Mani, Jayaprakashvel
2017-01-01
Background: The squid ink extract is well known for its biomedical properties. Objective: In this study, squid Loligo vulgaris was collected from Tuticorin costal water, Bay of Bengal, India. Materials and Methods: Proximate composition of the crude squid ink was studied and found to have protein as the major component over lipid and carbohydrates. Further, bioactive fractions of squid ink were extracted with ethanol, and therapeutic applications such as hemolytic, antioxidant, antimicrobial, and in vitro anti-inflammatory properties were analyzed using standard methods. Results: In hemolytic assay, the squid ink extract exhibited a maximum hemolytic activity of 128 hemolytic unit against tested erythrocytes. In DPPH assay, the ethanolic extract of squid ink has exhibited an antioxidant activity of 83.5%. The squid ink was found to be potent antibacterial agent against the pathogens tested. 200 μL of L. vulgaris ink extract showed remarkable antibacterial activity as zone of inhibition against Escherichia coli (28 mm), Klebsiella pneumoniae (22 mm), Pseudomonas aeruginosa (21 mm), and Staphylococcus aureus (24 mm). The 68.9% inhibition of protein denaturation by the squid ink extract indicated that it has very good in vitro anti-inflammatory properties. The Fourier transform infrared spectroscopy analysis of the ethanolic extracts of the squid ink indicated the presence of functional groups such as 1° and 2° amines, amides, alkynes (terminal), alkenes, aldehydes, nitriles, alkanes, aliphatic amines, carboxylic acids, and alkyl halides, which complements the biochemical background of therapeutic applications. Conclusion: Hence, results of this study concluded that the ethanolic extract of L. vulgaris has many therapeutic applications such as antimicrobial, antioxidant, and anti-inflammatory activities. SUMMARY Squid ink is very high in a number of important nutrients. It’s particularly high in antioxidants for instance, which as well all know help to protect the cells and the heart against damage from free radicals. In the present study, the squid ink have antioxidant, anti-inflammatory and cytotoxic properties and can be considered as promising the developing the drugs. Abbreviations Used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, FTIR: Fourier-transform infrared spectroscopy, BSA: Bovine Serum Albumin PMID:29333051
Arbab, Ahmed Hassan; Parvez, Mohammad Khalid; Al-Dosari, Mohammed Salem; Al-Rehaily, Adnan Jathlan
2017-07-01
Currently, >35 Saudi Arabian medicinal plants are traditionally used for various liver disorders without a scientific rationale. This is the first experimental evaluation of the anti-hepatitis B virus (HBV) potential of the total ethanolic and sequential organic extracts of 60 candidate medicinal plants. The extracts were tested for toxicity on HepG2.2.15 cells and cytotoxicity concentration (CC 50 ) values were determined. The extracts were further investigated on HepG2.2.15 cells for anti-HBV activities by analyzing the inhibition of HBsAg and HBeAg production in the culture supernatants, and their half maximal inhibitory concentration (IC 50 ) and therapeutic index (TI) values were determined. Of the screened plants, Guiera senegalensis (dichloromethane extract, IC 50 =10.65), Pulicaria crispa (ethyl acetate extract, IC 50 =14.45), Coccinea grandis (total ethanol extract, IC 50 =31.57), Fumaria parviflora (hexane extract, IC 50 =35.44), Capparis decidua (aqueous extract, IC 50 =66.82), Corallocarpus epigeus (total ethanol extract, IC 50 =71.9), Indigofera caerulea (methanol extract, IC 50 =73.21), Abutilon figarianum (dichloromethane extract, IC 50 =99.76) and Acacia oerfota (total ethanol extract, IC 50 =101.46) demonstrated novel anti-HBV activities in a time- and dose-dependent manner. Further qualitative phytochemical analysis of the active extracts revealed the presence of alkaloids, tannins, flavonoids and saponins, which are attributed to antiviral efficacies. In conclusion, P. crispa, G. senegalensis and F. parviflora had the most promising anti-HBV potentials, including those of C. decidua , C. epigeus, A. figarianum , A. oerfota and I. caerulea with marked activities. However, a detailed phytochemical study of these extracts is essential to isolate the active principle(s) responsible for their novel anti-HBV potential.
In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata.
Nasrin, Mahmuda; Dash, Pritesh Ranjan; Ali, Mohammad Shawkat
2015-01-01
Grewia paniculata (Family: Malvaceae) has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina) lethality bioassay. In disc diffusion method, all the natural products (400 μg/disc) showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB) and ethanol fraction of bark (EFB) (400 μg/disc) exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and 23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB) was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.
Anti-Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves.
da Silva, Jessica H S; Simas, Naomi K; Alviano, Celuta S; Alviano, Daniela S; Ventura, José A; de Lima, Eliandro J; Seabra, Sergio H; Kuster, Ricardo M
2018-06-01
Ethanol extracts obtained from Schinus terebinthifolius Raddi fruits and leaves were active against Escherichia coli with MIC of 78 μg mL -1 for both extracts. Phytochemical analyses revealed a major presence of phenolic acids, tannins, fatty acids and acid triterpenes in the leaves and phenolic acids, fatty acids, acid triterpenes and biflavonoids in the fruits. Major compounds isolated from the plant, such as the acid triterpene schinol, the phenolic acid derivative ethyl gallate and the biflavonoids agathisflavone and tetrahydroamentoflavone, showed very little activity against E. coli. Bioautography of the ethanol extracts on silica gel plate showed inhibition zones for E. coli. They were removed from the plate and the compounds identified as a mixture of myristic, pentadecanoic, palmitic, heptadecanoic, stearic, nonadecanoic, eicosanoic, heneicosanoic and behenic fatty acids.
Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu
2010-12-01
The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties.
Uchio, Ryusei; Higashi, Yohei; Kohama, Yusuke; Kawasaki, Kengo; Hirao, Takashi; Muroyama, Koutarou; Murosaki, Shinji
2017-01-01
Turmeric ( Curcuma longa ) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.
Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J
2014-02-01
A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.
Gadkari, Pravin Vasantrao; Kadimi, Udaya Sankar; Balaraman, Manohar
2014-11-01
Solid-liquid (SLE) and liquid-liquid (LLE) extraction techniques were applied to extract catechins and caffeine from quick mechanically expelled tea leaf juice (QMETLJ) and freeze-dried (FD)-QMETLJ of Camellia sinensis L. The concentrates obtained were analyzed for total polyphenol content and antioxidant activity (DPPH(•) inhibition, FRAP and phosphomolybdenum assay). Catechins were identified and quantified using HPLC. Overall, 95% (v/v) ethanol was the best solvent system for extracting total polyphenols (355.26 ± 23.68 to 457.89 ± 28.94 g GAE kg(-1) extractable solid yield (ESY)) and antioxidants (DPPH(•) inhibition, 16.97 ± 0.52 to 20.83 ± 3.11%; FRAP, 4.15 ± 0.32 to 6.38 ± 0.57 mmol TE g(-1) ESY; Mo(V) reduction, 2.47 ± 0.19 to 3.84 ± 0.39 mmol AAE g(-1) ESY) from FD-QMETLJ. Similarly, in LLE, ethyl acetate showed the best results for recovering polyphenols (960.52 ± 7.89 g GAE kg(-1) ESY) and antioxidants (DPPH(•) inhibition, 42.39 ± 0.91%; FRAP, 11.39 ± 0.83 mmol TE g(-1) ESY; Mo(V) reduction, 6.71 ± 1.14 mmol AAE g(-1) ESY) from QMETLJ. It was found that 95% ethanol can be used to increase the total polyphenols and antioxidants in extracts from FD-QMETLJ, while ethyl acetate can be effectively employed for concentrating catechins from QMETLJ. © 2014 Society of Chemical Industry.
Del Vecchyo-Tenorio, Georgina; Rodríguez-Cruz, Maricela; Andrade-Cetto, Adolfo; Cárdenas-Vázquez, René
2016-01-01
Creosote bush, Larrea tridentata (Sesse y Moc. Ex DC, Zygophyllaceae) is a shrub found in the deserts of Northern Mexico and Southwestern United States. In traditional medicine, it is used to treat a variety of illnesses including type 2 diabetes. The present study aims to investigate the effects of creosote bush ethanolic extract on plasma and liver parameters associated with the metabolic syndrome in hamsters fed a high fat and cholesterol diet (HFD), comparing them with those induced by ezetimibe (EZ). Seven groups of six hamsters each were formed. Six groups were fed HFD for 2 weeks. The following 2 weeks, the HFD groups received: (1) only HFD, (2) HFD + 3 mg% EZ, (3) HFD + 0.2% creosote bush ethanolic extract, (4) only standard diet (Std Diet), (5) Std Diet + 3 mg% EZ, (6) Std Diet + 0.2% creosote bush ethanolic extract. The beneficial effects of creosote bush ethanolic extract in the HFD hamster model were a reduction of insulin resistance, associated with lower serum insulin and leptin, lower hepatic lipid peroxidation and higher liver antioxidant capacity. Plasma and liver lipids tended or were reduced to values closer to those of animals fed standard diet. A similar effect on lipids was induced by EZ, although with even lower hepatic cholesterol and total lipids concentrations. In general, the change from HFD to standard diet plus ethanolic extract induced the same but deeper changes, including a reduction in plasma glucose and an increase in the percentage of HDL cholesterol. Unlike creosote bush extract, EZ increased food consumption and neutral fecal steroids, with no significant effect on body weight, epididymal fat pads, liver peroxidation or antioxidant capacity. Also EZ did not modify serum insulin and leptin. However, insulin sensitivity improved to values similar to those induced by the extract. This suggests that the mechanism of action of creosote bush ethanolic extract is different to inhibition of cholesterol absorption or increase excretion. The ethanolic extract of L. tridentata could be useful in the treatment of the metabolic syndrome. PMID:27445827
Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model
2014-01-01
Background Diabetes mellitus is a heterogeneous metabolic disorders characterized by abnormally high levels of blood glucose The main objective of the present work is to study the effect of Alpinia calcarata on glucose uptake in streptozotocin (STZ) induced diabetic rats. Methods The diabetes was induced by single dose of STZ (45 mg/kg) in citrate buffer, while the normal control group was given the vehicle (citrate buffer) only. After induction of diabetes, the diabetic animals were treated with ethanolic extract of Alpinia calcarata (200 mg/kg) and glibenclamide (2 mg/kg) for 30 days. Blood glucose estimation was performed every week of the study. At the end of study period, animals were sacrificed for biochemical studies. Results Streptozotocin induced diabetic rats shows the altered levels of various biochemical profiles. Those levels were brought back to near normal upon treatment with ethanolic extract of Alpinia calcarata and standard drug glibanclamide. No significant changes were observed on treatment with plant extract alone group indicated that there are no toxic substances present in Alpinia calcarata. The antidiabetic activity of plant extract was also further confirmed by histopathological studies. The ethanolic extract of Alpinia calcarata shows significant inhibition of alpha glucosidase activity and also enhancing the glucose uptake in rat hemidiaphragm. Conclusions In conclusion, the ethanolic extract of Alpinia calcarata ameliorates the condition associated with diabetes. PMID:24502532
Andrade, B S; Matias, R; Corrêa, B O; Oliveira, A K M; Guidolin, D G F; Roel, A R
2018-02-01
The use of chemical defensives to control fungal diseases has by consequence to impact negatively over the environment and human health, this way, the use of plant extracts with antifungal properties along with proper cultural management makes viable an alternative plant production control, specially for familiar and organic cultures. The objective of this study was to perform phytochemical and antioxidant analysis of Byrsonima crassifolia (canjiqueira) barks and evaluate its antifungal potential over Fusarium solani and Sclerotinia sclerotiorum mycelial growth. The ethanol extract from plants collected in Pantanal, Mato Grosso do Sul, Brazil was submitted to phytochemical prospection, total phenol and flavonoids quantification and antioxidant activiy determination (DPPH). To evaluate antifungal activity concentrations of 800, 1200, 1600, 2000 and 2400 µg 100 mL-1 of ethanol extract were used. Which concentration was separately incorporated in agar (PDA) and shed in Petri dishes, followed by the fungi mycelial disc where the colonies diameter was measured daily. Negatives control with agar without extract and agar with an ethanol solution were used. The B. crassifolia ethanol extract presented inhibitory activity over the fungi studied where concentrations of 800 and 1600 µg 100 mL-1, inhibited 38% of the mycelial growth of F. solani; to S. sclerotiorum the best concentration was 2400 µg 100 mL1, reducing 37.5%. The antifungal bark extract potential of this specie is attributed to phenolic compounds and to triterpenes derivatives.
USDA-ARS?s Scientific Manuscript database
In this study, the effect of the 80 percent ethanolic extract of corn bran (EECB) on inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells was investigated. The EECB inhibited LPS induced NO production...
Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549
NASA Astrophysics Data System (ADS)
Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.
2016-01-01
The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.
Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar
Manivannan, K; Karthikai devi, G; Anantharaman, P; Balasubramanian, T
2011-01-01
Objective To evaluate the antimicrobial activity of Turbinaria conoides (T. conoides), Padina gymnospora (P. gymnospora) and Sargassum tenerrimum against human bacterial and fungal pathogens. Methods The antimicrobial activities of the extracts against various organisms were tested by using disc diffusion method. Results The methanol extract showed the better result than the other extracts. Whereas, the strong antibacterial inhibition was noted in methanol extracts of P. gymnospora against Bacillus subtilus (26.33±1.86) and the mild inhibition of ethanol extracts from T. conoides against Klebsiella pneumoniae (2.33±0.51). Acetone extraction of P. gymnospora had strong antifungal inhibition against Cryptococcus neoformans (23.00±1.78), and acetone extract of T. conoides had mild inhibition against Aspergillus niger (3.00±0.89). Conclusions The seven different solvent extracts of seaweeds used in the present study have shown significant bacterial action. Further, a detailed study on the principle compound in the seaweeds which is responsible for antimicrobial activity is still needed and it can be achieved by using advanced separation techniques. PMID:23569739
Fardin, K M; Young, M C M
2015-07-01
There is significant interest in research to develop plant extracts with fungicidal activities that are less harmful to the environment and human health than synthetic fungicides. This study aimed to evaluate the antifungal activity of the extracts of Avicennia schaueriana against Colletotrichum and Cladosporium species and to identify the compounds responsible for the activity. Leaves and stems of A. schaueriana were extracted with ethanol and partitioned with petroleum ether, chloroform and ethyl acetate. The antifungal activity of such extracts was tested by bioautography against Cladosporium sphaerospermum, Cladosporium cladosporioides and Colletotrichum lagenarium. Ethanolic extracts, petroleum ether and chloroform fractions of stems had the highest antifungal activity with several active bands (Rf = 0·72 and Rf = 0·55). In the agar dilution assay, ethanolic extract, petroleum ether and chloroform fractions of stems were the most efficacious, presenting 85, 62 and 63% growth inhibition of Colletotrichum gloeopsporioides and minimum inhibitory concentration values between 1 and 1·5 mg ml(-1) , respectively. Analysis carried out using gas chromatography coupled to a mass spectrometry of petroleum ether and chloroform fractions allowed the identification of fatty acids methyl esters, lupeol and naphthoquinones such as lapachol, α-lapachone, naphtho[2,3-b]furan-4,9-dione, 2-isopropyl- and avicenol-C. We may infer that the antifungal activity of A. schaueriana is due to the abundance of these compounds. This study shows that Avicennia schaueriana extracts have a high potential for the growth inhibition of Colletotrichum and Cladosporium ssp. and will provide a starting point for discovering new natural products with antifungal activity. Their development is of particular interest to organic production systems where synthetic fungicides cannot be used. © 2015 The Society for Applied Microbiology.
Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai
2015-07-18
Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (P<0.05), improved serum lipid profiles, liver enzymes and kidney functions in diabetic rats after 14 days. The extracts also improved damage of islet of Langerhan's in diabetic rats. The plant material reduced the post-prandial glucose level (P<0.001) at the dose of 750 mg/kg. These findings revealed that both the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.
Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae
2008-08-01
The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.
Anti-arthritic activity of ethanolic extract of Tridax procumbens (Linn.) in Sprague Dawley rats.
Petchi, R Ramesh; Vijaya, C; Parasuraman, S
2013-04-01
To determine the anti-arthritic effect of whole plant ethanolic extract of Tridax procumbens (Asteraceae) in female Sprague Dawley (SD) rats using the Freund's Complete Adjuvant (FCA) model. The plant was collected from different regions of Madurai District, Tamil Nadu, and the phytoconstituents were identified through chemical tests. Ethanol (95%) was used to obtain the whole plant extraction through Soxhlet extractor. Female SD rats were used for anti-arthritic screening. Arthritis was induced using FCA, and the anti-arthritic effect of the ethanolic extract of T. procumbens was studied at doses of 250 and 500 mg/kg. The effects were compared with those of indomethacin (10 mg/kg). At the end of the study, the liver enzyme levels were determined and a radiological examination was carried out. The preliminary phytochemical analysis of the ethanolic extract of T. procumbens indicated the presence of alkaloids, tannins, flavonoids and saponins. T. procumbens at 250 and 500 mg/kg significantly inhibited the FCA-induced arthritis in the rats. This was manifested by as a decrease in the paw volume. The arthritic control animals exhibited a significant decrease in body weight compared with control animals without arthritis. T. procumbens animals showed dose dependent reduction in decrees in body weight and arthritis. At the same time, T. procumbens significantly altered the biochemical and haematological changes induced by FCA (P < 0.05). The anti-arthritic effect of T. procumbens was comparable with that of indomethacin. The whole plant extract of T. procumbens showed significant anti-arthritic activity against FCA-induced arthritis in female SD rats.
Gunasekara, TDCP; Radhika, NDM; Ragunathan, KK; Gunathilaka, DPP; Weerasekera, MM; Hewageegana, HGSP; Arawwawala, L A D M; Fernando, SSN
2017-01-01
Background: Medicinal plants are an important source of novel antimicrobial agents. Ayurvedic treatment involves the use of a variety of medicinal plants that merit investigation. Aims: To investigate the antimicrobial activity of bark of Pongamia pinnata (L.) Pierre, stem of Rubia cordifolia Linn, leaves of Jasminum officinale Linn, stem of Berberis ceylanica C.K. Schneid. and fruit of Garcina zeylanica Roxb. Subjects and Methods: Aqueous and ethanolic extracts of dried bark of Pongamia pinnata (Magul karanda), dried stem of Rubia cordifolia Linn (Welmadata), tender leaves of Jasminum officinale Linn (Jasmine) and dried stem of Berberis ceylanica (Dāruharidrā) were prepared according to standard protocols and tested for antimicrobial activity against five clinical isolates and one standard strain each of Candida albicans (ATCC 10231), Candida parapsilosis (ATCC 22019) and six Methicillin Resistant Staphylococcus aureus (MRSA) clinical isolates using the well diffusion method. Experiments were done in triplicates using well diffusion method. The plant extracts which gave a zone of inhibition in the well diffusion assay were further tested for Minimum Inhibitory Concentrations (MIC). Results: Aqueous and ethanolic extracts of Berberis ceylanica and ethanolic extract of Rubia cordifolia had antimicrobial activity against Candida albicans and Candida parapsilosis. Aqueous and ethanolic extracts of Garcinia zeylanica, and the ethanolic extracts of Jasminum officinale, Rubia cordifolia and Pongamia pinnata had antimicrobial activity against MRSA. Conclusions: Berberis ceylanica and Rubia crodifolia had antimicrobial activity against Candida species while Garcinia zeylanica, Jasminum officinale, Rubia crodifolia and Pongamia pinnata had antimicrobial activity against MRSA. PMID:29269969
NASA Astrophysics Data System (ADS)
Rohaeti, E.; Fauzi, M. R.; Batubara, I.
2017-03-01
This study aimed to determine the antidiabetic activity of the skin fruit and flesh of snack fruit through α-glucosidase inhibition and correlated with total phenolic and flavonoid content as well as thin layer chromatography bio-autography. Seven varieties of varieties of skin and flesh of the fruits each extracted by maceration using ethanol 70%. The results show the highest power of the α-glucosidase inhibition obtained at Manonjaya skin extract with IC50 value of 17.9 µg/mL. The TLC pattern indicates the presence of four active spot on skin extract and two spots on flesh extracts on the use of solvent BuOH:HAc:water (6:2:2). The highest phenolic content obtained at skin fruit extract of Salak Mawar 186.15 ± 1.66 mg of gallic acid equivalents per gram extract. The highest total flavonoid content obtained in Salak Malaka skin fruit extract that is 7:43 ± 0:04 milli gram of quercetin equivalents
Inhibition of α-glucosidase activity by ethanolic extract of Melia azedarach L. leaves
NASA Astrophysics Data System (ADS)
Sulistiyani; Safithri, Mega; Puspita Sari, Yoana
2016-01-01
Development of α-glucosidase inhibitor derived from natural products is an opportunity for a more economic management of diabetes prevention. The objective of this study was to test the activity of α-glucosidase with or without potential inhibitor compounds. By in vitro method, α-glucosidase hydrolizes p-nitrophenyl-α-D-glucopiranoside to glucose and the yellow of p-nitrophenol which can be determined with spectrophotometry at 400 nm. The ability of ethanolic leaf extract of Melia azedarach L. as a-glucosidase inhibitor was compared with that of commercial acarbose (Glucobay®). Acarbose showed strong inhibitory activity against a-glucosidase with IC50 values of 2.154 µg/mL. The crude ethanolic leaf extract of M. azedarach, however, showed less inhibitory activity with IC50 value of 3, 444.114 µg/mL. Total phenolics of M. azedarach leaves EtOH extract showed 17.94 µg GAE/mg extract and flavonoids total compound of 9.55 µg QE/mg extract. Based on the published wide range of IC50 values of extracts reported as a-glucosidase inhibitor which were between 10, 000 ppm-0.66 ppm, our result suggests that extract of M.azedarach leaves is potential candidate for development of anti-hyperglycemic formulation.
Shah, Syed Sadaqat; Shah, Syed Salim; Iqbal, Arshad; Ahmed, Sajjad; Khan, Wisal Muhammad; Hussain, Saddam; Li, Zhijian
2018-05-01
The present study was conducted to investigate the phytochemical screening and antimicrobial activities of stem bark of Bombax ceiba L. The methanol extract was subjected to qualitative phytochemical screening using standard procedures. The results indicated the presence of alkaloids, tannins, glycosides, reducing sugar, saponins, phlobatanins and terpenoids. The antimicrobial activity was measured by disc diffusion method. Data revealed that Pseudomonas aeruginosa was inhibited by both methanol and ethanol extracts at the concentration of 2mg disc -1 {21.8mm (68.12%) and 21.3mm (66.56%)}. Similarly, methanol extract reduced the growth of Bacillus subtilis by 17.1mm (74.34%) at the concentration of 1 mg disc -1 . However, ethanol extract showed a good activity of 18mm (121.6%) and 20.6mm (112.5%) against Xanthomonas maltophilia at concentrations of 1 and 2 mg disc-1, respectively. Aqueous extract showed 16 mm (53.33% Z.I) against Escherichia coli at 2 mg disc -1 . Klebsiella pneumoniae was found resistant to all of the three extracts, while the growth of Candida albicans was inhibited by methanol through 16.5 mm (58.92% Z.I) at 1 mg disc -1 . The above study concluded the medicinal potential of B. ceiba.
Inhibition of protein glycation by extracts of culinary herbs and spices.
Dearlove, Rebecca P; Greenspan, Phillip; Hartle, Diane K; Swanson, Ruthann B; Hargrove, James L
2008-06-01
We tested whether polyphenolic substances in extracts of commercial culinary herbs and spices would inhibit fructose-mediated protein glycation. Extracts of 24 herbs and spices from a local supermarket were tested for the ability to inhibit glycation of albumin. Dry samples were ground and extracted with 10 volumes of 50% ethanol, and total phenolic content and ferric reducing antioxidant potential (FRAP) were measured. Aliquots were incubated in triplicate at pH 7.4 with 0.25 M fructose and 10 mg/mL fatty acid-free bovine albumin. Fluorescence at 370 nm/440 nm was used as an index of albumin glycation. In general, spice extracts inhibited glycation more than herb extracts, but inhibition was correlated with total phenolic content (R(2) = 0.89). The most potent inhibitors included extracts of cloves, ground Jamaican allspice, and cinnamon. Potent herbs tested included sage, marjoram, tarragon, and rosemary. Total phenolics were highly correlated with FRAP values (R(2) = 0.93). The concentration of phenolics that inhibited glycation by 50% was typically 4-12 microg/mL. Relative to total phenolic concentration, extracts of powdered ginger and bay leaf were less effective than expected, and black pepper was more effective. Prevention of protein glycation is an example of the antidiabetic potential for bioactive compounds in culinary herbs and spices.
Potential of Piper betle extracts on inhibition of oral pathogens.
Phumat, Pimpak; Khongkhunthian, Sakornrat; Wanachantararak, Phenphichar; Okonogi, Siriporn
2017-01-01
In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.
Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah
2014-04-01
Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products. © 2014 Institute of Food Technologists®
Vamanu, Emanuel; Nita, Sultana
2013-01-01
Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds. PMID:23509707
Vamanu, Emanuel; Nita, Sultana
2013-01-01
Boletus edulis is a wild edible mushroom habitually consumed by rural populations. Ethanolic and methanolic extracts was obtained in cold and hot water from dried fruit bodies. The antioxidant activity of freeze-dried extracts from B. edulis were investigated using free radicals scavenging activity, reducing power, metal chelating effect, inhibition of lipid peroxidation, and the identification of antioxidant compounds. The levels of different compounds with antioxidant properties were higher in alcoholic extracts compared with aqueous extracts. Rosmarinic acid was the major phenolic compound, it being identified in a concentration between 7 ± 0.23 and 56 ± 0.15 mg/100 g extract. A positive correlation between the content of total phenols, flavonoids, anthocyanins, and tocopherols, and the antioxidant capacity of the extracts was determined. The results showed that the ethanolic extract of Romanian wild mushroom B. edulis represents a natural source of functional compounds.
The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts.
Lordan, Sinéad; Smyth, Thomas J; Soler-Vila, Anna; Stanton, Catherine; Ross, R Paul
2013-12-01
To date, numerous studies have reported on the antidiabetic properties of various plant extracts through inhibition of carbohydrate-hydrolysing enzymes. The objective of this research was to evaluate extracts of seaweeds for α-amylase and α-glucosidase inhibitory effects. Cold water and ethanol extracts of 15 seaweeds were initially screened and from this, five brown seaweed species were chosen. The cold water and ethanol extracts of Ascophyllum nodosum had the strongest α-amylase inhibitory effect with IC50 values of 53.6 and 44.7 μg/ml, respectively. Moreover, the extracts of Fucus vesiculosus Linnaeus were found to be potent inhibitors of α-glucosidase with IC50 values of 0.32 and 0.49 μg/ml. The observed effects were associated with the phenolic content and antioxidant activity of the extracts, and the concentrations used were below cytotoxic levels. Overall, our findings suggest that brown seaweed extracts may limit the release of simple sugars from the gut and thereby alleviate postprandial hyperglycaemia. Copyright © 2013. Published by Elsevier Ltd.
Studies on the pharmacological action of cactus: identification of its anti-inflammatory effect.
Park, E H; Kahng, J H; Paek, E A
1998-02-01
The ethanol extracts of Opuntia ficus-indica fructus (EEOF) and Opuntia ficus-indica stem (EEOS) were prepared and used to evaluate the pharmacological effects of cactus. Both the extracts inhibited the writhing syndrome induced by acetic acid, indicating that they contains analgesic effect. The oral administrations of EEOF and EEOS suppressed carrageenan-induced rat paw edema and also showed potent inhibition in the leukocyte migration of CMC-pouch model in rats. Moreover, the extracts suppressed the release of beta-glucuronidase, a lysosomal enzyme in rat neutrophils. It was also noted that the extracts showed the protective effect on gastric mucosal layers. From the results it is suggested that the cactus extracts contain anti-inflammatory action having protective effect against gastric lesions.
Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S
2005-01-15
In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius.
Zago, Adriana M; Carvalho, Fabiano B; Gutierres, Jessié Martins; Bohnert, Crystiani; Fernandes, Marilda da Cruz; Morandini, Liziane M; Coelho, Helena S; Fogaça, Aline O; Andrade, Cinthia M; Mostardeiro, Marco A; Dalcol, Ionara I; Morel, Ademir F
2018-05-21
This study investigated the antioxidant activity of Cuphea glutinosa (CG) and its effect on Na + , K + -ATPase from cardiac muscle. The ethanolic extract showed higher antioxidant capacity compared to aqueous and ethyl acetate fraction. Ethyl acetate fraction showed β-sitosterol-3-O-β-glucoside, kaempferol, quercetin, isoquercetin, gallic acid methyl ester, and gallic acid. The ethanolic extract also reduced the Na + ,K + -ATPase activity. CG presented a promising antioxidant activity and inhibitory effect on the Na + , K + -ATPase activity, supporting biochemical evidences the popular use of this plant in the treatment of heart failure.
Screening and characterization of selected drugs having antibacterial potential.
Javed, Hina; Tabassum, Sobia; Erum, Shazia; Murtaza, Iram; Muhammad, Aish; Amin, Farhana; Nisar, Muhammad Farrukh
2018-05-01
Due to ever increasing antibiotic resistance offered by pathogenic bacterial strains and side effects of synthetic antibiotics, thereof, there is a need to explore the effective phytochemicals from natural resources. In order to help overcoming the problem of effective natural drug and the side effects posed by the use of the synthetic drugs, five different plants namely Thymus vulgaris, Lavandula angustifolia, Rosmarinus officinalis, Cymbopogon citratus and Achillea millefolium were selected to study their antibacterial potential. Antibacterial activity and minimum inhibitory concentration (MIC) checked against the selected bacterial strains. As compared to other test plants, ethanolic extract of Rosmarinus officinalis leaves showed the most promising inhibitory effect i.e: inhibition zone (18.17± 0.44mm) against Klebsiella pneumoniae and the lowest inhibition (15.5±0.29mm) against Pseudomonas aeruginosa and Escherichia coli (p<0.05). The MIC values were recorded in the range of 1 to 20mg/ml. Screening of the selected extracts for the test plants additionally indicate some unique variations. Results were further confirmed through TLC for alkaloids and terpenoids (15% sulphuric acid and Dragedroff's reagent) in ethanolic extract. Characterization of Rosmarinus officinalis of ethanolic extract was carried out using column chromatography. The appearance of orange crystals may indicate the presence of alkaloidal bioactive compounds which need to be further investigated. The tested plants may have a potential for fighting against some infectious diseases caused by selected human pathogenic bacterial strains. This knowledge may incite a gateway to effective drug search and so on.
Afolayan, Anthony Jide
2018-01-01
Vernonia mespilifolia Less. is a shrub of the Asteraceae family used in the South African traditional medicine system for the management of weight loss, hypertension, and heartwater disease. There is a need for scientific evaluation to validate its ethnomedicinal usage. In vitro assays were conducted to evaluate the polyphenolic content, antioxidant and antimicrobial properties of different solvent extracts (acetone, aqueous, and ethanol) of the whole plant of Vernonia mespilifolia spectrophotometric and agar dilution techniques, respectively. The result revealed varying amounts of polyphenolics in the different solvent extracts corresponding to the antioxidant activities. Also, only the acetone and ethanol extracts inhibited the growth of the selected bacteria and fungi. These findings reveal that the extracts have strong bioactive compounds and hence support its ethnomedicinal application. PMID:29756461
Antibacterial Activity of Anthraquinone from Aloe on Spiced Pig Head
NASA Astrophysics Data System (ADS)
Xu, Lingyi; Li, Xiao; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua
2017-12-01
[Objective] To optimize the extraction of anthraquinone from Aloe by ultrasonic extraction and its antibacterialactivity. [Method]The influences of different extraction time and ethanol concentration, on anthraquinone contentwere evaluated by asingle factor experiment. And anthraquinone content was determined by ultraviolet spectrophotometry. The bacteriostasis of anthraquinone on spiced pig head’s common putrefying bacteria: Staphylococcus, Serratieae, Bacillus, Proteus and the minimal inhibitory concentration (MIC) were studied by oxford plate assay system. [Result]The best extraction time was 30 minutes and the best ethanol concentration was 80%. The antibacterial activity of the Aloe anthraquinone on Staphylococcus Aureus, Bacillus Proteus is obviously, the minimum inhibitory concentrations were 0.0625 g/mL, 0.05 g/mL, 0.125 g/mL respectively and no inhibitory effect on Serratieae. [Conclusions] The anthraquinones from Aloe can inhibit a part Of spoilage bacteria inspiced pig heads.
You, Yanghee; Min, Seoyoung; Lee, Yoo-Hyun; Hwang, Kwontack; Jun, Woojin
2017-10-01
The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antioxidant and antibacterial activity of Litsea garciae
NASA Astrophysics Data System (ADS)
Wulandari, I.; Kusuma, I. W.; Kuspradini, H.
2018-04-01
Litsea garciae is an evergreen tree growing up to 26 meters tall and useful tropical plant species. This plant have medicinal uses. The lightly burned bark can be used to cure caterpillar sting. The purpose of this study was to analyze the characteristics of secondary metabolite compounds, total phenolic and flavonoid content, antioxidant and antibacterial activity from leaf, bark and branch of L.itsea garciae plant extracts. Antioxidant activity was determined by using free radical method (1,1-diphenyl 2-picrylhydrazyl). Antibacterial activity against Propionibacterium acnes was assayed by 2,3,5-triphenyl tetrazolium chloride method. The sample extracts were obtained using a successive maceration method with n-hexane, ethyl acetate, and ethanol solvent. The result of phytochemical analysis on Litsea garciae extract positive contained several secondary metabolite compounds. Among the three sample extracts, the highest of total phenol content present in all three parts of ethanol extract with a value of 0.9-1.0 μg/mg GAE. The highest total flavonoid content was 10.1 μg/mg CE. The highest antioxidant activity was found in ethyl acetate stem extract (86% ± 0.00) at 100 ppm concentration, with IC50 at 41.54 ppm. The present work showed that L. garciae ethanol extract has potential to inhibit the growth of P. acnes bacteria.
Wong, Jing-Yang; Raman, Jegadeesh; Kuppusamy, Umah Rani; Sabaratnam, Vikineswary
2013-01-01
Hericium erinaceus is a famous tonic in oriental medicine. The gastroprotective effects of aqueous extract of H. erinaceus against ethanol-induced ulcers in Sprague Dawley rats were investigated. The possible involvements of lipid peroxidation, superoxide dismutase, and catalase were also investigated. Acute toxicity study was performed. The effects of aqueous extract of H. erinaceus on the ulcer areas, ulcer inhibition, gastric wall mucus, gross and histological gastric lesions, antioxidant levels, and malondialdehyde (MDA) contents were evaluated in ethanol-induced ulcer in vivo. In acute toxicity study, a high dose of 5 g/kg did not manifest any toxicological signs in rats. The extract promoted ulcer protection as ascertained by a significant reduction of the ulcer area. Furthermore, it exhibited a significant protection activity against gastric mucosal injury by preventing the depletion of antioxidant enzymes. The level of MDA was also limited in rat stomach tissues when compared with the ulcer control group. Immunohistochemistry showed upregulation of HSP70 protein and downregulation of BAX protein in rats pretreated with the extract. The aqueous extract of H. erinaceus protected gastric mucosa in our in vivo model. It is speculated that the bioactive compounds present in the extract may play a major role in gastroprotective activity. PMID:24302966
Naz, Rabia; Bano, Asghari
2013-01-01
Objective To evaluate the antioxidant activity, hydrogen peroxide radicals scavenging activity, reducing power, the total phenolic and flavonoids contents, and antimicrobial and antifungal activities of methanol, ethanol and water extracts of leaves of Lantana camara (L. camara). Methods Methanol, ethanol and water extracts were evaluated against four Gram positive and Gram negative bacterial isolates (Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis) and two fungal strains (Aspergillus fumigatus and Aspergillus flavus). Methanol extract at different concentrations was tested for antioxidant potential and phytochemicals were determined by using spectrophotometric method. Results The total phenolic content was (40.859±0.017) mg gallic acid/g in the leaves of L. camara, while the total flavonoids was (53.112±0.199) mg/g dry weight. Methanol leaf extract of L. camara showed maximum antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa and was also effective against other bacterial strains as compared to ethanol and aqueous extracts of leaves. The methanol leaf extract of L. camara exhibited significant inhibition (71%) and (66%) against Aspergillus fumigatus and Aspergillus flavus respectively. Conclusions The methanol extract of the L. camara leaves is effective against selected bacterial and fungal strains. Its phytochemical contents have broad antimicrobial properties and the plant might be a novel source of antimicrobial drug.
Javadi, Neda; Abas, Faridah; Abd Hamid, Azizah; Simoh, Sanimah; Shaari, Khozirah; Ismail, Intan Safinar; Mediani, Ahmed; Khatib, Alfi
2014-06-01
Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb. GC-MS and multivariate data analysis was applied to discriminate Cosmos caudatus samples extracted with water and different ratio of ethanol. Orthogonal partial least-squares (OPLS) model developed was used to determine the major metabolites contributed to α-glucosidase inhibitory activity. This approach also has the ability to predict the bioactivity of a new set of extracts based on a developed validated regression model that is important for quality control of the herb preparation. © 2014 Institute of Food Technologists®
Numonov, Sodik; Edirs, Salamet; Bobakulov, Khayrulla; Qureshi, Muhammad Nasimullah; Bozorov, Khurshed; Sharopov, Farukh; Setzer, William N; Zhao, Haiqing; Habasi, Maidina; Sharofova, Mizhgona; Aisa, Haji Akber
2017-06-13
The root of Geranium collinum Steph is known in Tajik traditional medicine for its hepatoprotective, antioxidant, and anti-inflammatory therapeutic effects. The present study was conducted to evaluate of potential antidiabetic, antioxidant activities, total polyphenolic and flavonoid content from the different extracts (aqueous, aqueous-ethanolic) and individual compounds isolated of the root parts of G. collinum . The 50% aqueous-ethanolic extract possesses potent antidiabetic activity, with IC 50 values of 0.10 μg/mL and 0.09 μg/mL for the enzymes protein-tyrosine phosphatase (1B PTP-1B) and α-glucosidase, respectively. Phytochemical investigations of the 50% aqueous-ethanolic extract of G. collinum , led to the isolation of ten pure compounds identified as 3,3',4,4'-tetra- O -methylellagic acid ( 1 ), 3,3'-di- O -methylellagic acid ( 2 ), quercetin ( 3 ), caffeic acid ( 4 ), (+)-catechin ( 5 ), (-)-epicatechin ( 6 ), (-)-epigallocatechin ( 7 ), gallic acid ( 8 ), β-sitosterol-3- O -β-d-glucopyranoside ( 9 ), and corilagin ( 10 ). Their structures were determined based on 1D and 2D NMR and mass spectrometric analyses. Three isolated compounds exhibited strong inhibitory activity against PTP-1B, with IC 50 values below 0.9 μg/mL, more effective than the positive control (1.46 μg/mL). Molecular docking analysis suggests polyphenolic compounds such as corilagin, catechin and caffeic acid inhibit PTP-1B and β-sitosterol-3- O -β-d-gluco-pyranoside inhibits α-glucosidase. The experimental results suggest that the biological activity of G. collinum is related to its polyphenol contents. The results are also in agreement with computational investigations. Furthermore, the potent antidiabetic activity of the 50% aqueous-ethanolic extract from G. collinum shows promise for its future application in medicine. To the best of our knowledge, we hereby report, for the first time, the antidiabetic activity of G. collinum.
Apu, Apurba Sarker; Bhuyan, Shakhawat Hossan; Matin, Maima; Hossain, Faruq; Khatun, Farjana; Taiab, Abu; Jamaluddin
2013-01-01
The present study was undertaken to evaluate the possible analgesic, neuropharmacological, anti-diarrheal, and cytotoxic activities of the ethanol extract of leaves of Solanum sisymbriifolium Lam. (Family: Solanaceae). The analgesic activity was measured by acetic acid-induced writhing inhibition test. The neuropharmacological activities were evaluated using hole cross, hole board, and elevated plus-maze test and the anti-diarrheal activity was assessed using castor oil-induced diarrhea inhibition method. Brine shrimp lethality bioassay was carried out for assessing the cytotoxicity of the ethanol extract of the leaves. Except cytotoxic activity, all the tests were conducted on mice. The extract at oral doses of 200 and 400 mg/kg body weight showed highly significant (p<0.001) decrease in number of writhing, 52.1±0.66 and 4.4±0.64 compared with the control (78.6±0.29) with the percentage of inhibitions of writhing response were found to be 33.72% and 94.40%, respectively. Compare with the control, the extract at both doses showed significant sedative effect in hole cross test. In hole board test, the extract exhibited highly significant (p<0.001) anxiolytic activity at dose of (200 mg/kg), while the same activity was observed at dose of 400 mg/kg in elevated plus-maze test. The extract showed highly significant (p<0.001) anti-diarrheal activity in a dose-dependent manner. With the extract, significant lethality to brine shrimp was found with LC50 value of 61.66±0.9 μg/ml, which was comparable with the positive control (LC50: 11.89±0.8 µg/ml). The results from the present studies support the traditional uses of this plant part and could form the basis of further investigation including compound isolation.
ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2017-01-01
Background: Moringa oleifera belongs to plant family, Moringaceae and popularly called “wonderful tree”, for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Materials and Methods: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Results: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml). Conclusion: Moringa oleifera seed has antiproliferative effect on MCF7. PMID:28573245
Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.
Zampini, Iris C; Vattuone, Marta A; Isla, Maria I
2005-12-01
The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.
2013-08-01
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.
Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.
2013-01-01
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.
Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M
2016-10-01
Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal. Copyright © 2016 Elsevier Inc. All rights reserved.
Quevedo-Hidalgo, Balkys; Monsalve-Marín, Felipe; Narváez-Rincón, Paulo César; Pedroza-Rodríguez, Aura Marina; Velásquez-Lozano, Mario Enrique
2013-03-01
Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g(-1), 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels.
Lipase inhibition and antiobesity effect of Atractylodes lancea.
Jiao, Ping; Tseng-Crank, Julie; Corneliusen, Brandon; Yimam, Mesfin; Hodges, Mandee; Hong, Mei; Maurseth, Catherine; Oh, Misun; Kim, Hyunjin; Chu, Min; Jia, Qi
2014-05-01
The ethanol extract of Atractylodes lancea rhizome displayed significant lipase inhibition with an IC50 value of 9.06 µg/mL in a human pancreatic lipase assay from high-throughput screening. Bioassay-guided isolation led to the identification of one new polyacetylene, syn-(5E,11E)-3-acetoxy-4-O-(3-methylbutanoyl)-1,5,11-tridecatriene-7,9-diyne-3,4-diol (7), along with six known compounds (1-6). The structure of compound 7 was determined based on the analysis of NMR and MS data. Among these seven lipase inhibitors, the major compound atractylodin (1) showed the highest lipase inhibitory activity (IC50 = 39.12 µM). The antiobesity effect of the ethanol extract of Atractylodes lancea rhizome was evaluated in a high-fat diet-induced obesity mice model at daily dosages of 250 mg/kg and 500 mg/kg body weight for 4 weeks, and treatment with this extract demonstrated a moderate efficacy at the 500 mg/kg dose level. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Satria Rakatama, Adam; Pramono, Andri; Yulianti, Retno
2018-03-01
Candida albicans are the most frequent cause of Vulvovaginalis Candidiasis infection. Its treatment using antifungal drugs, are oftenly caused side effects. The reduction of C.albicans growth and the reduction of antifungal drugs side effect, were our main purposed. Our study objective is determine the effectiveness of inhibitory power of arabica coffee seed ethanol extract on the growth of C.albicans patient isolates. The type of this research is experimental research. Kirby-bauer method with the Saboraud Dextrose Agar (SDA) media was used in this experiment. Inhibitory zone was observed around the disc, to determine the inhibitory power. The results showed that the inhibitory zone was formed on arabica coffee seed ethanol extract on 10%, 20%, 40%, and 80% concentration. Kruskal-Wallis test results (p<0,05) showed that there was a significant difference in mean between the concentration groups tested against the treatment group. The inhibitory zone was formed because of biochemical compound in arabica coffee seed such as caffeine, phenol, alkaloids, flavonoids, and saponins. Inhibitory zone in C.albicans patient isolates were smaller compared with C.albicans ATCC 90028 as gold standard. This showed that the virulence of C.albicans from patients isolates were higher. We concluded that arabica coffee seed ethanol extract could inhibiting the growth of C.albicans patient isolates. Optimization of coffee seed ethanol extract to obtain maximum active ingredients still needs to be done. This knowledge is expected to be used for the beginning manufacturer antifungal drug from natural product.
Anti-arthritic activity of ethanolic extract of Tridax procumbens (Linn.) in Sprague Dawley rats
Petchi, R Ramesh; Vijaya, C; Parasuraman, S
2013-01-01
Objective: To determine the anti-arthritic effect of whole plant ethanolic extract of Tridax procumbens (Asteraceae) in female Sprague Dawley (SD) rats using the Freund's Complete Adjuvant (FCA) model. Materials and Methods: The plant was collected from different regions of Madurai District, Tamil Nadu, and the phytoconstituents were identified through chemical tests. Ethanol (95%) was used to obtain the whole plant extraction through Soxhlet extractor. Female SD rats were used for anti-arthritic screening. Arthritis was induced using FCA, and the anti-arthritic effect of the ethanolic extract of T. procumbens was studied at doses of 250 and 500 mg/kg. The effects were compared with those of indomethacin (10 mg/kg). At the end of the study, the liver enzyme levels were determined and a radiological examination was carried out. Result: The preliminary phytochemical analysis of the ethanolic extract of T. procumbens indicated the presence of alkaloids, tannins, flavonoids and saponins. T. procumbens at 250 and 500 mg/kg significantly inhibited the FCA-induced arthritis in the rats. This was manifested by as a decrease in the paw volume. The arthritic control animals exhibited a significant decrease in body weight compared with control animals without arthritis. T. procumbens animals showed dose dependent reduction in decrees in body weight and arthritis. At the same time, T. procumbens significantly altered the biochemical and haematological changes induced by FCA (P < 0.05). The anti-arthritic effect of T. procumbens was comparable with that of indomethacin. Conclusion: The whole plant extract of T. procumbens showed significant anti-arthritic activity against FCA-induced arthritis in female SD rats. PMID:23798886
Sai Saraswathi, V; Kamarudheen, Neethu; Bhaskara Rao, K V; Santhakumar, K
2017-04-01
The investigation was conducted to analyse the bioactive compounds from the leaf extracts of L. speciosa by GC-MS. The extracts were screened for antibacterial and antibiofilm activities against potential clinical strains. The bioactive compounds from the leaves of L. speciosa were extracted by soxhlet continuous extraction method and their chemical composition was analysed by Gas Chromatography-Mass Spectroscopy (GC-MS). The antibacterial activity was evaluated against clinical strain like Staphylococcus aureus, Escherichia coli, P. aeruginosa and Salmonella typhi by well diffusion technique. We also screened for antibacterial property against common food borne pathogens namely Listeria monocytogenes and Bacillus cereus at varied concentration 250μml -1 to 1000μml -1 . Thereafter antibiofilm assay was carried out at from 250 to 1000μg/ml against P. aeruginosa (high biofilm forming pathogen) clinical strain by cover slip technique and the morphology of the pathogen was observed using Scanning Electron Microscopy-(SEM). It was observed that diverse class of secondary metabolites were found by GC-MS analysis for all the extracts upon the continuous extraction. It was found that only minimum inhibition was seen in alcoholic extract for antibacterial activity, whereas all other extracts showed negligible activity. P. aeruginosa biofilm inhibited to 93.0±2% and 91±2% at higher concentration (1000μg/ml) for methanolic and ethanolic extract respectively. Absence of extracellular matrix structure and the surface cracking of biofilm were viewed by SEM, which confirmed the antibiofilm activity. Hence this study reveals that L. speciosa showed significant antibiofilm activity against P. aeruginosa due to the phytoconstituents present in the leaf extracts which was well documented in the alcoholic extracts by GC-MS analysis. The methanolic and ethanolic extract showed good photocatalytic activity of 77.44% and 96.66% against azo dye degradation respectively. Further, isolating the novel phyto-compounds would yield better promising biological activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Lobbens, Eva S B; Vissing, Karina J; Jorgensen, Lene; van de Weert, Marco; Jäger, Anna K
2017-03-22
Plants used in the traditional medicine of Europe to treat memory dysfunction and/or to enhance memory were investigated for activity against the underlying mechanisms of Alzheimer's disease. To investigate 35 ethanolic extracts of plants, selected using an ethnopharmacological approach, for anti-amyloidogenic activity as well as an ability to inhibit the enzymatic activity of acetylcholinesterase. The anti-amyloidogenic activity of the extracts against amyloid beta was investigated by Thioflavin T fibrillation assays and the ability to inhibit the enzymatic activity of acetylcholinesterase was evaluated monitoring the hydrolysis of acetylthiocholine RESULTS: Under the experimental conditions investigated, extracts of two plants, Carum carvi and Olea sylvestris, inhibited amyloid beta fibrillation considerably, eight plant extracts inhibited amyloid beta fibrillation to some extent, 16 plant extracts had no effect on amyloid beta fibrillation and nine extracts accelerated fibrillation of amyloid beta. Furthermore, five plant extracts from Corydalis species inhibited the enzymatic activity of acetylcholinesterase considerably, one plant extract inhibited the enzymatic activity of acetylcholinesterase to some extent and 29 plant extract had no effect on the enzymatic activity of acetylcholinesterase. An optimal extract in this study would possess acetylcholinesterase inhibitory activity as well as anti-amyloidogenic activity in order to address multiple facets of Alzheimer's disease, until the molecular origin of the disease is unraveled. Unfortunately no such extract was found. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Pharmacological activities of Vitex agnus-castus extracts in vitro.
Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W
2000-10-01
The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.
Kiss, Anna K; Derwińska, Małgorzata; Dawidowska, Anna; Naruszewicz, Marek
2008-09-10
In this study, for the first time, we used the in vitro metallopeptidase model for the identification of a potential novel activity of defatted evening primrose seed extracts. Prepared extracts of different polarity (aqueous, 60% ethanolic, isopropanolic, and 30% isopropanolic) at concentrations of 1.5-100 microg/mL exhibited a significant and dose dependent inhibition of three tested enzymes. The 50% inhibition of enzymes activity showed that aminopeptidase N (APN) was the enzyme affected to the greatest extent with IC50 at the level of 2.8 microg/mL and 2.9 microg/mL for aqueous and 30% isopropanolic extracts, respectively. The activity of neutral endopeptidase (NEP) was quite strongly inhibited by the extracts as well. The HPLC-DAD analysis and bioguided fractionation led to the identification of four active compounds: (-)-epicatechin gallate, proanthocyanidin B3, oenothein B, and penta-O-galloyl-beta-D-glucose (PGG). Oenothein B has been shown previously to inhibit metallopeptidases. The three other compounds are known to inhibit angiotensin-converting enzyme (ACE), but they have not been previously reported to inhibit the NEP and APN activity. PGG and procyanidins with different degrees of polymerization, as the dominating compounds in O. paradoxa seeds, seemed to play a role in the crude extract activity.
Antiulcerogenic activity of Carica papaya seed in rats.
Pinto, Lorraine Aparecida; Cordeiro, Kátia Wolff; Carrasco, Viviane; Carollo, Carlos Alexandre; Cardoso, Cláudia Andréa Lima; Argadoña, Eliana Janet Sanjinez; Freitas, Karine de Cássia
2015-03-01
The purpose of the present study was to evaluate the gastroprotective and healing effects of the methanolic extract of the seed of the papaya Carica papaya L. (MECP) in rats. Models of acute gastric ulcer induction by ethanol and indomethacin and of chronic ulcer by acetic acid were used. The gastric juice and mucus parameters were evaluated using the pylorus ligation model, and the involvement of sulfhydryl compounds (GSH) and nitric oxide in the gastroprotective effect was analyzed using the ethanol model. The toxicity was assessed through toxicity tests. No signs of toxicity were observed when the rats received a single dose of 2000 mg/kg of extract. The MECP in doses of 125, 250, and 500 mg/kg significantly reduced the gastric lesion with 56, 76, and 82 % inhibition, respectively, and a dose of 30 mg/kg lansoprazole showed 79 % inhibition in the ethanol model. MECP (125, 250, 500 mg/kg) and cimetidine (200 mg/kg) reduced the gastric lesion in the indomethacin model, with 62, 67, 81, and 85 % inhibition, respectively. The MECP (500 mg/kg) and cimetidine (200 mg/kg) treatments showed a reduction in ulcerative symptoms induced by acetic acid by 84 and 73 %, respectively. The antiulcerogenic activity seems to involve GSH because the inhibition dropped from 72 to 13 % in the presence of a GSH inhibitor. Moreover, the MECP showed systemic action, increasing the mucus production and decreasing gastric acidity. Treatments with MECP induce gastroprotection without signs of toxicity. This effect seems to involve sulfhydryl compounds, increased mucus, and reduced gastric acidity.
Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC-25 Cells.
Lakshmi, Thangavelu; Ezhilarasan, Devaraj; Nagaich, Upendra; Vijayaragavan, Rajagopal
2017-10-01
Acacia catechu Willd ( Fabaceae ), commonly known as catechu, cachou, and black cutch, has been studied for its hepatoprotective, antipyretic, antidiarrheal, hypoglycemic, anti-inflammatory, immunomodulatory, antinociceptive, antimicrobial, free radical scavenging, and antioxidant activities. We evaluated the cytotoxic activity of ethanol extract of A. catechu seed (ACS) against SCC-25 human oral squamous carcinoma cell line. Cytotoxic effect of ACS extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, using concentrations of 0.1-1000 μg/mL for 24 h. A. catechu ethanol seed extract was treated SCC-25 cells with 25 and 50 μg/mL. At the end of treatment period, apoptotic marker gene expressions such as caspase 8, 9, Bcl-2, Bax, and cytochrome c were evaluated by semiquantitative reverse transcription-polymerase chain reaction. Morphological changes of ACS treated SCC-25 cells was evaluated by acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation was evaluated by propidium iodide (PI) staining. A. catechu ethanol seed extract treatment caused cytotoxicity in SCC-25 cells with an IC 50 value of 100 μg/mL. Apoptotic markers caspases 8 and 9, cytochrome c, Bax gene expressions were significantly increased upon ACS extract treatment indicate the apoptosis induction in SCC-25 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. Staining with AO/EB and PI shows membrane blebbing, and nuclear membrane distortion further confirms the apoptosis induction by ACS treatment in SCC-25 cells. The ethanol seed extracts of A. catechu was found to be cytotoxic at lower concentrations and induced apoptosis in human oral squamous carcinoma SCC-25 cells. Acacia catechu ethanolic seed extract contains phytochemicals such as epicatechin, rutin, and quercetin Acacia catechu seed (ACS) extract significantly ( P < 0.001) inhibits the active proliferation of human oral squamous carcinoma (SCC-25) cellsACS extract treatment to SCC-25 cells significantly modulated the gene expressions pertaining to apoptosis and propidium iodide and acridine orange/ethidium bromide staining also confirm the apoptosis inductionAntiproliferative and apoptosis inducing activities of ACS extract is correlated with phytochemical contents. Abbreviations used: ACS: Acacia catechu seed extract; MTT: 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; AO/EO: Acridine orange/ethidium bromide; LC MS: Liquid chromatography mass spectrometry.
Antibacterial activity of anthraquinone from cassia seed on spiced pig head
NASA Astrophysics Data System (ADS)
Xu, L. Y.; Li, X.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.
2018-01-01
[Objective] To optimize the extraction of anthraquinone from cassia seed by ultrasonic extraction and its antibacterial activity. [Method] The influences of different extraction time and ethanol concentration, on anthraquinone content were evaluated by a single factor experiment. And anthraquinone content was determined by ultraviolet spectrophotometry. The bacteriostasis of anthraquinone on spiced pig head’s common putrefying bacteria: Staphylococcus, Serratieae, Bacillus, Proteus and the minimal inhibitory concentration (MIC) were studied by oxford plate assay system. [Result] The best extraction time was 30 minutes and the best ethanol concentration was 80%. The antibacterial activity of the cassia seed anthraquinone on Staphylococcus Aureus, Bacillus Proteus is obviously, the minimum inhibitory concentrations were 0.125 g/mL, 0.125 g/mL, 1 g/mL respectively and no inhibitory effect on Serratieae. [Conclusions] The anthraquinones from Cassia seed can inhibit a part of spoilage bacteria in spiced pig heads.
Ethanolic and aqueous extracts derived from Australian fungi inhibit cancer cell growth in vitro.
Beattie, Karren D; Ulrich, Rahel; Grice, I Darren; Uddin, Shaikh J; Blake, Tony B; Wood, Kyle A; Steele, Jules; Iu, Fontaine; May, Tom W; Tiralongo, Evelin
2011-01-01
Fifteen Australian macrofungi were investigated for cytotoxic activity. Ethanol, cold and hot water extracts of each species were screened for cytotoxic activity against normal mouse fibroblast cells (NIH/3T3), healthy human epithelial kidney cells (HEK-293), four cancer cell lines, gastric adenocarcinoma cells (AGS), two mammary gland adenocarcinoma cells (MDA-MB-231, MCF7) and colorectal adenocarcinoma cells (HT-29) with a validated MTT assay. Most extracts derived from Omphalotus nidiformis, Cordyceps cranstounii and Cordyceps gunnii demonstrated significant cytotoxic activity toward a variety of cancer cell lines. In contrast only some extracts from Coprinus comatus, Cordyceps hawkesii, Hypholoma fasciculare, Lepista nuda, Leratiomyces ceres and Ophiocordyceps robertsii displayed significant cytotoxic activity, which was usually selective for only one or two cancer cell lines tested. The least cytotoxic species evaluated in this study were Agaricus bitorquis, Coprinopsis atrametaria, Psathyrella asperospora, Russula clelandii, Tricholoma sp. AU2 and Xerula mundroola.
Antiprotozoal activity of Neurolaena lobata.
Berger, I; Passreiter, C M; Cáceres, A; Kubelka, W
2001-06-01
Extracts, fractions and sesquiterpene lactones from Neurolaena lobata (L.) R. Br. (Asteraceae), a traditional medicinal plant from Guatemala, were tested in vitro against Leishmania spp. promastigotes, Trypanosoma cruzi trypomastigotes and epimastigotes and Trichomonas vaginalis trophozoites. The ethanol extract inhibited the parasite growth of L. mexicana, T. cruzi and T. vaginalis significantly. The pure germacranolides 1 and a mixture of 2 and 3, isolated from the ethonal extract, were highly active against L. mexicana and T. cruzi. Copyright 2001 John Wiley & Sons, Ltd.
Chen, Hsiao-Ling; Lan, Xiang-Zhen; Wu, Yan-Yi; Ou, Yu-Wen; Chen, Tsung Chi; Wu, Wen-Tzu
2017-01-01
Background: Most reports have indicated the antioxidant capacity of quinoa seeds. However, the leaves of Quinoa (Chenopodium quinoa Willd.) are usually worthless and little known about their biological activities. In this study, the antioxidant and immunomodulatory potential of the quinoa leaf extracts were explored. Methods: The crude leaf extracts of quinoa were extracted using water, 50% ethanol or 95% ethanol as solvent, denoted WQL, 50% EQL and 95% EQL, respectively. The antioxidant activities of quinoa leaf extracts were assessed by the ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and iron chelating. The total phenolic content was determined. Inhibition of nitric oxide (NO) production in the lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells was examined to gauge the anti-inflammatory activity. Results: The 95% EQL showed a higher level of total phenolic content (569.5 mg GAE/g extract) and better DPPH scavenging activity. The WQL exhibited a better iron chelating capacity (28.9% at 10 mg/ml). The iron chelating activity of the 95% EQL increased in a concentration-dependent manner, which ranged from 10.9% up to 53.9%. The 50% EQL and 95% EQL significantly inhibited NO production in the LPSstimulated RAW 264.7 cells. Conclusion: We demonstrate that the extracts of quinoa leaves possess the biological activities of antioxidant and anti-inflammatory. Our finding suggests that the leaf extract of quinoa has potential to be utilized for natural health products. PMID:29130449
Paulino, Niraldo; Scremin, Fernando M; Raichaski, Lisiane B; Marcucci, Maria Cristina; Scremin, Amarilis; Calixto, João B
2002-06-01
This study examines the mechanisms by which the standardised ethanolic extract of propolis induces relaxation of the guinea-pig trachea in-vitro. In guinea-pig trachea with or without epithelium and contracted by histamine, the propolis extract caused reproducible and graded relaxation, with a mean EC50 value of 3.8 or 10.5 microg mL(-1) and Emax of 100%, respectively. The propolis extract-induced relaxation was markedly reduced (26+/-9 and 96+/-3%) when guinea-pig tracheas were exposed to Krebs solution containing elevated K+ in the medium (40 or 80 mM). Pre-incubation of guinea-pig tracheas with tetraethylamonium (100 mM) or with 4-aminopyridine (10mM) reduced the propolis extract-induced relaxation by 31+/-10% and 28+/-2%. Likewise, apamin (0.1 microM), charybdotoxin (0.1 microM) or iberiotoxin (0.1 microM) caused marked inhibition of propolis extract-mediated relaxation in guinea-pig trachea (percentage of inhibition: 65+/-3%, 60+/-5% and 65+/-9%, respectively). Also, glibenclamide (1 microM) inhibited the relaxant response caused by the propolis extract by 57+/-4%. Omega-conotoxin GIVA (0.1 microM) or capsaicin (1 microM) produced small but significant inhibition (30+/-5% or 47+/-7%, respectively) of the propolis extract-induced relaxation. The vasoactive intestinal peptide (VIP) antagonist D-p-Cl-Phe6,Leu17[VIP] porcine (0.1 microM) inhibited relaxation by 55+/-5%, while propranolol (1 microM) induced a parallel rightward displacement (about 20 fold) of the propolis extract concentration-response curve. Finally, the propolis extract-induced relaxation was inhibited by the nitric oxide synthase inhibitor L-N(G)-nitroarginine (L-NOArg, 100 microM) (48+/-6%), and by the soluble guanylatecyclase inhibitormethylene blue (10 microM) (37+/-6%), whilethe moreselectivesoluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolol[4,3-alquinoxalin-1-one (ODQ, 1 microM) produced only a parallel (about 3 fold) rightward displacement of the propolis extract concentration-response curve. Collectively, these results support the notion that the propolis extract-mediated relaxation in the guinea-pig trachea involves the release of nitric oxide, probably from sensory neurons, besides the activation of soluble guanylate cyclase and activation of Ca2+- and ATP-sensitive K+ channels. Furthermore, the stimulation of beta2-adrenergic and VIP receptors also seems to account for its relaxant action.
Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio
2011-01-01
Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species. PMID:22016781
Kumnerdkhonkaen, Piyawan; Saenglee, Somprasong; Asgar, Md Ali; Senawong, Gulsiri; Khongsukwiwat, Kanoknan; Senawong, Thanaset
2018-04-11
Houttuynia cordata Thunb. and Phyllanthus emblica Linn. are native plants with medicinal and nutritive significance in Asia. The present study was aimed at evaluating antiproliferative effects on human cancer cell lines and identifying the phenolic acid composition of water and ethanolic extracts of the powdered formula of H. cordata fermented broth and P. emblica fruit. Anticancer activity of the extracts was evaluated against HeLa, HT29, HCT116, MCF7 and Jurkat cells using an MTT assay and flow cytometric analysis of apoptosis induction and cell cycle arrest. Reverse phase HPLC was exploited for identification and quantification of some phenolic acids. MTT assay showed that both water and ethanolic extracts significantly decreased the viability of cancer cells in a dose- and time-dependent fashion. Based on the IC 50 values, ethanolic extract (IC 50 values = 0.12-0.65 mg/mL) was more cytotoxic than water extract (IC 50 values = 0.22-0.85 mg/mL) and Jurkat cells were the most sensitive to both extracts (IC 50 values = 0.12-0.69 mg/mL). The underlying mechanism for antiproliferative activity was apoptosis induction, especially in HT29, HCT116, MCF7 and Jurkat cells. HT29 cells were the most sensitive to extract-induced apoptosis. Ethanolic extract was more effective at inducing apoptosis than water extract. Moreover, cell cycle arrest was found to be another mechanism behind growth inhibition in Jurkat and HCT116 cells. However, these extracts were relatively less toxic to non-cancer Vero cells. HPLC analysis demonstrated that the powder mix extracts contained seven identified phenolic acids namely gallic, p-hydroxybenzoic, vanillic, syringic, p-coumaric, ferulic and sinapinic acids, where p-coumaric acid was detected in the highest concentration followed by ferulic acid. Overall, the results of this study suggest the powdered formula of H. cordata fermented broth and P. emblica fruit as an alternative medicine for cancer prevention and treatment.
Del Valle-Mojica, Lisa M.; Cordero-Hernández, José M.; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A.; Ortíz, José G.
2011-01-01
The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [3H]Glutamate ([3H]Glu) and [3H]Fluorowillardine ([3H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38–60% of [3H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [3H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [3H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions. PMID:21151614
Del Valle-Mojica, Lisa M; Cordero-Hernández, José M; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A; Ortíz, José G
2011-01-01
The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [(3)H]Glutamate ([(3)H]Glu) and [(3)H]Fluorowillardine ([(3)H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38-60% of [(3)H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [(3)H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [(3)H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions.
Kim, Mi Eun; Jung, Yun Chan; Jung, Inae; Lee, Hee-Woo; Youn, Hwa-Young; Lee, Jun Sik
2015-01-01
Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.
Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J
2012-03-27
The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Saxena, Jyotisna; Tanner, Ralph S
2012-04-01
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO(2)) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg(2+), NH(4) (+) and PO(4) (3-) decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na(+), Ca(2+), and K(+) or increasing Ca(2+), Mg(2+), K(+), NH(4) (+) and PO(4) (3-) concentrations had no effect on ethanol production. However, increased Na(+) concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l(-1)) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH(4) (+) and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH(4) (+) and CyS to CSL (20 g l(-1), wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l(-1), the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l(-1)) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH(4) (+)). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.
Antu, Kalathookunnel Antony; Riya, Mariam Philip; Mishra, Arvind; Anilkumar, Karunakaran S.; Chandrakanth, Chandrasekharan K.; Tamrakar, Akhilesh K.; Srivastava, Arvind K.; Raghu, K. Gopalan
2014-01-01
The study is designed to find out the biochemical basis of antidiabetic property of Symplocos cochinchinensis (SC), the main ingredient of ‘Nisakathakadi’ an Ayurvedic decoction for diabetes. Since diabetes is a multifactorial disease, ethanolic extract of the bark (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90% ethanol) were evaluated by in vitro methods against multiple targets relevant to diabetes such as the alpha glucosidase inhibition, glucose uptake, adipogenic potential, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPP-IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition (IC50 value-82.07±2.10 µg/mL), insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F (3.5 fold increase) and reduced triglyceride accumulation (22% decrease) in 3T3L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells (59.57% decrease) with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence and quantity of bioactives (beta-sitosterol, phloretin 2′glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. We conclude that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with moderate antiglycation and antioxidant activity. PMID:25184241
Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges
2014-01-01
We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.
Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina
2016-03-01
In the present study, the effect of different in vitro cultures (callus, in vitro shoots) and commercially available peppercorn extract was investigated for its activity against toxic metabolite-producing strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Candida albicans). These in vitro cultures were extracted with ethanol, hexane, and chloroform, and the antipathogenic activity was determined by well-diffusion method. Hexane extract of callus showed 22 mm zone of inhibition against B. cereus, 23 mm against S. aureus, while regenerated shoots and seeds have shown 24.3 and 26 mm zones of inhibition. The ethanolic extracts of regenerated Piper shoots have shown 25 mm activity against S. aureus, 21 mm against B. cereus, and 16 mm in the case of C. albicans in comparison with standard antibiotics. Peppercorn extracts in chloroform and ethanol had shown activities against B. cereus (23.6 mm) and B. subtilis (23.5 mm). During in vitro organogenesis and morphogenesis, cells and tissues produced a comparable phytochemicals profile like mother plant. Morphogenesis is critically controlled by the application of exogenous plant-growth regulators. Such addition alters the hormonal transduction pathways, and cells under in vitro conditions regenerate tissues, which are dependant on the physiological state of cells, and finally enhance the production of secondary metabolites. To the best of our knowledge, this is the first report to compare the antimicrobial potential of in vitro regenerated tissues and peppercorn with standard antibiotics. In conclusion, most of the extracts showed pronounced activities against all the pathogenic microbes. This is a preliminary work, and the minimum inhibitory concentration values needs to be further explored. Regenerated tissues of P. nigrum are a good source of biologically active metabolites for antimicrobial activities, and callus culture presented itself as a good candidate for such activities. © The Author(s) 2013.
Li, Meng; Feng, Shengqiu; Wu, Leiming; Li, Ying; Fan, Chunfen; Zhang, Rui; Zou, Weihua; Tu, Yuanyuan; Jing, Hai-Chun; Li, Shizhong; Peng, Liangcai
2014-09-01
Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum. Copyright © 2014. Published by Elsevier Ltd.
Antibacterial activity of propolins from Taiwanese green propolis.
Chen, Yue-Wen; Ye, Siou-Ru; Ting, Chieh; Yu, Yu-Hsiang
2018-04-01
Taiwanese green propolis is a prenylated flavonoid rich honeybee product and propolins isolated from Taiwanese green propolis exert a broad spectrum of biological activities, such as anti-cancer and anti-oxidant. However, the anti-bacterial effects of Taiwanese green propolis or propolins are still poorly understood. In the current study, the antibacterial effects of Taiwanese green propolis and propolins were evaluated. Results show that the maximum dry matter yields of Taiwanese green propolis were observed in the 95% and 99.5% ethanol extracts compared to other extraction methods. Consistently, the highest concentration of propolins C, D, F and G from Taiwanese green propolis was obtained in 95% and 99.5% ethanol extracts. Propolins inhibited the growth of gram-positive bacterial strains (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Paenibacillus larvae). The average minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of propolins from ethanol extracts were 20 μg/ml. Among the propolins, propolin C had the highest antibacterial activity. Furthermore, Taiwanese green propolis also showed antibacterial activity against methicillin-resistant S. aureus (MRSA). In conclusion, these results demonstrate that Taiwanese green propolis and propolins have significant antibacterial activity, particularly against gram-positive bacterial strains. Copyright © 2017. Published by Elsevier B.V.
Synthesis of Anti-Acne Ointment of Ethanol Extract of White Plumeria Leaves (Plumeria Alba L.)
NASA Astrophysics Data System (ADS)
Ningsih, D. R.; Zusfahair; Kartika, D.; Lestari, I. T.
2017-02-01
Acne is a chronic inflammatory skin disease pilosebaceous follicle, where the oil- producing glands are clogged and contaminated by bacteria. Propionibacterium acne is one of the bacteria that contributes to the pathogenesis of acne. Acne treatment was done by reducing the population of bacteria using an antibacterial. One of the plants that have antibacterial activity is white plumeria. The ethanol extract of white plumeria leaves contains antibacterial secondary metabolites, which are alkaloids and saponins. The aim of this study is to formulate white plumeria leaves extract into the water leached ointment base. Characteristics of the ointment were determined by evaluating the stability of the ointment including organoleptic, adhesion test, dispersive power test, determination of pH, and the antibacterial activity test. The results showed that the ointment of ethanol extract of white plumeria leaves has some characteristics, semisolid form, white, has distinctive smell of ointment, homogeneous but not protective, has a pH of 4.57 - 6.10, dispersive power of 5.10 - 6.06 cm, the adhesiveness of 1.67 - 3 seconds, and optimum antibacterial activity at concentrations of 5 ppm providing inhibition zone of 24.00 mm.
NASA Astrophysics Data System (ADS)
Al-Alwani, Mahmoud A. M.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Ludin, Norasikin A.
2015-03-01
Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.
Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.
Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma
2011-09-01
In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lavoie, Serge; Côté, Isabelle; Pichette, André; Gauthier, Charles; Ouellet, Michaël; Nagau-Lavoie, Francine; Mshvildadze, Vakhtang; Legault, Jean
2017-02-22
Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. However, the antiviral activities of these plants have been seldom evaluated on cellular models to validate their in vitro efficiencies. In this study, Cornus canadensis L. (Cornaceae), a plant used in Native American traditional medicine to treat possible antiviral infections, has been selected for further examination. The plant was extracted by decoction and infusion with water, water/ethanol 1:1 and ethanol to obtain extracts similar to those used by Native Americans. The effects of the extracts were tested on herpes simplex virus type-1 (HSV-1) using a plaque reduction assay. Moreover, bioassay-guided fractionation was achieved to isolate bioactive compounds. Water/ethanol 1:1 infusion of C. canadensis leaves were the most active extracts to inhibit virus absorption with EC 50 of about 9 μg mL -1 , whereas for direct mode, both extraction methods using water or water/ethanol 1:1 as solvent were relatively similar with EC 50 ranging from 11 to 17 μg mL -1 . The fractionation led to the identification of active fractions containing hydrolysable tannins. Tellimagrandin I was found the most active compound with an EC 50 of 2.6 μM for the direct mode and 5.0 μM for the absorption mode. Altogether, the results presented in this work support the antiviral activity of Cornus canadensis used in Native American traditional medicine.
Stefanova, Z; Neychev, H; Ivanovska, N; Kostova, I
1995-05-01
This study investigates the total ethanol extract (TE) of the stem bark of Fraxinus ornus and its constituent esculin (EN). They inhibited classical pathway (CP) and alternative pathway (AP) of complement activation in mouse serum. After intraperitoneal administration the total extract displayed antiinflammatory activity in both zymosan- and carrageenan-induced paw oedema in mice. The results suggest that the traditional use of Fraxinus ornus stem bark extracts in the treatment of inflammatory disorders is at least partially due to its coumarin constituents.
Yao, Ping; Li, Ke; Song, Fangfang; Zhou, Shaoliang; Sun, Xiufa; Zhang, Xiping; Nüssler, Andreas K; Liu, Liegang
2007-08-01
Oxidative stress plays a pivotal role in the pathogenesis and progression of alcoholic liver disease (ALD) and HO-1 induction is suggested to protect hepatocytes from ethanol hepatotoxicity. Here, we present the data to explore the hepatoprotective effect and underlying mechanism(s) of Ginkgo biloba extract (EGB), a naturally occurring HO-1 inducer, against ethanol-induced oxidative damage. Ethanol-fed (2.4 g/kg) male rats were pretreated by EGB (48 or 96 mg/kg) for 90 days. Liver damage was evaluated by histopathology and serum aminotransferase assay. Hepatic redox parameters were measured by spectrophotometry. Heme oxygenase-1 (HO-1) expression was determined by RT-PCR and flow cytometry on mRNA and protein level, respectively. Our results showed that EGB, especially at high dose, ameliorated ethanol-induced macrovesicular steatosis and parenchymatous degeneration in hepatocytes, and decreased serum aminotransferases level. Furthermore, EGB reduced ethanol-derived glutathione depletion and lipid peroxidation, and inhibited the inactivation of superoxide dismutase, glutathione peroxidase and catalase, although EGB itself had no influence on such parameters. Importantly, EGB induced hepatic microsomal HO-1 on mRNA, protein expression and enzymatic activity, which is paralleled to the EGB-derived hepatoprotective effect. Hence, HO-1 upregulation by EGB may enhance the antioxidative capacity against the ethanol-induced oxidative stress and maintain the cellular redox balance.
Alnajar, Zahra A Amin; Abdulla, Mahmood A; Ali, Hapipah M; Alshawsh, Mohammed A; Hadi, A Hamid A
2012-03-20
Melastoma malabathricum (MM) is a well-known plant in Malaysian traditional medicine, locally known as senduduk. Its ethanol and aqueous extracts have been used in the present investigation to study the immunomodulatory role on human peripheral blood mononuclear cell (PBMC), and the DPPH, ABTS and FRAP free radical scavenging activities were also measured. Total flavonoids and total phenolic contents were assayed and the antibacterial effect was tested against four species of bacteria; two Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) and two Gram-negative (Escherichia coli and Klebsilla pneumonia). The tests were carried out using the disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Moreover, the acute toxicity was evaluated in vivo on the ethanol extract of MM to establish its safety when administered orally. In our results, both extracts of MM showed abilities to scavenge DPPH and ABTS free radicals, IC(50) values: (11.599 ± 0.84, 10.573 ± 0.58 µmol/L) and (62.657 ± 0.78, 63.939 ± 0.48 µmol/L) for ethanol and aqueous extracts respectively. Indeed the ethanol extract evidenced high phenolic content (384.33 ± 0.005 mg/g), flavonoids contents (85.8 ± 0.009 mg/g) and ferric reducing antioxidant power (33,590 ± 0.038 mmol/g), with high activity against S. aureus and S. agalactiae (11 ± 0.3 and 12 ± 0.6 mm inhibition zones). Likewise, the percentage of peripheral blood mononuclear cells (PBMC) viability was increased in response to MM, IC(50) values (1.781 ± 1.2 and 6.545 ± 0.93 µg/mL) for ethanol and aqueous extracts, respectively. In addition, our results showed that the MM extract is safe even at a high dose of 5,000 mg/kg and has no oral toxicity. These findings suggest the excellent medicinal bioactivity of MM and explain the popularity of this plant in the folk medicine as a remedy for different illnesses.
Akinyemi, Kabir O; Oladapo, Olukayode; Okwara, Chidi E; Ibe, Christopher C; Fasure, Kehinde A
2005-01-01
Background Six Nigerian medicinal plants Terminalia avicennioides, Phylantus discoideus, Bridella ferruginea, Ageratum conyzoides, Ocimum gratissimum and Acalypha wilkesiana used by traditional medical practitioners for the treatment of several ailments of microbial and non-microbial origins were investigated for in vitro anti-methicillin Resistant Staphylococcus aureus (MRSA) activity. Methods Fresh plant materials were collected from the users. Water and ethanol extracts of the shredded plants were obtained by standard methods. The Bacterial cultures used were strains of MRSA isolated from patients. MRSA was determined by the reference broth microdilution methods using the established National Committee for Clinical Laboratory Standards break points. Staphylococcus aureus NCIB 8588 was used as a standard strain. Susceptibility testing and phytochemical screening of the plant extracts were performed by standard procedures. Controls were maintained for each test batch. Results Both water and ethanol extracts of T. avicennioides, P. discoideus, O. gratissimum, and A. wilkesiana were effective on MRSA. The Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the ethanol extracts of these plants range from 18.2 to 24.0 mcg/ml and 30.4 to 37.0 mcg/ml respectively. In contrast, MIC range of 30.6 to 43.0 mcg/ml and 55.4 to 71.0 mcg/ml were recorded for ethanol and water extracts of B. ferruginea, and A. conyzoides respectively. Higher MBC values were obtained for the two plants. These concentrations were too high to be considered active in this study. All the four active plants contained at least trace amount of anthraquinones. Conclusion Our results offer a scientific basis for the traditional use of water and ethanol extracts of A. wilkesiana, O. gratissimum, T. avicennioides and P. discoideus against MRSA-associated diseases. However, B. ferruginea and A. conyzoides were ineffective in vitro in this study; we therefore suggest the immediate stoppage of their traditional use against MRSA-associated diseases in Lagos, Nigeria. PMID:15762997
Essel, Leslie B.; Duduyemi, Babatunde M.
2017-01-01
We investigated the antioxidant and anti-inflammatory effects of a 70% v/v ethanol extract of the stem bark of Antrocaryon micraster on murine models of carrageenan-induced pleurisy and paw oedema. Rat pleural fluid was analysed for volume, protein content, and leucocytes, while lung histology was assessed for damage. Lung tissue homogenates were assayed for glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and myeloperoxidase (MPO). Phytochemical analysis was carried out on the stem bark. Acute toxicity studies were conducted in rats. In the pleurisy model the extract (30–300 mg/kg) significantly reduced the volume and amount of proteins and leucocytes in the exudate and also protected against lung injury. Tissue level of GSH and SOD and CAT expression were increased while MDA level and MPO activity were reduced. The peak and total oedema responses were significantly suppressed when given both preemptively and curatively in the mice paw oedema test. Saponins, alkaloids, triterpenoids, and tannins were present in the stem bark. A. micraster extract exhibited no apparent acute toxicity. We conclude that the ethanolic stem-bark extract of A. micraster has antioxidant action and exhibits significant anti-inflammatory activity through suppression of pleurisy and paw oedema induced with carrageenan. PMID:28798953
Liu, Hsin-Lan; Kao, Tsai-Hua; Shiau, Chyuan-Yuan; Chen, Bing-Huei
2018-01-01
The objectives of this study were to determine the variety and amount of various functional components in Scutellaria barbata D. Don as well as study their anti-inflammatory activity on RAW 264.7 cells. Both ethanol and ethyl acetate extracts were shown to contain the functional components including phenolics, flavonoids, chlorophylls, and carotenoids, with the former mainly composed of phenolics and flavonoids, and the latter of carotenoids and chlorophylls. Both extracts could significantly inhibit (p < 0.05) the production of lipopolysaccharide-induced nitric oxide, prostaglandin E 2 , interlukin-6, and interlukin-1β, as well as the expressions of phosphor extracellular signal-regulated kinase and phosphor-c-Jun N-terminal kinase (p-JNK), but failed to retard tumor necrosis factor-α expression. Both ethanol and ethyl acetate extracts had a dose-dependent anti-inflammatory activity on RAW 264.7 cells. Furthermore, the anti-inflammatory efficiency can be varied for both ethanol and ethyl acetate extracts, which can be attributed to the presence of different varieties and amounts of functional components, as mentioned above. This finding suggested that S. Barbata extract may be used as an anti-inflammatory agent for possible future biomedical application. Copyright © 2017. Published by Elsevier B.V.
Landa, Premysl; Skalova, Lenka; Bousova, Iva; Kutil, Zsofia; Langhansova, Lenka; Lou, Ji-Dong; Vanek, Tomas
2014-01-01
The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 μg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 μg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.
Elsyana, Vida; Bintang, Maria; Priosoeryanto, Bambang Pontjo
2016-01-01
Clove mistletoe (Dendrophthoe pentandra (L.) Miq.) is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia) and MCM-B2 (canine benign mixed mammary) cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT). Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity. PMID:27099614
NASA Astrophysics Data System (ADS)
Faridah; Natalia; Lina, Maria; W, Hendig
2014-03-01
Suji (Pleomele angustifolia NE Brown) is one of the medicinal plants of the tribe of Liliaceae, empirically useful to treat coughs and respiratory diseases such as tuberculosis (TB) and pneumonia. In this study, ethanolic extract of suji leaves was tested its activity against bacteria that attacks the respiratory organs, namely Mycobacterium tuberculosis and Streptococcus pneumoniae, using a paper disc diffusion and dilution agar method. These extracts have activity in inhibiting the growth of M. tuberculosis at a concentration of 8 mg and against S. pneumoniae at a concentration of 4 mg. The fractions were tested their antibacterial activity against Streptococcus pneumoniae using paper disc diffusion method. The most active fraction was chosen based on the inhibition diameter. The fractions contained flavonoids, steroids, and essential oils. The precipitate isolated from the extraction process shows needle-shaped, white, cold and tasteless crystals. Moreover, the HPLC analysis of isolate revealed a single peak with a retention time of 7.183 minutes. The exact compounds in the isolate could not be determined but it was known the compounds contained the functional groups of alkene, alkane, C=O, -OH. Test results obtained from UV-Vis spectrophotometer provides maximum absorption at a wavelength of 203.0 nm.
Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast "Cerrado".
Calixto Júnior, João Tavares; de Morais, Selene Maia; Gomez, Celeste Vega; Molas, Cathia Coronel; Rolon, Miriam; Boligon, Aline Augusti; Athayde, Margareth Linde; de Morais Oliveira, Cícera Datiane; Tintino, Saulo Relison; Henrique Douglas, Melo Coutinho
2016-05-01
This work describes the antiparasitic and cytotoxic activities of three plant species from the Cerrado biome, Northeastern Brazil. Significant antiparasitic inhibition was observed against Trypanosoma cruzi (63.86%), Leishmania brasiliensis (92.20%) and Leishmania infantum (95.23%) when using ethanol extract from leaves of Guazuma ulmifolia Lam. (Malvaceae), at a concentration of 500 μg/mL. However, low levels of inhibition were observed when assessing leishmanicidal and trypanocidal (Clone CL-B5) activities of crude ethanol extracts from leaves and bast tissue of Luehea paniculata (Malvaceae) and leaves and bark of Prockia crucis (Salicaceae) at a concentration of 500 μg/mL. The extracts revealed the presence of phenolic acids such as gallic acid, chlorogenic acid, caffeic acid and rosmarinic acid, as well as flavonoids such as rutin, luteolin, apigenin and quercetin - the latter detected only in G. ulmifolia. G. ulmifolia extract displayed higher leishmanicidal activity probably due to the presence of quercetin, a potent known leishmanicidal compound. A cytotoxicity test indicated values over 50% at the highest concentration (1000 μg/mL) for all natural products, which were considered cytotoxic. This points out the need for further tests to enable future in vivo trials, including antineoplastic activity on human tumor cells.
Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”
Calixto Júnior, João Tavares; de Morais, Selene Maia; Gomez, Celeste Vega; Molas, Cathia Coronel; Rolon, Miriam; Boligon, Aline Augusti; Athayde, Margareth Linde; de Morais Oliveira, Cícera Datiane; Tintino, Saulo Relison; Henrique Douglas, Melo Coutinho
2015-01-01
This work describes the antiparasitic and cytotoxic activities of three plant species from the Cerrado biome, Northeastern Brazil. Significant antiparasitic inhibition was observed against Trypanosoma cruzi (63.86%), Leishmania brasiliensis (92.20%) and Leishmania infantum (95.23%) when using ethanol extract from leaves of Guazuma ulmifolia Lam. (Malvaceae), at a concentration of 500 μg/mL. However, low levels of inhibition were observed when assessing leishmanicidal and trypanocidal (Clone CL-B5) activities of crude ethanol extracts from leaves and bast tissue of Luehea paniculata (Malvaceae) and leaves and bark of Prockia crucis (Salicaceae) at a concentration of 500 μg/mL. The extracts revealed the presence of phenolic acids such as gallic acid, chlorogenic acid, caffeic acid and rosmarinic acid, as well as flavonoids such as rutin, luteolin, apigenin and quercetin – the latter detected only in G. ulmifolia. G. ulmifolia extract displayed higher leishmanicidal activity probably due to the presence of quercetin, a potent known leishmanicidal compound. A cytotoxicity test indicated values over 50% at the highest concentration (1000 μg/mL) for all natural products, which were considered cytotoxic. This points out the need for further tests to enable future in vivo trials, including antineoplastic activity on human tumor cells. PMID:27081371
Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Shahidul
2016-09-01
Vitex doniana is an important African medicinal plant traditionally used for the treatment of many diseases including type 2 diabetes (T2D). In this study, ethyl acetate, ethanol and aqueous extracts of the stem bark, root and leaf of V. doniana were analyzed for in vitro anti-oxidative activity and the results indicated that the ethanolic extract of the leaves had the best anti-oxidative activity. Subsequently, the ethanolic extract of the leaves was partitioned between hexane, dichloromethane, ethyl acetate and water. The aqueous fraction had a significantly ( p < 0.05) higher phenolics content and also showed the best anti-oxidative activity within the fractions. Furthermore, the aqueous fraction demonstrated significantly (p < 0.05) more potent inhibitory activities against α-glucosidase and α-amylase than other fractions. Steady state kinetics analysis revealed that the aqueous fraction inhibited both (α-glucosidase and (α-amylase activities in a non-competitive manner with inhibition binding constant (Ki) values of 5.93 and 167.44 μg/mL, respectively. Analysis of the aqueous fraction by GC-MS showed the presence of resorcinol, 4-hydroxybenzoic acid, 3,4,5-trimethoxyphenol and 2,4'-dihydroxychalcone identified by their mass fragmentation patterns and comparison to standard spectra. The results obtained in this study showed that V doniana leaves have a good in vitro anti-T2D potential possibly elicited through phenolics.
Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R
2013-12-01
The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.
Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen
2014-01-01
A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.
Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen
2014-01-01
A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol. PMID:25379712
Isoflavone formononetin from red propolis acts as a fungicide against Candida sp.
das Neves, Michelline Viviane Marques; da Silva, Tânia Maria Sarmento; Lima, Edeltrudes de Oliveira; da Cunha, Emídio Vasconcelos Leitão; Oliveira, Eduardo de Jesus
2016-01-01
A bioassay-guided fractionation of two samples of Brazilian red propolis (from Igarassu, PE, Brazil, hereinafter propolis 1 and 2) was conducted in order to determine the components responsible for its antimicrobial activity, especially against Candida spp. Samples of both the crude powdered resin and the crude ethanolic extract of propolis from both locations inhibited the growth of all 12 tested Candida strains, with a minimum inhibitory concentration of 256μg/mL. The hexane, acetate and methanol fractions of propolis 1 also inhibited all strains with minimum inhibitory concentration values ranging from 128 to 512μg/mL for the six bacteria tested and from 32 to 1024μg/mL for the yeasts. Similarly, hexane and acetate fractions of propolis sample 2 inhibited all microorganisms tested, with minimum inhibitory concentration values of 512μg/mL for bacteria and 32μg/mL for yeasts. The extracts were analyzed by HPLC and their phenolic profile allowed us to identify and quantitate one phenolic acid and seven flavonoids in the crude ethanolic extract. Formononetin and pinocembrin were the major constituents amongst the identified compounds. Formononetin was detected in all extracts and fractions tested, except for the methanolic fraction of sample 2. The isolated isoflavone formononetin inhibited the growth of all the microorganisms tested, with a minimum inhibitory concentration of 200μg/mL for the six bacteria strains tested and 25μg/mL for the six yeasts. Formononetin also exhibited fungicidal activity against five of the six yeasts tested. Taken together our results demonstrate that the isoflavone formononetin is implicated in the reported antimicrobial activity of red propolis. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Isoflavone formononetin from red propolis acts as a fungicide against Candida sp
das Neves, Michelline Viviane Marques; da Silva, Tânia Maria Sarmento; Lima, Edeltrudes de Oliveira; da Cunha, Emídio Vasconcelos Leitão; Oliveira, Eduardo de Jesus
2016-01-01
A bioassay-guided fractionation of two samples of Brazilian red propolis (from Igarassu, PE, Brazil, hereinafter propolis 1 and 2) was conducted in order to determine the components responsible for its antimicrobial activity, especially against Candida spp. Samples of both the crude powdered resin and the crude ethanolic extract of propolis from both locations inhibited the growth of all 12 tested Candida strains, with a minimum inhibitory concentration of 256 μg/mL. The hexane, acetate and methanol fractions of propolis 1 also inhibited all strains with minimum inhibitory concentration values ranging from 128 to 512 μg/mL for the six bacteria tested and from 32 to 1024 μg/mL for the yeasts. Similarly, hexane and acetate fractions of propolis sample 2 inhibited all microorganisms tested, with minimum inhibitory concentration values of 512 μg/mL for bacteria and 32 μg/mL for yeasts. The extracts were analyzed by HPLC and their phenolic profile allowed us to identify and quantitate one phenolic acid and seven flavonoids in the crude ethanolic extract. Formononetin and pinocembrin were the major constituents amongst the identified compounds. Formononetin was detected in all extracts and fractions tested, except for the methanolic fraction of sample 2. The isolated isoflavone formononetin inhibited the growth of all the microorganisms tested, with a minimum inhibitory concentration of 200 μg/mL for the six bacteria strains tested and 25 μg/mL for the six yeasts. Formononetin also exhibited fungicidal activity against five of the six yeasts tested. Taken together our results demonstrate that the isoflavone formononetin is implicated in the reported antimicrobial activity of red propolis. PMID:26887239
Velázquez-Moyado, Josué A; Martínez-González, Alejandro; Linares, Edelmira; Bye, Robert; Mata, Rachel; Navarrete, Andrés
2015-11-04
The rhizome of Ligusticum porteri Coulter& Rose (LP) has been traditionally used by the ethnic group Raramuri in the North of México for treatment of diabetes, tuberculosis, stomachaches, diarrhea and ritual healing ceremonies. It is use as antiulcer remedy has been extended to all Mexico. To evaluate the gastroprotective activity of LP organic extracts and the major natural product diligustilide (DLG),using as experimental model the inhibition of the ethanol-induced lesions in rats. Gastric ulcers were induced by intragastric instillation of absolute ethanol (1 mL). We tested the gastroprotective activity of the organic extracts of LP and the pure compound DLG. The ulcer index (UI) was determined to measure the activity. In order to elucidate the action mechanism of DLG the animals were treated with L-NAME, N-ethylmalemide, Forskolin, 2',5'-dideoxyadenosine, Indomethacin, Glibenclameide, Diazoxide, NaHS and DL-Propargylglycine. The pylorus-ligated rat model was used to measure gastric secretion. The oral administration of organic extracts of Ligusticum porteri showed gastroprotective effect at 30 mg/Kg on ethanol induced gastric lesions; hexane and dichloromethane extracts were the most active. DLG was the major compound in the hexane extract. This compound at 10 mg/kg prevented significantly the gastric injuries induced by ethanol. The alkylation of endogenous non-protein-SH groups with N-ethylmaleimide abolished the gastroprotective effect of DLG and blocking the formation of endogenous prostaglandins by the pretreatment with indomethacin attenuated the gastroprotective effect of DLG. The gastroprotective activity demonstrated in this study tends to support the ethnomedical use of Ligusticum porteri roots. DLG, isolated as major compound of this medicinal plant has a clear gastroprotective effect on the ethanol-induced gastric lesions. The results suggest that the antiulcer activity of DLG depends on the participation of the endogenous non-protein -SH groups and prostaglandins. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R
2014-09-01
Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and competitively with respect to CDNB. While red pomegranate extracts inhibited rRaGST activity competitively with respect to GSH, uncompetitive inhibition was observed with respect to CDNB. Copyright © 2014 Elsevier GmbH. All rights reserved.
El-Ghorab, Ahmed; El-Massry, Khaled F; Shibamoto, Takayuki
2007-10-31
A total of 36 compounds, which comprised 99.4% of the extract, were identified by gas chromatography and mass spectrometry (GC-MS) in the volatile dichloromethane extract obtained from Egyptian corn silk. The main constituents of the volatile extract were cis-alpha-terpineol (24.22%), 6,11-oxidoacor-4-ene (18.06%), citronellol (16.18%), trans-pinocamphone (5.86%), eugenol (4.37%), neo-iso-3-thujanol (2.59%), and cis-sabinene hydrate (2.28%). Dried Egyptian corn silk was also directly extracted with petroleum ether, ethanol, and water. All extracts from solvent extraction and the volatile extract described above exhibited clear antioxidant activities at levels of 50-400 microg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/linoleic acid assay. The ethanol extract inhibited DPPH activity by 84% at a level of 400 microg/mL. All samples tested via the beta-carotene bleaching assay also exhibited satisfactory antioxidant activity with clear dose responses. This study indicates that corn silk could be used to produce novel natural antioxidants as well as a flavoring agent in various food products.
The anticancer effects of Resina Draconis extract on cholangiocarcinoma.
Wen, Feng; Zhao, Xiangxuan; Zhao, Yun; Lu, Zaiming; Guo, Qiyong
2016-11-01
Cholangiocarcinoma (CCA) is a relatively rare, heterogeneous malignant tumor with poor clinical outcomes. Because of high insensitivity to chemotherapy and radiotherapy, there are no effective treatment options. Efforts to identify and develop new agents for prevention and treatment of this deadly disease are urgent. Here, we assessed the apoptotic cytotoxicity of Resina Draconis extract (RDE) using in vitro and in vivo assays and identified the mechanisms underlying antitumor effects of RDE. RDE was obtained via vacuum distillation of Resina Draconis with 75 % ethanol. The ethanol extract could inhibit CCA cell proliferation and trigger apoptotic cell death in both QBC939 and HCCC9810 cell lines in a time- and concentration-dependent manner. RDE treatment resulted in intracellular caspase-8 and poly (ADP-ribose) polymerase protease activation. RDE significantly downregulated antiapoptotic protein survivin expression and upregulated proapoptotic protein Bak expression. RDE also inhibited CCA tumor growth in vivo. We observed that human CCA tissues had much higher survivin expression than did paired adjacent normal tissue. Taken together, the current data suggested that RDE has anticancer effects on CCA, and that RDE could function as a novel anticancer agent to benefit patients with CCA.
van Huyssteen, Mea; Milne, Pieter J; Campbell, Eileen E; van de Venter, Maryna
2011-01-01
Diabetes mellitus is a growing problem in South Africa and of concern to traditional African health practitioners in the Nelson Mandela Metropole, because they experience a high incidence of diabetic cases in their practices. A collaborative research project with these practitioners focused on the screening of Bulbine frutescens, Ornithogalum longibracteatum, Ruta graveolens, Tarchonanthus camphoratus and Tulbaghia violacea for antidiabetic and cytotoxic potential. In vitro glucose utilisation assays with Chang liver cells and C2C12 muscle cells, and growth inhibition assays with Chang liver cells were conducted. The aqueous extracts of Bulbine frutescens (143.5%), Ornithogalum longibracteatum (131.9%) and Tarchonanthus camphoratus (131.5%) showed significant increased glucose utilisation activity in Chang liver cells. The ethanol extracts of Ruta graveolens (136.9%) and Tulbaghia violacea (140.5%) produced the highest increase in glucose utilisation in C2C12 muscle cells. The ethanol extract of Bulbine frutescens produced the most pronounced growth inhibition (33.3%) on Chang liver cells. These findings highlight the potential for the use of traditional remedies in the future for the management of diabetes and it is recommended that combinations of these plants be tested in future.
Isaac, G S; Abu-Tahon, M A
2014-03-01
Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; β-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.
Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant.
Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan
2014-11-01
Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases.
Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae.
Maiorella, B L; Blanch, H W; Wilke, C R
1984-10-01
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.
Potent virucidal effect of pheophorbide a and pyropheophorbide a on enveloped viruses.
Bouslama, Lamjed; Hayashi, Kyoko; Lee, Jung-Bum; Ghorbel, Abdelwahed; Hayashi, Toshimitsu
2011-01-01
In this study, we evaluated the inhibitory effect of ethanol and aqueous extracts from a stem of Opuntia ficus indica on replication of three kinds of viruses: two enveloped viruses [herpes simplex virus type 2 (HSV-2), influenza A virus (IFV-A)], and one non-enveloped virus [poliovirus type 1 (PV-1)]. Only ethanol extract from the cactus stem showed significant antiviral activity in vitro. Two chlorophyll derivatives, pheophorbide a and pyropheophorbide a, were isolated as active substances exhibiting potent virucidal effects on HSV-2 and IFV-A, but no activity against PV-1 was observed. These findings suggest that these active compounds might recognize specific glycoproteins of enveloped viruses, precluding their binding to host cell receptors and inhibiting viral infections.
Roy, Ajoy; Biswas, Subrata Kumar; Chowdhury, Anusua; Shill, Manik Chandra; Raihan, Sheikh Zahir; Muhit, Md Abdul
2011-10-01
The objectives of the present study were to investigate phytochemical screening and to assay cytotoxicity and antibacterial activities of ethanolic extracts of leaves of two medicinal plants, Aglaonema hookerianum Schott (Family: Araceae) and Lannea grandis Engl. (Family: Anacardiaceae) available in Bangladesh. The brine shrimp lethality bioassay showed that the ethanolic extracts of Aglaonema hookerianum and Lannea grandis possessed cytotoxic activities with LC50 5.25 (microg mL(-1)) and 5.75 (microg mL(-1)) and LC90 10.47 (microg mL(-1)) and 9.55 (microg mL(-1)), respectively. Two extracts obtained from leaves were examined for their antibacterial activities against some gram positive bacteria such as Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, also gram negative strains of Pseudomonas aeruginosa, Escherichia coli, Shigella dysenteriae, Salmonella typhi, Salmonella paratyphi and Vibrio cholerae. Agar disc diffusion method was applied to observe the antibacterial efficacy of the extracts. Results indicated that both plant extracts (500 microg disc(-1)) displayed antibacterial activity against all of the tested microorganisms. These results were also compared with the zones of inhibition produced by commercially available standard antibiotic, Amoxicillin at concentration of 10 microg disc(-1). Observed antibacterial properties of the ethanolic extract of Aglaonema hookerianum Schott and Lannea grandis Engl. showed that both plants might be useful sources for the development of new potent antibacterial agents.
Dutta, Sarmistha; Das, Swarnamoni
2010-01-01
Introduction: The aim is to study the anti-inflammatory effect of the ethanolic extract of the leaves of Psidium guajava(PGE) on experimental animal models. Materials and Methods: Fresh leaves were collected, air-dried, powdered, and percolated in 95% ethanol. Acute toxicity test was done according to OECD guidelines. Four groups of animals of either sex, weighing 150–200g of the species Rattus norvegicus were taken for the study (n = 6). Group A was taken as control (3% gum acacia in 10 mL/kg body weight), Group B as test group (PGE 250 mg/kg body weight), Group C as test group (PGE 500 mg/kg body weight), and Group D as standard (Aspirin 100 mg/kg body weight). The animals were studied for acute inflammation by Carrageenan-induced rat paw edema, subacute inflammation by Granuloma pouch method, and chronic inflammation by Freund’s adjuvant-induced arthritis method. Statistical analysis was done by one-way analysis of variance followed by multiple comparison tests. Results: In acute inflammation, there was significant inhibition of paw edema in Groups B, C, and D in comparison with Group A (P < 0.05). In subacute inflammation, there was significant inhibition of exudate formation in Groups B, C, and D in comparison to Group A (P < 0.05). In chronic inflammation, there was significant inhibition of paw edema and inhibition of weight reduction in Groups B, C, and D compared with Group A. Downregulation of arthritis index was also significant in Groups B, C, and D in comparison with Group A (P < 0.05). Conclusion: The ethanolic extract of PGE has significant anti-inflammatory activity. PMID:21589759
Antiviral activity of some South American medicinal plants.
Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L
1999-03-01
Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication.
Baltas, Nimet; Karaoglu, Sengul Alpay; Tarakci, Cemre; Kolayli, Sevgi
2016-01-01
There is considerable interest in alternative approaches to inhibit Helicobacter pylori (H. pylori) and thus treat many stomach diseases. Propolis is a pharmaceutical mixture containing many natural bioactive substances. The aim of this study was to use propolis samples to treat H. pylori. The anti-H. pylori and anti-urease activities of 15 different ethanolic propolis extracts (EPEs) were tested. The total phenolic contents and total flavonoid contents of the EPE were also measured. The agar-well diffusion assay was carried out on H. pylori strain J99 and the inhibition zones were measured and compared with standards. All propolis extracts showed high inhibition of H. pylori J99, with inhibition diameters ranging from 31.0 to 47.0 mm. Helicobacter pylori urease inhibitory activity was measured using the phenol-hypochlorite assay; all EPEs showed significant inhibition against the enzyme, with inhibition concentrations (IC 50 ; mg/mL) ranging from 0.260 to 1.525 mg/mL. The degree of inhibition was related to the phenolic content of the EPE. In conclusion, propolis extract was found to be a good inhibitor that can be used in H. pylori treatment to improve human health.
Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.
Pais, Pilar
2010-08-01
The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to that reported for the established prescription drug standard of therapy, finasteride.
Hu, Hai-Jie; Luo, Xue-Gang; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun; Pan, Li-Wen
2016-03-01
Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the extract of Crataegus could suppress the transcription of HMGCR via NF-κB signal pathway. © 2016 by the Society for Experimental Biology and Medicine.
Hu, Hai-Jie; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun
2016-01-01
Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the extract of Crataegus could suppress the transcription of HMGCR via NF-κB signal pathway. PMID:26825354
Sukumaran, Nimisha Pulikkal; Yadav, R Hiranmai
2016-01-01
D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds.
Sukumaran, Nimisha Pulikkal; Yadav, R. Hiranmai
2016-01-01
Context: D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. Aims: The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Settings and Design: Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. Materials and Methods: The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. Results: The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds. PMID:27621524
Wu, Wen-Bin; Hung, Dian-Kun; Chang, Fung-Wei; Ong, Eng-Thaim; Chen, Bing-Huei
2012-10-01
Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum fruits, a traditional Chinese medicine, on human umbilical vein endothelial cells (HUVECs) were investigated. Initially, flavonoids were extracted with 80% ethanol and separated using a Cosmosil 140 C18-OPN column, with the acidic fraction eluted with deionized water being composed of chlorogenic acid, caffeoyl quinic acid, caffeic acid and p-coumaric acid and the neutral fraction eluted with methanol composed of quercetin-diglycoside, rutin and kaempferol-O-rutinoside. Flavonoid extract was effective in inhibiting expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) induced by TNF-α in HUVECs. The RT-PCR analysis indicated that ICAM-1 mRNA induced by TNF-α was inhibited by flavonoid extract. The flavonoid extract attenuated TNF-α-induced IκB phosphorylation as well as NF-κB, p65 and p50 translocation from cytosol to nucleus, through inhibition on TNF-α- and H(2)O(2)-induced intracellular reactive oxygen species (ROS) production. For the anti-angiogenic study, the flavonoid extract inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation and migration in HUVECs, as well as angiogenesis. However, the flavonoid extract did not inhibit VEGF signaling. Surprisingly, HUVECs adhesion to the extracellular matrix was compromised and adhesion-induced signaling was retarded by the flavonoid extract.
Apu, Apurba Sarker; Bhuyan, Shakhawat Hossan; Matin, Maima; Hossain, Faruq; Khatun, Farjana; Taiab, Abu; Jamaluddin
2013-01-01
Objective: The present study was undertaken to evaluate the possible analgesic, neuropharmacological, anti-diarrheal, and cytotoxic activities of the ethanol extract of leaves of Solanum sisymbriifolium Lam. (Family: Solanaceae). Materials and Methods: The analgesic activity was measured by acetic acid-induced writhing inhibition test. The neuropharmacological activities were evaluated using hole cross, hole board, and elevated plus-maze test and the anti-diarrheal activity was assessed using castor oil-induced diarrhea inhibition method. Brine shrimp lethality bioassay was carried out for assessing the cytotoxicity of the ethanol extract of the leaves. Except cytotoxic activity, all the tests were conducted on mice. Results: The extract at oral doses of 200 and 400 mg/kg body weight showed highly significant (p<0.001) decrease in number of writhing, 52.1±0.66 and 4.4±0.64 compared with the control (78.6±0.29) with the percentage of inhibitions of writhing response were found to be 33.72% and 94.40%, respectively. Compare with the control, the extract at both doses showed significant sedative effect in hole cross test. In hole board test, the extract exhibited highly significant (p<0.001) anxiolytic activity at dose of (200 mg/kg), while the same activity was observed at dose of 400 mg/kg in elevated plus-maze test. The extract showed highly significant (p<0.001) anti-diarrheal activity in a dose-dependent manner. With the extract, significant lethality to brine shrimp was found with LC50 value of 61.66±0.9 μg/ml, which was comparable with the positive control (LC50: 11.89±0.8 µg/ml). Conclusion: The results from the present studies support the traditional uses of this plant part and could form the basis of further investigation including compound isolation. PMID:25050287
Huang, Hsin-Lun; Ko, Chien-Hui; Yan, Yeong-Yu; Wang, Chin-Kun
2014-03-19
Helicobacter pylori is a human gastric pathogen that adheres to host cells and injects cytotoxin-associated gene A (CagA) to induce interleukin-8 (IL-8), inducible nitric oxide (iNOS), and cyclooxygenase 2 (COX-2). Noni (Morinda citrifolia) is found to possess antibacteria, anti-inflammation, and antioxidation activities, but its effect on H. pylori infection is still unknown. Ethanol and ethyl acetate extracts of noni fruit were used in this study. The inhibitory effect on CagA and H. pylori-induced IL-8, iNOS, and COX-2 were determined. The coculture medium was collected for measuring neutrophil chemotaxis. Both extracts of noni fruit showed weak inhibition on H. pylori. Both ethanol and ethyl acetate extracts provided antiadhesion of H. pylori to AGS cells and down-regulation on the CagA, IL-8, COX-2, and iNOS expressions. Results also indicated both extracts relieved neutrophil chemotaxis. Noni fruit extracts down-regulated inflammatory responses during H. pylori infection, and the phenolic compounds play key role in antiadhesion.
Maggi, María E; Mangeaud, Arnaldo; Carpinella, María C; Ferrayoli, Carlos G; Valladares, Graciela R; Palacios, Sara M
2005-07-01
Ethanolic extract of aerial parts of Artemisia annua L. and artemisinin were evaluated as anti-insect products. In a feeding deterrence assay on Epilachna paenulata Germ (Coleoptera: Coccinellidae) larvae, complete feeding rejection was observed at an extract concentration of 1.5 mg/cm2 on pumpkin leaf tissue. The same concentration produced a feeding inhibition of 87% in Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae). In a no-choice assay, both species ate less and gained less weight when fed on leaves treated with the extract. Complete mortality in E. paenulata and 50% mortality in S. eridania were observed with extract at 1.5 mg/cm2. Artemisinin exhibited a moderate antifeedant effect on E. paenulata and S. eridania at 0.03-0.375 mg/cm2. However, a strong effect on survival and body weight was observed when E. paenulata larvae were forced to feed on leaves treated at 0.03 and 0.075 mg/cm2. Artemisia annua ethanolic extract of aerial parts at 1.5 mg/cm2 showed no phytotoxic effect on pumpkin seedlings.
Analysis of the Potential Topical Anti-Inflammatory Activity of Averrhoa carambola L. in Mice
Cabrini, Daniela Almeida; Moresco, Henrique Hunger; Imazu, Priscila; da Silva, Cíntia Delai; Pietrovski, Evelise Fernandes; Mendes, Daniel Augusto Gasparin Bueno; Prudente, Arthur da Silveira; Pizzolatti, Moacir Geraldo; Brighente, Inês Maria Costa; Otuki, Michel Fleith
2011-01-01
Inflammatory skin disorders, such as psoriasis and atopic dermatitis, are very common in the population; however, the treatments currently available are not well tolerated and are often ineffective. Averrhoa carambola L. (Oxalidaceae) is an Asian tree that has been used in traditional folk medicine in the treatment of several skin disorders. The present study evaluates the topical anti-inflammatory effects of the crude ethanolic extract of A. carambola leaves, its hexane, ethyl acetate, and butanol fractions and two isolated flavonoids on skin inflammation. Anti-inflammatory activity was measured using a croton oil-induced ear edema model of inflammation in mice. Topically applied ethanolic extract reduced edema in a dose-dependent manner, resulting in a maximum inhibition of 73 ± 3% and an ID50 value of 0.05 (range: 0.02–0.13) mg/ear. Myeloperoxidase (MPO) activity was also inhibited by the extract, resulting in a maximum inhibition of 60 ± 6% (0.6 mg/ear). All of the fractions tested caused inhibition of edema formation and of MPO activity. Treatment with the ethyl acetate fraction was the most effective, resulting in inhibition levels of 75 ± 5 and 54 ± 8% for edema formation and MPO activity, respectively. However, treatment of mice with isolated compounds [apigenin-6-C-β-l-fucopyranoside and apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside] did not yield successful results. Apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside caused only a mild reduction in edema formation (28 ± 11%). Taken together, these preliminary results support the popular use of A. carambola as an anti-inflammatory agent and open up new possibilities for its use in skin disorders. PMID:21785638
Analysis of the Potential Topical Anti-Inflammatory Activity of Averrhoa carambola L. in Mice.
Cabrini, Daniela Almeida; Moresco, Henrique Hunger; Imazu, Priscila; da Silva, Cíntia Delai; Pietrovski, Evelise Fernandes; Mendes, Daniel Augusto Gasparin Bueno; da Silveira Prudente, Arthur; Pizzolatti, Moacir Geraldo; Brighente, Inês Maria Costa; Otuki, Michel Fleith
2011-01-01
Inflammatory skin disorders, such as psoriasis and atopic dermatitis, are very common in the population; however, the treatments currently available are not well tolerated and are often ineffective. Averrhoa carambola L. (Oxalidaceae) is an Asian tree that has been used in traditional folk medicine in the treatment of several skin disorders. The present study evaluates the topical anti-inflammatory effects of the crude ethanolic extract of A. carambola leaves, its hexane, ethyl acetate, and butanol fractions and two isolated flavonoids on skin inflammation. Anti-inflammatory activity was measured using a croton oil-induced ear edema model of inflammation in mice. Topically applied ethanolic extract reduced edema in a dose-dependent manner, resulting in a maximum inhibition of 73 ± 3% and an ID(50) value of 0.05 (range: 0.02-0.13) mg/ear. Myeloperoxidase (MPO) activity was also inhibited by the extract, resulting in a maximum inhibition of 60 ± 6% (0.6 mg/ear). All of the fractions tested caused inhibition of edema formation and of MPO activity. Treatment with the ethyl acetate fraction was the most effective, resulting in inhibition levels of 75 ± 5 and 54 ± 8% for edema formation and MPO activity, respectively. However, treatment of mice with isolated compounds [apigenin-6-C-β-l-fucopyranoside and apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside] did not yield successful results. Apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside caused only a mild reduction in edema formation (28 ± 11%). Taken together, these preliminary results support the popular use of A. carambola as an anti-inflammatory agent and open up new possibilities for its use in skin disorders.
Boakye-Gyasi, Eric; Henneh, Isaac Tabiri; Abotsi, Wonder Kofi Mensah; Ameyaw, Elvis Ofori; Woode, Eric
2017-04-26
Despite substantial advances in pain research and treatment, millions of people continue to suffer from pain and this has been attributed mainly to the unavailability of effective and safer analgesics. The use of plants as medicines is still widespread and plants constitute a large source of novel phytocompounds that might become leads for the discovery of newer, effective and safer alternatives. Various parts of Ziziphus abyssinica have been used in folk medicine in several African countries as painkillers. However, there is no report on the possible anti-nociceptive effects of this plant especially the leaves, hence the need for this current study. The possible anti-nociceptive activity of hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) was assessed in rodents using chemical (acetic acid, formalin and glutamate), thermal (tail-immersion test) and mechanical/inflammatory (carrageenan) models of nociception. EthE (30-300 mg/kg, p.o.) dose-dependently and significantly inhibited chemical-induced nociception with a maximum inhibition of 86.29 ± 2.27%, 76.34 ± 5.67%, 84.97 ± 5.35%, and 82.81 ± 5.97% respectively for acetic acid, formalin (phase 1), formalin (phase 2) and glutamate tests at its highest dose. EthE also dose-dependently and significantly increased reaction times in both tail-immersion and carrageenan-induced hypernociceptive tests. The activities of the extract in the various models were comparable with the effect of morphine hydrochloride and diclofenac sodium used as standard analgesic drugs. Oral administration of hydro-ethanolic leaf extract of Ziziphus abyssinica ameliorates nocifensive behaviours associated with chemical-, thermal- and mechanical/inflammatory - induced nociceptive pain.
Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M
1999-07-01
To eliminate the masking effect by flavonoid glycosides, which comprise approximately 70% of conventionally prepared sample, the readily extractable fraction from Citrus juice, which was prepared by adsorbing on HP-20 resin and eluting with ethanol and acetone from the resin, was subjected to antiproliferative tests against several cancer cell lines. Screening of 34 Citrus juices indicated that King (Citrus nobilis) strongly inhibited proliferation of all cancer cell lines examined. Sweet lime and Kabuchi inhibited three of the four cancer cell lines. In contrast, these samples were substantially less cytotoxic toward normal human cell lines.
Vital, Pierangeli G; Rivera, Windell L
2011-10-01
To determine the antibacterial, antifungal, antiprotozoal, cytotoxic, and phytochemical properties of ethanol extracts of leaves of Voacanga globosa (Blanco) Merr. (V. globosa). The extracts were tested against bacteria and fungus through disc diffusion assay; against protozoa through growth curve determination, antiprotozoal and cytotoxicity assays. The extract revealed antibacterial activities, inhibiting the growth of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Micrococcus luteus, and Salmonella typhimurium. Antifungal assay showed that it inhibited Candida albicans. The antiprotozoal assay against Trichomonas vaginalis and Entamoeba histolytica showed that V. globosa can inhibit the parasites, wherein the action can be comparable to metronidazole. With the in situ cell death detection kit, Trichomonas vaginalis and Entamoeba histolytica exposed to V. globosa leaf extract was observed to fluoresce simultaneously in red and yellow signals signifying apoptotic-like changes. Preliminary phytochemical screening revealed the chemical composition of plant extract containing alkaloids, saponins, 2-deoxysugars, and hydrolysable tannins. Thus, this study provides scientific evidence on the traditional use of V. globosa leaf extract in treating microbial diseases. Further, the leaf extract can possibly be used to produce alternative forms of antimicrobials. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
González-Trujano, María Eva; Pellicer, Francisco; Mena, Pedro; Moreno, Diego A; García-Viguera, Cristina
2015-01-01
Pomegranate (Punica granatum L.) has been used for centuries for the treatment of inflammatory diseases. However, there is a lack of comprehensive information focused on the properties of a certain pomegranate (poly)phenolic profile to cure pain and gastric injury induced by anti-inflammatory drugs. This study investigated the systemic effects of different doses of a HPLC-characterized pomegranate extract on the formalin-induced nociceptive behavior in mice. The effect of the extract against gastric injury caused by non-steroidal anti-inflammatory drugs and ethanol was also assessed. Pomegranate reduced nociception in both phases of the formalin test, suggesting central and peripheral activities to inhibit nociception. Indomethacin-induced gastric injury was not produced in the presence of pomegranate, which also protected against ethanol-induced gastric lesions. The present results reinforce the benefits of pomegranate (poly)phenolics in the treatment of pain as well as their anti-inflammatory properties.
Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.
Lian, Jieni; Chen, Shulin; Zhou, Shuai; Wang, Zhouhong; O'Fallon, James; Li, Chun-Zhu; Garcia-Perez, Manuel
2010-12-01
This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Kim, Nam Young; Kwon, Hee Souk; Lee, Hyeon Yong
2017-09-01
This work presents the first report that A. rugosa could have tyrosinase and melanogenesis inhibition and that its activities also be improved by fermentation with Lactobacillus rhamnosus and Lactobacillus paracasei. It was found that the tyrosinase and melanogenesis inhibition was correlated with antioxidant activity of acacetin, the major biologically active substances in A. rugosa. we pursued an improvement in tyrosinase and melanogenesis inhibition of A. rugosa extract by fermentation process. A. rugosa was extracted by lactic acid fermentation process; we measured antioxidant activities and tyrosinase and melanogenesis inhibition of A. rugosa extracts. In particular, reducing power of the extract from fermentation process (FE) was measured as 0.562 (O.D.), whereas reducing power of the extracts from 70% ethanol extraction (EE) was lower than the FE as 0.496 (O.D.). Polyphenols and flavonoids in the FE were higher than the EE: 69.3 mg/g vs. 60.5 mg/g, and 187 mg/g vs. 138 mg/g. The FE was estimated as 51.04% tyrosinase inhibition and 41.88% for the EE. Similarly, melanin inhibition in melanocyte B16F10 was observed as 66.60% vs. 42.23% for the FE and EE. The increase in tyrosinase and melanogenesis inhibition activity was confirmed by high elution of acacetin through fermentation process such as 289.97 mg/100 g vs. 198.04 mg/100 g in the FE and EE. These results indicate that tyrosinase and melanogenesis inhibition activities of the extracts should be associated with antioxidant activity because acacetin is known to have strong antioxidant activity, which can also positively affect whitening activities. © 2016 Wiley Periodicals, Inc.
Jang, Mi; Jeong, Seung-Weon; Cho, Somi K; Ahn, Kwang Seok; Lee, Jong Hyun; Yang, Deok Chun; Kim, Jong-Chan
2014-06-01
Plant extracts have been used as a source of medicines for a wide variety of human ailments. Among the numerous traditional medicinal herbs, Psidium guajava L. (Myrtaceae), commonly known as guava, has long been used in folk medicines as a therapeutic agent for the treatment of numerous diseases in East Asian and other countries. The aim of this study was to investigate the anti-inflammatory activity of an ethanolic leaf extract of P. guajava (guava) in vitro and in vivo. Our results demonstrated that guava leaf extract (GLE) significantly inhibited lipopolysaccharide (LPS)-induced production of nitric oxide and prostaglandin E2 in a dose-dependent manner. GLE suppressed the expression and activity of both inducible nitric oxide synthase and cyclooxygenase-2 in part through the downregulation of ERK1/2 activation in RAW264.7 macrophages. Furthermore, GLE exhibited significant anti-inflammatory activity in 2 different animal models-Freund's complete adjuvant-induced hyperalgesia in the rat and LPS-induced endotoxic shock in mice.
Hiraki, Eri; Furuta, Shoko; Kuwahara, Rika; Takemoto, Naomichi; Nagata, Toshiro; Akasaka, Taiki; Shirouchi, Bungo; Sato, Masao; Ohnuki, Koichiro; Shimizu, Kuniyoshi
2017-07-01
Hericium erinaceus (H. erinaceus) improves the symptoms of menopause. In this study, using ovariectomized mice as a model of menopause, we investigated the anti-obesity effect of this mushroom in menopause. Mice fed diets containing H. erinaceus powder showed significant decreases in the amounts of fat tissue, plasma levels of total cholesterol, and leptin. To determine the mechanism, groups of mice were respectively fed a diet containing H. erinaceus powder, a diet containing ethanol extract of H. erinaceus, and a diet containing a residue of the extract. As a result, H. erinaceus powder was found to increase fecal lipid levels in excreted matter. Further in vitro investigation showed that ethanol extract inhibited the activity of lipase, and four lipase-inhibitory compounds were isolated from the extract: hericenone C, hericenone D, hericenone F, and hericenone G. In short, we suggest that H. erinaceus has an anti-obesity effect during menopause because it decreases the ability to absorb lipids.
Vaghela, Madhuri; Iyer, Krishna; Pandita, Nancy
2018-04-01
Gymnema sylvestre R. Br. is a well-known Indian medicinal herb. Gymnemic acids are pentacyclic triterpenes saponins and active phytoconstituents of Gymnema sylvestre. The study aimed at evaluation of the in vitro rat liver cytochrome P450 (CYP) inhibition potential of extracts and total gymnemic acid (TA)-enriched fractions from G. sylvestre. Standardization of G. sylvestre [ethanolic (EL), hydroethanolic (HE), total acid of ethanolic (TAE), total acid of hydroethanolic (TAHE) and total acid of aqueous (TAAQ) extract] was done with respect to deacyl gymnemic acid (DAGA), using reverse phase-high performance liquid chromatography (RP-HPLC). Total triterpenoid content was determined by vanillin perchloric acid assay. Total triterpene content was found to be the highest in TAAQ (59.86 ± 0.005% w/w) and TAE (49.77 ± 0.009% w/w). TAAQ showed IC 50 ≤ 50 µg/ml for all selected CYP activities. Testosterone 6β-hydroxylation was strongly inhibited by TAE (IC 50 : 15.48 ± 2.13 µg/ml) and was moderately by TAAQ and EL with IC 50 ≥ 50 µg/ml. Flurbiprofen 4'-hydroxylation was subject to strong, weak and moderate inhibition by TAAQ (IC 50 : 34.67 ± 1.38 µg/ml), TAE (IC 50 : ≥ 50 µg/ml) and EL (IC 50 : > 50 µg/ml), respectively. Dextromethorphan O-demethylation was inhibited by TAHE and TAAQ. In vitro inhibition studies suggested that TA strongly inhibits activity of selected CYP. This inhibition may possibly be due to triterpenoids and gymnemic acids that have been reported to be present in it. Data also suggest a potential for possible in vivo herb-drug interactions involving G. sylvestre and other medications that are metabolized by the same CYP.
Inhibition properties of propolis extracts to some clinically important enzymes.
Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi
2016-01-01
The present study was conducted to envisage inhibition effects of propolis on the crucial enzymes, urease, xanthine oxidase (XO) and acetylcholinesterase (AChE). Some of the antioxidant properties of the propolis samples were determined using the total phenolic content (TPE) and total flavonoids in the eight different ethanolic propolis extracts (EPE) samples. Inhibition values of the enzymes were expressed as inhibition concentration (IC 50 ; mg/mL or μg/mL) causing 50% inhibition of the enzymes with donepezil, acetohydroxamic acid and allopurinol as reference inhibitors. All the propolis extracts exhibited variable inhibition effects on these enzymes, but the higher the phenolic contents the lower the inhibitions values (IC 50 = 0.074 to 1.560 mg/mL). IC 50 values of the P5 propolis sample having the highest TPE, obtained from Zonguldak, for AChE, urease and XO were 0.081 ± 0.009, 0.080 ± 0.006 and 0.074 ± 0.011 μg/mL, respectively. The EPE proved to be a good source of inhibitor agents that can be used as natural inhibitors to serve human health.
Bigovic, Dubravka; Brankovic, Suzana; Kitic, Dusanka; Radenkovic, Mirjana; Jankovic, Teodora; Savikin, Katarina; Zivanovic, Slavoljub
2010-05-10
Helichrysum plicatum (Turkish Helichrysum) has been used in folk medicine for the treatment of gastric and hepatic disorders. The aim of the present study was to examine the relaxant activity of an extract of H. plicatum flowers on isolated rat ileum. Segments of ileum of rats were suspended in an organ bath. Cumulative concentrations of H. plicatum ethanol extract induced a relaxant effect on spontaneous rat ileum contractions. H. plicatum extract caused a mean contractile response of 81.68 +/- 6.17% (at a dose of 0.01 mg/mL) and 30.08 +/- 9.07% (at a dose of 1 mg/mL). A similar effect was observed with papaverine (0.01-3 microg/mL). H. plicatum extract (0.01-1 mg/mL) relaxed high K+ (80 mM) precontractions, an effect similar to that caused by papaverine (0.01-3 microg/mL). The plant extract (0.03-0.3 mg/mL) also induced a significant depression of the cumulative concentration response curve for acetylcholine (5-1500 nM) (p < 0.01). Atropine (140 nM) abolished the acetylcholine effect. The extract (0.03-0.3 mg/mL) reduced the histamine (1-300 nM) and BaCl2 (3-900 microM) induced contractions (p < 0.01). Our results showed the relaxant effect of the ethanol extract of Helichrysum plicatum flowers on the isolated rat intestine Extract of H. plicatum can inhibit the spontaneous ileum contractions and contractions induced by acetylcholine, histamine, barium and potassium ions.
Simulation and optimization of continuous extractive fermentation with recycle system
NASA Astrophysics Data System (ADS)
Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo
2017-05-01
Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.
Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A.
2011-01-01
This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum) in vitro. Different concentrations (5, 10, 15 and 20%) prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC) analysis of ethyl acetate extract showed the presence of a main component (nimonol) which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR) spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens. PMID:24031718
Almeida, V.G.; Avelar-Freitas, B.A.; Santos, M.G.; Costa, L.A.; Silva, T.J.; Pereira, W.F.; Amorim, M.L.L.; Grael, C.F.F.; Gregório, L.E.; Rocha-Vieira, E.; Brito-Melo, G.E.A.
2017-01-01
Pseudobrickellia brasiliensis (Asteraceae) is a plant commonly known as arnica-do-campo and belongs to the native flora of the Brazilian Cerrado. The alcoholic extract of the plant has been used as an anti-inflammatory agent in folk medicine, but the biological mechanism of action has not been elucidated. The present study evaluated the composition of P. brasiliensis aqueous extract and its effects on pro-inflammatory cytokine production and lymphocyte proliferation. The extracts were prepared by sequential maceration of P. brasiliensis leaves in ethanol, ethyl acetate, and water. Extract cytotoxicity was evaluated by trypan blue exclusion assay, and apoptosis and necrosis were measured by staining with annexin V-FITC and propidium iodide. The ethanolic (ETA) and acetate (ACE) extracts showed cytotoxic effects. The aqueous extract (AQU) was not cytotoxic. Peripheral blood mononuclear cells stimulated with phorbol myristate acetate and ionomycin and treated with AQU (100 μg/mL) showed reduced interferon (IFN)-γ and tumor necrosis factor (TNF)-α expression. AQU also inhibited lymphocyte proliferative response after nonspecific stimulation with phytohemagglutinin. The aqueous extract was analyzed by liquid chromatography coupled with photodiode array detection and mass spectrometry. Quinic acid and its derivatives 5-caffeoylquinic acid and 3,5-dicaffeoylquinic acid, as well as the flavonoids luteolin and luteolin dihexoside, were detected. All these compounds are known to exhibit anti-inflammatory activity. Taken together, these findings demonstrate that P. brasiliensis aqueous extract can inhibit the pro-inflammatory cytokine production and proliferative response of lymphocytes. These effects may be related to the presence of chemical substances with anti-inflammatory actions previously reported in scientific literature. PMID:28700031
Almeida, V G; Avelar-Freitas, B A; Santos, M G; Costa, L A; Silva, T J; Pereira, W F; Amorim, M L L; Grael, C F F; Gregório, L E; Rocha-Vieira, E; Brito-Melo, G E A
2017-07-10
Pseudobrickellia brasiliensis (Asteraceae) is a plant commonly known as arnica-do-campo and belongs to the native flora of the Brazilian Cerrado. The alcoholic extract of the plant has been used as an anti-inflammatory agent in folk medicine, but the biological mechanism of action has not been elucidated. The present study evaluated the composition of P. brasiliensis aqueous extract and its effects on pro-inflammatory cytokine production and lymphocyte proliferation. The extracts were prepared by sequential maceration of P. brasiliensis leaves in ethanol, ethyl acetate, and water. Extract cytotoxicity was evaluated by trypan blue exclusion assay, and apoptosis and necrosis were measured by staining with annexin V-FITC and propidium iodide. The ethanolic (ETA) and acetate (ACE) extracts showed cytotoxic effects. The aqueous extract (AQU) was not cytotoxic. Peripheral blood mononuclear cells stimulated with phorbol myristate acetate and ionomycin and treated with AQU (100 μg/mL) showed reduced interferon (IFN)-γ and tumor necrosis factor (TNF)-α expression. AQU also inhibited lymphocyte proliferative response after nonspecific stimulation with phytohemagglutinin. The aqueous extract was analyzed by liquid chromatography coupled with photodiode array detection and mass spectrometry. Quinic acid and its derivatives 5-caffeoylquinic acid and 3,5-dicaffeoylquinic acid, as well as the flavonoids luteolin and luteolin dihexoside, were detected. All these compounds are known to exhibit anti-inflammatory activity. Taken together, these findings demonstrate that P. brasiliensis aqueous extract can inhibit the pro-inflammatory cytokine production and proliferative response of lymphocytes. These effects may be related to the presence of chemical substances with anti-inflammatory actions previously reported in scientific literature.
[Antioxidant and anti-inflammatory activities of Moroccan Erica arborea L].
Amezouar, F; Badri, W; Hsaine, M; Bourhim, N; Fougrach, H
2013-12-01
The present study was carried out to evaluate the antioxidant and anti-inflammatory capacity, and acute toxicity of Moroccan Erica arborea leaves. Antioxidant capacity was assessed by diphenyle-picryl-hydrazyl (DPPH), phosphomolybdate (PPM) and ferric reducing antioxidant power (FRAP) tests and anti-inflammatory capacity was evaluated by hind paw oedema model using carrageenan-induced inflammation in rat. The acute toxicity was evaluated using mice. Acute toxicity of ethanolic extract of E. arborea showed no sign of toxicity at dose of 5 g/kg B.W. Our extracts have important antioxidant properties. The efficient concentration of the ethanolic extract (10.22 μg/ml) required for decreasing initial DPPH concentration by 50% was comparable to that of standard solution butyl-hydroxy-toluene (BHT) (8.87 μg/ml). The administration of ethanolic extract at doses of 200 and 400mg/kg B.W. was able to prevent plantar oedema and exhibited a significant inhibition against carrageenan-induced inflammation when compared to the control group (NaCl 0.9%) but comparable to those of diclofenac (reference drug). Our results show that the leaves of E. arborea may contain some bioactive compounds which are responsible for the antioxidant and anti-inflammatory activities observed here. Our finding may indicate the possibility of using the extracts of this plant to prevent the antioxidant and inflammatory processes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Gonçalves, Cely Cristina Martins; Hernandes, Luzmarina; Bersani-Amado, Ciomar Aparecida; Franco, Selma Lucy; Silva, Joaquim Felipe de Souza
2013-01-01
This study focused on the therapeutic effect of a propolis SLNC 106PI extract on experimental colitis. Wistar adult rats received 0.8 mL rectal dose of one of the following solutions: saline (group S), 20 mg TNBS in 50% ethanol (group TNBS), 20 mg TNBS in 50% ethanol and propolis extract in saline (group TNBS-P), propolis extract in saline (group SP), and 20 mg TNBS in 50% ethanol and 50 mg/kg mesalazine (group TNBS-M). The animals were euthanized 7 or 14 days after the colitis induction. Samples of the distal colon were harvested for the analysis of myeloperoxidase (MPO) enzyme activity and for morphometric analysis in paraffin-embedded histological sections with hematoxylin-eosin or histochemical staining. The animals treated with TNBS exhibited the typical clinical signs of colitis. Increased MPO activity confirmed the presence of inflammation. TNBS induced the development of megacolon, ulceration, transmural inflammatory infiltrate, and thickened bowel walls. Treatment with propolis moderately reduced the inflammatory response, decreased the number of cysts and abscesses, inhibited epithelial proliferation, and increased the number of goblet cells. The anti-inflammatory activity of the propolis SLNC 106 extract was confirmed by the reductions in both the inflammatory infiltrate and the number of cysts and abscesses in the colon mucosa. PMID:24101941
Sertié, J A; Basile, A C; Panizza, S; Oshiro, T T; Azzolini, C P; Penna, S C
1991-02-01
The antiinflammatory effects and gastrotoxicity of a lyophilized 70% ethanol extract of the leaves of Cordia verbenacea were investigated through experimental models in rats and mice. The oral administration of 1.24 mg/kg of the extract significantly inhibited nystatin-induced oedema. Topical application of the extract at a dose of 0.09 mg/ear in mice was clearly more effective than 1.0 mg/ear of naproxen in the reduction of the ear oedema induced by corton oil. At antiinflammatory doses, the extract showed an important protective effect on the gastric mucosa, reducing significantly the number of gastric lesions.
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh
2017-01-01
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C1s peak and the appearance of organic peaks (N1s, P2p, O1s) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend. PMID:29301224
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend.
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh; Nam, Nguyen Dang
2017-12-31
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C 1s peak and the appearance of organic peaks (N 1s , P 2p , O 1s ) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend.
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Noorbakhsh, Hamid; Vasiee, Alireza; Alghooneh, Ali
2018-01-01
In this study, the effects of water, ethanol, methanol and glycerin at five levels (0, 31.25, 83.33, 125 and 250 ml) were investigated on the efficiency of mangrove leaf extraction using mixture optimal design. The antimicrobial effect of the extracts on Streptococcus pneumoniae, Enterococcus faecium and Klebsiella pneumoniae was evaluated using disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. The mangrove leaf extraction components were identified through gas chromatography/mass spectrometry (GC/MS). Phytochemical analysis (alkaloids, tannins, saponins, flavone and glycosides) were evaluated based on qualitative methods. Antioxidant activity of extracts was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) methods. Maximum antimicrobial effect was observed in Enterococcus faecium and highest resistance against mangrove leaf extract in Enterococcus faecium and Klebsiella pneumoniae, respectively. Increasing concentration of mangrove extracts had a significant effect (p ≤ 0.05) on inhibition zone diameter. The MICs of the mangrove leaf extraction varied from 4 mg/ml to 16 mg/ml. The optimum formulation was found to contain glycerin (0 ml), water (28.22 ml), methanol (59.83 ml) and ethanol (161.95 ml). The results showed that the highest antioxidant activity was related to optimum extract of mangrove leaf and ethanolic extract respectively. The results of phytochemical screening of Avicennia marina leaves extract showed the existence of alkaloids, tannins, saponins, flavone and glycosides. 2-Propenoic acid, 3-phenyl- was the major compound of Avicennia marina. The results of non-significant lack of fit tests, and F value (14.62) indicated that the model was sufficiently accurate. In addition, the coefficient of variations (16.8%) showed an acceptable reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metastasis.
Kushiro, Kyoko; Núñez, Nomelí P
2012-01-01
Every year, approximately 68,000 new cases of malignant melanoma are diagnosed in the US. Ethanol consumption inhibits metastasis of melanoma in mice, but the mechanism is not well understood. C57BL/6J ob/+ mice, given either water or 20% ethanol, were injected intravenously with B16-BL6 melanoma cells to determine pulmonary metastasis. The effects of ethanol on cell phenotypes and markers of the epithelial-to-mesenchymal transition were determined in cell culture. In mice, ethanol consumption inhibited experimental pulmonary metastasis. This inhibition was associated with decreased body weight, and levels of systemic leptin, and insulin. In cell culture, ethanol inhibited B16-BL6 cell motility, invasion, and anchorage-independent growth. Additionally, ethanol reduced Snai1 expression and increased E-cadherin expression. Lastly, ethanol increased the expression of Kiss1 metastasis-suppressor and the metastasis suppressor Nm23/nucleoside diphosphate kinase. In both animal and in cell culture conditions, ethanol inhibited the metastatic ability of B16-BL6 melanoma cells.
Lin, Lianzhu; Zhu, Dashuai; Zou, Linwu; Yang, Bao; Zhao, Mouming
2013-08-15
The objective of this work was to conduct an activity-guided isolation of antibacterial compounds from Rabdosia serra. The ethanol extracts of R. serra leaf and stem were partitioned sequentially into petroleum ether, ethyl acetate, butanol and water fractions, respectively. The ethanol extract of leaf evidenced broad-spectrum antibacterial activity against gram-positive bacterial, including Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The ethyl acetate fractions of leaf and stem exhibited strong inhibition against gram-positive bacteria, and were then purified further. On the basis of antibacterial assay-guided purification, three phenolic compounds (rosmarinic acid, methyl rosmarinate and pedalitin) and four C-20 oxygenated ent-kauranes (effusanin E, lasiodin, rabdosichuanin D and a new compound namely effusanin F) were obtained, whose contents were determined by HPLC analysis. The broth microdilution method confirmed the important inhibition potential of C-20 oxygenated ent-kauranes with low minimum inhibitory concentration (MIC) values. Effusanin E, lasiodin and effusanin F could be useful for the development of new antibacterial agents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of In Vitro Antioxidant Potential of Cordia retusa.
Amudha, Murugesan; Rani, Shanmugam
2016-01-01
The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant.
Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant
Motamedi, Hossein; Seyyednejad, Seyyed Mansour; Bakhtiari, Ameneh; Vafaei, Mozhan
2014-01-01
Background: Urtica dioica is a flowering plant with long history of use in folk medicine and as a food source. Objectives: This study examined in vitro antibacterial potential of alcoholic extracts of U. dioica. Materials and Methods: Hydroalcoholic extracts from aerial parts were prepared using aqueous solution of ethanol and methanol and their inhibitory effects against clinical isolates was examined by disc diffusion method at different doses. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) indexes were also investigated. The scanning electron microscopy (SEM) analysis was also performed to find structural changes of affected bacteria consequent to exposing with extracts. Results: Both extracts were active against Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli with respectively 16, 10, 18, and 14 mm (methanolic) and 11, 9, 17, and 16 mm (ethanolic) inhibition zone. The MIC of ethanolic extract against S. epidermidis and E. coli was respectively 10 and 40 mg/mL. The MIC of methanolic extract against S. aureus and S. epidermidis was 40 and 10 mg/mL, respectively. The MBC was found only for S. epidermidis (20 mg/mL). In SEM analysis the round shape of S. epidermidis was changed and irregular shapes were appeared, which suggest that the main target of these extracts was cell wall. Conclusions: Extracts of U. dioica showed significant antibacterial effect against some clinically important pathogenic bacteria. Based on the obtained results it can be concluded that U. dioica is useful as antibacterial and bactericidal agent in treating infectious diseases. PMID:25625045
Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats.
Arambewela, L S R; Arawwawala, L D A M; Ratnasooriya, W D
2005-11-14
Leaves of Piper betle (Piperaceae) possess several bioactivities and are used in traditional medicinal systems. However, its antidiabetic activity has not been scientifically investigated so far. The aim of this study therefore, was to investigate the antidiabetic activity of Piper betle leaves. This was tested in normoglycaemic and strepozotocin (STZ)-induced diabetic rats using oral administration of hot water extract (HWE) and cold ethanolic extract (CEE). In normoglycaemic rats, both HWE and CEE significantly lowered the blood glucose level in a dose-dependent manner. In glucose tolerance test, both extracts markedly reduced the external glucose load. The antidiabetic activity of HWE is comparable to that of CEE. Moreover, HWE failed to inhibit the glucose absorption from the small intestine of rats. Both extracts were found to be non-toxic and well tolerated after following chronic oral administration (no overt signs of toxicity, hepatotoxicity or renotoxicity). However, the weight of the spleen had increased in treated groups possibly indicating lymphoproliferative activity. It is concluded that HWE and CEE of Piper betle leaves possess safe and strong antidiabetic activity.
Jia, Na; Kong, Baohua; Liu, Qian; Diao, Xinping; Xia, Xiufang
2012-08-01
This experiment was conducted to assess the antioxidant efficacy of black currant (Ribes nigrum L.) extract (BCE) in raw pork patties during chilled storage. The extracting conditions of frozen BCE including ethanol concentrations (0-100%) and extracting times (0.25-12h) were studied. BCE extracted with 40% ethanol for 2h had the highest anthocyanin content, the strongest radical scavenging activities as well as the second strongest reducing power. BCE was condensed and added to pork patties at 5, 10 or 20 g/kg. Compared with the control, BCE treatments significantly decreased the thiobarbituric acid-reactive substance values and carbonyls formation and reduced the sulfhydryl loss of pork patties in a dose-dependent manner (P<0.05), which showed that the BCE significantly inhibited lipid and protein oxidation. The BCE-treated patties showed significantly higher redness (P<0.05) than the control. The findings demonstrated strong potential for BCE as a natural antioxidant in meat and meat products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman
2016-01-01
Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903
Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat
2016-12-01
Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.
Airen, Bhuvnesh; Sarkar, Priyanka Airen; Tomar, Urvashi; Bishen, Kundendu Arya
2018-01-01
The study aimed at investigating in vitro antimicrobial activity of ethanolic extract of propolis (EEP) and water extract of propolis against two main cariogenic oral pathogens: Streptococcus mutans and Lactobacillus acidophilus. Propolis was obtained from beehives in the Jhabua region of India. Ethanolic and water extracts were prepared at concentrations of 5% and 20% weight/volume (w/v). To support the results, a positive control (chlorhexidine 0.2%) and a negative control (distilled water) were used. S. mutans was cultured on brain-heart infusion agar and L. acidophilus was cultured on De Man, Rogosa, and Sharpe agar. The results showed that at concentrations of 5% and 20%, EEP was effective against S. mutans and L. acidophilus. However, at similar concentrations, water extract was effective only against L. acidophilus. The highest activity was shown by chlorhexidine (0.2%) with mean zones of inhibition of 13.9 mm and 15.1 mm against S. mutans and L. acidophilus, respectively. It can be concluded that the propolis extracted from tribal regions of Jhabua possesses antibacterial efficacy against S. mutans and L. acidophilus.
Antihyperalgesic Activity of Rhodiola rosea in a Diabetic Rat Model.
Déciga-Campos, Myrna; González-Trujano, Maria Eva; Ventura-Martínez, Rosa; Montiel-Ruiz, Rosa Mariana; Ángeles-López, Guadalupe Esther; Brindis, Fernando
2016-02-01
Preclinical Research Rhodiola rosea L. (Crassulaceae) is used for enhancing physical and mental performance. Recent studies demonstrated that R. rosea had anti-inflammatory activity in animal models, for example, carrageenan- and nystatin-induced edema in rats, possibly by inhibiting phospholipase A2 and cyclooxygenases-1 and -2. In addition, R. rosea had antinociceptive activity in thermal and chemical pain tests as well as mechanical hyperalgesia. The purpose of the present study was to assess the antihyperalgesic effect of an ethanol extract of Rhodiola rosea (R. rosea) in a diabetic rat model. Rats were administered a single dose of streptozotocin (STZ; 50 mg/kg, i.p.) and hyperalgesia was evaluated four weeks later. Formalin-evoked (0.5%) flinching was increased in diabetic rats compared with nondiabetic controls Systemic (1-100 mg/kg, i.p.) and local (0.1-10 mg/paw into the dorsal surface of the right hind paw) administration of R. rosea ethanol extract dose-dependently reduced formalin-induced hyperalgesia in diabetic rats. The antihyperalgesic effect of R. rosea was compared with gabapentin. These results suggest that R. rosea ethanol extract may have potential as a treatment for diabetic hyperalgesia. © 2016 Wiley Periodicals, Inc.
Antioxidant and antibacterial activities of Hibiscus Rosa-sinensis Linn flower extracts.
Khan, Zulfiqar Ali; Naqvi, Syed Ali-Raza; Mukhtar, Ammara; Hussain, Zaib; Shahzad, Sohail Anjum; Mansha, Asim; Ahmad, Matloob; Zahoor, Ameer Fawad; Bukhari, Iftikhar Hussain; Ashraf-Janjua, Muhammad Ramazan-Saeed; Mahmood, Nasir; Yar, Muhammad
2014-05-01
Antioxidant and antibacterial potential of different solvent extracts of locally grown Hibiscus rosa-sinensis Linn was evaluated. The antioxidant activity was assessed by estimation of total flavonoids contents, total phenolic contents, DPPH free radical scavenging activity and percentage inhibition of linoleic acid oxidation capacity. Agar disc diffusion method was used to assess antibacterial potential of crude extract of H. rosa-sinensis. The yield of the crude extracts (23.21 ± 3.67 and 18.36 ± 2.98% in 80% methanol and ethanol solvents was calculated, respectively. Methanol and ethanol extract of H. rosa-sinensis showed total phenolics 61.45 ± 3.23 and 59.31 ± 4.31 mg/100g as gallic acid equivalent, total flavonoids 53.28 ± 1.93 and 32.25±1.21 mg/100g as catechine equivalent, DPPH free radical scavenging activity 75.46±4.67 and 64.98 ± 2.11% and inhibition of linoleic acid oxidation potential 75.8 ±3.22 and 61.6 ± 2.01% respectively, was measured. Antibacterial study against three human pathogens such as staphlococus sp. Bacillus sp. and Escherichia coli showed growth inhibitory effect in the range of 12.75 ± 1.17 to 16.75 ± 2.10 mm. These results showed H. rosa-sinensis indigenous to Kallar Kahar and its allied areas bear promising medicinal values and could be used for developing herbal medicines to target oxidative stress and infectious diseases.
Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiorella, B.L.; Blanch, H.W.; Wilke, C.R.
1984-01-01
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl/sub 2/, (NH/sub 4/)/sub 2/SO/sub 4/ > NaCl, NH/sub 4/Cl > KH/sub 2/PO/sub 4/ > xylose, MgCl/sub 2/ > MgSO/sub 4/ > KCl. Reduction of the water activity alone is not an adequate predictor of themore » variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. It is postulated that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they related to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80% decline in cell mass production at 0.23 mol Ca/sup 2 +//L and calcium is present at substantial concentration in many carbohydate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than one-third of the feed rate; otherwise inhibitory effects will be observed.« less
Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis.
Benevides Bahiense, Jhéssica; Marques, Franciane Martins; Figueira, Mariana Moreira; Vargas, Thais Souza; Kondratyuk, Tamara P; Endringer, Denise Coutinho; Scherer, Rodrigo; Fronza, Marcio
2017-12-01
Sambucus australis Cham. & Schltdl. (Adoxaceae) is used in Brazilian folk medicine to treat inflammatory disorders. To evaluate the in vitro anti-inflammatory, antioxidant and antimicrobial properties of S. australis. The anti-inflammatory activity of ethanol extracts of the leaf and bark of S. australis (1-100 μg/mL) were studied in lipopolysaccharide/interferon γ stimulated murine macrophages RAW 264.7 cells (24 h incubation) by investigating the release of nitric oxide (NO) and tumour necrosis factor-alpha (TNF-α) and in the TNF-α-induced nuclear factor kappa (NF-κB) assay. Minimum inhibitory concentration (MIC) was determined by the microdilution test (24 h incubation). Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and the NO scavenging assays. Chemical composition was assessed by LC-MS/MS. Antioxidant activities in the DPPH (IC 50 43.5 and 66.2 μg/mL), FRAP (IC 50 312.6 and 568.3 μg/mL) and NO radical scavenging assays (IC 50 285.0 and 972.6 μg/mL) were observed in the leaf and bark ethanol extracts, respectively. Solely the leaf extract showed significant inhibition of NO and TNF-α production in RAW264.7 cells at concentrations of 2 and 100 μg/mL, respectively, and suppression of TNF-α inhibition of NF-κB by 12.8 and 20.4% at concentrations of 50 and 100 μg/mL, respectively. The extract also exhibited antibacterial activity against Salmonella typhimurium (MIC 250 μg/mL) and Klebsiella pneumoniae (MIC 250 μg/mL). LC-MS/MS revealed the presence of chlorogenic acid and rutin as major compounds. The results indicate that the ethanol leaf extract of S. australis exhibit prominent anti-inflammatory effects.
Meshram, Girish Gulab; Kumar, Anil; Rizvi, Waseem; Tripathi, C.D.; Khan, R.A.
2015-01-01
Albizzia lebbeck Benth. (Mimosaceae) is a medicinal tree used to treat several inflammatory ailments in the Indian traditional Ayurvedic system of medicine. The aim of the present study was to evaluate the possible anti-inflammatory activity of the aqueous (AE) and ethanolic (EE) extracts of the leaves of A. lebbeck to support the ethnopharmacological claims. The study was carried out using Wistar rats (100–150 g). The AE and EE were prepared using the Soxhlet extraction process. The anti-inflammatory activity of the AE and EE of the leaves of A. lebbeck were studied using carrageenan-induced paw edema and cotton pellet-induced granuloma models. The AE and EE of the leaves of A. lebbeck at doses of 50, 100, and 200 mg/kg p.o. (oral administration) showed a dose-dependent and significant (p < 0.05) inhibition of carrageenan-induced hind paw edema with maximum percentage inhibition (PI) values of 22.34, 30.85, 39.36 and 22.53, 32.98, 42.55, respectively. The AE and EE at doses of 50, 100, 200 mg/kg p.o. significantly (p < 0.05) inhibited granuloma formation with PI values of 19.07, 27.57, 38.55 and 23.93, 32.23, 42.33, respectively. The AE and EE of the leaves of A. lebbeck showed significant (p < 0.05) anti-inflammatory activity. PMID:27114941
Meshram, Girish Gulab; Kumar, Anil; Rizvi, Waseem; Tripathi, C D; Khan, R A
2016-04-01
Albizzia lebbeck Benth. (Mimosaceae) is a medicinal tree used to treat several inflammatory ailments in the Indian traditional Ayurvedic system of medicine. The aim of the present study was to evaluate the possible anti-inflammatory activity of the aqueous (AE) and ethanolic (EE) extracts of the leaves of A. lebbeck to support the ethnopharmacological claims. The study was carried out using Wistar rats (100-150 g). The AE and EE were prepared using the Soxhlet extraction process. The anti-inflammatory activity of the AE and EE of the leaves of A. lebbeck were studied using carrageenan-induced paw edema and cotton pellet-induced granuloma models. The AE and EE of the leaves of A. lebbeck at doses of 50, 100, and 200 mg/kg p.o. (oral administration) showed a dose-dependent and significant (p < 0.05) inhibition of carrageenan-induced hind paw edema with maximum percentage inhibition (PI) values of 22.34, 30.85, 39.36 and 22.53, 32.98, 42.55, respectively. The AE and EE at doses of 50, 100, 200 mg/kg p.o. significantly (p < 0.05) inhibited granuloma formation with PI values of 19.07, 27.57, 38.55 and 23.93, 32.23, 42.33, respectively. The AE and EE of the leaves of A. lebbeck showed significant (p < 0.05) anti-inflammatory activity.
Daniela, Lulli; Alla, Potapovich; Maurelli, Riccardo; Elena, Dellambra; Giovanna, Pressi; Vladimir, Kostyuk; Roberto, Dal Toso; Chiara, De Luca; Saveria, Pastore; Liudmila, Korkina
2012-01-01
Edelweiss (Leontopodium alpinum Cass.) is traditionally employed in folk medicine as an anti-inflammatory remedy. In nature, the plant is sparsely available and protected; therefore production of callus cultures was established. A concentrated ethanolic extract of culture homogenate, with leontopodic acid representing 55 ± 2% of the total phenolic fraction (ECC55), was characterized for anti-inflammatory properties in primary human keratinocytes (PHKs) and endotheliocytes (HUVECs). Inflammatory responses were induced by UVA+UVB, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), and a mixture of proinflammatory cytokines. Trichostatin A, a sirtuin inhibitor, was used to induce keratinocyte inflammatory senescence. ECC55 (10–50 μg/mL) protected PHK from solar UV-driven damage, by enhancing early intracellular levels of nitric oxide, although not affecting UV-induced expression of inflammatory genes. Comparison of the dose-dependent inhibition of chemokine (IL-8, IP-10, MCP-1) and growth factor (GM-CSF) release from PHK activated by TNFα + IFNγ showed that leontopodic acid was mainly responsible for the inhibitory effects of ECC55. Sirtuin-inhibited cell cycle, proliferation, and apoptosis markers were restored by ECC55. The extract inhibited LPS-induced IL-6 and VCAM1 genes in HUVEC, as well as oxLDL-induced selective VCAM1 overexpression. Conclusion. Edelweiss cell cultures could be a valuable source of anti-inflammatory substances potentially applicable for chronic inflammatory skin diseases and bacterial and atherogenic inflammation. PMID:23093820
Kitic, D; Brankovic, S; Radenkovic, M; Savikin, K; Zdunic, G; Kocic, B; Velickovic-Radovanovic, R
2012-10-01
Sideritis raeseri spp. raeseri Boiss & Heldr is a native plant from the Mediterranean region that is used due to its medicinal and culinary properties. The aim of this study was to evaluate the effects of ethanol extract of S. raeseri on the blood pressure, vascular and cardiac contractions. Arterial blood pressure was registered directly from the carotid artery in the anaesthetized rabbits. Aortic rings and the spontaneously beating atria were mounted in tissue bath. An intravenous injection of extract of S. raeseri (0.025-7.5 mg/kg) caused a dose dependent decrease of the arterial pressure and heart rate, with EC(50) value of 24.31±3.87 mg/kg and 88.14±7.51 mg/kg, respectively. In aortic preparations precontracted with KCl (80 mM), the extract of S. raeseri (0.005-1.5 mg/ml) elicited a vasodilatator action (EC(50) 0.11±0.008 mg/ml). In spontaneously beating rat atria, the extract of S. raeseri (0.005-1.5 mg/ml) produced decrease of chronotropic and inotropic activity (with EC(50) value of 0.63±0.03 mg/ml and 0.40±0.08 mg/ml). Administration of verapamil induced inhibition of force and rate of the atrial contraction. These results demonstrate that the ethanol extract of Sideritis raeseri spp. raeseri Boiss & Heldr can produce hypotension, vasodilatation, negative chronotropic and inotropic effects.
Bhat, Rajeev; binti Yahya, Nabilah
2014-08-01
Belinjau (Gnetum gnemon L.) seed flour was evaluated for nutritional composition, antioxidant activity and functional properties. Seed flour was found to be rich in protein (19.0g/100g), crude fibre (8.66g/100g), carbohydrates (64.1%), total dietary fibre (14.5%) and encompassed adequate amounts of essential amino acids, fatty acids and minerals. Antioxidant compounds such as total phenols (15.1 and 12.6mgGAE/100g), tannins (35.6 and 16.1mgCE/100g) and flavonoids (709 and 81.6mgCEQ/100g) were higher in ethanolic extracts over aqueous extracts, respectively. Inhibition of DPPH was high in ethanol extracts (48.9%) compared to aqueous extracts (19.7%), whereas aqueous extracts showed a higher FRAP value compared to ethanol extracts (0.98 and 0.61mmolFe(II)/100g, respectively). Results on functional properties revealed acceptable water and oil absorption capacities (5.51 and 1.98g/g, respectively), emulsion capacity and stability (15.3% and 6.90%, respectively), and foaming capacity (5.78%). FTIR spectral analysis showed seed flour to encompass major functional groups such as: amines, amides, amino acids, polysaccharides, carboxylic acids, esters and lipids. As belinjau seed flour possesses a rich nutraceutical value, it has high potential to be used as a basic raw material to develop new low cost nutritious functional foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamamoto, Norio; Kanemoto, Yuki; Ueda, Manabu; Kawasaki, Kengo; Fukuda, Itsuko; Ashida, Hitoshi
2011-01-01
Artemisia princeps is commonly used as a food ingredient and in traditional Asian medicine. In this study, we examined the effects of long-term administration of an ethanol extract of A. princeps (APE) on body weight, white adipose tissue, blood glucose, insulin, plasma and hepatic lipids, and adipocytokines in C57BL/6 mice fed a high-fat diet. Daily feeding of a 1% APE diet for 14 weeks normalized elevated body weight, white adipose tissue, and plasma glucose and insulin levels, and delayed impaired glucose tolerance in mice a fed high-fat diet. These events were not observed in mice fed a control diet containing 1% APE. Liver triglyceride and cholesterol levels were similar in mice fed a 1% APE-diet and those fed a control diet. In the high-fat diet groups, APE inhibited hepatic fatty acid synthase (FAS) and suppressed the elevation of plasma leptin, but had no effect on adiponectin levels. These findings suggest that the regulation of leptin secretion by APE may inhibit FAS activity with subsequent suppression of triglyceride accumulation in the liver and adipose tissues. Inhibition of lipid accumulation can, in turn, lead to improvements in impaired glucose tolerance.
Zhang, Yanqiu; Zhang, Daning; Zhang, Mianzhi
2012-12-01
To evaluate inhibition effect and mechanism of compound ethanol extracts from Wuweizi (Fructus Schisandrae Chinensis), Chuanxiong (Rhizoma Chuanxiong) and Muli (Cocha Ostreae) (FRC) on glomerular and tubular interstitial fibrosis in streptozocin (STZ)-induced diabetic nephropathy (ND) model mice. Twenty-seven male C57BL/6 mice were divided randomly into 3 groups: nondibetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic that were treated with 5 g x kg(-1) x day(-1) of FRC by oral gavage (D(FRC)), with 9 in each group. The protein expressions of E-cadherin, alpha-smooth muscle actin (alpha-SMA), Plasminogen Activator Inhibitor-1 (PAL-1) in renal tissues were investigated by Western blotting. The expressions of fibronectin (FN) and alpha-SMA were detected by immunohistochemical method. The morphological changes of renal tissues were observed under a microscope. Renal tissues in the D(FRC) group showed a lessened degree of fibrosis. Meanwhile, the expressions of FN, alpha-SMA and PAI-1 were significantly lower in the D(FRC) group than those in the D group (all P < 0.05). FRC can ameliorate the DN in the C57BL/6 mice, and its mechanism may relate to inhibition on the epithelial to mesenchymal transdifferentiation, endothelial-myofibroblast transition and PAL-1 expression.
Eller, F J; King, J W
2001-10-01
This study investigated the supercritical carbon dioxide (SC-CO(2)) extraction of fat from ground beef and the effects of several factors on the gravimetric determination of fat. The use of ethanol modifier with the SC-CO(2) was not necessary for efficient fat extraction; however, the ethanol did increase the coextraction of water. This coextraction of water caused a significant overestimation of gravimetric fat. Oven-drying ground beef samples prior to extraction inhibited the subsequent extraction of fat, whereas oven-drying the extract after collection decreased the subsequent gas chromatographic fatty acid methyl ester (GC-FAME) fat determination. None of the drying agents tested were able to completely prevent the coextraction of water, and silica gel and molecular sieves inhibited the complete extraction of fat. Measurements of collection vial mass indicated that CO(2) extraction/collection causes an initial increase in mass due to the density of CO(2) (relative to displaced air) followed by a decrease in vial mass due to the removal of adsorbed water from the collection vial. Microwave-drying of the empty collection vials removes approximately 3 mg of adsorbed water, approximately 15-20 min is required for readsorption of the displaced water. For collection vials containing collected fat, microwave-drying effectively removed coextracted water, and the vials reached equilibration after approximately 10-15 min. Silanizing collection vials did not significantly affect weight loss during microwave-drying. SC-CO(2) can be used to accurately determine fat gravimetrically for ground beef, and the presented method can also be followed by GC-FAME analysis to provide specific fatty acid information as well.
Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D'Angelo, Valeria; Galati, Enza Maria
2017-10-01
Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca 2+ for muscle contraction. Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%Polyphenols and Vitamin E complex occurrence in OFI cladodes were characterized by high-performance liquid chromatographyOFI cladodes exhibited significative antispasmodic activity. The antispasmodic effect was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Abbreviations used: OFI: Opuntia ficus-indica , DPPH: Ethanol 1,1-diphenyl-2-picrylhydrazyl.
Basri, Aida Maryam; Taha, Hussein; Ahmad, Norhayati
2017-01-01
The rhizomes of Alpinia officinarum Hance have been used conventionally for the treatment of various ailments, triggering a wide interest from the scientific research community on this ethnomedicinal plant. This review summarizes the phytochemical and pharmacological properties of the extracts and fractions from A. officinarum, a plant species of the Zingiberaceae family. Different parts of the plant – leaves, roots, rhizomes, and aerial parts – have been extracted in various solvents – methanol, ethanol, ethyl acetate, hexane, dichloromethane, aqueous, chloroform, and petroleum ether, using various techniques – Soxhlet extraction, maceration, ultrasonication, and soaking, whereas fractionation of the plant extracts involves the solvent–solvent partition method. The extracts, fractions, and isolated compounds have been studied for their biological activities – antioxidant, antibacterial, anti-inflammatory, anticancer, antiproliferative, inhibition of enzymes, as well as the inhibition of nitric oxide production. More findings on A. officinarum are certainly important to further develop potential bioactive drug compounds. PMID:28503054
LEE, DA-HYE; AHN, JIYUN; JANG, YOUNG JIN; HA, TAE-YOUL; JUNG, CHANG HWA
2016-01-01
Zingiber mioga is a perennial herb belonging to the ginger family (Zingiberaceae) that is used medicinally to treat cough and rheumatism in China and consumed throughout Japan. The aim of the present study was to investigate the anti-obesity effects of Z. mioga following extraction with distilled water or 70% ethanol. In 3T3-L1 preadipocyte cells, Z. mioga water extract (ZMW) markedly inhibited adipogenesis, whereas the ethanol extract had no effect. In addition, we conducted ZMW feeding experiments (0.25 or 0.5% ZMW) in high-fat diet (HFD)-fed mice to examine the anti-obesity effects of Z. mioga in vivo. Body weight and serum triglyceride and cholesterol levels significantly decreased in the HFD + ZMW 0.5% group. Notably, ZMW decreased liver weight but not adipose tissue weight. Furthermore, insulin resistance and hepatic mRNA expression of gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and G6Pase, were improved in the HFD + ZMW 0.5% group. Furthermore, ZMW treatment decreased hepatic lipogenic gene expression; however, it did not alter adipogenesis in fat tissue, suggesting that ZMW inhibits hepatosteatosis through the suppression of lipogenesis. ZMW improved HFD-induced hepatic inflammation. Collectively, the present findings suggest that ZMW may serve as a new and promising strategy for the treatment of hepatosteatosis. PMID:27347064
Hassan, Waseem; Gul, Shehnaz; Rehman, Shakilla; Kanwal, Farina; Afridi, Muhammad Siddique; Fazal, Hina; Shah, Ziarat; Rahman, Ataur; da Rocha, Joao B T
2016-03-01
The present study was designed to investigate the mineral content and antimicrobial activity of Curcuma Longa extracts and its essential oil. We also determined the lipid peroxidation inhibition activity of the ethanolic extract against sodium nitroprusside (SNP) induced thiobarbituric acid reactive species (TBARS) formation in rat's brain, kidney and liver homogenates. Major constituents of essential oil identified by gas chromatography and mass spectrometry (GCMS) were beta-sesquiphellandrene (38.69%), alpha-curcumene (18.44%) and p-mentha-1,4 (8)-diene (16.29%). Atomic absorption spectroscopy (AAS) was used for the quantitative estimation of Calcium (Ca), Magnesium (Mg), Iron (Fe), Copper (Cu), Zinc (Zn), Chromium (Cr), Nickel (Ni) and Manganese (Mn). The extract showed highest Mg (49.4 mg/l) concentration followed by Ca (35.42 mg/l) and Fe (1.27 mg/l). Our data revealed that the ethanolic extract of Curcuma Longa at 1-10 mg/kg significantly inhibited TBARS production in all tested homogenates. Crude extracts and essential oil were tested against three gram positive bacteria i.e. Bacillus subtilis, Bacillus atrophoeus, Staphylococcus aureus, six gram negative bacteria i.e. Escherichia coli, Klebsiella pneumonias, Salmonella typhi, Pseudomonas aeruginosa, Erwinia carotovora, Agrobacterium tumefaciens and one fungal strain namely Candida albicans by disc diffusion assay. Essential oil showed highest anti-microbial activity as compared to the crude extracts. The present study confirms the significant antimicrobial and antioxidant potential of the studied plant, which can be considered as a diet supplement for a variety of oxidative stress induced or infectious diseases.
Abebaw, Mastewal; Mishra, Bharat; Gelayee, Dessalegn Asmelashe
2017-01-01
Osyris quadripartita (OQ) Salzm. ex Decne. has been used to treat peptic ulcer disease in Ethiopian folk medicine, but its efficacy has not been validated. The present study was therefore carried out to evaluate the anti-ulcer activity of 80% methanol leaf extract of OQ in rats. The effect of OQ extract on gastric ulcer in rats in pylorus ligation-induced and ethanol-induced models was studied using single dosing (100, 200, 400 mg/kg) and repeated dosing (200 mg/kg for 10 and 20 days) approaches. Ranitidine (50 mg/kg) and sucralfate (100 mg/kg) were used as the standard drugs. Depending on the model, outcome measures were volume and pH of gastric fluid, total acidity, ulcer score, percent inhibition of ulcer score, ulcer index as well as percent inhibition of ulcer index. Data were analyzed using one-way analysis of variance followed by Tukey’s post hoc test, and P<0.05 was considered as statistically significant. OQ significantly (P<0.001) reduced gastric ulcer index by 55.82% and 62.11%, respectively, in pylorus ligation-induced and ethanol-induced ulcer models at the 400 mg/kg dose, which is comparable to the standard drugs. Ten and 20 days pre-treatment with OQ200 exhibited significant (P<0.001) ulcer inhibition by 66.48% and 68.36% (pylorus ligation-induced model) as well as 71.48% and 85.35% (ethanol-induced model), respectively. OQ possesses both dose-dependent and time-dependent anti-ulcer effect in the two models. The oral median lethal dose (LD50) is estimated to be higher than 2000 mg/kg for the crude hydroalcoholic extract, and secondary metabolites such as flavonoids, tannins, and saponins were present. The findings of this study confirmed that OQ has anti-ulcer pharmacologic activity due to one or more of the secondary metabolites present in it. Therefore, this study validates its anti-ulcer use in Ethiopian folk medicine. Further investigations on isolation of specific phytochemicals and elucidating mechanisms of action are needed. PMID:28144167
Black, J A; Foarde, K K; Menetrez, M Y
2006-08-01
It is well known that non-viable mold contaminants such as macrocyclic trichothecene mycotoxins of Stachybotrys chartarum are highly toxinigenic to humans. However, the method of recovering native mycotoxin has been without consensus. Inconsistencies occur in the methods of isolation, suspension, preparation, and quantitation of the mycotoxin from the spores. The purpose of this study was to provide quantitatively comparative data on three concurrent preparations of 10(6)S. chartarum spores. The experiments were designed to specifically evaluate a novel method of mycotoxin extraction, solubilization, and the subsequent inhibitory effect in an established in vitro luminescence protein translation assay from 30 day-old spores. The mycotoxin-containing spores swabbed from wallboard cultures were milled with and without glass beads in 100% methanol, 95% ethanol, or water. Milled spore lysates were cleared of cell debris by filter centrifugation followed by a second centrifugation through a 5000 MWCO filter to remove interfering proteins and RNases. Cleared lysate was concentrated by centrivap and suspended in either alcohol or water as described. The suspensions were used immediately in the in vitro luminescence protein translation assay with the trichothecene, T-2 toxin, as a control. Although, mycotoxin is reported to be alcohol soluble, the level of translation inhibition was not reliably satisfactory for either the methanol or ethanol preparations. In fact, the methanol and ethanol control reactions were not significantly different than the alcohol prepared spore samples. In addition, we observed that increasing amounts of either alcohol inhibited the reaction in a dose dependent manner. This suggests that although alcohol isolation of mycotoxin is desirable in terms of time and labor, the presence of alcohol in the luminescence protein translation reaction was not acceptable. Conversely, water extraction of mycotoxin demonstrated a dose dependent response, and there was significant difference between the water controls and the water extracted mycotoxin reactions. In our hands, water was the best extraction agent for mycotoxin when using this specific luminescence protein translation assay kit.
Biological properties of the Chilean native moss Sphagnum magellanicum.
Montenegro, Gloria; Portaluppi, Mariana C; Salas, Francisco A; Díaz, María F
2009-01-01
An ethanol extract prepared from the gametophyte Chilean native moss Sphagnum magellanicum was dried out, weighed and dissolved in distilled water. This extract was then assayed for its antibacterial activity against the G(-) bacteria Azotobacter vinelandii, Erwinia carotovora subsp. carotovora, Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, and the G(+) bacteria Staphylococcus aureus subsp. aureus, and Streptococcus type beta. The growth of the cultures of E. carotovora subsp. carotovora, and V. cholerae was inhibited at a concentration of 581 microg/ml of extract, while the cultures of E. coli, S. typhi and Streptococcus type beta were inhibited at a concentration of 1.16 microg/mL of extract. The concentration of phenolic compounds was 4.294 mg/mL; the presence of vanillic, chlorogenic, syringic, caffeic, gallic, 3-4 hydrozybenzoic, p-coumaric and salicylic acids was identified using RP- High Pressure Liquid Chromatography.
Nagarsekar, K. S.; Nagarsenker, M. S.; Kulkarni, S. R.
2011-01-01
Supercritical fluid extract and ethanol extract of Vitex negundo Linn. were subjected to the chromatographic evaluation for identification of their constituents. Free radical scavenging activity of both extracts was studied by subjecting them to DPPH assay. IC50 values of ethanol and supercritical fluid extract of Vitex negundo indicate that ethanol extract has stronger reducing potential and ability to scavenge free radicals as compared to the supercritical fluid extract. The in vivo effect of extracts on lipid peroxidation was studied using ethanol induced oxidative stress model in rat. Ingestion of extracts for 14 days exhibited significant reduction in plasma MDA level of stressed animals. Ethanol extract exhibited higher in vivo antilipid peroxidation potential as compared to supercritical fluid extract which correlated well with radical scavenging potential of extract. PMID:22707827
Oku, Naoya; Yonejima, Kohsuke; Sugawa, Takao; Igarashi, Yasuhiro
2014-01-01
The cyanobacterium Nostoc verrucosum occurs in cool, clear streams and its gelatinous colonies, called "ashitsuki," have been eaten in ancient Japan. Its ethanolic extract was found to inhibit the growth of Gram-positive bacteria and activity-guided fractionation yielded an unusual n-1 fatty acid, (9Z,12Z)-9,12,15-hexadecatrienoic acid (1), as one of the active principles. It inhibited the growth of Staphylococcus aureus at MIC 64 μg/mL.
Huang, Xuelian; Deng, Meng; Liu, Mingdong; Cheng, Lei; Exterkate, R.A.M.; Li, Jiyao; Zhou, Xuedong; Ten Cate, Jacob. M.
2017-01-01
Objectives: Galla chinensis water extract (GCE) has been demonstrated to inhibit dental caries by favorably shifting the demineralization/remineralization balance of enamel and inhibiting the biomass and acid formation of dental biofilm. The present study focused on the comparison of composition and anticaries effect of Galla chinensis extracts with different isolation methods, aiming to improve the efficacy of caries prevention. Methods: The composition of water extract (GCE), ethanol extract (eGCE) and commercial tannic acid was compared. High performance liquid chromatography coupled to electrospray ionization-time of flight-mass spectrometry (HPLC-ESI-TOF-MS) analysis was used to analyze the main ingredients. In vitro pH-cycling regime and polymicrobial biofilms model were used to assess the ability of different Galla chinensis extracts to inhibit enamel demineralization, acid formation and biofilm formation. Results: All the GCE, eGCE and tannic acid contained a high level of total phenolics. HPLC-ESI-TOF-MS analysis showed that the main ingredients of GCE were gallic acid (GA), while eGCE mainly contained 4-7 galloylglucopyranoses (GGs) and tannic acid mainly contained 5-10 GGs. Furthermore, eGCE and tannic acid showed a better effect on inhibiting enamel demineralization, acid formation and biofilm formation compared to GCE. Conclusions: Galla chinensis extracts with higher tannin content were suggested to have higher potential to prevent dental caries. PMID:28979574
Maietta, Mariarosa; Colombo, Raffaella; Lavecchia, Roberto; Sorrenti, Milena; Zuorro, Antonio; Papetti, Adele
2017-10-01
The role of polyphenolic compounds extractable from artichoke solid wastes in the formation of advanced glycation end products (AGEs) was studied. Outer bracts and stems were extracted using different water-ethanol mixtures and HPLC-DAD analyses indicated aqueous and hydro-alcoholic 20:80 stem extracts as the richest in polyphenols. The samples were characterized in their phenolic composition (using mass spectrometry) and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-sugars (glucose, fructose, and ribose) and BSA-methylglyoxal (MGO) tests, formation of Amadori products assay, direct glyoxal (GO) and MGO trapping capacity. Results indicated both extracts as effective inhibitors of fructosamine formation and antiglycative agents. In particular, aqueous extract showed the best activity in the systems containing glucose and fructose, differently from ethanolic extract, that was demonstrated able to better inhibit AGEs formation when ribose or MGO act as precursors. Ethanolic extract was also shown to be able to trap MGO and GO, with efficiency increasing after 24hours of incubation time. These activities are partially correlated with the antioxidant effect of the extract, as demonstrated by the scavenger capacity against ABTS cation and DPPH stable radicals; this relationship is evident when the model system, containing protein incubated with ribose or MGO, is considered. The different activities of the tested extracts could probably be ascribed to the different composition in chlorogenic acids (CQAs), being aqueous extract richer in 1-CQA, 3-CQA, and 1,3-di-CQA, and ethanolic extract in 5-CQA, caffeic acid, 1,5-di-CQA. These findings support further investigations to study the stability of the different CQAs in simil-physiological conditions and the feasibility of artichoke waste as antiglycative agents in food or pharmacological preparations. 5-caffeoylquinic acid (PubChem CID 5280633); 3-caffeoylquinic acid (PubChem CID 1794427); 1-caffeoylquinic acid (PubChem CID 10155076); 1,3-di-caffeoylquinic acid (PubChem CID 24720973); 1,5 - di-caffeoylquinic acid (PubChem CID 122685); caffeic acid (PubChem CID 689043); apigenin-7-glucuronide (PubChem CID 5319484); methylglyoxal PubChem CID (880); aminoguanidine hydrochloride (PubChem CID 2734687). Copyright © 2017 Elsevier Ltd. All rights reserved.
Masuda, Megumi; Itoh, Kimihisa; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki
2012-01-01
The objective of this study was to examine the effects of Morinda citrifolia (noni) extract and its constituents on α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells). A 50% ethanolic extract of noni seeds (MCS-ext) showed significant inhibition of melanogenesis with no effect on cell proliferation. MCS-ext was more active than noni leaf and fruit flesh extracts. Activity guided fractionation of MCS-ext led to the isolation of two lignans, 3,3'-bisdemethylpinoresinol (1) and americanin A (2), as active constituents. To elucidate the mechanism of melanogenesis inhibition by the lignans, α-MSH-stimulated B16 cells were treated with 1 (5 μM) and 2 (200 μM). Time-dependent increases of intracellular melanin content and tyrosinase activity, during 24 to 72 h, were inhibited significantly by treatment with the lignans. The activity of 1 was greater than that of 2. Western blot analysis suggested that the lignans inhibited melanogenesis by down regulation of the levels of phosphorylation of p38 mitogen-activated protein kinase, resulting in suppression of tyrosinase expression.
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.
Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts.
Di Petrillo, Amalia; González-Paramás, Ana Maria; Era, Benedetta; Medda, Rosaria; Pintus, Francesca; Santos-Buelga, Celestino; Fais, Antonella
2016-11-09
Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging activity, which could be mainly attributed to its high levels of total polyphenols and flavonoids. These results suggest that A. microcarpus has a great potential as sources of bioactive compounds which could be used as depigmenting agents in skin disorders.
Wassel, Mariem O; Khattab, Mona A
2017-07-01
Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.
Ethanol immunosuppression in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D.R.
Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2more » production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.« less
Hossain, Mohammed Munawar; Kabir, Mohammad Shah Hafez; Dinar, Md Abu Monsur; Arman, Md Saiful Islam; Rahman, Md Mominur; Hosen, S M Zahid; Dash, Raju; Uddin, Mir Muhammad Nasir
2017-09-26
The objective of the study was to evaluate the antidiarrheal and antinociceptive activities of ethanol extract and its chloroform and pet ether fraction of Phrynium imbricatum (Roxb.) leaves in mice. In the present study, the dried leaves of P. imbricatum were subjected to extraction with ethanol, and then it was fractioned by chloroform and pet ether solvent. Antidiarrheal effects were tested by using castor oil-induced diarrhea, castor oil-induced enteropooling, and gastrointestinal transit test. Antinociceptive activity was evaluated by using the acetic acid-induced writhing test and formalin-induced paw licking test. The standard drug loperamide (5 mg/kg) showed significant (p<0.001) inhibitory activity against castor oil-induced diarrhea, in which all the examined treatments decreased the frequency of defecation and were found to possess an anti-castor oil-induced enteropooling effect in mice by reducing both weight and volume of intestinal content significantly, and reducing the propulsive movement in castor oil-induced gastrointestinal transit using charcoal meal in mice. The results showed that the ethanol extract of P. imbricatum leaves has significant dose-dependent antinociceptive activity, and among its two different fractions, the pet ether fraction significantly inhibited the abdominal writhing induced by acetic acid and the licking times in formalin test at both phases. These findings suggest that the plant may be a potential source for the development of a new antinociceptive drug and slightly suitable for diarrhea, as it exhibited lower activity. Our observations resemble previously published data on P. imbricatum leaves.
Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri
2015-01-01
To assess and compare the antimicrobial potential and determine the minimum inhibitory concentration (MIC) of Jasminum grandiflorum and Hibiscus rosa-sinensis extracts as potential anti-pathogenic agents in dental caries. Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum and Hibiscus rosa-sinensis were screened for in vitro antimicrobial activity against Streptococcus mutans and Lactobacillus acidophilus using the agar well diffusion method. The lowest concentration of every extract considered as the minimum inhibitory concentration (MIC) was determined for both test organisms. Statistical analysis was performed with one-way analysis of variance (ANOVA). At lower concentrations, hot ethanol Jasminum grandiflorum (10 μg/ml) and Hibiscus rosa-sinensis (25 μg/ml) extracts were found to have statistically significant (P≤0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 μg/ml and 25 μg/ml, respectively. A proportional increase in their antimicrobial activity (zone of inhibition) was observed. Both extracts were found to be antimicrobially active and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.
Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong
2015-06-01
The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paulino, Niraldo; Dantas, Andreia Pires; Bankova, Vassya; Longhi, Daniela Taggliari; Scremin, Amarilis; de Castro, Solange Lisboa; Calixto, João Batista
2003-11-01
Propolis is a bee product, which has long been used in folk medicine for the management of different diseases. In this study we evaluated the analgesic and anti-inflammatory effects of a standard ethanolic extract of Bulgarian propolis (Et-Blg) in mice and its in vitro effect on airway smooth muscle. Et-Blg inhibited acetic acid-induced abdominal contortions with an ID(50) = 7.4 +/- 0.7 mg. kg(-1). In the formalin test, the extract caused a significant reduction in pain in mice treated with 100 mg. kg(-1) Et-Blg during the neurogenic phase and for the inflammatory phase with all doses of the extract, with an ID(50) = 2.5 +/- 0.4 mg. kg(-1). Et-Blg inhibited also the capsaicin-induced ear edema in mice; however, this extract was ineffective when assessed in the tail-flick and hot-plate thermal assays. The analgesic effect of Et-Blg was associated with the inhibition of inflammatory responses and not to a simple irritation of nervous terminals. In vitro, this extract inhibited the contraction of trachea smooth muscle induced by histamine (IC(50) = 50 +/- 5 microg. mL(-1)), capsaicin (IC(50) = 26.8 +/- 3 microg. mL(-1)), 80 mM KCl (IC(50) = 27.8 +/- 3 microg. mL(-1)), and carbachol (IC(50) = 54 +/- 2 microg. mL(-1)).
Teixeira, Bárbara; Marques, António; Ramos, Cristina; Serrano, Carmo; Matos, Olívia; Neng, Nuno R; Nogueira, José M F; Saraiva, Jorge Alexandre; Nunes, Maria Leonor
2013-08-30
There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. The major components of oregano essential oil were carvacrol, β-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry. © 2013 Society of Chemical Industry.
Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4.
Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C
2011-01-01
Seventeen Cree antidiabetic medicinal plants were studied to determine their potential to inhibit cytochrome P450 3A4 (CYP3A4) through mechanism-based inactivation (MBI). The ethanolic extracts of the medicinal plants were studied for their inhibition of CYP3A4 using the substrates testosterone and dibenzylfluorescein (DBF) in high pressure liquid chromatography (HPLC) and microtiter fluorometric assays, respectively. Using testosterone as a substrate, extracts of Alnus incana, Sarracenia purpurea, and Lycopodium clavatum were identified as potent CYP3A4 MBIs, while those from Abies balsamea, Picea mariana, Pinus banksiana, Rhododendron tomentosum, Kalmia angustifolia, and Picea glauca were identified as less potent inactivators. Not unexpectedly, the other substrate, DBF, showed a different profile of inhibition. Only A. balsamea was identified as a CYP3A4 MBI using DBF. Abies balsamea displayed both NADPH- and time-dependence of CYP3A4 inhibition using both substrates. Overall, several of the medicinal plants may markedly deplete CYP3A4 through MBI and, consequently, decrease the metabolism of CYP3A4 substrates including numerous medications used by diabetics.
Ross, D H; Garrett, K M; Cardenas, H L
1985-02-01
Acute administration of ethanol (2.5 gm/kg, i.p.) to rats inhibits the cytosolic buffering of Ca2+ in nerve terminals. Ca2+ ATPase and ATP-dependent Ca2+ uptake are both inhibited 30 min after a single dose of ethanol. Chronic ethanol administration (6%, 14 days) did not inhibit Ca2+ ATPase but significantly stimulated ATP-dependent Ca2+ uptake. Lubrol WX treatment of acute ethanolic membranes reverses the inhibition of Ca2+ ATPase seen following ethanol. Lubrol WX treatment of chronic ethanolic membranes prevents the increase in ATP-dependent Ca2+ uptake seen in ethanolic membranes. Both acute and chronic ethanol-induced changes in Ca2+ transport within nerve terminals may involve lipid-dependent parameters of the membrane which may underlie neuronal adaptation.
Li, Kejuan; Lei, Zhongfang; Hu, Xuansheng; Sun, Shuang; Li, Shuhong; Zhang, Zhenya
2015-08-22
Helicteres angustifolia L. (H. angustifolia L.) has been used as traditional medicine in the treatment of cancer in China and Laos. Its medical benefits, however, are still lacking of scientific evidence. Two extracts successively obtained from the root of H. angustifolia L., namely the aqueous root extract (ARE) and the ethanolic root extract (ERE), were used to evaluate the antioxidant and anticancer activities in vitro, and the antitumor efficacy of ARE was examined in vivo, respectively. ARE and ERE were extracted successively from H. angustifolia L. root with water and ethanol. In vitro antioxidant activities were assessed by radicals scavenging assay, ferrous chelating assay and reducing power assay. In vitro anticancer activities of ARE and ERE were evaluated by their cytotoxic effects against three human cancer cell lines. In addition, the anti-tumor activities of ARE in vivo were assessed by using Ht1080 (human fibrosarcoma cell line Ht1080) tumor xenografts mice. BALB/c nude mice were orally administrated with 200mg/kg/d of ARE. The tumor inhibition rate was determined on day 42 after treatment by using histopathology analysis of the tumor tissues. Furthermore, relevant biochemical parameters in blood were analyzed to monitor their cytotoxic effect. In vitro assays indicated that ARE possessed relatively higher antioxidant and anticancer activities than ERE, with IC50 values of 82.31 ± 9.62, 62.50 ± 6.99, and 127.49 ± 2.9 μg/mL against DLD-1, A549, and HepG2 cells, respectively. In vivo tumor inhibition experiments suggested that ARE possessed significant antitumor efficacy in BALB/c nude mice with a tumor inhibition rate of 49.83 ± 14.38% (p<0.05) and little toxicity was observed to the host. ARE from H. angustifolia L. possessed high antioxidant activities is active against liver cancer HepG2, lung cancer A549 and colon cancer DLD-1 cells in vitro and tumor xenografts bearing BALB/c nude mice in vivo. Further studies on elucidation of the mechanisms involved and isolation of the active components may provide more valuable information for the development of functional products from H. angustifolia L. and their application in cancer treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Salahdeen, Hussein M; Idowu, Gbolahan O; Yemitan, Omoniyi K; Murtala, Babatunde A; Alada, Abdul Rasak A
2015-03-01
The effect of Tridax procumbens aqueous ethanolic extract on the rat corpus cavernosum smooth muscles was evaluated in the present study. Corpus cavernosum strips obtained from healthy, young, adult male Wistar albino rats (250-300 g) were precontracted with phenylephrine (10-7 M) or KCl (60 mM) and then treated with various concentrations of T. procumbens extract (0.15-1.05 mg/mL). The change in corpus cavernosum strip tension was recorded. The interactions between T. procumbens extract with acetylcholine and with sodium nitroprusside were also evaluated. The results indicated that corpus cavernosum strips relaxation induced by T. procumbens extract was concentration-dependent and this was significant (p<0.5). Pre-treatment with a nitric oxide synthase (NOS) inhibitor (N(1) nitro-L-arginine-methyl ester, l-NAME), did not completely inhibit the relaxation. However, T. procumbens extract (0.6 mg/mL) significantly (p<0.5) enhanced both acetylcholine- and sodium nitroprusside-induced corpus cavernosum strips relaxation. RESULTS suggest that T. procumbens extract has a concentration-dependent relaxant effect on the isolated rat corpus cavernosum. The mechanism of action of T. procumbens extract is complex. A part of its relaxing effect is mediated directly by the release of NO from endothelium which may improve erectile dysfunction.
Alves, Daniela Ribeiro; Maia de Morais, Selene; Tomiotto-Pellissier, Fernanda; Miranda-Sapla, Milena Menegazzo; Vasconcelos, Fábio Roger; da Silva, Isaac Neto Goes; Araujo de Sousa, Halisson; Assolini, João Paulo; Conchon-Costa, Ivete; Pavanelli, Wander Rogério; Freire, Francisco das Chagas Oliveira
2017-01-01
Caryocar coriaceum fruits, found in Brazilian Cerrado and Caatinga, are commonly used as food and in folk medicine, as anti-inflammatory, bactericide, fungicide, leishmanicide, and nematicide. Due to the biological potential of this plant, this study focuses on the evaluation of antifungal and antileishmanial activities, including anticholinesterase and antioxidant tests, correlating with total phenols and flavonoids content. Peel extracts contain higher yield of phenols and flavonoids as analyzed by spectrophotometric methods. HPLC analysis of flavonoids revealed that isoquercitrin is the main flavonoid in both parts of the fruit, and peel extract showed the best antioxidant activity. In the inhibition of the acetylcholinesterase assay, both extracts demonstrate action comparable to physostigmine. The antimicrobial activity of extracts was evaluated against strains of Malassezia sp. and Microsporum canis , using the broth microdilution technique, in which the extracts showed similar MIC and MFC. The extracts present antileishmanial activity and low toxicity on murine macrophages and erythrocytes. Therefore, these results suggest a potential for the application of C. coriaceum fruit's ethanol extracts in the treatment against dermatophyte fungi and leishmaniasis, probably due to the presence of active flavonoids. Further in vivo studies are recommended aiming at the development of possible new pharmaceutical compounds.
Alves, Daniela Ribeiro; Tomiotto-Pellissier, Fernanda; da Silva, Isaac Neto Goes; Araujo de Sousa, Halisson; Assolini, João Paulo; Freire, Francisco das Chagas Oliveira
2017-01-01
Caryocar coriaceum fruits, found in Brazilian Cerrado and Caatinga, are commonly used as food and in folk medicine, as anti-inflammatory, bactericide, fungicide, leishmanicide, and nematicide. Due to the biological potential of this plant, this study focuses on the evaluation of antifungal and antileishmanial activities, including anticholinesterase and antioxidant tests, correlating with total phenols and flavonoids content. Peel extracts contain higher yield of phenols and flavonoids as analyzed by spectrophotometric methods. HPLC analysis of flavonoids revealed that isoquercitrin is the main flavonoid in both parts of the fruit, and peel extract showed the best antioxidant activity. In the inhibition of the acetylcholinesterase assay, both extracts demonstrate action comparable to physostigmine. The antimicrobial activity of extracts was evaluated against strains of Malassezia sp. and Microsporum canis, using the broth microdilution technique, in which the extracts showed similar MIC and MFC. The extracts present antileishmanial activity and low toxicity on murine macrophages and erythrocytes. Therefore, these results suggest a potential for the application of C. coriaceum fruit's ethanol extracts in the treatment against dermatophyte fungi and leishmaniasis, probably due to the presence of active flavonoids. Further in vivo studies are recommended aiming at the development of possible new pharmaceutical compounds. PMID:29081821
Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549
NASA Astrophysics Data System (ADS)
Lee, W. D.; Liang, Y. J.; Chen, B. H.
2016-12-01
Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.
Brzozowski, Tomasz; Konturek, Peter C; Drozdowicz, Danuta; Konturek, Stanislaw J; Zayachivska, Oxana; Pajdo, Robert; Kwiecien, Slawomir; Pawlik, Wieslaw W; Hahn, Eckhart G
2005-11-07
Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown. We compared the effects of GSE on gastric mucosal lesions induced in rats by topical application of 100% ethanol or 3.5 h of water immersion and restraint stress (WRS) with or without (A) inhibition of cyclooxygenase (COX)-1 activity by indomethacin and rofecoxib, the selective COX-2 inhibitor, (B) suppression of NO-synthase with L-NNA (20 mg/kg ip), and (C) inactivation by capsaicin (125 mg/kg sc) of sensory nerves with or without intragastric (ig) pretreatment with GSE applied 30 min prior to ethanol or WRS. One hour after ethanol and 3.5 h after the end of WRS, the number and area of gastric lesions were measured by planimetry, the gastric blood flow (GBF) was assessed by H2-gas clearance technique and plasma gastrin levels and the gastric mucosal generation of PGE2, superoxide dismutase (SOD) activity and malonyldialdehyde (MDA) concentration, as an index of lipid peroxidation were determined. Ethanol and WRS caused gastric lesions accompanied by the significant fall in the GBF and SOD activity and the rise in the mucosal MDA content. Pretreatment with GSE (8-64 mg/kg i g) dose-dependently attenuated gastric lesions induced by 100% ethanol and WRS; the dose reducing these lesions by 50% (ID50) was 25 and 36 mg/kg, respectively, and this protective effect was similar to that obtained with methyl PGE2 analog (5 microg/kg i g). GSE significantly raised the GBF, mucosal generation of PGE2, SOD activity and plasma gastrin levels while attenuating MDA content. Inhibition of PGE2 generation with indomethacin or rofecoxib and suppression of NO synthase by L-NNA or capsaicin denervation reversed the GSE-induced protection and the accompanying hyperemia. Co-treatment of exogenous calcitonine gene-related peptide (CGRP) with GSE restored the protection and accompanying hyperemic effects of GSE in rats with capsaicin denervation. GSE exerts a potent gastroprotective activity against ethanol and WRS-induced gastric lesions via an increase in endogenous PG generation, suppression of lipid peroxidation and hyperemia possibly mediated by NO and CGRP released from sensory nerves.
Brzozowski, Tomasz; Konturek, Peter C; Drozdowicz, Danuta; Konturek, Stanislaw J; Zayachivska, Oxana; Pajdo, Robert; Kwiecien, Slawomir; Pawlik, Wieslaw W; Hahn, Eckhart G
2005-01-01
AIM: Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown. METHODS: We compared the effects of GSE on gastric mucosal lesions induced in rats by topical application of 100% ethanol or 3.5 h of water immersion and restraint stress (WRS) with or without (A) inhibition of cyclooxygenase (COX)-1 activity by indomethacin and rofecoxib, the selective COX-2 inhibitor, (B) suppression of NO-synthase with L-NNA (20 mg/kg ip), and (C) inactivation by capsaicin (125 mg/kg sc) of sensory nerves with or without intragastric (ig) pretreatment with GSE applied 30 min prior to ethanol or WRS. One hour after ethanol and 3.5 h after the end of WRS, the number and area of gastric lesions were measured by planimetry, the gastric blood flow (GBF) was assessed by H2-gas clearance technique and plasma gastrin levels and the gastric mucosal generation of PGE2, superoxide dismutase (SOD) activity and malonyldialdehyde (MDA) concentration, as an index of lipid peroxidation were determined. RESULTS: Ethanol and WRS caused gastric lesions accompanied by the significant fall in the GBF and SOD activity and the rise in the mucosal MDA content. Pretreatment with GSE (8-64 mg/kg i g) dose-dependently attenuated gastric lesions induced by 100% ethanol and WRS; the dose reducing these lesions by 50% (ID50) was 25 and 36 mg/kg, respectively, and this protective effect was similar to that obtained with methyl PGE2 analog (5 μg/kg i g). GSE significantly raised the GBF, mucosal generation of PGE2, SOD activity and plasma gastrin levels while attenuating MDA content. Inhibition of PGE2 generation with indomethacin or rofecoxib and suppression of NO synthase by L-NNA or capsaicin denervation reversed the GSE-induced protection and the accompanying hyperemia. Co-treatment of exogenous calcitonine gene-related peptide (CGRP) with GSE restored the protection and accompanying hyperemic effects of GSE in rats with capsaicin denervation. CONCLUSION: GSE exerts a potent gastroprotective activity against ethanol and WRS-induced gastric lesions via an increase in endogenous PG generation, suppression of lipid peroxidation and hyperemia possibly mediated by NO and CGRP released from sensory nerves. PMID:16425415
Woode, Eric; Ameyaw, Elvis O; Boakye-Gyasi, Eric; Abotsi, Wonder K M
2012-10-01
Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE) and xylopic acid (XA), in murine models. XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (Tail-flick and Hargreaves thermal hyperalgesia tests), and mechanical (Randall-Selitto paw pressure test) pain models. XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg(-1), p.o.) and XA (10-100 mg kg(-1), p.o.) inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory), thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg(-1), i.p.) and diclofenac (1-10 mg kg(-1), i.p.), used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid.
Evaluation of In Vitro Antioxidant Potential of Cordia retusa
Amudha, Murugesan; Rani, Shanmugam
2016-01-01
The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant. PMID:27168685
Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts.
Loizzo, Monica R; Tundis, Rosa; Menichini, Federica; Pugliese, Alessandro; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco
2010-12-01
The metal chelating activity, antioxidant properties and the effect on carbohydrate-hydrolysing enzyme inhibition of Muscari comosum extracts have been investigated. M. comosum bulbs contain a total amount of the phenols with a value of 56.6 mg chlorogenic acid equivalent per gram of extract and a flavonoid content of 23.4 mg quercetin equivalent per gram of extract. In order to evaluate the non-polar constituents, n-hexane extract was obtained. Gas chromatography-mass spectrometry analysis revealed the presence of fatty acids and ethyl esters as major constituents, with different aldehydes and alkanes as minor components. Ethanolic extract had the highest ferric-reducing ability power (66.7 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC₅₀) value of 40.9 μg/ml. Moreover, this extract exhibited a good hypoglycaemic activity with IC₅₀ values of 81.3 and 112.8 μg/ml for α-amylase and α-glucosidase, respectively. In conclusion, M. comosum bulbs show promising antioxidant and hypoglycaemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from a functional point of view and for the revalorization of this ancient non-cultivated vegetable of Mediterranean traditional gastronomy.
Microbial growth and quorum sensing antagonist activities of herbal plants extracts.
Al-Hussaini, Reema; Mahasneh, Adel M
2009-09-03
Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.
Evaluation of biological potential of selected species of family Poaceae from Bahawalpur, Pakistan.
Fatima, Iram; Kanwal, Sobia; Mahmood, Tariq
2018-01-24
Oxidative stress as well as bacterial and fungal infections are common source of diseases while plants are source of medication for curative or protective purposes. Hence, aim of study was to compare the pharmacological potential of seven grass species in two different solvents i.e. ethanol and acetone. Preliminary phytochemical tests were done and antioxidant activities were evaluated using ELISA and their IC50 values and AAI (%) were recorded. ANOVA was used for statistical analyses. DNA damage protection assay was done using p1391Z plasmid DNA and DNA bands were analyzed. Antimicrobial activity was done via disc diffusion method and MIC and Activity Index were determined. Cytotoxic activity was carried out using the brine shrimps' assay and LC50 values were calculated using probit analysis program. Phytochemical studies confirmed the presence of secondary metabolites in most of the plant extracts. Maximum antioxidant potential was revealed in DiAEE, DiAAE (AAI- 54.54% and 43.24%) and DaAEE and DaAAE (AAI- 49.13% and 44.52%). However, PoAEE and PoAAE showed minimum antioxidant potential (AAI- 41.04% and 34.11%). SaSEE, DiAEE and ElIEE showed very little DNA damage protection activity. In antimicrobial assay, DaAEE significantly inhibited the growth of most of the microbial pathogens (nine microbes out of eleven tested microbes) among ethanol extracts while DaAAE and ImCAE showed maximum inhibition (eight microbes out of eleven tested microbes) among acetone plant extracts. However, PoAEE and PoAAE showed least antimicrobial activity. F. oxysporum and A. niger were revealed as the most resistant micro-organisms. ImCEA and ImCAE showed maximum cytotoxic potential (LC50 11.004 ppm and 7.932 ppm) as compared to the other plant extracts. Fodder grasses also contains a substantial phenols and flavonoids contents along with other secondary metabolites and, hence, possess a significant medicinal value. Ethanol extracts showed more therapeutic potential as compared to the acetone extracts. This study provides experimental evidence that the selected species contains such valuable natural compounds which can be used as medicinal drugs in future.
Chao, Bin; Liu, Ruiliang; Zhang, Xueling; Zhang, Xu; Tan, Tianwei
2017-10-01
The bioethanol production from a novel non-grain feedstock, acorn starch, was studied in this work. The inhibition of tannin in strain growth was investigated, and the effect of tannin was negligible when the tannin concentration was lower than 1g/L in medium. Therefore, the extraction of tannin was performed using 40% (v/v) ethanol-water solution as the solvent for three times under the conditions of solid/liquid ratio 1:20, 60°C, 3h, by which more than 80% of tannin in acorn was extracted and the content of tannin in acorn decreased from 7.4% (w/w) to 1.5% (w/w). Very high gravity (VHG) fermentation technology was subsequently carried out to achieve a high ethanol concentration at 86.4g/L. A comprehensive process for bioethanol production from acorn starch was designed and a preliminary economic assessment was then performed revealing that this process appeared technically and economically justified. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pristiwanto, Bambang; Soewondo, A.; Sumitro, Sutiman B.; Rifa'i, Muhaimin
2017-05-01
One of the most significant problems today is to treat the effects of metabolic diseases, such as diabetes. Thus, this study evaluated the ability of an ethanolic extract of propolis (EEP) to reduce inflammation in diabetes treatment. The used mice with STZ-induced diabetes mellitus (SID) and the expression of Toll-Like Receptor 3-4 was analyzed in their innate immunity cells. The SID mice had a higher TLR 3-4 expression compared with the healthy control group. Treatment of EEP in SID using three different doses significantly decreased the number of B cells with TLR 3-4 expression. This suggesting that EEP treatment decreases TLR3 & TLR4 expression on innate immunity (especially B cells) from over expression in SID which can affect the acute inflammatory and aggravate the diabetes condition. Even relatively low doses of propolis extract can decrease TLR3 and TLR4 expressed by B cell.
Brandão, Geraldo Célio; Kroon, Erna G.; Souza Filho, José D.
2017-01-01
A phytochemical study of Fridericia formosa (Bignoniaceae) ethanol extracts of leaves, stems, and fruits was guided by in vitro assays against vaccinia virus Western Reserve (VACV-WR), human herpes virus 1 (HSV-1), murine encephalomyocarditis virus (EMCV), and dengue virus type 2 (DENV-2) by the MTT method. All the ethanol extracts were active against DENV-2, HSV-1, and VACV-WR with best results for the fruits extract against DENV-2 (SI > 38.2). For VACV-WR and HSV-1, EC50 values > 200 μg mL−1 were determined, while no inhibition of the cytopathic effect was observed with EMCV. Five compounds were isolated and identified as the C-glucosylxanthones mangiferin (1), 2′-O-trans-caffeoylmangiferin (2), 2′-O-trans-coumaroylmangiferin (3), 2′-O-trans-cinnamoylmangiferin (5), and the flavonoid chrysin (4). The most active compound was 2′-O-trans-coumaroylmangiferin (3) with SI > 121.9 against DENV-2 and 108.7 for HSV-1. These results indicate that mangiferin cinnamoyl esters might be potential antiviral drugs. PMID:28634494
Xu, Minfu; Smothers, C. Thetford
2015-01-01
N-Methyl-d-aspartate receptors (NMDARs) are inhibited by behaviorally relevant concentrations of ethanol, and residues within transmembrane (TM) domains of NMDARs, including TM3 GluN1 phenylalanine 639 (F639), regulate this sensitivity. In the present study, we used cysteine (C) mutagenesis to determine whether there are additional residues within nearby TM domains that regulate ethanol inhibition on NMDARs. GluN1(F639C)/GluN2A receptors were less inhibited by ethanol than wild-type receptors, and inhibition was restored to wild-type levels following treatment with ethanol-like methanethiosulfonate reagents. Molecular modeling identified six residues in the GluN1 TM1 domain (valine V566; serine S569) and the GluN2A TM4 domain (methionine, M817; V820, F821, and leucine, L824) that were in close vicinity to the TM3 F639 residue, and these were individually mutated to cysteine and tested for ethanol inhibition and receptor function. The F639C-induced decrease in ethanol inhibition was blunted by coexpression of GluN1 TM1 mutants V566C and S569C, and statistically significant interactions were observed for ethanol inhibition among V566C, F639C, and GluN2A TM4 mutants V820C and F821C and S569C, F639C, and GluN2A TM4 mutants F821C and L824C. Ethanol inhibition was also reduced when either GluN1 TM1 mutant V566C or S569C was combined with GluN2A V820C, suggesting a novel TM1:TM4 intrasubunit site of action for ethanol. Cysteines substituted at TM3 and TM4 sites previously suggested to interact with ethanol had less dramatic effects on ethanol inhibition. Overall, the results from these studies suggest that interactions among TM1, TM3, and TM4 amino acids in NMDARs are important determinants of ethanol action at these receptors. PMID:25635140
Habtemariam, S
1998-05-01
Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.
Alimi, Hichem; Mbarki, Sakhria; Barka, Zeineb B; Feriani, Anwer; Bouoni, Zouhour; Hfaeidh, Najla; Sakly, Mohsen; Tebourbi, Olfa; Rhouma, Khémais B
2013-03-01
Rhus tripartitum (sumac) is an Anacardiaceae tree with a wide phytotherapeutic application including the use of its roots in the management of gastric ulcer. In the present study the Rhus tripartitum root barks extract (RTE) was phytochemical studied, in vitro tested for their potential antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reducing power assay and in vivo evaluated for its ability to prevent ethanol-induced gastric ulcer in rats. The RTE was rich in phenolics, flavonoids, tannins and polysaccharide contents and exhibited a low but not weak in vitro antioxidant activity when compared with (+)-catechin. Pre-treatment with RTE at oral doses 50, 200 and 400 mg/kg body weight was found to provide a dose-dependent protection against ethanol-induced ulcer by averting the deep ulcer lesions of the gastric epithelium, by reducing gastric juice and acid output, by enhancing gastric mucus production by preserving normal antioxidant enzymes activities, and inhibiting the lipid peroxidation. The antiulcerogenic activity of RTE might be due to a possible synergistic antioxidant and antisecretory effects.
2014-01-01
Background Antioxidant compounds like phenols and flavonoids scavenge free radicals and thus inhibit the oxidative mechanisms that lead to control degenerative and other diseases. The aim of this study was to investigate the antioxidant activity in vitro, total phenolic and flavonoid contents in ethanol extracts and fractions of Crescentia cujete leaves and stem bark. Methods Crescentia cujete leaves and bark crude ethanol extract (CEE) and their partitionates petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF) and aqueous (AQF) were firstly prepared. Different established testing methods, such as 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical, ferric reducing power (FRP), and total antioxidant capacity (TAC) assays were used to detect the antioxidant activity. Further, the total yield, total phenolic (TPC) and total flavonoid contents (TFC) of CEE and all the fractions were determined. Ethanol extracts of both leaves and stem bark were also subjected to preliminary phytochemical screening to detect the presence of secondary metabolites, using standard phytochemical methods (Thin layer chromatography and spray reagents). Results Phytochemical screening of crude ethanol extract of both leaves and stem bark revealed the presence of steroids, flavonoids, saponins, tannins, glycosides and terpenoids. All the fractions and CEE of leaves and bark exhibited antioxidant activities, however, EAF of leaves showing the highest antioxidant activity based on the results of DPPH, FRP and TAC assay tests. The above fraction has shown the significant DPPH scavenging activity (IC50 = 8.78 μg/ml) when compared with standard ascorbic acid (IC50 =7.68 μg/ml). The TAC and FRP activities increased with increasing crude extract/fractions content. The TPC (371.23 ± 15.77 mg GAE/g extract) and TFC (144.64 ± 5.82 mg QE/g extract) of EAF of leaves were found significantly higher as compared to other solvent fractions for both leaves and bark. TPC were highly correlated with the antioxidant activity (R2 = 0.9268 and 0.8515 in DPPH test for leaves and bark, respectively). Conclusion The results of the study show that leaves of C. cujete possesses significant free radical scavenging properties compared with stem bark and a clear correlation exists between the antioxidant activity and phenolic content. PMID:24495381
Cho, Eun Jung; Park, Myoung Soo; Kim, Sahng Seop; Kang, Gun; Choi, Sunga; Lee, Yoo Rhan; Chang, Seok Jong; Lee, Kwon Ho; Lee, Sang Do; Park, Jin Bong
2011-01-01
Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD (10~100µg/ml) did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of 0.1~10µg/ml with an ED50 value of 2µg/ml. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high K+ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium. PMID:22359471
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-08-01
Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.
Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian
2017-01-01
Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.
Ozen, Tevfik; Yenigun, Semiha; Altun, Muhammed; Demirtas, Ibrahim
2017-01-01
Due to the common ethnopharmacological used or scientifically examined biochemical properties, Elaeagnaceae family, Elaeagnus umbellate (Thunb.) (EU, Guz yemisi) was worth investigating. In this investigation, we revealed antioxidant, antiproliferative and enzyme inhibition activities of the water, methanol, ethanol, acetone, ethyl acetate and hexane extracts of EU as well as the contents of their phenolic, flavonoid, anthocyanin, ascorbic acid, lycopene and β- carotene. The antioxidant activity was screened by total antioxidant (phosphomolybdenum), inhibition of linoleic acid peroxidation, reducing power, 2-deoxyribose degradation assay, H2O2 scavenging and metal chelating activities of the samples were tested in vitro. Additionally, the scavenging activities of the extracts were determined against 1,1-diphenyl-2-picrylhydrazyl (DPPH˙), 2,2-azino-bis(3-ethylbenzothiazloine-6-sulfonicacid (ABTS˙+), superoxide anion and peroxide radicals. The samples were determined for their inhibitory activities against urease, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro, antiproliferative activities of six different extracts were tested using the xCELLigence system against HeLa and HT29 cell lines. The antioxidant activities of the extracts were found higher than standard antioxidants. The water extracts of fruit and leaf showed the best antioxidant activity. In inhibition assays of urease, AChE and BuChE, all extracts exhibited remarkable inhibition potential. Ethyl acetate extracts, especially, showed better inhibition capacity. It was found that the antioxidant activities of the extracts presented consistently with their chemical contents. The antiproliferative activities of leaf extracts were more effective than the fruit extracts. The chromatographic methods were applied to the different solvents to analyses phenolic secondery metabolites. It was found that fumaric acid, 4- hydroxybenzoic acid, rutin and quercetin-3-β-D-glucoside, neohesperidin, hesperidin determined to have higher contents all the extracts. EU can be suggested as a potential natural source of antioxidants appropriate for utilization in nutritional/pharmaceutical fields. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Ying; Tilley, Michael; Bean, Scott; Sun, X Susan; Wang, Donghai
2009-09-23
Use of coproducts generated during fermentation is important to the overall economics of biofuel production. The main coproduct from grain-based ethanol production is distillers dried grains with solubles (DDGS). High in protein, DDGS is a potential source of protein for many bioindustrial applications such as adhesives and resins. The objective of this research was to characterize the composition as well as chemical and physical properties of kafirin proteins from sorghum DDGS with various extraction methods including use of acetic acid, HCl-ethanol and NaOH-ethanol under reducing conditions. Extraction conditions affected purity and thermal properties of the extracted kafirin proteins. Extraction yields of 44.2, 24.2, and 56.8% were achieved by using acetic acid, HCl-ethanol and NaOH-ethanol, respectively. Acetic acid and NaOH-ethanol produced protein with higher purity than kafirins extracted with the HCl-ethanol protocol. The acetic acid extraction protocol produced protein with the highest purity, 98.9%. Several techniques were used to evaluate structural, molecular and thermal properties of kairin extracts. FTIR showed alpha-helix dominated in all three samples, with only a small portion of beta-sheet present. Electrophoresis results showed alpha(1), alpha(2) band and beta kafirins were present in all three extracts. Glass transition peaks of the extracts were shown by DSC to be approximately 230 degrees C. Kafirin degraded at 270-290 degrees C. Size exclusion chromatography revealed that the acetic acid and HCl-ethanol based extraction methods tended to extract more high molecular weight protein than the NaOH-ethanol based method. Reversed phase high-performance liquid chromatography showed that the gamma kafirins were found only in extracts from the NaOH-ethanol extraction method.
Trošt, Kajetan; Klančnik, Anja; Mozetič Vodopivec, Branka; Sternad Lemut, Melita; Jug Novšak, Katja; Raspor, Peter; Smole Možina, Sonja
2016-11-01
During winemaking, grape polyphenols are only partly extracted, and consequently unexploited. The main aim was to characterize the phenolic content of freeze-dried grape skin and seed (FDSS) extracts obtained from Slovenian and international grape varieties and to evaluate their antioxidant, antimicrobial and anti-adhesive activities. FDSS of six Vitis vinifera L. grapevine cultivars from Vipava Valley region (Slovenia) underwent extraction and sonification under different conditions. Flavonols were the predominant content of extracts from white 'Zelen' and 'Sauvignon Blanc' grape varieties, with strong antimicrobial activities against Gram-negative bacteria. 'Pinot Noir' FDSS extracted with 50% aqueous ethanol extraction produced a high phenolic content in the final extract, which was further associated with strong antioxidant and antimicrobial activities against all tested bacteria. Bacterial adhesion to stainless steel surfaces with minimal and maximal surface roughness was significantly inhibited (up to 60%) across a wide FDSS concentration range, with lower concentrations also effective with two types of stainless steel surfaces. FDSS extracts from winery by-products show interesting phenolic profiles that include flavonols, catechins, anthocyanins and hydroxycinnamic acids, with yields influenced by grapevine cultivar and extraction conditions. The antioxidant, antimicrobial and anti-adhesive activities of 50% aqueous ethanol 'Pinot Noir' FDSS extract reveals potential applications in food, pharmaceutical and cosmetic industries for these bioactive residues. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Kang, Seok Yong; Jung, Hyo Won; Nam, Joo Hyun; Kim, Woo Kyung; Kang, Jong-Seong; Kim, Young-Ho; Cho, Cheong-Weon; Cho, Chong Woon
2017-01-01
Ethnopharmacological Relevance In this study, we investigated the effects of Tribulus terrestris fruit (Leguminosae, Tribuli Fructus, TF) extract on oxazolone-induced atopic dermatitis in mice. Materials and Methods TF extract was prepared with 30% ethanol as solvent. The 1% TF extract with or without 0.1% HC was applied to the back skin daily for 24 days. Results 1% TF extract with 0.1% HC improved AD symptoms and reduced TEWL and symptom scores in AD mice. 1% TF extract with 0.1% HC inhibited skin inflammation through decrease in inflammatory cells infiltration as well as inhibition of Orai-1 expression in skin tissues. TF extract inhibited Orai-1 activity in Orai-1-STIM1 cooverexpressing HEK293T cells but increased TRPV3 activity in TRPV3-overexpressing HEK293T cells. TF extract decreased β-hexosaminidase release in RBL-2H3 cells. Conclusions The present study demonstrates that the topical application of TF extract improves skin inflammation in AD mice, and the mechanism for this effect appears to be related to the modulation of calcium channels and mast cell activation. This outcome suggests that the combination of TF and steroids could be a more effective and safe approach for AD treatment. PMID:29348776
Yoshioka, Saburo; Hamada, Atsuhide; Jobu, Kohei; Yokota, Junko; Onogawa, Masahide; Kyotani, Shojiro; Miyamura, Mitsuhiko; Saibara, Toshiji; Onishi, Saburo; Nishioka, Yutaka
2010-02-01
Non-alcoholic steatohepatitis is associated with the deposition of lipid droplets in the liver, and is characterised histologically by the infiltration of inflammatory cells, hepatocellular degeneration and liver fibrosis. Oxidative stress may play an important role in the onset and deterioration of non-alcoholic steatohepatitis. We previously reported that an Eriobotrya japonica seed extract, extracted in 70% ethanol, exhibited antioxidant actions in vitro and in vivo. In this study, we examined the effect of this extract in a rat model of non-alcoholic steatohepatitis. The seed extract was given in the drinking water to fats being fed a methionine-choline-deficient diet for 15 weeks. Increases in alanine aminotransferase and aspartate aminotransferase levels were significantly inhibited in rats fed the seed extract compared with the group on the diet alone. Formation of fatty droplets in the liver was also inhibited. Antioxidant enzyme activity in liver tissue was higher than in the diet-only group and lipid peroxidation was reduced compared with rats that also received the extract. Expression of 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal was lower in the rats given the seed extract than in the diet-only group. In the former, liver tissue levels of transforming growth factor-beta and collagen were also decreased. Thus, the E. japonica seed extract inhibited fatty liver, inflammation and fibrosis, suggesting its usefulness in the treatment of non-alcoholic steatohepatitis.
Coulibaly, K; Zirihi, G N; Guessennd-Kouadio, N; Oussou, K R; Dosso, M
2014-09-01
Methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and coagulase-negative Staphylococcus infections are a worldwide concern. Terminalia ivorensis, of Combretaceae family plant, is widely used traditional medicinal in Côte d'Ivoire to treat dermal diseases (affection in which Staphylococci are implied) including local inflammation and also to treat voice-loss. This study focused to investigate the effect in vitro of the extracts of trunk barks of Terminalia ivorensis on some methicillin/oxacillin-resistant strains of Staphylococcus aureus, S. epidermidis, coagulase-negative S. and reference strain of S. aureus ATCC 25923. Antibacterial activity of aqueous, 70% ethanolic 70% and aqueous residue extracts was assessed using agar disc-diffusion method and liquid medium microdilution method in 96 multi-well micro-titer plates. This method led us to determine minimum inhibition concentration (M.I.C.) and minimum bactericidal concentration (M.B.C.). The presence of chemical groups major was detected qualitatively. Aqueous and 70% ethanolic 70% extracts showed significant activity against all the bacteria except aqueous residue when compared with the standard antibiotic oxacillin (5 µg/ml). M.I.C. for aqueous and 70% ethanolic 70% extracts ranged from 0,83-16,67 mg/ml and 0,156-13,33 mg/ml respectively. Viable cell determination revealed the bactericidal nature of the two barks extracts. The 70% ethanolic 70% extract exhibited the highest activity according to the M.B.C. values. The phytochemical analysis indicates the presence of tannins, saponins, flavonoids, terpen/sterols, coumarins, polyphenols and traces of alkaloid. The in-vitro antibacterial efficacy shown by the barks of this plant and his lushness in chimical compounds, would justify use of this one in the traditional treatment of some diseases of microbial origin. These compounds could be suggested to provide alternative solution to the development of new therapeutic agents.
Mesaik, Ahmed M; Poh, Hiap Wei; Bin, Ooi Yan; Elawad, Izzaddinn; Alsayed, Badr
2018-05-20
Ziziphus jujuba belongs to family Rhamnaceae widely distributed in subtropical and tropical countries. It is used traditionally for several pharmacological purposes including anti-inflammation, antidiarrhoeal and antibacterial, as well as tonic and sometimes as hypnotic (sedative). To determine the in vivo antidiarrhoeal, antibacterial and anti-inflammatory activities of Z. jujuba fruit ethanolic extract. The fruit was macerated and extracted by 95% (v/v) ethanol. The antidiarrhoeal activity was evaluated using castor oil and Escherichia coli induced diarrhoea mouse model. The antidiarrhoeal and antibacterial activity was investigated at graded doses (400-1200 mg/kg). The anti-inflammatory effects were tested using the carrageenan-induced paw oedema in female Wistar rats. Rat's treatment groups received tragacanth, 100 mg/kg diclofenac sodium, 800 mg/kg, 1200 mg/kg or 1600 mg/kg of an ethanolic extract of Z. jujuba (EEZJ). All treatment groups were fed with the compounds one hour before carrageenan injection at of rat's paw. Also, the EEZJ was further analysed by HPLC-PDA system for identification of the presence of betulinic acid and quercetin. EEZJ different doses did not show inhibitory activity against castor oil induced diarrhoea except for the higher (1200 mg/kg) dose. However, the frequency of defecation of stools and watery stool were reduced significantly when compared to control group (P ≤ 0.05 and P ≤ 0.01 respectively), resulted in overall 67% inhibition of diarrhoea. Our anti-inflammatory results demonstrated that EEZJ was able to inhibit the carrageenan-induced paw oedema in rats to a significant degree (p ≤ 0.05) and the paw volume and thickness of both left and right paw were affected compared to the negative control group. EEZJ possesses antidiarrhoeal and antibacterial activity in a dose depending manner and may provide a pharmacological basis for its clinical use in diarrheal diseases. The activity may partially be due to the presence of betulinic acid and quercetin.
Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of Scoparia dulcis Linn.
Moniruzzaman, Md.; Atikur Rahman, Md.; Ferdous, Afia
2015-01-01
Scoparia dulcis Linn. (SD) is a perennial herb that has been well studied for its antioxidant, anti-inflammatory, antidiabetic, and hepatoprotective effects. However, scientific information on SD regarding the neuropharmacological effect is limited. This study evaluated the sedative and hypnotic effect of the ethanolic extract of whole plants of Scoparia dulcis (EESD). For this purpose, the whole plants of S. dulcis were extracted with ethanol following maceration process and tested for the presence of phytochemical constituents. The sedative and hypnotic activity were then investigated using hole cross, open field, hole-board, rota-rod, and thiopental sodium-induced sleeping time determination tests in mice at the doses of 50, 100, and 200 mg/kg of EESD. Diazepam at the dose of 1 mg/kg was used as a reference drug in all the experiments. We found that EESD produced a significant dose-dependent inhibition of locomotor activity of mice both in hole cross and open field tests (P < 0.05). Besides, it also decreased rota-rod performances and the number of head dips in hole-board test. Furthermore, EESD significantly decreased the induction time to sleep and prolonged the duration of sleeping, induced by thiopental sodium. Taken together, our study suggests that EESD may possess sedative principles with potent hypnotic properties. PMID:25861372
Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of Scoparia dulcis Linn.
Moniruzzaman, Md; Atikur Rahman, Md; Ferdous, Afia
2015-01-01
Scoparia dulcis Linn. (SD) is a perennial herb that has been well studied for its antioxidant, anti-inflammatory, antidiabetic, and hepatoprotective effects. However, scientific information on SD regarding the neuropharmacological effect is limited. This study evaluated the sedative and hypnotic effect of the ethanolic extract of whole plants of Scoparia dulcis (EESD). For this purpose, the whole plants of S. dulcis were extracted with ethanol following maceration process and tested for the presence of phytochemical constituents. The sedative and hypnotic activity were then investigated using hole cross, open field, hole-board, rota-rod, and thiopental sodium-induced sleeping time determination tests in mice at the doses of 50, 100, and 200 mg/kg of EESD. Diazepam at the dose of 1 mg/kg was used as a reference drug in all the experiments. We found that EESD produced a significant dose-dependent inhibition of locomotor activity of mice both in hole cross and open field tests (P < 0.05). Besides, it also decreased rota-rod performances and the number of head dips in hole-board test. Furthermore, EESD significantly decreased the induction time to sleep and prolonged the duration of sleeping, induced by thiopental sodium. Taken together, our study suggests that EESD may possess sedative principles with potent hypnotic properties.
Kuria, K A; De Coster, S; Muriuki, G; Masengo, W; Kibwage, I; Hoogmartens, J; Laekeman, G M
2001-02-01
Field trips to herbalists' practices in an area about 200 miles around Nairobi (Kenya) enabled us to make a list of medicinal plant species preferentially used to treat malaria. Ajuga remota and Caesalpinia volkensii were further investigated as being the most frequently used species. Aqueous decoctions, ethanol macerates, and petroleum ether, methanol and water Soxhlet extracts of these plants were further tested for their in vitro antimalarial properties in a chloroquine sensitive (FCA/20GHA) and resistant (W2) strain of Plasmodium falciparum. The activity was assessed by the parasite lactate dehydrogenase (pLDH) assay method. There was a concentration-dependent inhibition by the vegetal extracts of both plants. The IC(50) of the most active A. remota extract (ethanol macerate) was 55 and 57 microg/ml against FCA/20GHA and W2, respectively. For C. volkensii, it was the Soxhlet-water extract which was most active against FCA/20GHA with an IC(50) of 404 microg/ml while the petroleum ether extract exhibited the most activity against W2 with an IC(50) of 250 microg/ml. Further phytochemical work is being done in order to identify the active principles.
IN VIVO EFFECT OF SOME HOME SPICES EXTRACTS ON THE TOXOPLASMA GONDII TACHYZOITES
Al-Zanbagi, Najia A.
2009-01-01
Toxoplasmosis drugs have the longest history and are still the first choice for most conditions. Alternative drugs such as Co-trimoxazole and Tetracycline have been tried and acclaimed successful. The lack of general acceptance, however, is an indication that the results are not very convincing. A wide range of antibiotics is urgently needed for patients with drug reaction or resistance problems. The anti-toxoplasmic activity of water and ethanol extracts as well as the oil of some home spices (Piper nigrum, Capsicum frutescens, Cinnamomum cassia and Curcuma longa), were evaluated in murine models of intraperitoneal infection using the RH strain of Toxoplasma gondii. Female mice were infected with 2×102 tachyzoites/ml, and then treated intraperitoneally with the home spices at 100 and 200 mg/kg/day for seven days. The tested extracts reduced the mean number of tachyzoites present in the peritoneal fluid of the experimental mice. The most effective extract was Curcuma longa ethanol extract which showed a 98.6% and 99.2% inhibition of the growth of Toxoplasma tachyzoites in 100 and 200 doses respectively compared to the control infected untreated mice. PMID:23012192
Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine.
Romulo, Andreas; Zuhud, Ervizal A M; Rondevaldova, Johana; Kokoska, Ladislav
2018-12-01
In many regions of Indonesia, there are numerous traditional herbal preparations for treatment of infectious diseases. However, their antimicrobial potential has been poorly studied by modern laboratory methods. This study investigates in vitro antimicrobial activity of 49 ethanol extracts from 37 plant species used in Indonesian traditional medicine for treatment against Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The plants were collected from the Biopharmaca collection garden, Bogor, Indonesia. The plant material was dried, finely grounded, extracted using ethanol, concentrated, and the dried residue was dissolved in 100% DMSO. Antimicrobial activity was determined in terms of a minimum inhibitory concentration (MIC) using a broth microdilution method in 96-well microplates. The extract of Orthosiphon aristatus (Blume) Miq. (Lamiaceae) leaf produced the strongest antimicrobial effect, inhibiting the growth of C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL), E. faecalis (MIC 256 μg/mL) and P. aeruginosa (MIC 256 μg/mL). The leaf extract of Woodfordia floribunda Salisb. (Lythraceae) also exhibited significant effect against C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL) and E. faecalis (MIC 256 μg/mL). Rotheca serrata (L.) Steane & Mabb. (Lamiaceae) leaf extract inhibited the growth of S. aureus (MIC 256 µg/mL) and C. albicans (MIC 256 µg/mL). The leaf extract of O. aristatus and W. floribunda exhibited a significant anti-candidal effect. Therefore, both of these plants can serve as prospective source materials for the development of new anti-candidal agents.
Phytochemical and antimicrobial studies of four species of Cola Schott & Endl. (Sterculiaceae).
Sonibare, Mubo Adeola; Soladoye, Micheal O; Esan, Oyedokun O; Sonibare, Oluwadayo O
2009-07-03
The in-vitro antimicrobial evaluation of ethanol extracts of four species of Cola Schott & Endl. was done using human isolated strains of Staphylococcus aureus, Staphylococcus albus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger as test organisms. The assays were carried out by agar well diffusion, erythromycin and ketoconazole served as the control drugs. The leaf ethanol extracts of the plants were found to be more effective against the tested fungi than the bacteria at high concentrations. None of the extracts was active against Staphylococcus aureus. Plant extract of C. acuminata (P. Beauv.) Schott & Endl. and C. nitida (Vent) Schott & Endl. showed activity on S. albus at concentrations ranging from 10-150 mgml(-) having comparable diameters of zone of inhibition of 7.3+/-0.03-16.0+/-0.0 for C. acuminata and 10.0+/-0.0-19.0+/-0.0 for C. nitida. Also, these two species of Cola demonstrated activities on C. albicans and A. niger at concentrations ranging from 90-150mgml(-1) with relatively close diameters of zone of inhibition. Only C. acuminata inhibited the growth of K. pneumoniae at the MIC of 90mgml(-1) whereas, C. albicans was inhibited by C. acuminata, C. millenii K. Schum and C. gigantea A.Chev. at the MIC of 120mgml(-1). Phytochemical screening of the four species of Cola showed the presence of alkaloids, saponins, tannins and cardenolides in all the plants which apart from showing the probable closeness of the species could also be responsible for the observed activities. The antimicrobial property shown by the plant extracts is an evidence of the ethnomedicinal uses of the plants. The similarity observed in the phytochemical constituents and antimicrobial activities demonstrated by C nitida (Vent.) Schott & Endl., C. millenii and C.gigantea A. Chev. and C. acuminata suggest a probable closeness among these species. The results obtained in this study provide preliminary evidence of the chemotaxonomic significance of secondary metabolites and antimicrobial activities in infra-generic taxonomy of species of Cola.
[Analgesic and anti-inflammatory effects of the flower of Althaea rosea (L.) Cav].
Wang, D F; Shang, J Y; Yu, Q H
1989-01-01
The ethanolic extract of the flower of Althaea rosea inhibits significantly the acetic acid-induced twisting of mice and the heat induced (tail) flicking of rats, the acetic acid-induced increase in permeability of abdominal bloud capillaries, the edema of the rat paw induced by carrageenin or dextran, and the release of PGE from inflammatory tissue.
Lee, Jongsung; Nho, Youn Hwa; Yun, Seok Kyun; Hwang, Young Sun
2017-02-16
The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.
Effects of Artemisia annua extracts on sporulation of Eimeria oocysts.
Fatemi, Ahmadreza; Razavi, Seyyed Mostafa; Asasi, Keramat; Goudarzi, Majid Torabi
2015-03-01
The present study aimed to compare the effect of different Artemisia annua extracts on sporulation rate of mixed oocysts of Eimeria acervulina, Eimeria necatrix, and Eimeria tenella. Three types of A. annua extracts including petroleum ether (PE), ethanol 96° (E), and water (W) extracts were prepared. Artemisinin, a sesquiterpene lactone endoperoxide derived from the A. annua analysis of each extract was done by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Fresh fecal samples containing three Eimeria species were floated and counted, and the oocysts were transferred into 50 tubes, each containing 10(5) oocysts per milliliter. Five tubes were control. Each of the other 45 tubes contained one of three doses (1 part per thousand (ppt), 2 ppt, and 5 ppt) and one of three extracts (PE, E, and W extracts) with five replications. The tubes were incubated for 48 h at 25-29 °C and aerated. Sporulation inhibition assay was used to evaluate the activity of extracts. The results showed that the E and PE extracts inhibit sporulation in 2 and 5 ppt concentrations, but the W extract stimulates it in all concentrations. The proportions of oocyst inhibition relative to control were 31 % (5 ppt) and 29 % (2 ppt) for PE and 34 % (5 ppt) and 46 % (2 ppt) for E extract. Furthermore, many oocysts in PE and E groups were wrinkled and contained abnormal sporocysts. The proportions of sporulation stimulation relative to control were 22 % (5 ppt), 24 % (2 ppt), and 27 % (1 ppt) in W extract. Our study is the first to demonstrate that all types of A. annua extracts do not necessarily have a similar activity, and the interaction of all contents and their relative concentrations is an important factor for sporulation stimulation or inhibition. It seems, some parts of unmetabolized excreted PE and E extracts could inhibit oocyst sporulation and eventually affect infection transmission.
Panthong, S; Boonsathorn, N; Chuchawankul, S
2016-10-17
Biological activities of various mushrooms have recently been discovered, particularly, immunomodulatory and antitumor activities. Herein, three edible mushrooms, Auricularia auricula-judae (AA), Pleurotus abalonus (PA) and Pleurotus sajor-caju (PS) extracted using Soxhlet ethanol extraction were evaluated for their antioxidative, anti-proliferative effects on leukemia cells. Using the Folin-Ciocalteau method and Trolox equivalent antioxidant capacity assay, phenolics and antioxidant activity were found in all sample mushrooms. Additionally, anti-proliferative activity of mushroom extracts against U937 leukemia cells was determined using a viability assay based on mitochondrial activity. PA (0.5 mg/mL) and AA (0.25-0.5 mg/mL) significantly reduced cell viability. Interestingly, PS caused a hormetic-like biphasic dose-response. Low doses (0-0.25 mg/L) of PS promoted cell proliferation up to 140% relative to control, whereas higher doses (0.50 mg/mL) inhibited cell proliferation. Against U937 cells, AA IC 50 was 0.28 ± 0.04 mg/mL, which was lower than PS or PA IC 50 (0.45 ± 0.01 and 0.49 ± 0.001 mg/mL, respectively). Furthermore, lactate dehydrogenase (LDH) leakage conferred cytotoxicity. PS and PA were not toxic to U937 cells at any tested concentration; AA (0.50 mg/mL) showed high LDH levels and caused 50% cytotoxicity. Additionally, UPLC-HRMS data indicated several phytochemicals known to support functional activities as either antioxidant or anti-proliferative. Glutamic acid was uniquely found in ethanolic extracts of AA, and was considered an anti-cancer amino acid with potent anti-proliferative effects on U937 cells. Collectively, all mushroom extracts exhibited antioxidant effects, but their anti-proliferative effects were dose-dependent. Nevertheless, the AA extract, with highest potency, is a promising candidate for future applications.
Asghar, Nazia; Naqvi, Syed Ali Raza; Hussain, Zaib; Rasool, Nasir; Khan, Zulfiqar Ali; Shahzad, Sohail Anjum; Sherazi, Tauqir A; Janjua, Muhammad Ramzan Saeed Ashraf; Nagra, Saeed Ahmad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Ze
2016-01-01
Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane. TPC, TFC, antioxidant and antibacterial potential were determined using different aqueous and organic solvents in addition to the determination of trace element in leaves, pulp and peel of C. papaya. Total soluble phenolics and flavonoids were found in promising quantity (≈66 mg GAE/g) especially in case of methanol and ethanol extracts. Antioxidant activity using DPPH free radical scavenging assay indicated leaves, bark, roots and pulp extracts showed >75.0 % scavenging potential while leaves and pulp showed 84.9 and 80.9 % inhibition of peroxidation, respectively. Reducing power assay showed leaves, pulp and roots extracts active to reduce Fe(3+) to Fe(2+) ions. The antibacterial study showed pulp extract is the best to cope infectious action of bacteria. This study was conducted to test the medicinal profile of all parts of C. papaya by extracting secondary metabolites with organic and aqueous solvents. Ethanol and methanol both were found to be the best solvents of choice to extract natural products to get maximum medicinal benefits and could be used to medicinal formulation against different infectious diseases.Graphical abstractMedicinal evaluation of different parts of C. papaya.
Effect of different types of tea on Streptococcus mutans: an in vitro study.
Subramaniam, Priya; Eswara, Uma; Maheshwar Reddy, K R
2012-01-01
If tea can be shown to have an inhibitory effect on the growth of Streptococcus mutans there can be a basis for using it as an agent for reducing caries. The aim of the study was to determine the effect of aqueous and organic extracts of three types of tea (green, oolong, and black tea) on the growth of S. mutans. In vitro study. Qualitative and quantitative phytochemical analysis of the three types of tea was done. Organic extracts of methanol and ethanol and aqueous extracts (50% and 100%) of tea were prepared. Fifty microliters of these extracts were inoculated into wells prepared on Mueller-Hinton agar plates that had been previously smeared with S. mutans. The agar plates were incubated at 37C for 24 hours. A similar procedure was followed using 0.2% chlorhexidine, which served as the positive control. Analysis of variance (ANOVA), post hoc Tukey test, Student's 't ' test (two-tailed, dependent), and Student's 't' test (two-tailed, independent) were used for analysis of the data. All the phytochemicals were found to be higher in oolong tea. Both aqueous and organic extracts of oolong tea showed greatest zones of inhibition, followed by green tea and black tea. Aqueous extracts of oolong and green tea showed greater zone of inhibition than chlorhexidine. All the three types of tea inhibited growth of S. mutans. The greatest inhibition was observed with aqueous extract of oolong tea. Oolong tea extracts (aqueous and organic) showed a greater inhibitory effect on the growth of S. mutans than the other tea extracts .
Yeon Park, Jun; Young Kim, Hyun; Shibamoto, Takayuki; Su Jang, Tae; Cheon Lee, Sang; Suk Shim, Jae; Hahm, Dae-Hyun; Lee, Hae-Jeung; Lee, Sanghyun; Sung Kang, Ki
2017-09-01
The biological activities of the ethanol extract from Cirsium japonicum var. maackii (ICF-1) and its major component, polyphenol cirsimaritin, were investigated as part of the search for possible alternative drugs for breast cancer. Three in vitro cell-based assays were used: the cell proliferation assay, tube-formation assay, and Western blot analysis. Both the ICF-1 extract and cirsimaritin inhibited the viability of HUVECs in a dose-dependent manner. The inhibition achieved was 36.89% at a level of 200μg/ml by the ICF-1 extract and 62.04% at a level of 100μM by cirsimaritin. The ICF-1 extract and cirsimaritin reduced tube formation by 12.69% at level of 25μg/ml and 32.18% at the levels of 6.25μM, respectively. Cirsimaritin inhibited angiogenesis by downregulation of VEGF, p-Akt and p-ERK in MDA-MB-231 cells, suggesting that cirsimaritin is potentially useful as an anti-metastatic agent. The present study demonstrated that Cirsium japonicum extract and its active component cirsimaritin is an excellent candidate as an alternative anti-breast cancer drug. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arun, Mittal; Satish, Sardana; Anima, Pandey
2016-01-01
To validate the ethno-therapeutic claim of the traditionally used plant Jasminum auriculatum (J. auriculatum) in skin diseases, by evaluating its wound healing potential along with its antioxidant and antimicrobial properties; so as to understand their role in wound healing. Excision and incision wound models were used to evaluate the wound healing activity on albino rats. The wound healing potential was assessed by measuring rate of wound contraction, epithelialization period, hydroxyproline content, skin breaking strength and histopathological parameters. Reference standard drug was Nitrofurazone ointment. The antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. The antimicrobial activity was determined by agar well diffusion method and minimum inhibitory concentration by serial dilution method. Higher rate of wound contraction (83.66±0.50% on 15th day), decrease in the period of epithelialization (17.83±1.6days), higher skin breaking strength (170.71±1.52g), higher collagen content and favourable histopathological changes revealed that topical application of ointment containing successive ethanolic extract (S.E.E) of J. auriculatum leaves has the most potent wound healing ability compared to control group in both the models studied. The DPPH radical scavenging activity of successive ethanolic extract was found to be 33.39µg/ml. Successive ethanolic extract was found to be most effective against Pseudomonas auregenosa having a zone of inhibition 16.65±0.6mm and the minimum inhibitory concentration was 0.78mg/ml. The data of this study indicate that successive ethanolic extract of the leaves exhibit potent wound healing, antioxidant and antimicrobial properties. This justifies the ethno-medicinal use of plant for the treatment of wound and microbial infections.
Arun, Mittal; Satish, Sardana; Anima, Pandey
2016-01-01
Objective: To validate the ethno-therapeutic claim of the traditionally used plant Jasminum auriculatum (J. auriculatum) in skin diseases, by evaluating its wound healing potential along with its antioxidant and antimicrobial properties; so as to understand their role in wound healing. Materials and Methods: Excision and incision wound models were used to evaluate the wound healing activity on albino rats. The wound healing potential was assessed by measuring rate of wound contraction, epithelialization period, hydroxyproline content, skin breaking strength and histopathological parameters. Reference standard drug was Nitrofurazone ointment. The antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. The antimicrobial activity was determined by agar well diffusion method and minimum inhibitory concentration by serial dilution method. Results: Higher rate of wound contraction (83.66±0.50% on 15th day), decrease in the period of epithelialization (17.83±1.6days), higher skin breaking strength (170.71±1.52g), higher collagen content and favourable histopathological changes revealed that topical application of ointment containing successive ethanolic extract (S.E.E) of J. auriculatum leaves has the most potent wound healing ability compared to control group in both the models studied. The DPPH radical scavenging activity of successive ethanolic extract was found to be 33.39µg/ml. Successive ethanolic extract was found to be most effective against Pseudomonas auregenosa having a zone of inhibition 16.65±0.6mm and the minimum inhibitory concentration was 0.78mg/ml. Conclusion: The data of this study indicate that successive ethanolic extract of the leaves exhibit potent wound healing, antioxidant and antimicrobial properties. This justifies the ethno-medicinal use of plant for the treatment of wound and microbial infections. PMID:27462552
Identification of rosmarinic acid as the major active constituent in Cordia americana.
Geller, F; Schmidt, C; Göttert, M; Fronza, M; Schattel, V; Heinzmann, B; Werz, O; Flores, E M M; Merfort, I; Laufer, S
2010-04-21
Preparation from leaves of Cordia americana have been widely used in traditional medicine in South Brazil to treat wounds and various inflammations. The objective of this work was to identify the effective compounds in the ethanolic extract prepared from the leaves of Cordia americana, which is used in traditional South Brazilian medicine as anti-inflammatory and wound healing remedy. Isolation and structure elucidation techniques were performed in order to identify the compounds of Cordia americana and HPLC analysis was used for the quantification. The major constituent and the ethanolic extract were investigated for inhibition of 5-lipoxygenase, p38alpha MAPK, TNFalpha release and NF-kappaB as well as in the fibroblast scratch assay. Rosmarinic acid (1) was identified as the major compound with an amount of 8.44% in the ethanolic extract of the leaves of Cordia americana. The ethanolic extract as well as (1) exhibited the highest inhibitory effects on 5-lipoxygenase (IC(50)=0.69 and 0.97microg/mL, resp., IC50 of BWA4C as reference: 0.3microM) and p38alpha (IC50=3.25 and 1.16microg/mL, resp., IC50 of SB203580 as reference: 0.046microM) and moderate inhibitory effects on TNFalpha release. Slight effects were observed in the fibroblast scratch assay. This study increases our knowledge on the effective compound in Cordia americana and supports its use in traditional medicine. We demonstrated for the first time pharmacological effects of Cordia americana and we provide evidences for a crucial role of rosmarinic acid as the major key player. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K.; Pandey, Abhay K.
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts. PMID:24093108
Shafaei, Armaghan; Sultan Khan, Md Shamsuddin; F A Aisha, Abdalrahim; Abdul Majid, Amin Malik Shah; Hamdan, Mohammad Razak; Mordi, Mohd Nizam; Ismail, Zhari
2016-11-09
This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure-activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX : BioSolveIT's LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC 50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC 50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE.
Fujita, Tadashi; Kawase, Atsushi; Niwa, Toshiro; Tomohiro, Norimichi; Masuda, Megumi; Matsuda, Hideaki; Iwaki, Masahiro
2008-05-01
In a previous study we found that 50% ethanol extracts of immature fruits of Citrus unshiu (satsuma mandarin) have anti-allergic effects against the Type I, II and IV allergic reactions. However, many adverse interactions between citrus fruit, especially grapefruit juice, and drugs have been reported due to the inhibition of cytochrome P450 (CYP) activities. The purpose of this study was to examine the competitive inhibitory effects of extracts from immature citrus fruit on CYP activity. Extracts were prepared from 12 citrus species or cultivars, and were tested against three kinds of major CYPs, CYP2C9, CYP2D6 and CYP3A4, in human liver microsomes. We also estimated the amounts of flavonoids (narirutin, hesperidin, naringin and neohesperidin) and furanocoumarins (bergapten, 6',7'-dihydroxybergamottin and bergamottin) in each extract using HPLC. Citrus paradisi (grapefruit) showed the greatest inhibition of CYP activities, while Citrus unshiu which has an antiallergic effect, showed relatively weak inhibitory effects. Extracts having relatively strong inhibitory effects for CYP3A4 tended to contain higher amounts of naringin, bergamottin and 6',7'-dihydroxybergamottin. These results, providing comparative information on the inhibitory effects of citrus extracts on CYP isoforms, suggest that citrus extracts containing high levels of narirutin and hesperidin and lower levels of furanocoumarins such as C. unshiu are favorable as antiallergic functional ingredients.
Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication
2014-01-01
Background Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. Results Dose–response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining. Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. Conclusions These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted. PMID:24433341
Chávez Enciso, N A; Coy-Barrera, E D; Patiño, O J; Cuca, L E; Delgado, Gabriela
2014-05-01
Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis.
Yorgason, Jordan T.; Rose, Jamie H.; McIntosh, J. Michael; Ferris, Mark J.; Jones, Sara R.
2014-01-01
The mesolimbic dopamine system, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc), has been heavily implicated in the reinforcing effects of ethanol. Recent slice voltammetry studies have shown that ethanol inhibits dopamine release selectively during highfrequency activity that elicits phasic dopamine release shown to be important for learning and reinforcement. Presently, we examined ethanol inhibition of electrically evoked NAc dopamine in two mouse strains with divergent dopamine responses to ethanol, C57BL/6 (C57) and DBA/2J (DBA) mice. Previous electrophysiology and microdialysis studies have demonstrated greater ethanol induced VTA dopaminergic firing and NAc dopamine elevations in DBA compared to C57 mice. Additionally, DBA mice have greater ethanol responses in dopamine-related behaviors, including hyperlocomotion and conditioned place preference. Currently, we demonstrate greater sensitivity of ethanol inhibition of NAc dopamine signaling in C57 compared to DBA mice. The reduced sensitivity to ethanol inhibition in DBA mice may contribute to the overall greater ethanol-induced dopamine signaling and related behaviors observed in this strain. NAc cholinergic activity is known to potently modulate terminal dopamine release. Additionally, ethanol is known to interact with multiple aspects of nicotinic acetylcholine receptor activity. Therefore, we examined ethanol-mediated inhibition of dopamine release at two ethanol concentrations (80 and 160mM) during bath application of the non-selective nicotinic receptor antagonist mecamylamine, as well as compounds selective for the β2- (DhβE) and α6- (α-conotoxin MII [H9A; L15A]) subunit-containing receptors. Mecamylamine and DhβE decreased dopamine release and reduced ethanol's inhibitory effects on dopamine in both DBA and C57 mice. Further, α-conotoxin also reduced the dopamine release and the dopamine-inhibiting effects of ethanol at the 80mM, but not 160mM, concentration. These data suggest that ethanol is acting in part through nicotinic acetylcholine receptors, or downstream effectors, to reduce dopamine release during high-frequency activity. PMID:25451295
Biological activity of common mullein, a medicinal plant.
Turker, Arzu Ucar; Camper, N D
2002-10-01
Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.
Belemtougri, R G; Constantin, B; Cognard, C; Raymond, G; Sawadogo, L
2006-01-01
Crude decoction, aqueous and ethanolic extracts of two medicinal plants (Psidium guajava and Diospyros mespiliformis), widely used in the central plateau of Burkina Faso to treat many diseases were evaluated for their antagonistic effects on caffeine induced calcium release from sarcoplasmic reticulum of rat skeletal muscle cells. These different extracts showed a decrease of caffeine induced calcium release in a dose dependent manner. Comparison of the results showed that Psidium guajava leaf extracts are more active than extracts of Diospyros mespiliformis and that crude decoctions show better inhibitory activity. The observed results could explain their use as antihypertensive and antidiarrhoeal agents in traditional medicine, by inhibiting intracellular calcium release.
Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L.
2006-01-01
Crude decoction, aqueous and ethanolic extracts of two medicinal plants (Psidium guajava and Diospyros mespiliformis), widely used in the central plateau of Burkina Faso to treat many diseases were evaluated for their antagonistic effects on caffeine induced calcium release from sarcoplasmic reticulum of rat skeletal muscle cells. These different extracts showed a decrease of caffeine induced calcium release in a dose dependent manner. Comparison of the results showed that Psidium guajava leaf extracts are more active than extracts of Diospyros mespiliformis and that crude decoctions show better inhibitory activity. The observed results could explaine their use as antihypertensive and antidiarrhoeal agents in traditional medicine, by inhibiting intracellular calcium release. PMID:16365927
Hogan, Shelly; Zhang, Lei; Li, Jianrong; Sun, Shi; Canning, Corene; Zhou, Kequan
2010-08-27
Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. This is the first report that the grape pomace extracts selectively and significantly inhibits intestinal α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The antioxidant and anti-postprandial hyperglycemic activities demonstrated on the tested grape pomace extract therefore suggest a potential for utilizing grape pomace-derived bioactive compounds in management of diabetes.
2010-01-01
Background Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. Methods The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. Results The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. Conclusion This is the first report that the grape pomace extracts selectively and significantly inhibits intestinal α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The antioxidant and anti-postprandial hyperglycemic activities demonstrated on the tested grape pomace extract therefore suggest a potential for utilizing grape pomace-derived bioactive compounds in management of diabetes. PMID:20799969
He, Su-hui; Tang, Xiao-lei; Deng, Ye-feng; Chen, Zhang-quan
2011-11-01
To investigate the effect of the ethanol extracts of the starfish Asterias amurensis on the levels of serum IL-4 and IFN-γ in mice. The whole bodies of the starfish were chopped and extracted with ethanol. The ethanol extracts were chromatographed on silica gel column. The separating fractions of the ethanol extracts were intraperitoneally injected into mice, respectively. The levels of serum IL-4 and IFN-γ in mice were detected by ELISA. The ethanol extracts from the starfish were separated through silica gel column chromatography to obtain 8 fractions (I-VIII). The high levels of IL-4 and IFN-γ were produced in serum of the mice injected with fractions III and VIII of the ethanol extracts from the starfish Asterias amurensis. The fractions III and VIIII separated from the ethanol extracts of the starfish Asterias amurensis can stimulate the mice to produce high lelves of IL-4 and IFN-γ, which has the characteristic of natural kill T (NKT) cells activator. It is suggests that there is the active substance that can activate NKT cells in the starfish Asterias amurensis.
Lu, Yuan; Starkey, Nicholas; Lei, Wei; Li, Jilong; Cheng, Jianlin; Folk, William R.; Lubahn, Dennis B.
2015-01-01
Sutherlandia frutescens (L) R. Br. (Sutherlandia) is a South African botanical that is traditionally used to treat a variety of health conditions, infections and diseases, including cancer. We hypothesized Sutherlandia might act through Gli/ Hedgehog (Hh)-signaling in prostate cancer cells and used RNA-Seq transcription profiling to profile gene expression in TRAMPC2 murine prostate cancer cells with or without Sutherlandia extracts. We found 50% of Hh-responsive genes can be repressed by Sutherlandia ethanol extract, including the canonical Hh-responsive genes Gli1 and Ptch1 as well as newly distinguished Hh-responsive genes Hsd11b1 and Penk. PMID:26710108
NASA Astrophysics Data System (ADS)
Warsi; Sholichah, A. R.
2017-11-01
Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.
Branković, Suzana; Kitić, Dusanka; Radenković, Mirjana; Ivetić, Vesna; Veljković, Slavimir; Nesić, Milkica
2010-01-01
Parsley (Petroselinum crispum) is used in the traditional herbal medicine to treat intestinal disorders. The aim of this study was to examine the effect of aqueous and ethanol extracts of parsley on spontaneous and acetylcholine induced contractions on isolated rat ileum. Wistar albino rats (250-300 g) were used in this study. The ileum portions were isolated out and cleaned off mesenteries. Preparations 2 cm long were mounted in 20 ml tissue baths containing Tyrode's solution maintained at 37 degrees C and aerated with a mixture of 5% carbon dioxide in oxygen. In the first part of experiments, contractile responses to the aqueous (ethanol) extracts of parsley were recorded. In the second part, increasing concentrations of acetylcholine were added to the organ bath for a full concentration response curve and then concentration response curves were obtained after adding the aqueous (ethanol) extracts of parsley. Our results showed that aqueous (62.22 +/- 7.15%) and ethanol (79.16 +/- 9.34%) extracts of parsley in dose dependent manner decreased the tonus of spontaneous contractions of isolated rat ileum. The aqueous (32.16 +/- 2.75%) and ethanol (53.96 +/- 4.86%) extracts of parsley reduced the acetylcholine induced contraction, the reduction was greater with ethanol extract than with the aqueous one. It can be concluded that the aqueous and ethanol extracts of parsley exert antispasmodic activity on rat ileum. The relaxant effect of ethanol extract was better comparing to aqueous extract of parsley.
Chen, Zhiyong; Liao, Liping; Zhang, Zijia; Wu, Lihong; Wang, Zhengtao
2013-11-25
Erycibe obtusifolia and Erycibe schmidtii, which belong to the same genus as Erycibe, are widely used in traditional medicine for the treatment of joint pain and rheumatoid arthritis (RA). Porana sinensis has become a widely used substitute for Erycibe obtusifolia and Erycibe schmidtii as they have declined in the wild. In the present work, the content of the main active components, the acute toxicity, the anti-nociceptive and anti-inflammatory activities of Porana sinensis, Erycibe obtusifolia and Erycibe schmidtii were compared, and the mechanisms of anti-nociceptive and anti-inflammatory activities were discussed. A quantitative HPLC (high performance liquid chromatography) method was first developed to compare the content of the main active components (scopoletin, scopolin and chlorogenic acid). The anti-inflammatory and anti-nociceptive activities of 40% ethanolic extracts of the three plants were compared using the models of xylene-induced ear edema, formalin-induced inflammation, carrageenan-induced air pouch inflammation, acetic acid-induced writhing and formalin-induced nociception. The acute toxicity of the 40% ethanolic extracts of the three plants was studied. The assay suggested a large content of scopoletin, scopolin and chlorogenic acid in the three plants. The 40% ethanolic extracts of the three plants were almost non-toxic at the dose of 5g/kg and all of them showed significant anti-inflammatory effects in the tests of xylene-induced ear edema and formalin-induced inflammation. In the carrageenan-induced air pouch inflammation test, the synthesis of PGE2 was significantly inhibited by all the extracts. They significantly inhibited the number of contortions induced by acetic acid and the second phase of the formalin-induced licking response. Naloxone was not able to reverse the analgesic effect of these extracts. The study identifies the similarity of the three plants in their main active components as well as acute toxicity, anti-nociceptive and anti-inflammatory activities. It supports the use of Porana sinensis as a suitable substitute, but further studies are needed to confirm this. © 2013 Elsevier Ireland Ltd. All rights reserved.
Liu, Na; Yang, Hua Li; Wang, Pu; Lu, Yu Cheng; Yang, Ying Juan; Wang, Lan; Lee, Shao Chin
2016-08-02
Annona muricata L. is used to treat cancer in some countries. Extracts of Annona muricata have been shown to cause apoptosis of various cancer cells in vitro, and inhibit tumor growth in vivo in animal models. However, the molecular mechanisms underlying its anti-cancer and apoptotic effects of the herb remain to be explored. The study investigated the molecular mechanisms underlying liver cancer cell apoptosis triggered by the ethanol extract of leaves of Annona muricata L. Liver cancer HepG2 cells were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry and TUNEL assays were performed to confirm apoptosis. We employed functional proteomic analysis to delineate molecular pathways underlying apoptosis triggered by the herbal extract. We showed that the extract was able to reduce viability and trigger apoptosis of the cancer cells. Proteomic analysis identified 14 proteins associated with the extract-elicited apoptosis, which included the increased expression levels of HSP70, GRP94 and DPI-related protein 5. Western blot analysis confirmed that the extract did up-regulated the protein levels of HSP70 and GRP94. Results from bioinformatic annotation pulled out two molecular pathways for the extract, which, notably, included endoplasmic reticulum (ER) stress which was evidenced by the up-regulation of HSP70, GRP94 and PDI-related protein 5. Further examinations of typical protein signaling events in ER stress using western blot analysis have shown that the extract up-regulated the phorsphorelation of PERK and eIF2α as well as the expression level of Bip and CHOP. Our results indicate that the ethanol extract of leaves of Annona muricata L. causes apoptosis of liver cancer cells through ER stress pathway, which supports the ethnomedicinal use of this herb as an alternative or complementary therapy for cancer. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses.
Makau, Juliann Nzembi; Watanabe, Ken; Mohammed, Magdy M D; Nishida, Noriyuki
2018-05-30
The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.
Lee, Song-Tay; Lu, Min-Hua; Chien, Lan-Hsiang; Wu, Ting-Feng; Huang, Li-Chien; Liao, Gwo-Ing
2013-12-21
Pomegranate possesses many medicinal properties such as antioxidant, anti-inflammation and antitumor. It has been extensively used as a folk medicine by many cultures. Pomegranate fruit has been shown to have the inhibitory efficacy against prostate cancer and lung cancer in vitro and in vivo. It can be exploited in chemoprevention and chemotherapy of prostate cancer. In this study we examined the anti-cancer efficacy of pomegranate fruit grown in Taiwan against urinary bladder urothelial carcinoma (UBUC) and its mechanism of action. Edible portion of Taiwanese pomegranate was extracted using ethanol and the anti-cancer effectiveness of ethanol extract was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry and western immunoblotting were exploited to uncover the molecular pathways underlying anti-UBUC activity of Taiwanese pomegranate ethanol extract. This study demonstrated that Taiwanese pomegranate fruit ethanol extract (PEE) could effectively restrict the proliferation of UBUC T24 and J82 cells. Cell cycle analyses indicated that the S phase arrest induced by PEE treatment might be caused by an increase in cyclin A protein level and a decrease in the expression of cyclin-dependent kinase 1. The results of western immunoblotting demonstrated that PEE treatment could not only evoke the activation of pro-caspase-3, -8,-9 but also increase Bax/Bcl-2 ratio in T24 cells. The above observations implicated that PEE administration might trigger the apoptosis in T24 cells through death receptor signaling and mitochondrial damage pathway. Besides we found that PEE exposure to T24 cells could provoke intensive activation of procaspase-12 and enhance the expressions of CHOP and Bip, endoplasmic reticulum (ER) stress marker, suggesting that ER stress might be the cardinal apoptotic mechanism of PEE-induced inhibition of bladder cancer cell. The analytical results of this study help to provide insight into the molecular mechanism of induced bladder cancer cell apoptosis by pomegranate and to develop novel mechanism-based chemopreventive strategy for bladder cancer.
2013-01-01
Background Pomegranate possesses many medicinal properties such as antioxidant, anti-inflammation and antitumor. It has been extensively used as a folk medicine by many cultures. Pomegranate fruit has been shown to have the inhibitory efficacy against prostate cancer and lung cancer in vitro and in vivo. It can be exploited in chemoprevention and chemotherapy of prostate cancer. In this study we examined the anti-cancer efficacy of pomegranate fruit grown in Taiwan against urinary bladder urothelial carcinoma (UBUC) and its mechanism of action. Methods Edible portion of Taiwanese pomegranate was extracted using ethanol and the anti-cancer effectiveness of ethanol extract was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry and western immunoblotting were exploited to uncover the molecular pathways underlying anti-UBUC activity of Taiwanese pomegranate ethanol extract. Results This study demonstrated that Taiwanese pomegranate fruit ethanol extract (PEE) could effectively restrict the proliferation of UBUC T24 and J82 cells. Cell cycle analyses indicated that the S phase arrest induced by PEE treatment might be caused by an increase in cyclin A protein level and a decrease in the expression of cyclin-dependent kinase 1. The results of western immunoblotting demonstrated that PEE treatment could not only evoke the activation of pro-caspase-3, -8,-9 but also increase Bax/Bcl-2 ratio in T24 cells. The above observations implicated that PEE administration might trigger the apoptosis in T24 cells through death receptor signaling and mitochondrial damage pathway. Besides we found that PEE exposure to T24 cells could provoke intensive activation of procaspase-12 and enhance the expressions of CHOP and Bip, endoplasmic reticulum (ER) stress marker, suggesting that ER stress might be the cardinal apoptotic mechanism of PEE-induced inhibition of bladder cancer cell. Conclusions The analytical results of this study help to provide insight into the molecular mechanism of induced bladder cancer cell apoptosis by pomegranate and to develop novel mechanism-based chemopreventive strategy for bladder cancer. PMID:24359437
Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D’Angelo, Valeria; Galati, Enza Maria
2017-01-01
Background: Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Objectives: Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Material and Methods: Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Results: Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. Conclusion: The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca2+ for muscle contraction. SUMMARY Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%Polyphenols and Vitamin E complex occurrence in OFI cladodes were characterized by high-performance liquid chromatographyOFI cladodes exhibited significative antispasmodic activity. The antispasmodic effect was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Abbreviations used: OFI: Opuntia ficus-indica, DPPH: Ethanol 1,1-diphenyl-2-picrylhydrazyl. PMID:29142394
Jennings, Edward W; Schell, Daniel J
2011-01-01
Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.
Woode, Eric; Ameyaw, Elvis O.; Boakye-Gyasi, Eric; Abotsi, Wonder K. M.
2012-01-01
Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including rheumatism, headache, colic pain, and neuralgia. Little pharmacological data exists in scientific literature of the effect of the fruit extract and its major diterpene, xylopic acid, on pain. The present study evaluated the analgesic properties of the ethanol extract of X. aethiopica (XAE) and xylopic acid (XA), in murine models. Materials and Methods: XAE and XA were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (Tail-flick and Hargreaves thermal hyperalgesia tests), and mechanical (Randall-Selitto paw pressure test) pain models. Results: XAE and XA exhibited significant analgesic activity in all the pain models used. XAE (30-300 mg kg-1, p.o.) and XA (10-100 mg kg-1, p.o.) inhibited acetic acid-induced visceral nociception, formalin- induced paw pain (both neurogenic and inflammatory), thermal pain as well as carrageenan-induced mechanical and thermal hyperalgesia in animals. Morphine (1-10 mg kg-1, i.p.) and diclofenac (1-10 mg kg-1, i.p.), used as controls, exhibited similar anti-nociceptive activities. XAE and XA did not induce tolerance to their respective anti-nociceptive effects in the formalin test after chronic administration. Morphine tolerance did not also cross-generalize to the analgesic effects of XAE or XA. Conclusions: These findings establish the analgesic properties of the ethanol fruit extract of X. aethiopica and its major diterpene, xylopic acid. PMID:23248562
NASA Astrophysics Data System (ADS)
He, Zhizhou; Chen, Yongshun; Chen, Yongheng; Liu, Haohuai; Yuan, Guanfu; Fan, Yaming; Chen, Kun
2013-09-01
The use of a microwave-assisted extraction (MAE) method for the extraction of phlorotannins from Saccharina japonica Aresch ( S. japonica) has been evaluated with particular emphasis on the influential parameters, including the ethanol concentration, solid/liquid ratio, extraction time, extraction temperature, and microwave power. The MAE procedure was optimized using single-factor design and orthogonal array design (OAD). The content of total phlorotannins in S. japonica was determined using a Folin-Ciocalteu (FC) assay. A maximum total phlorotannin content of 0.644 mg of phloroglucinol equivalent per gram of dry weight plant (mg PGE/g DW) was obtained using the optimized model, which included an ethanol concentration of 55%, solid/liquid ratio of 1:8, extraction time of 25 min, irradiation power of 400 W, and temperature of 60°C. Under similar conditions, the application of a conventional extraction method led to a lower phlorotannin yield of 0.585 mg PGE/g WD. These results demonstrated that the MAE approach provided better results for the extraction of phlorotannins from S. japonica and was a promising technique for the extraction of phenolic compounds from S. japonica and other materials. In addition, screening tests for the inhibitory activity showed that the phlorotannin-containing extracts significantly inhibited the growth of human hepatocellular carcinoma cells (HepG2) by inducing their apoptosis. The morphological changes that occurred during cell apoptosis were characterized using Hoechst33258 staining.
Impact of ethanolic lamiaceae extracts on herpesvirus infectivity in cell culture.
Reichling, Jürgen; Nolkemper, Silke; Stintzing, Florian C; Schnitzler, Paul
2008-12-01
Extracts of medicinal plants are increasingly of interest as novel drugs for antimicrobial and antiviral agents, since microorganisms might develop resistance to commonly used antimicrobial or antiviral agents. Ethanolic extracts from Lamiaceae plants prunella, peppermint, rosemary and thyme were phytochemically characterised. The inhibitory activity of four 20% ethanolic plant extracts and four 80% ethanolic extracts against herpes simplex virus (HSV) strains was tested in cell culture. Rosmarinic acid, a typical compound in Lamiaceae species, was identified in the extracts except for thyme 20% ethanolic extract. In addition, some other phenolic compounds such as apigenin- and luteolin-derivatives were identified in different amounts. All extracts exhibited high and concentration-dependent levels of antiviral activity against free acyclovir-sensitive and acyclovir-resistant HSV-1 strains with 50% inhibitory concentrations of 0.05-0.82 microg/ml. Mechanistically, exposure of free virions as well as host cells to prunella and peppermint 80% ethanolic extracts at maximum non-cytotoxic concentrations prior to infection reduced plaque formation drastically. Thus, both extracts revealed a dual mode of action similar to aqueous lemon balm extracts. Since infectivity of acyclovir-susceptible and acyclovir-resistant HSV strains was significantly reduced with Lamiaceae extracts, the results obtained indicate that ethanolic plant extracts affected herpesvirus prior to and during adsorption and in a different way than acyclovir. Based on its dual mode of action, e.g. antiviral effect against free virions and blocking virus attachment to host cells, prunella and peppermint 80% ethanolic extracts are promising antiviral agents in recurrent herpes labialis for topical therapeutic applications. 2008 S. Karger AG, Basel.
Acute effects of ethanol and acetate on glucose kinetics in normal subjects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.
1988-02-01
The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level wasmore » comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.« less
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-01-01
Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762
Gastroprotective effect of Piper betle Linn. leaves grown in Sri Lanka.
Arawwawala, L D A M; Arambewela, L S R; Ratnasooriya, W D
2014-01-01
Piper betle Linn. (Piperaceae) is used as a remedy for gastric ulcers in traditional medicinal systems in Sri Lanka. However, the gastroprotective activity has never been proven scientifically using betel leaves grown in Sri Lanka. To evaluate the gastroprotective activity of hot aqueous extract (HAE) and cold ethanolic extract (CEE) of P. betle in rats as the experimental model. Three doses (200, 300, and 500 mg/kg/bw) of both extracts were evaluated for the gastroprotective activity against ethanol induced gastric ulcers in rats. The parameters evaluated were (a) effects of HAE on mucus content adhering to the wall of the gastric mucosa, (b) acidity (total and free), (c) volume and (d) pH of the gastric juice. ORAL ADMINISTRATION OF HAE AND CEE PROVIDED MARKED DOSE DEPENDENT (HAE: r (2) = 0.97; CEE: r (2) = 0.96) and significant (P ≤ 0.05) protection against gastric damage caused by absolute ethanol. The gastroprotective effect of CEE was comparable with that of HAE. Further, gastroprotective activity of the highest dose of both extracts were significantly greater (P ≤ 0.05) than that of misoprostol, the reference drug. The HAE significantly (P ≤ 0.05) increased the mucus content adhering to the wall of the gastric mucosa and inhibited the volume of gastric acid. However, acidity (total and free) and pH of the gastric juice remained unaltered. It is concluded that both HAE and CEE of P. betle leaves have a strong gastroprotective activity.
Gupta, Avneet; Raj, Hem; Sharma, Bhartendu; Upmanyu, Neeraj
2014-04-01
Bacopa monnieri, Evolvulus alsinoides and Tinospora cordifolia are established ayurvedic herbs having neuropharmacological effect. In present study is aimed to Phytochemical Comparison between Pet ether and Ethanolic extracts of Bacopa monnieri (BME), Evolvulus alsinoides (EAE) and Tinospora cordifolia (TCE). To identify the presence (+) or absence (-) of different phytoconstituents in Pet ether and Ethanolic extracts of BME, EAE and TCE by using various phytochemical testing methods. Phytochemical investigation showed the presence of various phytochemical constituents in Pet ether and Ethanolic extracts of BME, EAE and TCE. When comparison between Pet ether and Ethanolic extracts of BME, EAE and TCE; Ethanolic extracts of these plants showed more phytoconstituents as compared to Pet ether extracts of these plants. From present investigation, it can be concluded that phytochemical comparison is subsequently momentous and useful in finding chemical constituents in the plant substances that may lead to their quantitative evaluation and also pharmacologically active chemical compounds.
2014-01-01
Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunesorbent assay. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunefluorescence and reporter gene assay, respectively. Results MME inhibited the expression of iNOS and COX-2 at mRNA and protein levels, resulting in reduction of NO and PGE2 production. As a result, pro-inflammatory cytokines were reduced by MME. MME also inhibited the activation and translocation of NF-κB by preventing inhibitor κB-α (IκB-α) degradation. Moreover, MME inhibited the phosphorylation of extracellular signal regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Main anti-inflammatory compound in MME was identified as sargachromenol by NMR spectroscopy. Conclusions These results indicate that the anti-inflammatory effect of sargachromenol-rich MME on LPS-stimulated microglia is mainly regulated by the inhibition of IκB-α/NF-κB and ERK/JNK pathways. PMID:25005778
In vitro antibacterial activity of Hibiscus rosa-sinensis flower extract against human pathogens
Ruban, P; Gajalakshmi, K
2012-01-01
Objective To access the in vitro antibacterial activity of Hibiscus rosa-sinensis (H. rosa- sinensis) flower extract against human pathogens. Methods Antibacterial activity was evaluated by using disc and agar diffusion methods. The protein was run through poly acrylmide gel electrophoresis to view their protein profile. Results The results showed that the cold extraction illustrates a maximum zone of inhibition against Bacillus subtillis (B. subtillis), Escherichia coli (E. coli) viz., (17.00 ± 2.91), (14.50 ± 1.71) mm, followed by hot extraction against, E. coli, Salmonella sp. as (11.66 ± 3.14), (10.60 ± 3.09) mm. In methanol extraction showed a highest zone of inhibition recorded against B. subtillis, E. coli as (18.86 ± 0.18), (18.00 ± 1.63) mm pursued by ethanol extraction showed utmost zone of inhibition recorded against Salmonella sp. at (20.40 ± 1.54) mm. The crude protein from flower showed a maximum inhibitory zone observed against Salmonella sp., E. coli viz., (16.55 ± 1.16), (14.30 ± 2.86) mm. The flower material can be taken as an alternative source of antibacterial agent against the human pathogens. Conclusions The extracts of the H. rosa-sinensis are proved to have potential antibacterial activity, further studies are highly need for the drug development. PMID:23569938
Acquisition, Maintenance and Relapse-Like Alcohol Drinking: Lessons from the UChB Rat Line
Israel, Yedy; Karahanian, Eduardo; Ezquer, Fernando; Morales, Paola; Ezquer, Marcelo; Rivera-Meza, Mario; Herrera-Marschitz, Mario; Quintanilla, María E.
2017-01-01
This review article addresses the biological factors that influence: (i) the acquisition of alcohol intake; (ii) the maintenance of chronic alcohol intake; and (iii) alcohol relapse-like drinking behavior in animals bred for their high-ethanol intake. Data from several rat strains/lines strongly suggest that catalase-mediated brain oxidation of ethanol into acetaldehyde is an absolute requirement (up 80%–95%) for rats to display ethanol’s reinforcing effects and to initiate chronic ethanol intake. Acetaldehyde binds non-enzymatically to dopamine forming salsolinol, a compound that is self-administered. In UChB rats, salsolinol: (a) generates marked sensitization to the motivational effects of ethanol; and (b) strongly promotes binge-like drinking. The specificity of salsolinol actions is shown by the finding that only the R-salsolinol enantiomer but not S-salsolinol accounted for the latter effects. Inhibition of brain acetaldehyde synthesis does not influence the maintenance of chronic ethanol intake. However, a prolonged ethanol withdrawal partly returns the requirement for acetaldehyde synthesis/levels both on chronic ethanol intake and on alcohol relapse-like drinking. Chronic ethanol intake, involving the action of lipopolysaccharide diffusing from the gut, and likely oxygen radical generated upon catechol/salsolinol oxidation, leads to oxidative stress and neuro-inflammation, known to potentiate each other. Data show that the administration of N-acetyl cysteine (NAC) a strong antioxidant inhibits chronic ethanol maintenance by 60%–70%, without inhibiting its initial intake. Intra-cerebroventricular administration of mesenchymal stem cells (MSCs), known to release anti-inflammatory cytokines, to elevate superoxide dismutase levels and to reverse ethanol-induced hippocampal injury and cognitive deficits, also inhibited chronic ethanol maintenance; further, relapse-like ethanol drinking was inhibited up to 85% for 40 days following intracerebral stem cell administration. Thus: (i) ethanol must be metabolized intracerebrally into acetaldehyde, and further into salsolinol, which appear responsible for promoting the acquisition of the early reinforcing effects of ethanol; (ii) acetaldehyde is not responsible for the maintenance of chronic ethanol intake, while other mechanisms are indicated; (iii) the systemic administration of NAC, a strong antioxidant markedly inhibits the maintenance of chronic ethanol intake; and (iv) the intra-cerebroventricular administration of anti-inflammatory and antioxidant MSCs inhibit both the maintenance of chronic ethanol intake and relapse-like drinking. PMID:28420969
Pharbinilic acid, an allogibberic acid from morning glory (Pharbitis nil).
Kim, Ki Hyun; Choi, Sang Un; Son, Mi Won; Choi, Sang Zin; Clardy, Jon; Lee, Kang Ro
2013-07-26
Pharbinilic acid (1), the first naturally occurring allogibberic acid, was isolated from ethanol extracts of morning glory (Pharbitis nil) seeds. Its absolute configuration was determined by NOESY NMR and ECD experiments. Compound 1 showed weak cytotoxicity against A549, SK-OV-3, SK-MEL-2, and HCT-15 cells and weakly inhibited nitric oxide production in lipopolysaccharide-activated BV-2 microglia cells.
USDA-ARS?s Scientific Manuscript database
Among the nine Echinacea species, E. purpurea, E. angustifolia and E. pallida, have been widely used to treat the common cold, flu and other infections. In our study, ethanol extracts of these three Echinacea species and E. paradoxa, including its typical variety, E. paradoxa var. paradoxa, were scr...
EFFECT OF THAI SARAPHI FLOWER EXTRACTS ON WT1 AND BCR/ABL PROTEIN EXPRESSION IN LEUKEMIC CELL LINES.
Sangkaruk, Rungkarn; Rungrojsakul, Methee; Tima, Singkome; Anuchapreeda, Songyot
2017-01-01
Saraphi (Mammea siamensis) is a Thai traditional herb. In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The flowers of M. siamensis were extracted using ethanol. The ethanol flower extract was further fractionated with hexane, ethyl acetate, and methanol. Cytotoxic effects were measured by the MTT assay. Bcr/Abl and WT1 protein levels after treatments were determined by Western blotting. The total cell number was determined via the typan blue exclusion method. The hexane fraction showed the strongest cytotoxic activity on Molt4 and K562 cells, with IC 50 values of 2.6 and 77.6 μg/ml, respectively. The hexane extract decreased Bcr/Abl protein expression in K562 cells by 74.6% and WT1 protein expressions in Molt4 and K562 cells by 68.4 and 72.1%, respectively. Total cell numbers were decreased by 66.2 and 48.7% in Molt4 and K562 cells, respectively. Mammea E/BB (main active compound) significantly decreased both Bcr/Abl and WTlprotein expressions by 75 and 49.5%, respectively when compared to vehicle control. The hexane fraction from M. siamensis flowers inhibited cell proliferation via the suppression of WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The active compound may be mammea E/BB. Extracts from M. siamensis flowers show promise as naturally occurring anti-cancer drugs.